Soft control of swarms - analytical approach
Guillaume Sartoretti® and Max-Olivier Hongler

EPFL /STI/IMT/ LPM
June 4, 2013

Abstract

We analytically study the collective dynamics of mutually interacting hetero-
geneous agents evolving in a random environment. Our formal framework
consist of a collection of N scalar drifted Brownian motions (BM) diffusing
on R. The mutual interactions are introduced via a ranked-based, real-time
mechanism always endowing the laggard, (i.e the agent with the leftmost po-
sition), with an extra positive drift. The extra drift generates a net tendency
for of any agents not to remain the laggard of the society. For well chosen
individual and extra laggard’s drifts, the agents organize with time to flock
towards a tight and stable traveling spatial pattern. For a population of (N —1)
identical agents and an atypic fellow, (called hereafter the shill), we are able
to analytically discuss the dynamics. In particular we exhibit how a single
turbulent shill, stylized here by a ballistic diffusion process, can destroy the
cohesion of a swarm. Conversely, we also analytically show how a single shill,
via interactions with its fellows, is able to safely pilot a whole swarm to avoid
an obstacle. A series of simulations experiments comfort our analytic findings.

1 Homogeneous versus heterogeneous mutually in-
teracting stochastic agents

The capability of a collection of interacting stochastic agents to exhibit an emergent
collective behaviour (i.e flocking behaviour) even in random environments stimulates
a strong research activity devoted to both experimental and theoretical modeling
approaches. For suitable range of mutual interactions, flocking (phase) transitions,
namely the self-organized capability to create finite and persistent spatio-temporal
patterns, are observed (see [1,3-5,10,13,14]).

Agents societies can be composed of either dynamically homogeneous or heteroge-
neous individuals requiring for each case drastically different approaches. For large
and homogeneous population of agents, the classical statistical mechanics concepts
and in particular, the mean-field description (MF) directly offers an appropri-
ate tool to analytically discuss the global dynamics. In the MF description, one
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basically assumes that the behaviour of the global society can be characterized by
the dynamics of a single representative agent which feels its fellows’ interactions via
an effective external field. In most circumstances however, homogeneity fails, and
therefore a growing attention is now paid to heterogeneous populations. Hetero-
geneity occurs typically when one or several masked agents, that we shall from now
on refer to as shills, exhibit leaders or troublemakers behaviours. These shills are
not recognized by the regular agents which see them as ordinary fellows. Hence the
interaction rules between ordinary fellows and shills remain unchanged. The pres-
ence of shills can strongly alter the ultimate evolution of the whole society and it is
the central goal here to analytically study this problematic. Our approach involves
assemblies of interacting stochastic agents in which a single shill exhibits a different
individual behaviour. All agents, including the shill, interact with their fellows with
fixed given rules. The paradigmatic vision of this situations has been currently ex-
plored in ethology where one fake individual is introduced among schools of fishes,
cockroaches, or newborn chicken, etc. The shill is able to ultimately pilot the whole
population ( [2,7,11]). This basic mechanism also referred as the soft control of a
population ( [6,15-17]) is the core of our present paper. As heterogeneous societies
preclude MF approaches, rather few analytical results for heterogeneous cases are
yet available. Recent mathematical models of heterogeneous rank-based inter-
acting Brownian motions (RBM), introduced in finance ( [1,4,10,13]), will be
used in the sequel to analytically approach the soft control problematic. We shall
analytically show how a troublemaker can break the cohesion of an initially
tight swarm and how a single agent can efficiently incitate its fellows to
achieve a preassigned task.

Our paper is organized as follows: we first recall in section 2 relevant properties of
RBM, also known in economy as the Atlas models. In section 3, we use the RBM'’s
framework to show how a troublemaker is able to smash an initially tight swarm. Our
individual dynamics are one-dimensional diffusion processes with piecewise constant
drifts except for the shill, which will be assumed to be driven by a ballistic process
with quadratic variance in time. The ballistic noise is itself generated by a
simple non-Gaussian diffusive stochastic process with nonlinear drift. In section 4,
we address the dual soft control problem in which a shill is used to steer the whole
collection of RBM’s towards slots that are drilled trough an obstacle board.

