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Abstract

A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the
wave equation over long times in a rapidly varying medium. Our FE-HMM captures long-time dispersive effects
of the true solution at a cost similar to that of a standard numerical homogenization scheme which, however, only
captures the short-time macroscale behavior of the wave field.

Résumé

Méthode d’éléments finis multi-échelles pour l’équation des ondes dans des milieux hétérogènes sur
des temps longs. Dans cet article nous proposons une nouvelle méthode d’éléments finis multi-échelles pour la
solution de l’équation des ondes dans des milieux hétérogènes sur des temps longs. Cette méthode numérique est
capable d’approcher le comportement effectif de la solution sur des temps long avec un coût identique à celui d’une
méthode d’homogénéisation numérique standard qui ne peut capturer le comportement effectif de la solution que
sur des temps courts.

Version française abrégée

Dans cet article nous proposons une méthode d’éléments finis multi-échelles pour la solution de l’équation
des ondes dans des milieux hétérogènes (1) sur des temps longs. La résolution numérique efficace de ce type
de problème est importante pour de nombreuses applications (imagerie médicale, inversion sismique, com-
portement élastique d’un matériau composite, etc.). L’homogénéisation de l’équation (1) est classique [6]
et consiste à trouver une équation effective, où le teme ∇ · (aε∇uε) de (1) est remplacé par ∇ ·

(
a0∇u0

)
.

Nous rappelons que le tenseur homogénéisé a0 est obtenu, dans le cas (localement) périodique, par une
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moyenne appropriée de la solution de problèmes microscopiques en chaque point x du domaine Ω. Une
méthode d’homogénéisation numérique pour (1) a été proposée dans [4] avec un coût indépendant de ε.

Fixons maintenant T0 > 0 et considérons la solution uε de (1) sur des temps longs, T = T0/ε
2. On

peut alors montrer que sur des intervalles [0, T ], la solution uε peut-être approchée (dans une norme L∞)
avec une erreur O(ε) par la solution d’une équation effective dispersive (3) [11]. Auparavant une autre
équation effective (2) avait été proposée et obtenue avec des techniques de développement formel [13]. Nous
remarquons que la solution numérique par la méthode proposée dans [4] n’est pas capable d’approcher la
solution effective sur des temps longs. Des méthodes numériques pour calculer la solution effective de (2)
ont été proposées dans [7] (basées sur le calcul des coefficients effectifs de (2)) et dans [9] (basées sur une
méthode de différences finies multi-échelles de type [1]). Le désavantage de la méthode proposée dans [9]
est qu’elle nécessite des domaines microscopiques qui augmentent en taille quand ε → 0, un couplage
micro-macro d’ordre élevé, et des corrections appropriées des conditions initiales. De plus, comme la
solution de la méthode proposée dans [9] approche la solution d’une équation mal posée, des techniques
de régularisation doivent être utilisées. La nouvelle méthode que nous proposons dans cet article est basée
sur une méthode d’éléments finis multi-échelles de type [4]. Grâce à l’introduction d’un produit scalaire
L2 modifié, cette nouvelle méthode permet d’approcher la solution dispersive de (3) sur des temps longs
avec un coût identique à la méthode proposée dans [4] et bien inférieur à la méthode proposée dans [9].

1. Introduction

The numerical solution of the wave equation

∂ttu
ε −∇ · (aε∇uε) = F in Ω×]0, T [, (1)

with a rapidly varying coefficient aε(x) is of fundamental importance for a wide range of applications
(e.g., medical imaging, full-waveform seismic inversion, dynamic response of composite material). Here
Ω ⊂ Rd, uε(x, 0) = f(x), ∂tu

ε(x, 0) = g(x) in Ω, whereas the tensor aε(x) ∈ (L∞(Ω))d×d is symmetric
and uniformly elliptic. Further ε represents a small scale in the medium, much smaller than any scale of
interest such as the wave length, which characterizes the multiscale nature of the problem.

As standard numerical methods require grid resolution of the medium down to its finest scales through-
out Ω, they typically lead to prohibitively large problem size. In contrast, homogenization theory [6]
provides the analytical framework for deriving a properly averaged (homogenized) field a0(x) that cap-
tures at the macroscopic scale the essential effects of the highly oscillatory velocity field aε(x) as ε→ 0.
Then, the homogenized solution, u0, also satisfies (1) with aε replaced by a0. Since explicit formulas for
a0 are only available in a few situations (e.g., periodic or random stationary fields), numerical multiscale
methods that overcome these limitations are needed. In [12,14], for instance, effective coarse scale models
are computed from the fully resolved wave equation (1) throughout Ω; hence, the initial set-up cost for
the coarse (upscaled) model increases as ε→ 0. In contrast, the finite element heterogeneous multiscale
method (FE-HMM) (see e.g, [2, 3]) computes an effective wave equation at the macroscale from elliptic
micro problems on sampling domains of size δ = O(ε) ; hence, the computational cost is independent of
ε. At finite time and for locally periodic medium, it also yields optimal convergence to the limit u0 from
classical homogenization theory with decreasing mesh size.

