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SUMMARY

Genton et al. (2011) investigated the gain in efficiency when triplewise, rather than pairwise,

likelihood is used to fit the popular Smith max-stable model for spatial extremes. We generalize

their results to the Brown–Resnick model and show that the efficiency gain is substantial only

for very smooth processes, which are generally unrealistic in applications.

Some key words: Brown–Resnick process; Composite likelihood; Max-stable process; Pairwise likelihood; Smith
process; Triplewise likelihood.

1. INTRODUCTION

Max-stable processes are useful for the statistical modelling of spatial extreme events. No

finite parametrization of such processes exists, but a spectral representation (de Haan, 1984) aids

in constructing models. In a 1990 University of Surrey technical report, R. L. Smith proposed

a max-stable model based on deterministic storm profiles which has become popular because

it is simple, readily interpreted and easily simulated, but unfortunately it is too inflexible for

realism in practice. Another popular model, the Brown–Resnick process, is based on intrinsically

stationary log-Gaussian processes, can handle a wide range of dependence structures, and often

provides a better fit to data; see, for example, Davison et al. (2012) or a 2012 University of

North Carolina at Chapel Hill PhD thesis by Soyoung Jeon. Kabluchko et al. (2009) provided

further underpinning for this process by showing that that under mild conditions, the Brown–

Resnick process with variogram 2γ(h) = (‖h‖/ρ)α (ρ > 0, 0 < α ≤ 2), where h is the spatial

lag, is essentially the only isotropic limit of properly rescaled maxima of Gaussian processes. The

Smith model is obtained by taking a Brown–Resnick process with variogram 2γ(h) = hTΣ−1h
for some covariance matrix Σ, corresponding after an affine transformation to taking α = 2,

whereas Davison et al. (2012) found that 1/2 < α < 1 for the rainfall data they examined.

Likelihood inference for max-stable models is difficult, since only the bivariate marginal

density functions are known in most cases, and pairwise marginal likelihood is typically used

(Padoan et al., 2010; Davison and Gholamrezaee, 2012; Huser and Davison, 2012). This raises

the question whether some other approach to inference would be preferable. Genton et al. (2011)

derived the general form of the likelihood function for the Smith model and showed that large

efficiency gains can arise when fitting it using triplewise, rather than pairwise, likelihood. In this

paper we extend their investigation to the Brown–Resnick process and show that for rougher

models, more realistic than those considered by Genton et al. (2011), the efficiency gains are

much less striking. Thus pairwise likelihood inference provides a good compromise between

statistical and computational efficiency in many applications.
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2 R. HUSER AND A. C. DAVISON

2. BROWN–RESNICK PROCESS

2·1. Definition and properties

The Brown–Resnick process (Brown and Resnick, 1977; Kabluchko et al., 2009) is a sta-

tionary max-stable process that may be represented as Z(x) = supi∈N Wi(x)/Ti (x ∈ X ⊂ R
d),

where 0 < T1 < T2 < · · · are the points of a unit rate Poisson process on R+ and the Wi(x)
are independent replicates of the random process W (x) = exp{ε(x) − γ(x)}. Here ε(x) is an

intrinsically stationary Gaussian random field with semi-variogram γ(h) with ε(0) = 0 almost

surely. One interpretation of Z(x) is as the pointwise maximum of an infinite number of in-

dependent random storms Wi(x), each rescaled by a corresponding storm size T−1
i . The full

distribution of Z(x) at the set of sites D ⊂ X is (Davison and Gholamrezaee, 2012)

pr{Z(x) ≤ z(x), x ∈ D} = exp

(

− E

[

sup
x∈D

{

W (x)

z(x)

}])

,

where the exponent measure function VD{z(x)} = E [supx∈D {W (x)/z(x)}] must satisfy cer-

tain constraints (see, e.g., Davison et al., 2012). The full distribution is intractable when D is ar-

bitrary, but explicit formulae for the marginal distributions are available when its size |D| = 1, 2,

and in certain cases more; see below. The univariate margins of Z(x) equal exp(−1/z), for

z > 0, and for D = {x1, x2} the exponent measure of the Brown–Resnick process is

V (z1, z2) =
1

z1
Φ

{

a

2
−

1

a
log

(

z1
z2

)}

+
1

z2
Φ

{

a

2
−

1

a
log

(

z2
z1

)}

, (1)

where zi = z(xi), i = 1, 2, a = {2γ(x2 − x1)}
1/2 and Φ(·) denotes the standard normal distri-

bution function. In this case expression (1) boils down to the Hüsler–Reiss (1989) model for

bivariate extremes. The bivariate marginal density functions f(z1, z2) are easily expressed using

derivatives of (1).