2 Rank-based Brownian motions - Atlas model

Our approach makes extensive use of recent results derived in [13|, that we now
briefly summarize. Let us consider a collection of N interacting agents diffusing
according to the class of processes:

N

dY; () = (Z gkl {Y (O} + i + 7) dt +0;dW; (1), Yi(0) =y, t e R, (1)

where Y (t) = (V1,Ys,---,Yy) € RY and dW;(¢) are N independent standard
White Gaussian Noise processes (WGN) processes. The indicator function 1¢, in
Eq.(1) effectively generates mutual interactions. The effective, time-dependent drift
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component g, entering into the drifts (g + 7; + ) of the N Brownian motions on R,
is rank-based. Namely, it is instantaneously adjusted according to the position (i.e.
the rank) occupied by each agent with respect to the remaining (N —1) fellows. The
constant drift components 7; are name-based, i.e. they are definitely assigned to each
individual agent (; is time-independent). Finally, a constant drift component v can
be added, which is common to all agents. Accordingly Eq.(1) describes a collection
of N diffusion processes having piecewise deterministic drifts. The somehow simpler
situation obtained when 7; = 0 Vi has been thoroughly studied in [10].

In the sequel and without loss of generality, we systematically choose v to be the
(average) barycentric speed of the swarm. This is achieved, provided one has:

N
Z [gk + ] =0
k=1

For future use, we introduce the following notations and definitions:
1. We write
1 _

for the barycenter position. The set Xy stands for the set of all the per-
mutations of {1,2,..., N}. It is proven in [13] that, for almost every initial
conditions and when the set of constraints

l
Z Ik + ] <0 (2)
k=1

are fulfilled for all possible permutations p = (p(1),...,p (N)) € Xy, then the
N deviations processes:

Yi(t)=[Yi(t) =Y (¢)]

converge to stationary probability measures. Note that Eq.(2) yields therefore
aset of (N —1) x |[Xy| = N! (N — 1) constraints to be verified.

2. When all constraints in Eq.(2) are fulfilled, the dynamics given by Eq.(1)
then converges to a tight swarm described by a stationary multi-variate
process characterizing the (N — 1)-gap processes =; (t)

= (t) = [Yz‘+1 (t) -Y (t)] . (3>

The associated probability density ¢ (2), z € Rf ~! can be written as a sum-
of-product-of-exponential form:

¥ (2) = (Z ] >‘;,119> Z exp (= (Ap, 2)) (Ao = Ap1dp2--Apn-1))
(4)



with the parameters explicitly given by

K
—4l_21 (90 + %)

)\p,k— , pEEN,ke{l,...,N—l}.

2 2
Oj + Tjyq

Remark. It is worth observing that the diffusion coefficients o; do not enter into
the set of tightness constraints given in Eq.(2). However, the o;’s do enter into the
parameters Eq.(4) characterizing the stationary probability measure.

3 How does a super-diffusive fellow smash tightness

We first investigate how a single "turbulent" fellow can destroy the cohesion of a
tight swarm. To this aim, we use the RBM formalism introduced in section (2). We
consider a configuration involving (N — 1) identical mutually interacting RBM’s,
referred from now on as the regular agents, interacting with a single fellow, the
shill, say agent number one, which is itself driven by a ballistic diffusion process,
(remember from Eq.(1) that the (V. — 1) regular agents are driven by independent
WGN’s). The ballistic process, to be introduced below, exhibits a variance oc t + 32
with a ballistic parameter 3 > 0 a constant. For § = 0, the shill simply behaves
as a regular fellow and therefore, in this § = 0 limit, our global dynamics reduces to
a standard version of Eq.(1). We set the specific parameters: gy = (N — 1) ¢ and
gr = —g for 1 <k <N —1. In addition, we shall further assume that:

11 max vy; < g.
) max i < g

The couple of constraints i) and ii) imply that the Eq.(2) is fulfilled. Indeed, we can
directly verify that :
N-1

=9+ %) <0, =29+ %) W) <0, -, —(N-1)g+ va(k) <0.
k=1

Hence, for § = 0, our collection of agents behaves as a tight swarm enjoying a
stationary joint probability law for the inter-distance between successive agents.

