
SPECIAL SECTION

doi:10.1111/evo.12237

INTEGRATING LANDSCAPE GENOMICS AND
SPATIALLY EXPLICIT APPROACHES TO DETECT
LOCI UNDER SELECTION IN CLINAL
POPULATIONS
Matthew R. Jones,1,2,∗ Brenna R. Forester,3,∗ Ashley I. Teufel,4 Rachael V. Adams,5 Daniel N. Anstett,6,7 Betsy

A. Goodrich,8 Erin L. Landguth,9 Stéphane Joost,10 and Stéphanie Manel11
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Uncovering the genetic basis of adaptation hinges on the ability to detect loci under selection. However, population genomics

outlier approaches to detect selected loci may be inappropriate for clinal populations or those with unclear population structure

because they require that individuals be clustered into populations. An alternate approach, landscape genomics, uses individual-

based approaches to detect loci under selection and reveal potential environmental drivers of selection. We tested four landscape

genomics methods on a simulated clinal population to determine their effectiveness at identifying a locus under varying selection

strengths along an environmental gradient. We found all methods produced very low type I error rates across all selection strengths,

but elevated type II error rates under “weak” selection. We then applied these methods to an AFLP genome scan of an alpine

plant, Campanula barbata, and identified five highly supported candidate loci associated with precipitation variables. These loci
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also showed spatial autocorrelation and cline patterns indicative of selection along a precipitation gradient. Our results suggest

that landscape genomics in combination with other spatial analyses provides a powerful approach for identifying loci potentially

under selection and explaining spatially complex interactions between species and their environment.

KEY WORDS: Campanula barbata, computer simulation, landscape genomics, natural selection, spatial statistics.

The ability to detect loci potentially under selection in natu-

ral populations has important implications for understanding the

genetic underpinnings of adaptation and reproductive isolation

(Storz 2005). Most early population genetics studies of adaptive

evolution and speciation were restricted to model organisms and

certain types of traits characterized by mutations of large effect

(Lewontin 1974). Yet, with advances in DNA sequencing tech-

nologies and the increasing accessibility of genomic data sets

for nonmodel organisms, uncovering the genetic basis of many

ecologically important traits in wild populations is now tenable

(Stapley et al. 2010). Common approaches to identify loci under

selection, such as surveying candidate genes or quantitative trait

locus mapping, are still restricted in their application to the genes

they can identify and the organisms with which they can be used

(Storz 2005). Genome scans, however, offer an approach to detect

regions of the genome under selection without a priori knowledge

of their importance (Stinchcombe and Hoekstra 2008). Genome

scans consist of DNA polymorphism data distributed across indi-

vidual genomes. These data can be generated relatively cheaply

for nonmodel organisms across large number of individuals

(Ekblom and Galindo 2011). However, rigorous analysis of these

data to identify loci potentially under selection remains a major

obstacle.

One approach is to search for “outlier” loci that deviate from

an overall genetic pattern (Luikart et al. 2003). These approaches

(henceforth “population genomics” approaches) are based on the

theory that genome-wide processes, such as demographic events,

genetic drift, and gene flow, can be differentiated from locus-

specific processes, such as selection and recombination (Lewon-

tin and Krakauer 1973). For example, a locus under divergent

selection (or linked to a locus under divergent selection) across

two populations will have a higher pairwise-FST relative to the

genome-wide pairwise-FST (Storz 2005). Similarly, a recent se-

lective sweep will generally decrease nucleotide diversity adjacent

to the loci under selection (Storz 2005) and result in extended re-

gions of high linkage disequilibrium (LD) around the selected

locus (Sabeti et al. 2002).

The efficacy of population genomics methods may be af-

fected by a number of factors, including gene flow and population

structure (Nielsen et al. 2007). For instance, hierarchical popula-

tion structure and inclusion of isolated, bottlenecked populations

can inflate the number of outlier loci detected (type I errors;

Foll and Gaggiotti 2008; Excoffier et al. 2009). A number of

population genomics methods have been developed to incorpo-

rate the effects of complex demographic history and population

structure (e.g., Nielsen et al. 2007; Foll and Gaggiotti 2008;

Bazin et al. 2010). For example, simulations reveal that outlier-

detection methods based on haplotype LD (Sabeti et al. 2002;

Pavlidis et al. 2010) are relatively robust against a number of

demographic scenarios (Jensen et al. 2007; Nielsen et al. 2007;

Pavlidis et al. 2010). However, many of these approaches require

grouping individuals into populations, which may be inappropri-

ate with clinal populations or when population structure is un-

known before sampling, as is common with nonmodel organisms

(Joost et al. 2013). For example, sampling across unknown popu-

lations may increase false positives rates (Jensen et al. 2005) and

population clusters in genetic data may actually reflect uneven

sampling design across a genetic cline (Serre and Pääbo 2004).

Population genomics outlier-detection approaches, therefore, re-

quire additional analytical methods that allow for the analysis of

individual variation to enhance their utility in identifying potential

loci under selection (Schoville et al. 2012).