For limited time the propagation of waves in a highly oscillatory medium is well-described by the
classical homogenized wave equation. With increasing time, however, the true solution, uε, deviates from
the classical homogenization limit, u0, as dispersive effects develop – see Figure 1. To capture those
dispersive effects over long times T = O(1/ε2) , Santosa and Symes [13] devised in one space dimension
and for periodic aε the effective Boussinesq-type equation

2



∂ttu
eff − a0∂xxu

eff − ε2b0∂xxxxu
eff = F. (2)

It was rederived by formal asymptotic expansion in [7]. Recently Engquist, Holst and Runborg [9]
proposed a finite difference (FD) HMM approach, which overcomes the limitations from precomputed
effective coefficients. The FD-HMM is able to capture those long-time dispersive effects, but it also
requires increasingly larger space-time sampling domains as ε → 0, together with high-order macro-
micro coupling and correction to the initial data. Moreover, since the FD-HMM solution converges with
decreasing mesh size to (2), which is ill-posed, regularization is also needed.

In [11], Lamacz rigorously proved that uε can be approximated with error O(ε) (in a L∞ norm) on
time interval T = O(1/ε2) by the solution ueff of a well-posed one-dimensional limit equation

∂ttu
eff − a0∂xxu

eff − ε2 b
0

a0
∂tt∂xxu

eff = F. (3)

Note that (3) coincides with (2) if time derivatives are formally replaced by space derivatives in the third
term. By using Bloch-wave techniques, that analysis was recently extended to higher dimensions [8]. The
weak formulation of (3) suggests that an effective correction at the macro-scale is also needed in the L2

inner product term that involves ∂ttu
eff.

The finite element heterogeneous multiscale method introduced in this paper yields on the fly a nu-
merical approximation for a Boussinesq-type equation, such as (3), yet at a cost identical to that of a
standard FE-HMM [4]. In particular thanks to a modified L2 scalar product, our new FE-HMM is able
to capture even dispersive effects of the true solution at later times.

2. FE Heterogeneous Multiscale Method

Since the FE-HMM proposed in [4] converges to u0, it also fails to capture the long-time dispersive
effects in the true solution, uε, as illustrated in Figure 1. To incorporate those dispersive effects, we
shall modify the L2 inner product thereby mimicking the weak formulation of (3). This new FE-HMM
method, denoted by FE-HMM-L (for long time), relies on the same micro problems as the original FE-
HMM from [4]; hence, the computational cost is identical.

Before we present the FE-HMM-L method, we start with some notations. Let {TH} be a family of
macro triangulations 1 (e.g., simplicial elements) of the computational domain Ω (H � ε is allowed) and
S`(Ω, TH) a FE space of piecewise polynomials of maximum degree `. Next within each macro element
K ∈ TH , we choose an appropriate quadrature formula (QF) with nodes xK,j and positive weights ωK,j ,
which satisfies standard ellipticity and approximation conditions [2]. At each quadrature point xK,j , we
also consider sampling domains Kδ = xK,j + δI, where I = (−1/2, 1/2)d and δ ≥ ε. On the sampling
domain Kδ, we choose a micro FE space Sq(Kδ, Th) with micro triangulation Th, and denote by vH,lin
the linearization of vH ∈ S`(Ω, TH) about xK,j . The FE-HMM-L method now reads as follows: Find
uH : [0, T ]→ S`(Ω, TH) such that{

∂tt

(
(uH , vH) + (uH , vH)M

)
+BH(uH , vH) = (F, vH), ∀vH ∈ S`(Ω, TH),

uH(0) = fH , ∂tuH(0) = gH in Ω,
(4)

where the initial data fH and gH are suitable approximations of f and g in S`(Ω, TH). In (4) the FE-HMM
bilinear form is defined as

1. Clearly, the method also applies to hexahedral elements with obvious changes.
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BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωK,j
|Kδ|

∫
Kδ

aε(x)∇vh(x) · ∇wh(x) dx, (5)

and the long-time correction by

(vH , wH)M =
∑
K∈TH

J∑
j=1

ωK,j
|Kδ|

∫
Kδ

(vh(x)− vH,lin(x))(wh(x)− wH,lin(x)) dx. (6)

In (5), (6), the micro solutions vh (resp. wh) are given by: Find vh such that (vh − vH,lin) ∈ Sq(Kδ, Th)
and ∫

Kδ

aε(x)∇vh(x) · ∇zh(x) dx = 0, ∀zh ∈ Sq(Kδ, Th). (7)

Thanks to the (vH , wH)M correction in the L2 inner product, the FE-HMM-L scheme is now able to
recover the dispersive behavior at later times – see Figure 1. In practice, the remaining two standard L2

scalar products (·, ·) in (4) are also evaluated via numerical quadrature which, however, does not need to
coincide with that used to compute either BH or the required L2-correction.