Let us now focus on > 0. Now, the shill Y; (¢) behaves as a turbulent fellow
which interact with the remaining (N — 1) regular fellows. Specifically the dynamics
of Y (t) is chosen to be described by:

4y (¢) = (Z gl {Y (O} +m + 7) dt +dZ(t), Yi(0)=y1 teR", (5)
=1

where the process dZ (t) is a super-diffusive ballistic noise generator introduced
in [8,9]:
dZ (t) = {ftanh [BZ (t)]} dt +dW (), Z(t=0)=0. (6)
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The non-Gaussian Markov diffusion process Z(t) given in Eq.(6) is fully character-
ized by its transition probability density P(z,t | 0) which very simply reads:

2

8
P t10)+ P_(2,t]0 T2l (@ipn?
BT EEID - b= S @)
2 2mt

P(z,t|0) =

with average (Z(t)) = 0 and variance

(Z2(1)) = /pr(z,t 10)dz = t + 8222, (8)

The simple form given in Eq.(7) suggests the existence of an alternative representa-
tion for the ballistic noise Z(t). Indeed, writing BM, 5(t) for the Brownian motions
with +3 constant drifts, we observe that the transition probability for the process
Z(t) can be rewritten as Z(t) = BBM_s(t) where B is a symmetric Bernoulli r.v.
taking the values +1 with equal probability 1/2. Hence, one realisation of the Z ()
consists first in choosing, with probability 1/2, one among the couple processes
BM_,5(t) and then follow the realisation of the selected process, (see example 2
in [12] and [8,9]).

We now come back to the dynamics jointly involving a turbulent fellow given by
Eq.(5) and (N — 1) regular agents described by Eq.(1). We then view the (N — 1)
regular agents as being infiltrated by a the shill Y, ().

Now we have to investigate the values of 3 enabling the swarm to remain tight, (i.e.
does it exists a stationary probability measure for the intervals between successive
agents). In view of the representation given in Eq.(8), for each realisation of the noise
source Z(t), we effectively deal with a standard RBM model with a re-normalized
name-based drift of Yi(¢), namely 7 — 7, = 3 depending on the outcome of B.
Accordingly, to infer on the tightness of the swarm, we simply have to separately
examine Eq.(2) for the couple of outcomes +(.

Realisation +/3. Let us define v = %, v = %ﬁ and v, = —y = —% for
2 < i < N. The constraints Eq.(3) are required for the swarm to be tight.
This yields, for Il =1 and p = (1,2,3..., N), to the most critical constraint:

+ <0 = +N_1ﬁ<0 & A<

g. 9)

Provided that Eq.(9) holds, the swarm remains tight when the Z; noise induces
a +( extra drift.

Realisation —(. The same reasonning applied to the —f3 case yields:

g N -1 p .
- _r - - == (2<i<N).
=y v o=y @2<isN)
The critical constraint arises when [ = 1 and v, := (%, o %, —%ﬂ) with:
—g+%<0 & [B<N-g. (10)
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This implies that for 3 < N - g, the swarm remains tight when the Z; noise
induces a —[( extra drift.

The previous considerations can be summarized by observing that when the con-
straints Eq.(9) are fulfilled, so are also those given in Eq.(10). This suggests to
distinguish an alternative “semi”-tight regime which arises when the constraints
Eq.(10) alone are fulfilled. In this “semi™tight case, the swarm exhibits a tight
configuration when the —( realisation is achieved and is not tight for the other
alternative +(. This intrinsic asymmetry can be easily understood as our RBM dy-
namics only pushes the laggard towards the others. Hence, regarding the tightness,
the shill is obviously less influential when the —f3 extra drift is realised.