Landscape genomics attempts to uncover the processes and

environmental variables important in natural selection by using

correlative methods to link genetic variants to environmental vari-

ation (Luikart et al. 2003; Joost et al. 2007; Manel et al. 2010a).

Rather than comparing locus-specific patterns to genome-wide

patterns, these methods examine associations between allele dis-

tributions and predictor variables that are presumed to be impor-

tant drivers of selection.

However, like population genomics approaches, correlative

approaches may also suffer from high type I errors under certain

demographic scenarios. For example, spatial bottlenecks may re-

sult in false positives if environmental conditions vary between the

ancestral and bottlenecked population (Holderegger et al. 2008).

In addition, not correcting for population structure or isolation-

by-distance (IBD) may lead to false positives (Meirmans 2012).

Thus, analyzing loci detected by landscape genomics methods

with additional spatially explicit methods may help tease apart

selection from demographically derived patterns of genetic vari-

ation. Although there are recent landscape genomics approaches

that attempt to control for demographic signals (e.g., Bayenv,

Coop et al. 2010; Bayenv2, Günther and Coop 2012; latent factor

mixed models (LFMMs), Frichot et al. 2013), these important ad-

ditions to the analytical toolkit require that data be grouped at the

population level or require a predefined number of latent factors
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(similar to determining a value of populations) to be computa-

tionally feasible. Some individual-based landscape genomics ap-

proaches have been tested in controlled, simulated environments

(De Mita et al. 2013; Frichot et al. 2013); however, additional

tests are needed to examine how these methods perform on clinal

populations across different selection strengths.

In this study, we used simulations to examine the ability of

individual-based landscape genomics approaches to detect a locus

under selection across a range of selection coefficients in a cli-

nal population. We tested a commonly used regression approach,

generalized linear models (GLMs), in addition to two regression

analyses that incorporate spatial autocorrelation in the data, gen-

eral linear mixed models (GLMMs) and general additive mixed

models (GAMMs). We also implemented classification and re-

gression trees (CARTs), a nonparametric procedure of recursive

partitioning that distinguishes differences among groups based

on a set of predictor variables. We then applied landscape and

population genomics approaches to detect loci under selection

from an AFLP genome scan of a perennial alpine and subalpine

plant, the Bearded Bellflower (Campanula barbata). Campanula

barbata, affiliated with Nardus stricta-dominated grasslands, is a

late-successional species and nondominant across its range in the

European Alps (Meirmans et al. 2011; Scheepens and Stöcklin

2011). The flowers of C. barbata are animal pollinated and seeds

are gravity dispersed, characteristics associated with strong pop-

ulation structure and small dispersal distances (Meirmans et al.

2011). We supplemented correlative and population genomics

methods with spatially explicit analyses, that is cline and spatial

autocorrelation analyses, of candidate loci to search for patterns

consistent with selection-driven versus neutral processes. Finally,

we highlighted the strengths and weaknesses of landscape ge-

nomics approaches and discuss the implications of this research

for future evolutionary genomics research.

Methods
SIMULATING SPATIALLY EXPLICIT SELECTION

To assess the effectiveness of landscape genomics approaches to

detect loci under selection, we developed spatially explicit simula-

tion scenarios using the program CDPOP version 1.2 (Landguth

and Cushman 2010; Landguth et al. 2012). CDPOP produces

theoretical changes in allele frequencies for single and double

bi-allelic loci under selection (for more details, see Landguth

et al. 2012) and yields genetic patterns consistent with Wright–

Fisher expectations when parameterized to match Wright–Fisher

assumptions (Landguth and Cushman 2010).

For a population (n = 5000 individuals) of sexually reproduc-

ing individuals distributed randomly across an (x, y) surface, we

modeled spatial changes in allele frequencies for 100 bi-allelic,

Figure 1. Simulation selection gradient surface representing se-

lection for AA/Aa genotypes in the north and aa genotypes in the

south. Color of bars represents strength of selection, increasing

from north to south for aa genotypes and increasing from south

to north for AA/Aa genotypes.

dominant loci, consisting of one locus under directional selection

and 99 neutral loci. Initial genotypes were assigned randomly

to individuals. Dispersal, mortality, reproduction, and mutation

mediated the spatial changes in allele frequencies across the con-

tinuous resistance landscape. Spatial changes in allele frequencies

at the selection-driven locus were also determined by a selection

gradient surface, which governed the viability of an individual

along the gradient as a function of its genotype at the locus under

selection (Fig. 1). We created selection surfaces for three different

selection scenarios: “weak” (s = 0.01), “moderate” (s = 0.1), and

“strong” selection (s = 0.5). Our selection gradients ran along the

simulated landscape from north to south (Fig. 1), with dominant

genotypes (AA, Aa) experiencing 0% mortality in the north end

and either 1%, 10%, or 50% mortality in the south end of the land-

scape for “weak,” “moderate,” and “strong” selection scenarios,

respectively. The recessive genotype (aa) was given the opposite

selection gradient surface, with 1%, 10%, or 50% mortality in the

north and 0% mortality in the south (Fig. 1). For all selection sce-

narios, we ran 10 Monte Carlo replicates of 1000 nonoverlapping

generations.