In the following proposition, we show that the L2-correction indeed has order O
(
ε2
)

and that (·, ·) +
(·, ·)M is a true inner product. Hence, the FE-HMM-L method in (4) is well-defined for all ε,H, h > 0.
Proposition 2.1 The L2-correction in (4) is positive semi-definite:

(vH , vH)M ≥ 0, ∀vH ∈ S`(Ω, TH).

Furthermore the correction is of order O
(
ε2
)

:

|(vH , wH)M | ≤ Cε2 ‖∇vH‖L2 ‖∇wH‖L2 .

PROOF. The positivity immediately follows from the positivity of the quadrature weights ωK,j . To
show the second statement, we rewrite the solution of (7) as

vh = vH,lin + δ

d∑
i=1

ψ̂ih

(
x− xK,j

δ

)
∂xivH,lin, (8)

where ψ̂ih ∈ Sq(Y ) solves the cell-problem∫
Y

axK,j (y)∇ψ̂ih(y) · ∇ẑh dy = −
∫
Y

axK,j (y)ei · ∇ẑh dy ∀ẑh ∈ Sq(Y ),

with axK,j (y) = a(xK,j + δy) and Y = (−1/2, 1/2)d. By using (8) in (6) we thus obtain

(vH , wH)M =
∑
K∈TH

J∑
j=1

ωK,j

d∑
r,s=1

δ2∂xrvH(xK,j)∂xswH(xK,j)

∫
Y

ψ̂rh(y)ψ̂sh(y) dy.

As axK,j is uniformly elliptic and bounded, the H1-norm of ψ̂ih is also bounded and we finally have

(vH , wH)M ≤ Cε2 δ
2

ε2

 ∑
K∈TH

J∑
j=1

ωK,j |∇vH(xK,j)|2
 1

2
 ∑
K∈TH

J∑
j=1

ωK,j |∇wH(xK,j)|2
 1

2

≤ Cε2 ‖∇vH‖L2 ‖∇wH‖L2 ,

since δ is proportional to ε. 2

By using Proposition 2.1 we can prove the following convergence result, see [5] for more details.
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Figure 1. The solution uε of (1), the solution u0 from classical homogenization, the solution ueff of (3), the numerical

FE-HMM solution from [4], and the new FE-HMM-L solution of (4) are shown at time T = 100 for ε = 1/50. Note that uε,

ueff and the FE-HMM-L solution coincide.

Theorem 2.1 Let u0, uH be the homogenized and the FE-HMM-L solutions, respectively. Under appro-
priate assumptions on the quadrature formula and the regularity of u0, we have∥∥∂t(u0 − uH)

∥∥
L∞(0,T ;L2(Ω))

+
∥∥u0 − uH

∥∥
L∞(0,T ;H1(Ω))

≤ C
(
H` + eHMM + ε2

)
,

and ∥∥u0 − uH
∥∥
L∞(0,T ;L2(Ω))

≤ C
(
H`+1 + eHMM + ε2

)
,

for all H ≤ H0 and ε ≤ ε0, where eHMM is the standard FE-HMM error, which can be decomposed into
the modeling and the micro error (see [2, 3] for further details).
Hence as ε, H, and h→ 0, the FE-HMM-L solution uH also converges to u0 for finite time. Yet for fixed
values h,H, ε > 0, it also captures the dispersive effects that emerge at later times in uε, as demonstrated
in the following numerical experiment.

3. Numerical experiment

We consider (1) in Ω = (−1, 1) with periodic boundary conditions, let u(x, 0) be a Gaussian pulse with
zero initial velocity and

aε =
√

2 + sin
(

2π
x

ε

)
(9)

with ε = 1/50. In Figure 1, the solution uε of (1), the solution u0 from classical homogenization, the
solution ueff of (3), the numerical FE-HMM solution from [4], and the new FE-HMM-L solution of (4)
are shown at time T = 100 for ε = 1/50. In particular, we observe the dispersive effects that appear
in the (fully resolved numerical) solution uε at later times. Because of the periodicity of the medium,
the homogenized tensor a0 = 1; hence, the corresponding homogenized solution u0 is non-dispersive and
can be computed analytically. The solution ueff is computed on a coarse mesh with H = 2−8, where
the coefficient b0 = 9.09632625 · 10−3 in (3) is computed with MAPLE [10]. To minimize numerical
dispersion, we use cubic finite elements at the macro and the micro scale, with mesh sizes H = 2−8 and
h = ε/100, respectively, but lower order elements could also be used. Both FE-HMM schemes use standard
second-order finite differences for time discretization. In contrast to the FE-HMM solution from [4], which
approximates u0, the solution from the new FE-HMM-L scheme coincides with uε and ueff even at later
times, thus exhibiting the correct dispersive behavior.
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