3.1 Spatial dispersion of the agents

The extra +3-drifts due to the super-diffusive process driving the shill dynamics
obviously affect the spatial dispersion of the swarm. As all noise sources, (including
the dZ(t) process), have zero average, the barycenter of the whole population will
remain unchanged by the presence of dZ(t). However, due to the presence of the
shill, an initial single-modal cluster of agents will, as time increases, be be split
into two separately evolving population subgroups. Indeed, according to the +4
realisation taken by dZ(t), the overall effect of the shill will either to steer the swarm
towards negative or towards the positive directions; this generates the formation of
two distinct clusters. Each cluster has an individual barycentric velocity: v = 3 =
%ﬁ; this guarantees that the average barycenter remains unchanged. Specifically,
whenever the shill’s drift assumes the value —(, the shill has an overall propensity
to stay at the rear of the swarm. Accordingly, all regular agents will, with high
probability, be endowed with the rank-based drift —g. The regular agents hence
possess a net tendency to be driven toward the negative direction on R. Conversely,
in presence of the +/ realisation, the shill is very likely to belong to the group of
leaders. This impose to the remaining (N — 1) regular fellows to equally share, with
alternations, the rank-based drift of (N — 1) g which drives the laggard. Therefore,
with the +/ realisation, the whole population is very likely be driven towards the
positive direction of R. We now can isolate three regimes depending on the strength

3.

a) f < B, = %g. In this regime, the shill is able to steer the whole pop-
ulation in one of the two possible directions and it itself remained attached
to the swarm. In other words, a stationary probability measure exists for the
distance between the agents, (i.e. all agents evolve in a single flock). Note
however that the presence of the shill breaks an initially uni-modal spatial
repartition into a bi-modal repartition.

For three agents, (i.e. one shill and two regular fellows), the resulting spatial
repartition, obtained by simulation, is shown in Figure (1). In Figures (1), (2)
and (3), the shill’s position is represented in black, the others being displayed
in grey.
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Figure 1: Probability of spatial repartition of the agents at te,q = 10, numerical

computation over 10* runs, with N =3, g=1, f=11<f, = 3.

b) 6. < 8 < g-N. Here the strength of the ballistic noise precludes to
reach a global stationary state for the inter-distance processes between the N
agents. Indeed, the remormalized drift associated with the +/3 realisation of
dZ(t), (i.e. v1 =y + ), violates the constraint Eq.(9). However, for the —f
realisation, the constraint for 4y = ~; — [ is fulfilled, implying that the shill
remains flocked with its (N — 1) remaining fellows. An experiment with (3
chosen in this range, shows the spatial repartition in Figure (2).
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Figure 2: Left: End position distribution at t.,q = 10, numerical computation over
10® runs, with N =3, g=1, 3 = 3, = 1.5.
Right: End position distribution at te,q = 10, numerical computation over 103 runs,

with N =3,g=1,=2>[,.

c¢) Finally, for > ¢ - N, the shill becomes highly turbulent and the tightness
constraints are never fulfilled. The shill escapes from the flock and the resulting
spatial repartition is typically shown in Figure (3).

For all choices of the ballistic strength 3, the numerical results intimately match
the analytical predictions. In particular, the shill escapes from the flock when the
critical ballistic strength 3 = f3. is reached (for the +/ realisation, or when § = N-g
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Figure 3: Left panel: Probability density of the position at t.,q = 10 for N = 3,
g=1,3=N-g=3. The numerical computation includes 10° runs,

Right panel: Probability density of the position at te,q = 10 for N = 3, g = 1,
B =4> N -g. The numerical computation includes 10° runs.

for the —/f realisation of dZ(t). In these non-stationary regimes, the shill quits the
(N — 1)- regular tight swarm with velocity V() o« 3.

3.2 Distance between successive agents

Complementary to the tightness constraints, let us now briefly discuss the stationary
probability measure which characterize the distances between successive agents. To
this aim and for simplicity, we shall keep here identical diffusion coefficients, o; =
o=1(Vie{l,2,..,N}), and choose 3 in the range which ensures the existence of
a global stationary regime, (i.e. ensures tightness), namely:

0<f<f=5rs ()

Note however that, using, the results derived in [13|, heterogeneous diffusion con-
stants can also be analytically discussed. The distances separating consecutive
agents defined in Eq.(3) can be explicitly calculated by using the results summarized
in section (2). For agent Y;(t) and in view of the extra f-drift induced by the shill
ballistic driving, we are now led to define a couple of name-based drifts vectors as:

V=5 f e —f) ad = (=55 4 £). (2

The coefficients entering into the inter-distances probability measure read

k
)\;t,k:_22[gl+7;t(l)]a Vpely, 1<k<N-1.
=1

The fulfillment of the tightness constraints given in Eq.(2) ensures )\;;k >0 (Vp, k).
Hence, it results a couple of stationary probability densities, (one for each realisation
+/ and —f3), characterizing the inter-distance process = (t) (see Eq.(3)). One can
explicitly write:

Prob{z < Z(t) < z+ dz | £ is realised} =
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-1

=Pis(2)dz = Z ( 1 )\;k> Z exp (— <)\;t, z>) dz. (13)

PEXN k= PEXN

The complete stationary probability density then reads:
1
P(2) = 5 [Pep(2) + Pos (2)]. (14)

This last expression consists in a rather complex form involving sum of products of
exponentials, (as also does Py (z)). For the distance between agents, it is more in-
formative to separately focus on the marginal densities obtained for each realisations
+/ induced by dZ(t). Let us now experimentally illustrate this situation.

3.2.1 Illustration involving four agents (N =4

The average distance between the shill and the first regular agent and the averages
of the two distances between the three remaining regular agents can be explicitely
computed for N = 4. We obtain:

Eiﬁ[z]:/Rgz'Piﬁ(z) dZ:Ai/RS

+ +

D exp (< (Ar2)) | dz
( )

PEXY

For ¢ =1, and 0 < 8 < Ng = 4, these inter-agents distances as a function of time
are shown in Figure (4).

Expectfﬁl Distance Expectfbl Distance
8 8
6 6
4 4
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i 0 ........ 0204 ....... 06 ........ 08 ........ 1012 ....... B . - - : n B

Figure 4: Left panel: Evolution of Pyg(z) depending on 5. Right panel: Same for
P_ﬁ (Z)

Plain: FEzxpected distance between the shill and a regular agent, depending on the
value of 3. Dotted, Dashed: Expected distance between regular agents, depending on
the value of 3.

In the +/ case, it can be seen that when approaching 3. = %, the average distance
between the first two agents, which most likely include the shill and a regular fellow,
diverges. This divergence reflects the shill’s escape from the tight flock formed by the
(N — 1) regular agents. In the — case, one can observe how the expected distance
between the two rear agents also diverges as  — g - N = 4. This corresponds to
the second critical value for 3. As 3 approaches g - N, the common name-based

drift of the regular fellows, (i.e v; = %), tends to g, thus violating the constraint
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Eq.(2). This explains why the distance between the regular agents also diverges in
this limiting regime. The extra (-drift due to the shill is large enough to break
global tightness of the flock.

4 Using a shill to guide the collective crossing of
obstacles

The shill Y;(t) of section (3) has so far been viewed as a mere trouble maker. How-
ever, for specific tasks to be achieved, a shill’s presence might become truly ben-
eficial. Indeed, the presence of a shill can softly control a swarm towards a
preassigned target.

To concretely illustrate this alternative view point, let us, once again, consider a
collection of (N — 1) identical drifted Brownian (regular) agents and one shill, say
Y (t), all diffusing on R. From now on, we shall represent the evolution on R? with
the time being identified with the z-axis, and positions with the y-axis. At time
t =0, all N agents start at location y; (0) =0, 1 <i < N. We may think of agents
running on the r-axis with constant unit speed, as we therefore identify the z-axis
with time. At the z-location T, (see Figure 5) we introduce a solid wall (i.e. the
obstacle) in which two-slots are drilled. The global objective for the N agents is to
try to avoid the fatal collisions with the wall by traveling trough one of the couple
of slots. The two slots have width W and are symmetrically drilled at the ordinates
+D, see Figure (5) for a sketch of the configuration.

o
=
o

Time

Position
-

Figure 5: Initial configuration for the soft control problem. The agents start their
diffusion at (to,yo) = (0,0).