Mating and dispersal movements were unbiased for males

and females and followed an isolation-by-distance inverse-square

function where maximum movement distance was 25% of the

maximum Euclidean distance on the landscape. Reproduction

began at birth and the number of offspring produced followed

a Poisson process (λ = 4). Thus, a high rate of reproduction

maintained a constant population size of 5000 individuals pro-

ducing an excess number of offspring that were discarded once

all 5000 locations were filled through the dispersal process (i.e.,

forcing individuals out of the simulation study once all available
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Figure 2. Sampling locations and genetic clusters of Campanula barbata defined by Structure. The proportions of colors in each circle

reflect the probability (combining all individuals at that site) of membership to the western (white) or eastern (black) population for

each sampling site. The three gray locations in the south-central Alps were removed from analyses.

home ranges are occupied; Balloux 2001; Landguth and Cushman

2010). We used a random mutation model with a mutation rate of

10−4, a typical rate previously used for AFLP markers (Wilding

et al. 2001; Campbell and Bernatchez 2004). We sampled 300

individuals from each Monte Carlo replicate using a stratified

random approach in which the landscape surface was divided into

100 square sites with three individuals randomly sampled from

each site.

EMPIRICAL POPULATION SAMPLING

For the empirical analyses, we used population samples of 307 C.

barbata individuals collected as part of the INTRABIODIV project

to assess pan-alpine vascular plant biodiversity across the Euro-

pean Alps and Carpathians (Gugerli et al. 2008). Leaf tissue was

sampled and stored in silica gel from three (99 sites) or two (5

sites) individuals at standardized sampling locations throughout

the European Alps from June to September 2004 (Fig. 2; Gugerli

et al. 2008). At most sites, voucher specimens were collected

and deposited in University of Neuchâtel herbarium (Gugerli et

al. 2008). All samples were located between 699 and 2806 m

elevation and distributed over 171,350 km2. All individuals

were genotyped at 114 AFLP markers (Vos et al. 1995) using

three primer–enzyme combinations as described in Gugerli et al.

(2008). Sampling locations and AFLP data are available at dryad

doi:10.5061/dryad.f3rk4.

GEOGRAPHIC STRUCTURE AND GENETIC VARIATION

ANALYSES

We used the program Structure version 2.3.3 (Pritchard et al. 2000)

to infer the number of populations sampled in C. barbata based

on AFLP genotypes. Structure determines the probability that an

individual belongs to a genetic cluster (K) by minimizing LD and

Hardy–Weinberg disequilibrium within each cluster (Pritchard

et al. 2000; Falush et al. 2003). We conducted runs for 10 values

of K (ranging from 1 to 10) using the admixture model with cor-

related allele frequencies. We used 50,000 Markov Chain Monte

Carlo (MCMC) repetitions with a burn-in period of 50,000 iter-

ations. We determined the most biologically probable value of K

using the log probability of the data (Pritchard et al. 2000) and

�K statistic (Evanno et al. 2005).

We used AFLP-SURV version 1.0 (Vekemans 2002) to gen-

erate genetic summary statistics based on populations defined

by Structure. AFLP-SURV estimates genetic diversity using a

Lynch and Milligan (1994) approach, which generates unbiased

summary statistics for dominant markers. We estimated allele

frequencies using a Bayesian method (Zhivotovsky 1999) with

nonuniform prior distribution and assuming the Hardy–Weinberg

equilibrium. After analyses to detect loci under selection we cal-

culated FST for loci classified as neutral and for candidate loci.

LANDSCAPE GENOMICS APPROACHES

We analyzed simulated and empirical data sets using GLMs,

GLMMs, GAMMs, and CARTs in R version 2.15.1 (R Devel-

opment Core Team 2012). GLMMs are an extension of GLMs

that allow for the inclusion of random effects (Bolker et al. 2009).

In the context of our analyses, GLMMs allow for the analysis of

nonindependent data, such as individual data points nested within

sampling locations, while accommodating the binary response

variable. Similarly, GAMMs allow for a comparable extension

of generalized additive models (GAMs), which are themselves a

nonparametric extension of GLMs (Guisan et al. 2002). In a GAM,

the constant regression coefficients of the GLM are replaced with

smoothing functions (usually splines) of the predictors, which

are fit to local subsets of the data. Like GLMMs, GAMMs extend
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Table 1. Environmental variables used to identify loci under se-

lection in Campanula barbata.