Figure 1 shows how the variogram influences the smoothness of the max-stable process. In

particular, when the smoothness parameter α equals 2, i.e., 2γ(h) = hTΣ−1h for some covari-

ance matrix Σ, the bivariate exponent measure of the Smith model is recovered (Kabluchko et al.,

2009; Padoan et al., 2010), and the storm shapes are deterministic, taking the form of Gaussian

densities.

2·2. Triplewise margins

Let D = {x1, x2, x3} ⊂ X and for simplicity write z1 = z(x1), γ1;2 = γ(x1 − x2), etc. Com-

putations in Appendix A show that provided R1, R2, R3 6= ±1, the triplewise exponent measure

may be expressed as

V (z1, z2, z3) =
1

z1
Φ2 {η(z1, z2), η(z1, z3);R1}+

1

z2
Φ2 {η(z2, z1), η(z2, z3);R2}

+
1

z3
Φ2 {η(z3, z1), η(z3, z2);R3} , (2)

where Φ2(·, ·;R) denotes the bivariate normal distribution function with zero mean, correlation

R and unit variance, η(zi, zj) = (γi;j/2)
1/2 − log (zi/zj) /(2γi;j)

1/2, and

R1 =
γ1;2 + γ1;3 − γ2;3

2(γ1;2γ1;3)1/2
, R2 =

γ1;2 + γ2;3 − γ1;3

2(γ1;2γ2;3)1/2
, R3 =

γ1;3 + γ2;3 − γ1;2

2(γ1;3γ2;3)1/2
.

The function Φ2(·, ·;R) is rapidly computed (Genz, 1992; Genz and Bretz, 2000, 2002), and

the triplewise density f(z1, z2, z3) is easily found by differentiating exp{−V (z1, z2, z3)}. The

resulting expressions are given in the Supplementary Material.
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Fig. 1. Seven simulated Brown–Resnick processes in one dimension, i.e., d = 1,
with variogram 2γ(h) = (‖h‖/28)α , and different smoothness parameters. Top
left: α = 0.5 (solid), 1 (dashed); top right: α = 1.5 (solid), 1.9 (dashed); bottom
left: α = 1.95 (solid), 1.98 (dashed); bottom right: α = 2, which corresponds to
the isotropic Smith model. The same random seed was used in all seven cases.

2·3. Higher order margins

Computations in Appendix B show that when |D| = p, and p ≤ d+ 1 if α = 2, the exponent

measure for the Brown–Resnick process may be written as

V (z1, . . . , zp) =

p
∑

k=1

1

zk
Φp−1(ηk;Rk), (3)

where ηk is the (p− 1)-dimensional vector with sth component η(zk, zs) (s = 1, . . . , p; s 6=
k), Φp(·;R) denotes the cumulative distribution function of the p-variate normal distribution

function with zero mean, unit variance and correlation matrix R, and Rk is the (p − 1)×
(p − 1) correlation matrix whose (s, t)th entry is (γk;s + γk;t − γs;t)/{2(γk;sγk;t)

1/2} (s, t =
1, . . . , p; s, t 6= k). We recover the results of Section 2·2 when p = 3 and those of Genton et al.