In absence of shill, one has an homogeneous swarm, (all agents are dynamically
identical) and the N-swarm proceeds according to the rule defined in Eq.(1). As a
consequence, the wall will be hit with high probability as, at time 7', the probability
density of the positions will be given by a collection of N centered Gaussians, (we
basically have N Brownian motions with constant drifts having their mean barycen-
ter located at zero). As seen in section (3), the presence of a super-diffusive shill
Y1(t) may strongly modify this nominal 5 = 0 picture. Indeed, Y;(¢) with suitable
parameters 3 and g, is able to steer the whole swarm with high preference to one
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of the slots. This basic and simple idea can be made fully quantitative as we now
discuss. In our simulations, we set § = 0 once the slots are crossed. Therefore,
the global swarm continues its nominal path with a tight configuration after the
obstacle.

4.1 Optimal barycentric driving for suitable choice of (3

First, we select the Y;(t) parameters to ensure global tightness. This is achieved
by defining § < 3, = % g. For a single realisation of the Z(¢) noise, we already
+p

know that the average barycentric y-speed of the swarm is 7. Hence, at time T,

the group barycenter reaches the y-position located at i—f,T The center of the slots
being located at £+ (D + %), we therefore naturally require:

AT w _(D+5)-N
T ==+ (D + 7) ~ ﬁopt = + (15)

The choice B,p:, does not yet ensure that the shill Y;(¢) itself remains attached to
the flock. This second requirement can be achieved provided one has:

(D+%5) N N (D+%)-(N-1)

T :ﬂopt<ﬂC:N_1g < g> T

=: g,

This choice of the couple parameters [3,,; and g > g. now jointly ensures that i) the
barycenter is steered towards one of the slots centers and ii) Y;(¢) remains tightly
attached to the swarm. The overall swarm’s y-dispersion, is itself dependent on the
diffusion constants o;, which were here taken as (o; := o Vi).

For T' = 50, and the choices § = fop and g = (9. +0.1) - 0, as 0; = 0 = 1 for all
agents, Figure (6) shows the resulting behaviour for different slot configurations.

4.2 Adjusting the spatial dispersion resolution for a given
drift ¢

When the drift ¢ is fixed, the ballistic component § cannot always be chosen to
simultaneously ensure tightness and the collective drive into one of the slots. Keeping
the barycentric driving 3 = (,,, as defined in Eq.(15), three different scenarii are
now possible:

a) 0 = Bopt < Be. In this case, the shill nicely steers the group towards one
of the slots while staying attached to the flock, as we already established in
section 4.1.

b) B = Bopt > B.. Here, Yi(t) escapes from the (N — 1)-flock with a constant
drifting velocity. Two sub-cases have to be distinguished, i) drift §— g resulting
when +/ is realised by dZ(t) and conversely ii) drift (N —1)g — 3 for the
alternative —/ case. In both cases, the regular agents evolve with an average
drift v, which reads:

11
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Figure 6: First line: Left: N = 3 agents, W = 10 and D = 10. Right: N =5
agents, W =10 and D = 50.
Second line: Left panel: N =10 agents, W = 20 and D = 10. Right panel: N = 20
agents, W = 20 and D = 50.

-l

¢) B = Bopt > P < N - g. Here, the shill remains attached to the flock for the
— (3 realisation of dZ(t), but escapes otherwise. This then leads to a mix of
cases a) and b) depending on whether 4+ or —/ is realised.

_ (B=g) 1+(N—1)vave : _
—(( L for + drift E Yave = Fo7

N=Dg= BN Dave g — 3drift S Yave = —9

The computation of 4, from case b) shows that with g fixed such that (3, > (.,
the shill escapes from the flock, (hence, no stationary probability measure exists).
The remaining (N — 1) regular fellows evolve with average speed 74, (which is -
independent). Whatever the values taken by /3, the shill is never able to drive the
swarm through one of the slots, the swarm’s speed being only g-dependent if the
shill is not attached to the swarm.

For 100 experiments performed with N = 10, D = 20, W = 10, T' = 50, and a selec-
tion of ¢’s, Figure (7) shows the trajectories of the agents The control parameters
used here lead to g. = 4.5.