Yearly climatic layers
(1980–1989)

tmaxavgty Mean annual maximum
temperature (◦C)

tminavgty Mean annual minimum
temperature (◦C)

prcpavgy Mean annual
precipitation sum (cm)

Seasonal climatic
layers (1980–1989)

prcp0608 Summer seasonal
precipitation (number
of rain days from June
to August)

GAMs to include random effects, and thus can accommodate both

nested and correlated data structures.

Classification and regression trees and their extensions,

boosted regression trees and random forests, are an increas-

ingly popular method in ecological modeling (De’ath and Fabri-

cius 2000; Prasad et al. 2006) and have been found to perform

equally or better than logistic regression at classification tasks

(Vayssières et al. 2000). Classification and regression trees have

many advantages over parametric multivariate analyses, includ-

ing a lack of assumptions about the distribution of the data, the

ability to easily handle missing values, and relative insensitiv-

ity to correlated predictor variables (De’ath and Fabricius 2000).

In addition, CARTs are easily interpreted and can address com-

plex interactions among predictors, including compensatory re-

lationships, context-dependent contingencies, and nonlinear rela-

tionships. Classification and regression trees offer an additional

nonparametric approach to detect loci under selection while also

providing the ability to investigate complex relationships in the

response of a selected locus to a set of environmental predictors.

For the simulated data, we used longitude and latitude as the

“environmental” predictor variables. As the selection gradients

for the simulated populations ran from north to south (Fig. 1), we

expected the selected locus to be strongly associated with latitude.

For the empirical AFLP data, we selected predictor variables

(Table 1) from environmental layers calculated by Zimmermann

and Kienast (1999). Four variables related to temperature and

precipitation were selected based on their biological relevance to

alpine plants (Manel et al. 2012b) and variable screening based

on principal components analyses.

We ran GLMs on sampling sites (n = 104) using the fre-

quency of presence polymorphisms at each sampling location

as the response variable. For GLMMs and GAMMs, performed

in the R packages lme4 (Bates et al. 2011) and gamm4 (Wood

2011), respectively, we used presence or absence polymorphisms

in each individual as a binomially distributed response variable,

with sampling site included as the random effect. We used Laplace

approximations for GLMMs (Stigler 1986); GAMM models were

estimated using a maximum likelihood framework with penal-

ized regression spline smoothers and model comparison based

on Laplace approximate log likelihoods. For the three regression

approaches, models containing all possible subsets of predictor

variables were fitted to each locus. We selected the model with the

lowest corrected Akaike Information Criterion (AICc; Hurvich

and Tsai 1989) ranks using the multimodel inference R package,

MuMIn (Barton 2012). We then examined loci with significant

effects at 95%, 99%, and 99.5% confidence levels (CIs) after a

Bonferonni correction.

We ran CARTs on sampling sites using the rpart package

in R (Therneau and Atkinson 2012). Classification models were

fitted to each locus using all predictors, and the “improve” value

for the first split was retained for each model. “Improve” is a

measure of the improvement in deviance (a log-likelihood mea-

sure based on expected group membership) given by the split

(Therneau and Atkinson 2012); we expected loci strongly asso-

ciated with a predictor variable to show a high improve value,

or a large decrease in deviance in response to partitioning the

response into two groups based on that variable. We calculated a

P-value for each locus with 100,000 permutation tests and used

significance thresholds corresponding to 95%, 99%, and 99.5%

CIs after Bonferroni corrections.

POPULATION GENOMICS OUTLIER-DETECTION

APPROACHES

We implemented two population genomics methods on the C.

barbata data set, using populations defined in Structure (K =
2): DFDIST and BayeScan. DFDIST, a variation on the program

FDIST (Beaumont and Nichols 1996), was implemented in the

program Mcheza (Antao and Beaumont 2011). Mcheza applies a

multitest correction based on false discovery rate (FDR) to avoid

overestimating outlier loci (Caballero et al. 2008). We used a total

of 100,000 iterations and 95%, 99%, and 99.5% CIs. Loci with a

significant P-value at an FDR threshold of 10% were considered

candidate loci; FST values higher than expected were considered

under positive selection.

BayeScan version 2.1 (Foll and Gaggiotti 2008) estimates

the posterior probability that a locus is under selection using a

reversible-jump MCMC approach. After 20 pilot runs of 5000

iterations and an additional burn-in period of 50,000 iterations,

we used 100,000 iterations (sample size = 5000, thinning interval

= 10) to identify outlier loci after removing seven monomor-

phic loci. Selection was evaluated using q-values, which are the

FDR analog of P-values. A q-value is calculated for each locus

and represents the minimum FDR at which the locus may be-

come significant. Loci with a q-value < 0.10 were considered

outliers.

EVOLUTION 2013 5



SPECIAL SECTION

CLINE ANALYSES IN C. BARBATA

For candidate loci identified in the C. barbata genome scan, we

tested for relationships between geographic transitions in allele

frequencies and environmental variables using the cline-fitting R

package hzar (Derryberry et al., in review). The package hzar fits

trait or environmental data to cline models using a Metropolis–

Hasting algorithm (Metropolis et al. 1953; Hastings 1970) and

calculates cline shape parameters, such as cline center (c), the

location along a transect where the frequency of a variable changes

most rapidly, and cline width (w), the distance over which the

rapid change in frequency occurs (Szymura and Barton 1986).