(2011) when the variogram is 2γ(h) = hTΣ−1h for some covariance matrix Σ. In principle the

full likelihood can then be obtained by differentiation of the cumulative distribution, but the

number of terms grows very fast as p increases, so direct likelihood inference seems infeasible

except for small p. Moreover, when α ≈ 2 and large p, the matrices Rk may be numerically sin-

gular, causing computational problems in the evaluation of the likelihood; see the Supplementary

Material for more details.
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3. COMPOSITE LIKELIHOODS

Suppose that n independent replicates of a Brown–Resnick process with variogram 2γ(h)
depending on parameters θ are observed at S sites in R

d, and let zi,j denote the value of the ith
process at site j. We consider only the pairwise and triplewise marginal likelihoods,

ℓ2(θ) =
n
∑

i=1

∑

j1<j2

log f(zi,j1 , zi,j2 ; θ), ℓ3(θ) =
n
∑

i=1

∑

j1<j2<j3

log f(zi,j1 , zi,j2 , zi,j3 ; θ),

and the corresponding maximum likelihood estimators θ̂2 and θ̂3, which are consistent and

asymptotically Gaussian as n increases (Lindsay, 1988; Cox and Reid, 2004; Varin et al., 2011).

Since θ̂3 might be thought to perform better than θ̂2, the question of their relative statistical

efficiency arises. In order to study this for random fields with different smoothness properties,

we consider the isotropic semi-variogram γ(h) = (‖h‖/ρ)α (ρ > 0, 0 < α ≤ 2), which corre-

sponds to Brown–Resnick processes built from fractional Brownian motions. We consider the

seven smoothness scenarios α = 0.5, 1, 1.5, 1.9, 1.95, 1.98, 2, the last being equivalent to the

Smith model. For each scenario we consider three levels of spatial dependence, with the range

parameter ρ = 14, 28, 42, broadly corresponding to the three cases σ11 = σ22 = 10, 20, 30 in

Genton et al. (2011). The number of replicates of the process was set to n = 5, 10, 20 and 50.

Using the R package SpatialExtremes (Ribatet, 2012), we simulated n independent copies of the

Brown–Resnick process with variogram 2γ(h) at the same set of 20 random sites uniformly gen-

erated in [0, 100]2, and computed the estimates θ̂2 = (ρ̂2, α̂2) and θ̂3 = (ρ̂3, α̂3), the latter based

on the expressions given in Appendix A. Such simulated datasets and random locations were

generated 300 times and the resulting estimates were used to compute empirical covariance ma-

trices V2 and V3 for θ̂2 and θ̂3, the empirical marginal efficiencies REρ = v̂ar(ρ̂3)/v̂ar(ρ̂2) and

REα = v̂ar(α̂3)/v̂ar(α̂2), and the empirical global efficiency REθ = {det(V3)/det(V2)}
1/2.

These efficiencies are reported in Table 1. For rough processes, with α = 0.5, 1, 1.5, maxi-

mum pairwise likelihood estimation has efficiency at least 70%, and often closer to 90%, rel-

ative to the use of triples, and the efficiencies depend little on n. For smooth processes, with

α = 1.9, 1.95, 1.98, 2, the efficiency of pairwise likelihood estimation can be markedly lower,

and decreases rapidly as n increases. In particular, when α = 2, i.e., for the Smith model, ob-

servations on the same storm profile at three different sites completely determine the profile and

thus the underlying variogram. Since this event has non-zero probability the triplewise estimator

is super-efficient compared to the pairwise one, explaining the dramatic drop in relative effi-

ciency observed when α ≈ 2. This behaviour is more striking either when the range parameter ρ
is big or for large n, since in either case it is then more likely that a single storm profile will be

observed at three sites.

Further simulations described in the Supplementary Material show that when α = 0.5, 1, 1.5
the efficiencies depend little on the number of sites S, but that when α = 2 they decrease rapidly

as S increases. Again, when S is larger, more triples observed on the same storm profile are

likely to occur, so the super-efficiency of the triplewise likelihood estimator when α = 2 has

more impact in finite samples.