The top left panel of Figure (7) shows an experiment where g < g., and B, > N - g.
In this case, the shill escapes from the flock in both +/ realisations, and as ¢ is too
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Figure 7: Top line: Left: g = 0.3 < gopt. Right: g = 3 < Gopt-
Bottom Line: Left: g =4 < gopt. Right g = 4.6 > gopt.

small, the flock ends up in the wall (case b)). In the top right panel and bottom left
panels of Figure (7), g is too low to allow the shill to remain attached to the flock for
the 4 realisation (case c¢)). But g is different in these cases, changing the average
y-speed of the flock 7,.. For the + realisation of dZ(t), this lets the swarm hit the
wall in the top right panel, but cross safely in the bottom left panel. Finally, in the
bottom right panel of Figure (7), g = 4.6 is large enough to let the shill nicely steer
the swarm towards the slots in both +/ realisations, and remains itself attached to
the flock (case a)).

So far, only the directions of the swarm has been considered. Obviously, the swarm
dispersion is also a determinant feature for efficient slots crossings. Here, not only
g but the ratio £ is determinant. Clearly for small values of g, it is likely that the
swarm dispersion exceeds the slots widths thus altering the overall efficiency.

4.3 Soft control for multi-slots configurations

So far, we did consider the capability of a shill to steer the swarm through a couple
of slots. For multi-slots configurations, the shill construction used before naturally
suggests to define more general shills to steer swarms in many different directions.
This is achievable by replacing the ballistic noise driving the shill with more com-
plex stochastic processes. Doing so however, the shill dynamics cannot be anymore
represented by a simple diffusive stochastic differential equation like Eq.(6). As
an illustration, consider a three symmetrical slots configuration for which one is
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naturally driven to

Az (t) = {
1

dw ()

ballistic noise with drift + § with prob.
white gaussian noise with prob.
ballistic noise with drift — 8 with prob.

introduce the following noise source:

Btanh (B8Z (t))dt + dW (t) with prob.

with prob.

[SHIEESV N

W=

1
3

Wl

The shill dynamics is taken as before, namely with probability % it steers the swarm
towards the positive or negative slots with ballistic parameter 3 and with probability
%, it behaves as a regular agent driving the swarm on centered path, see Figure (8).
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Figure 8: Trajectories for 3 and g optimal, with Ng; = 3 doors, under different
conditions for the position/width of the doors.

For arbitrary number of slots and configurations, one can generalize our construction

by suitably adjusting the properties of the noise source driving the shill.

5 Summary and conclusions

In societies of interacting autonomous agents, it commonly occurs that each indi-
vidual dynamics differ, leading therefore to truly heterogeneous collections of
agents. The characterization of the spatio-temporal patterns that can emerge from
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such heterogeneous societies offers a true challenge from both experimental and ana-
lytical research. Indeed, for heterogeneous fellows, analysis is usually made complex
as the use of ordinary statistical mechanics tools, like the mean-field approach, are
ruled out. The present paper, based on the dynamics of ranked-based Brownian mo-
tions, unveils a class of analytically soluble models involving an arbitrary number
of heterogeneous interacting agents. Heterogeneity opens a wide range of possible
interpretations and makes models suitable for numerous interdisciplinary implemen-
tations. Here, we focus on the simplest combinatoric situation where a single agent,
the shill, infiltrates a community of homogeneous fellows. By mutual interactions
with the shill, new dynamical patterns for the whole population emerge and can
be analytically discussed. As in all actual situations, the shill’s intervention can be
either perceived as destructive or constructive. As an illustration, a tight population
of ranked-based interacting Brownian motions can be destroyed by the very pres-
ence of a "turbulent" super-diffusive shill and this cohesion lost can be considered as
negative. Concurrently, the same shill’s action may also, in certain circumstances,
be counted as beneficial. As we show analytically, a single shill can alone induce an
average trajectory deflection of the whole swarm. This effective soft control might
positively contribute to help the global population to avoid the destructive effects
of collisions with an obstacle. We barely scratch the whole wealth of analytical
possibilities offered by such stylized models. We believe that this class of dynamics
provides a truly relevant tool to investigate the cooperative spatio-temporal patterns
emerging from interacting heterogeneous agents.
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