Cline shape parameters are estimated using three equations, which

describe the shape of the cline center and the exponential decay

of the tails on either side of the cline center (Szymura and Barton

1986).

Summer seasonal precipitation, the variable predominately

associated with candidate loci, showed an east–west pattern of

variation across the Alps. Therefore, to fit clines to our data, we

measured transitions in AFLP band frequencies across a linear

transect in distance (km) east from the western-most site (site 1).

We transformed environmental data into Bernoulli trials (scales

values between 0 and 1) to make data appropriate for cline fitting.

We fitted 15 different cline models to observed data that differently

describe the exponential decay of the tails on either side of the

central cline (none, left tail only, right tail only, mirror tails, or

both tails estimated separately) and scaling of minimum (Pmin)

and maximum (Pmax) values (fixed to 0 and 1, observed values, or

estimated values). We used a burn-in period of 10,000 iterations

followed by 100,000 iterations (thinning parameter = 100). We

determined the optimal cline model by using the lowest model

AICc score. If the two log-likelihood support limits for the cline

center and cline width overlap between two clines, those clines

are said to be coincident and concordant, respectively.

SPATIAL AUTOCORRELATION IN C. BARBATA

Spatial autocorrelation of genetic data may reflect limited disper-

sal capabilities or local adaptation (Durand et al. 2009). To exam-

ine patterns of spatial dependency of candidate loci, we measured

global and local spatial autocorrelation, respectively, according

to sampling sites (n = 104) using Moran’s I and univariate local

indicators of spatial association (LISA; Anselin 1995) in the pro-

gram OpenGeoDa (Anselin and McCann 2009). Local indicators

of spatial association indicators are statistics that measure spa-

tial dependence and evaluate the existence of local clusters in the

spatial arrangement of a given variable using the statistical index

I. Moran’s I values range from −1, indicating perfect dispersion

of data, to 1, indicating perfect spatial autocorrelation, with 0

indicating randomly dispersed data. We calculated LISA using a

70 km weighting scheme as 68 km is the minimum distance for

which there are no neighborless observations.

Table 2. Type I and type II error rates at a 99.5% confidence level

for landscape genomics methods based on simulation data for

varying selection strengths.

Error rates (%)
Error Selection
type strength GLM GLMM GAMM CART

Type I Weak 0.2 0.1 0.1 0.0
Moderate 0.1 0.1 0.1 0.0
Strong 0.4 0.4 0.4 0.1

Type II Weak 100 100 100 100
Moderate 0 10 10 60
Strong 0 0 10 0

Results
METHOD PERFORMANCE ON SIMULATED DATA

Under “weak” selection, all landscape genomics methods failed

to identify the locus under selection in all runs. In the “moderate”

selection scenario, GLMs always detected the selected locus at a

99.5% CI, whereas GLMMs and GAMMs detected the selected

locus at a 99.5% CI for 90% of runs, although it was detected at

a 99% CI for the other 10% of runs. Classification and regression

trees were the least powerful method, failing to detect the locus

under selection in 60% of runs at a 99.5% CI and 40% of runs at a

95% CI. Under “strong” selection, landscape genomics methods

always detected the locus under selection at a 99.5% CI, with one

exception in which GAMMs failed to detect the correct locus in

one run (Table 2).

Type I errors were low across selection strengths, ranging

from 0.0% to 0.4% at a 99.5% CI (Table 2). The same false-

positive loci were often identified by the three linear and ad-

ditive modeling approaches (GLM, GLMM, GAMM). In both

“weak” and “moderate” selection simulations, a single neutral lo-

cus was incorrectly identified by linear and additive models. Un-

der “strong” selection, across all runs linear and additive models

falsely detected four loci, all but one associated with longitude.

Classification and regression trees had the lowest type I error

rate, producing only one false positive in the “strong” selection

scenario, which was not identified by the GLMs, GLMMs, or

GAMMs.

POPULATION STRUCTURE AND GENETIC DIVERSITY

OF C. BARBATA

We identified two populations using Structure, occupying the

western and eastern portions of the study area (Fig. 2). Pairwise

FST between these populations and global FST both indicated

moderate genetic differentiation (pairwise FST = 0.144; global

FST = 0.139; Table 3). A small, peripheral population in the

southern Alps identified by Structure, consisting of three contigu-

ous sampling locations and nine individuals, was removed from
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Table 3. Population genetic diversity for western and eastern

populations of Campanula barbata. We generated summary statis-

tics for total gene diversity (HT), average within-population di-

versity (HW), average among-population diversity (HB), expected

heterozygosity (HE, Nei’s gene diversity), the proportion of poly-

morphic loci (PP, polymorphic if band is present in less than 95%

of all individuals), and pairwise and global FST.