Figure 2 shows that the relevance of the limiting Gaussian distribution of θ̂3 is questionable

when α = 2: the log triplewise likelihood is very asymmetric even for n = 50, whereas it is

much more nearly quadratic when α is smaller. Inference based on profile marginal likelihood

might thus be advisable when α is thought to be close to 2, even though classical likelihood

theory does not apply in this setting. Numerical issues may be encountered when α ≈ 2, due to
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Table 1. Efficiency (%) of maximum pairwise likelihood esti-

mators relative to maximum triplewise likelihood estimators

for n = 5, 10, 20, 50, based on 300 simulations of the Brown–

Resnick process with semi-variogram (‖h‖/ρ)α observed at

20 random sites in [0, 100]2. The numbers are respectively

REρ/REα/REθ.

n = 5 n = 10
α \ ρ 14 28 42 14 28 42

0.5 83/89/86 89/93/91 87/93/91 94/95/94 90/93/92 93/94/93
1.0 96/92/94 97/84/90 98/88/92 96/89/93 93/90/93 95/85/90
1.5 87/81/83 93/72/79 89/67/74 89/77/82 91/71/81 89/69/78
1.9 79/81/80 72/60/61 74/56/58 84/76/79 76/48/54 66/35/47
1.95 77/80/78 67/54/54 72/54/53 76/75/74 64/46/51 60/38/43
1.98 73/80/77 63/62/58 55/42/46 70/67/66 56/38/39 49/22/29
2.0 74/80/76 61/59/52 53/48/44 64/74/68 42/39/38 26/11/16

n = 20 n = 50
α \ ρ 14 28 42 14 28 42

0.5 94/94/93 92/93/93 92/95/95 92/92/92 91/97/94 89/92/91
1.0 94/89/91 96/87/92 94/86/92 93/84/88 95/85/91 95/90/95
1.5 88/77/82 90/68/78 88/69/76 92/77/84 90/65/76 87/69/77
1.9 79/60/67 74/36/47 66/28/39 75/48/58 69/22/35 62/18/32
1.95 73/60/64 59/24/35 50/15/26 73/44/55 54/11/22 48/8/17
1.98 68/56/60 49/22/29 38/7/16 68/42/51 40/5/12 33/2/7
2.0 62/65/63 20/6/11 16/3/6 38/30/33 6/0/1 1/0/0

the sharp drop in the likelihood as the range parameter exceeds its true value, and in experiments

we have found that the computation often breaks down.

4. DISCUSSION

This paper provides explicit expressions (2) and (3) for the exponent measure of the Brown–

Resnick process in arbitrary dimensions, on which likelihood inference may be based. Use of

triplewise likelihood rather than pairwise likelihood to fit these models can lead to an efficiency

gain of up to 30% for rough processes, and much more if the process is very smooth. This

augments the results of Genton et al. (2011), which show huge efficiency gains associated to

high order composite likelihoods for the Smith model. Our more general results confirm those

of Genton et al. (2011) for the Smith model, but in the more realistic setting when the process

is rough, the small improvement afforded by the triplewise approach is probably not worth the

additional computational and coding effort, particularly as issues of numerical precision may

then arise. In principle it is possible to compute the full likelihood for the Brown–Resnick process

in high dimensions, but the number of terms in the likelihood and the need to compute high-

dimensional multivariate normal distribution functions in numerically near-singular cases seem

to preclude this in practice.

In applications and for some other models, considerations other than statistical efficiency may

arise; for example, the use of triples in a likelihood may be essential for parameter identifiability,

as in work to be reported elsewhere on dimension reduction in extremes.
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Fig. 2. Triplewise log-likelihoods for the range parameter ρ, with α fixed at its true value, shifted to have maximum at zero and
scaled by the factor K = {(S − 1)(S − 2)/2}−1, for two datasets generated from a Brown–Resnick process with variogram
2γ(h) = (‖h‖/ρ)α, where α = 1 (left) and α = 2 (right). The true value ρ = 42 is represented by a solid vertical line. The
vertical dashed line, which corresponds to the maximum triplewise likelihood estimator, coincides with the solid line in the
right panel. The processes were simulated at the same 20 random sites in [0, 100]2, with n = 50 replicates, using the same

random seed.

It would be interesting to know whether the efficiency results given here generalize to weighted

marginal composite likelihoods (Varin et al., 2011). The best choice of subsets of sites is related

to the separate topic of optimal design for likelihood estimation. Both topics are outside the scope

of the present work.
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SUPPLEMENTARY MATERIAL

Supplementary material available online includes formulae for the computation of the trivari-

ate density of the Brown–Resnick process, figures illustrating the performance of maximum pair-

wise and triplewise likelihood estimators, and a table summarizing further simulations showing

how the efficiency of triplewise likelihood estimators changes with the number of locations.

APPENDIX A

Triplewise marginal distribution for the Brown–Resnick process

Recall the definition of the Brown–Resnick process in Section 2·1. For compactness we write z1 =
z(x1), W1 = W (x1), ε1 = ε(x1), γ1 = γ(x1), γ1;2 = γ(x1 − x2), etc. Since ε(0) = 0 almost surely, it is

easy to see that ci;i = var(εi) = 2γi and that ci;j = cov(εi, εj) = γi + γj − γi;j , for i, j = 1, 2, 3. Then

W1/z1 > W2/z2 is equivalent to logW1 − log z1 > logW2 − log z2, and hence to ε1 − γ1 − log z1 >
ε2 − γ2 − log z2 and thus to ε1 > ε2 + a, where a = γ1 − γ2 + log(z1/z2). Similarly, W1/z1 > W3/z3
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if and only if ε1 > ε3 + b, where b = γ1 − γ3 + log(z1/z3). Let us write

V (z1, z2, z3) = E

{

max

(

W1

z1
,
W2

z2
,
W3

z3

)}

= I1/z1 + I2/z2 + I3/z3,

say, where

I1 = E

{

W1I

(

W1

z1
>

W2

z2
,
W1

z1
>

W3

z3

)}

and so forth. Now provided x1 6= 0 and with wi = exp(εi − γi) and using φ to denote Gaussian densities,

possibly multivariate, we have

I1 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

exp(ε1 − γ1)I

(

w1

z1
>

w2

z2
,
w1

z1
>

w3

z3

)

φ(ε1, ε2, ε3)dε1dε2dε3

=

∫ ∞

−∞

exp(ε1 − γ1)φ(ε1)

∫ ε1−a

−∞

∫ ε1−b

−∞

φ(ε2, ε3 | ε1)dε3dε2dε1 (A1)

=

∫ ∞

−∞

1

(4πγ1)1/2
exp{−(ε1 − 2γ1)

2/(4γ1)}K(ε1)dε1,

say, where K(ε1) denotes the inner double integral in (A1), and thus

I1 =

∫ ∞

−∞

1

(2π)1/2
exp(−ξ2/2)K

{

(2γ1)
1/2ξ + 2γ1

}

dξ = Eξ

[

K
{

(2γ1)
1/2ξ + 2γ1

}]

,

where ξ ∼ N (0, 1). As the joint distribution of (ε1, ε2, ε3) is trivariate normal with zero mean and covari-

ance matrix C = (ci;j), the properties of the multivariate normal distribution imply that the joint density

of ε2, ε3 conditional on ε1 is N2(µ2,3|1,Σ2,3|1), where

µ2,3|1 =

(

c1;2ε1/c1;1
c1;3ε1/c1;1

)

, Σ2,3|1 =

(

c2;2 − c21;2/c1;1 c2;3 − c1;2c1;3/c1;1
c2;3 − c1;2c1;3/c1;1 c3;3 − c21;3/c1;1

)

.

Therefore, conditional on ξ, we have

K
{

(2γ1)
1/2ξ + 2γ1

}

=

∫ (2γ1)
1/2ξ+2γ1−a

−∞

∫ (2γ1)
1/2ξ+2γ1−b

−∞

φ
{

ε2, ε3 | ε1 = (2γ1)
1/2ξ + 2γ1

}

dε3dε2

= pr
[

Z1 ≤ (2γ1)
1/2ξ + 2γ1 − a− c1;2{(2γ1)

1/2ξ + 2γ1}/c1;1,

Z2 ≤ (2γ1)
1/2ξ + 2γ1 − b− c1;3{(2γ1)

1/2ξ + 2γ1}/c1;1
∣

∣ ξ
]

,

where Z1 and Z2 form a bivariate normal random variable with zero mean, and covariance matrix Σ2,3|1.