Population n HT HW HB HE PP FST

Western 198 – – – 0.115 0.29 0.144
(pair-
wise)

Eastern 100 – – – 0.183 0.533 0.144
(pair-
wise)

Average 298 0.174 0.149 0.025 0.138 0.372 0.139
(global)

population genetic analyses to avoid type I errors (Foll and Gag-

giotti 2008; Excoffier et al. 2009). When included in analyses,

this small population significantly increased global FST (FST =
0.348, including this population). “Highly supported” candidate

loci (n = 5) had a high global FST (FST = 0.321) in comparison

with neutral loci (n = 102), which showed a moderate global FST

(FST = 0.116).

DETECTION OF LOCI UNDER SELECTION IN C.

BARBATA

Generalized linear models detected the most loci associated with

environmental variation (19 loci) at a 99.5% CI, followed by

GLMMs (five loci), GAMMs (four loci), and CARTs (two loci;

Table 4). The majority of these loci were most strongly associated

with summer seasonal precipitation (prcp0608); only GLMs iden-

tified loci associated with other predictor variables at a 99.5% CI.

These included L41 and L94, which were correlated with mean

annual minimum temperature.

DFDIST detected 36 outlier loci at a 99.5% threshold, all

under positive selection (Fig. 3). BayeScan detected no loci under

selection at a q-value threshold of 0.10. Loci with the three low-

est q-value scores (q-value = 0.89; mean FST = 0.24) were not

detected by any landscape genomics methods or DFDIST. L37,

which was identified by three landscape genomics methods at

varying CIs and DFDIST (Table 4), had the fourth lowest q-value

(q-value = 0.89) and the highest FST (0.26). Running BayeS-

can on three Structure populations yielded L37 with the lowest

q-value (0.41) and the highest FST (0.36), however still not at a

significant outlier threshold.

We considered “highly supported” candidate loci those that

were identified in at least half of the detection approaches at

a 99.5% CI. Based on these criteria, we identified five “highly

supported” candidate loci: L26, L40, L45, L69, and L70 (Table 4).

Figure 3. Distribution of FST values for each locus as a function

of locus heterozygosity based on Campanula barbata AFLP data.

Candidate loci identified by DFDIST are located in the blue (positive

selection) and yellow (balancing selection) regions with neutral

loci in the white region. Labeled loci are those identified by at

least one landscape genomics method at a 99.5% confidence level.

CLINE AND SPATIAL AUTOCORRELATION ESTIMATES

We observed a sharp transition in summer seasonal precipitation

along longitude occurring at 440.7 km east of site 1 (c; 439.0–

447.4) with a cline width of 0.53 km (0.00–13.6 km; Table 5 and

Fig. 4). Cline centers of highly supported candidate loci fell within

171 km of the precipitation cline with the western most cline (L45)

at 418.5 km and the eastern most cline (L69) at 614.8 km east of

site 1. One locus (L45) possessed a cline center coincidence with

summer seasonal precipitation, although cline center confidence

intervals of three other loci (L26, L40, L70) fell within 27.5 km of

the summer precipitation cline center confidence interval. In most

cases, the cline center for precipitation was shifted slightly west

of cline centers for candidate loci (Fig. 4). Cline widths varied

significantly from 14.4 km at the narrowest (L40) to 557.9 km at

the widest (L69) with only L40 having a cline width concordant

with summer precipitation.

We found significant positive global spatial autocorrelation

(range: 0.369–0.697; pseudo P-value < 0.001) for all highly sup-

ported candidate loci for a 70 km weighting scheme (Fig. 5).

The western and eastern Alps, respectively, are generally defined

by positive spatial autocorrelation for low band frequency with

low band frequency and high band frequency with high band

frequency, excluding L45, which shows the opposite pattern. In-

terestingly, we found a consistent neutral corridor (no spatial de-

pendence) located between the western and eastern populations.
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Table 4. Candidate loci for Campanula barbata identified by two or more approaches. Loci are sorted by the number of asterisks (* =
95% CI, ** = 99% CI, *** = 99.5% CI) then the number of methods identifying the locus. Environmental variable(s) associated with each

locus are listed as well as the type of selection for outlier methods. “Highly supported” loci are L40–L26.

Locus GLM GLMM GAMM CART DFDIST BayeScan

L40 prcp0608*** prcp0608*** prcp0608*** prcp0608* Positive*** –
L45 prcp0608*** prcp0608*** prcp0608*** prcp0608*** – –
L70 prcp0608*** prcp0608* – prcp0608*** Positive*** –
L69 prcp0608*** prcp0608*** prcp0608*** – – –
L26 prcp0608*** prcp0608*** prcp0608*** – – –
L12 prcp0608*** prcp0608* prcp0608* – Positive*** –
L15 prcp0608*** – prcp-0608* prcp0608* Positive*** –
L37 prcp0608*** prcp0608* – prcp0608* Positive*** –
L88 prcp0608*** prcp0608** prcp0608** – – –
L43 prcp0608*** – – – Positive*** –
L53 prcp0608*** – – – Positive*** –
L62 prcp0608*** prcp0608*** – – – –
L73 prcp0608*** – – – Positive*** –
L55 prcp0608*** prcp0608* prcp0608* – – –
L25 prcp0608** – – – Positive*** –
L81 prcp0608* – – – Positive*** –
L89 prcp0608* – – – Positive*** –
L100 prcp0608*** – – prcp0608* – –

In L26 and L69, an additional neutral corridor is found in the

western portion of the study area ∼200 km east of site 1.