Integrating out over ξ, we get

Eξ

[

K
{

(2γ1)
1/2ξ + 2γ1

}]

= pr
{

Z1 + ξ(−γ1 + γ2 − γ1;2)/(2γ1)
1/2 ≤ −a+ γ1 − γ2 + γ1;2,

Z2 + ξ(−γ1 + γ3 − γ1;3)/(2γ1)
1/2 ≤ −b+ γ1 − γ3 + γ1;3

}

= pr (Y1 ≤ −a− γ1 − γ2 + γ1;2, Y2 ≤ −b− γ1 − γ3 + γ1;3)

= pr {Y1 ≤ γ1;2 − log(z1/z2), Y2 ≤ γ1;3 − log(z1/z3)} , (A2)

where (Y1, Y2) is a bivariate normal vector with zero mean and covariance matrix

Ω1 =

(

2γ1;2 γ1;2 + γ1;3 − γ2;3
γ1;2 + γ1;3 − γ2;3 2γ1;3

)

.

The right-hand side of equation (A2) yields

I1 = Φ2{η(z1, z2), η(z1, z3);R1}, (A3)
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where η(zi, zj) = (2γi;j)
1/2/2− log(zi/zj)/(2γi;j)

1/2, R1 = (γ1;2 + γ1;3 − γ2;3)/{2(γ1;2γ1;3)1/2}.

The case x1 = 0 can be treated separately and turns out to give the same result. By interchanging the

labels, I2 and I3 are derived similarly.

Expression (A3) and its counterparts hold if |Rk| 6= 1 (k = 1, 2, 3), which is always true when α < 2.

However, if α = 2 and the sites x1, x2 and x3 form a degenerate simplex in R
d, then Rk = ±1 (k =

1, 2, 3). If d = 1, the simplex is always degenerate. In dimension d ≥ 2, certain configurations of points

may also be problematic, for example if the sites x1, x2, x3 lie on a linear subset of R2. This will lead to

problems when the sites of D form a grid.

APPENDIX B

Higher order margins of the Brown–Resnick process

For p > 3, the exponent measure may be written as V (z1, . . . , zp) = I1/z1 + · · ·+ Ip/zp, where Ik =
E {WkI (Wk/zk ≥ Ws/zs, s = 1, . . . , p)}. Moreover, Ik = Eξ

[

Kk

{

(2γk)
1/2ξ + 2γk

}]

, where

ξ ∼ N (0, 1), Kk(x) =

∫ x−a
−k

−∞

φ(ε−k | εk = x)dε−k (k = 1, . . . , p),

with ε−k representing the (p− 1)-dimensional vector (ε1, . . . , εp) with the kth component removed, and

where a−k is the (p− 1)-dimensional vector whose sth component equals γk − γs + log(zk/zs) (s =
1, . . . , p; s 6= k). The computations are the same as those above, and equation (A2) becomes

Ik = pr{Ys ≤ γk;s − log(zk/zs); s = 1, . . . , p, j 6= k},

where the (p− 1)-dimensional vector of Yss has a joint Gaussian distribution with E(Ys) = 0, var(Ys) =
2γk;s and cov(Ys, Yt) = γk;s + γk;t − γs;t, from which we get Ik = Φp−1(ηk;Rk), where ηk and Rk are

defined in Section 2·3. Thus V (z1, . . . , zp) =
∑p

k=1 z
−1
k Φp−1(ηk;Rk).

This result holds if the correlation matrices Rk are invertible, which is always true when α < 2. How-

ever, in the special case α = 2, i.e., the Smith model, if the sites x1, . . . , xp form a degenerate simplex in

R
d, then the determinants of the correlation matrices equal zero and the result fails. If p > d+ 1, the sim-

plex is always degenerate (Genton et al., 2011). Moreover, if α ≈ 2, so that the Brown–Resnick process

is rather smooth, and especially for large p, the correlation matrices could be numerically singular.
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