Discussion
METHOD PERFORMANCES

Landscape genomics methods require rigorous vetting to deter-

mine how they perform under different scenarios. In particular,

given their ability for individual level analysis, assessing the effec-

tiveness of correlative methods on clinal populations is important

for understanding the contexts in which they can be implemented

most effectively. To this end, we simulated a clinal population

under varying selection along an environmental gradient to de-

termine the effectiveness of four landscape genomics methods.

Our results suggest that in clinal populations: (1) landscape ge-

nomics methods produce few type I errors across varying selec-

tion strengths; (2) under “moderate” selection, linear and additive

regressions may outperform CARTs, which have higher type II

errors; and (3) landscape genomics approaches may completely

fail to detect loci under “weak” selection. The strikingly low

type I errors were consistent at different levels of significance

and for different methods, although CARTs had the lowest type I

Table 5. Parameter estimates for the genetic and environmental clines using HZAR for Campanula barbata. Two log-likelihood unit

support limits for cline center (c) and cline width (w) are presented in parentheses.

Locus c w Pmin Pmax

prcp0608 440.7 0.71 0.13 0.70
(439.0–447.4) (0.00–15.4) (0.08–0.20) (0.64–0.76)

L40 458.3 14.4 0.0001 0.50
(450.6–472.9) (0.1–53.68) (0.00–0.01) (0.41–0.59)

L45 418.5 190.6 0 1
(344.0–440.3) (120.5–388.1) (Fixed) (Fixed)

L70 470.8 60.9 0.01 0.68
(451.6–489.4) (28.5–109.1) (0.00–0.02) (0.57–0.77)

L26 493.5 116.4 0 1
(474.9–518.7) (67.0–229.9) (Fixed) (Fixed)

L69 614.8 557.9 0.03 0.49
(567.0–682.4) (431.2–762.0) (Fixed) (Fixed)
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Figure 4. Cline shapes for summer seasonal precipitation and highly supported candidate loci in Campanula barbata. The 95% credible

cline region is shaded in light gray. The vertical gray rectangle corresponds to the two log-likelihood unit support limits for summer

seasonal precipitation cline center. Cline shape parameters are presented in Table 5.

error rates. Low type I errors were likely a result of minimal IBD

patterns in the simulated populations due to high dispersal capa-

bility of the simulated individuals (maximum dispersal distance

= 25% of landscape). We performed a Mantel test to examine the

association between genetic and Euclidean distance and found

a weak, yet significant, pattern of IBD that seemed to arise as

a result of the selection-driven locus. For example, under weak

selection, the strength of IBD was lower (r = 0.038, P < 0.05)

than under strong selection (r = 0.081, P < 0.05). When present,

strong IBD can confound landscape and population genomics

outlier detection techniques, resulting in higher type I error rates

(Meirmans 2012). Thus, landscape genomics methods may be

particularly well suited to detect loci under selection in clinal

populations where strong population structure is not present. We

also found that type II error rates were low except for “weak” se-

lection simulations where all methods failed to detect the locus un-

der selection. Also, under “moderate” selection GLMs, GLMMs,

and GAMMs were much more robust that CARTs. In a similar
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Figure 5. Local indicators of spatial association (LISA) of AFLP band frequencies for highly supported candidate loci in Campanula

barbata. Shown in red are locations where high band frequencies are correlated with a high mean of band frequencies measured at the

neighboring sampling sites located within a radius of 70 km (spatial weighting scheme). Shown in blue are locations where low band

frequencies are correlated with a low mean of band frequencies in neighboring sampling sites using the same weighting scheme. In

purple are locations where low band frequencies are correlated with a high mean of band frequencies. Shown in pale red are locations

where high band frequencies are correlated with a low mean of band frequencies. Finally, locations with band frequencies showing no

spatial dependence are displayed in white.

simulation study, De Mita et al. (2013) found that GLMs were

most robust under highest migration rates and when sampling

occurred at the individual level. Thus, in clinal populations with

gradual genetic gradients, these methods may outperform CARTs.

Additional simulation testing of correlative methods is needed to

assess their sensitivity to different levels of IBD and population

structure, as well as more complex spatial selection and genic

(e.g., mutation strength, mutational models, or recombination)

scenarios.

Empirical results further suggest that CARTs are the least

powerful approach for identifying candidate loci under selection.

A CART model identified the fewest loci under selection in C.

barbata (n = 2; 99.5% CI), which is consistent with simulation

results. Given their higher type II error rate under “moderate”

selection strengths, loci not detected by CARTs, but found by

multiple alternative approaches (i.e., landscape or population ge-

nomics methods) should be considered potentially under selec-

tion. In contrast to simulations, we found GLMs identified far

more loci compared to other approaches (n = 19; 99.5% CI), as

observed by De Mita et al. (2013). The relatively low dispersal

capabilities of C. barbata likely increases IBD patterns for this

species, which can boost false positive rates in GLMs (De Mita

et al. 2013; Frichot et al. 2013).

We find striking differences with respect to the detection lev-

els of the two population genomics methods we employed on our

empirical data. DFDIST was the least conservative method, iden-

tifying 36 loci under selection. Several studies indicate DFDIST

is prone to high false detection rates (Caballero et al. 2008; Pérez-

Figueroa et al. 2010) and these authors advocate the use of conser-

vative significance levels to decrease false positives. Even when

using a very conservative significance level (99.5%), we found a

large number of loci detected as under selection using this method.

In contrast, BayeScan identified no loci under selection. Further-

more, most loci that had the lowest q-values using BayeScan did

not overlap with any loci identified by other methods.

GENETIC PATTERNS IN C. BARBATA

Ecological gradients can drive adaptation and population differen-

tiation by imposing differential selection pressures on populations

at gradient extremes (Cheviron and Brumfield 2009; Freedman

et al. 2010), resulting in steep genetic clines at loci under selec-

tion. We found genetic clines across the Alps in several candidate
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loci are broadly coincident and concordant with clines in summer

precipitation (Fig. 4 and Table 5). In addition, we found that FST in

highly supported candidate loci is significantly elevated relative to

“neutral” FST, indicative of diversifying selection. Although pre-

cipitation is generally not considered a limiting variable for most

alpine plant species (Körner 2003), winter and spring precipi-

tation play an important role in snowpack development, which

both limit the growing season while providing protection from

early season frost events (Inouye 2008), as well as summer soil

moisture. Given the different cline shapes observed in candidate

loci (e.g., broad cline widths in L45 and L69 and narrow cline

widths in L40 and L70) selection on these loci may in fact be

driven by different environmental variables that covary with sum-

mer precipitation. The narrow clines of L40 and L70 are more

coincident with summer precipitation clines, although the loss of

information due to the Bernoulli transformation of the precipita-

tion data adds uncertainty to our cline shape estimates and assess-

ments of coincidence and concordance. Furthermore, the similar

spatial autocorrelation clusters of L26 and L69, showing an ad-

ditional neutral corridor in the western portion of the study area,

suggests that similar environmental variables drive selection at

these loci.

The steep clines in genetic data may also form by purely

neutral processes if differentiated populations have recently come

into secondary contact (Haldane 1948; Endler 1977). For exam-

ple, post-glacial recolonization of the Alps has frequently been

implicated in the formation of secondary contact zones between

divergent lineages (Taberlet et al. 1998). In C. barbata, the two dis-

tinct eastern and western lineages match phylogeographic break

zones corresponding with other, codistributed silicicolous alpine

plants (Thiel-Egenter et al. 2011). These phylogeographic break

zones are presumed to have formed by expansion from distinct

glacial refugia for silicicolous species in combination with to-

pographically mediated dispersal barriers (Thiel-Egenter et al.

2011). The neutral corridors of no spatial autocorrelation at the

zone of contact between eastern and western populations (Fig. 5)

are consistent with increased genetic variance as a result of admix-

ture at contact zones between diverged lineages (Scheepens and

Stöcklin 2011). Assuming secondary contact occurred between

western and eastern populations after glacial retreats at the end

of the Pleistocene about 9000 generation ago, we would expect

cline widths of approximately 600 m (assuming generation time

of two years and mean dispersal distance of 2.4 m; Barton and

Gale 1993; Engler et al. 2009; Meirmans et al. 2011). However,

cline widths for candidate loci are much larger than expected due

to secondary contact (Table 5). Furthermore, undetected loci show

random patterns of variation across longitude; we would expect

these ‘neutral’ loci to show similar neutral corridors if demo-

graphic history was driving the patterns. Thus, secondary contact

of differentiated western and eastern populations after the retreat

of the Pleistocene ice sheets does not appear to drive cline shapes

of candidate loci.

UTILITY OF LANDSCAPE GENOMICS METHODS

Landscape genomics offers practical advantages to detect signa-

tures of selection, but these advantages may be dependent on the

population structure of the study system and the sampling scheme

employed (De Mita et al. 2013). Thus, it is the responsibility of

the researcher to choose appropriate methods based on a consid-

eration of the biology of their study system.

Importantly, landscape genomics methods allow for infer-

ences about the nature of selective forces operating on natural pop-

ulations. Environmental variables associated with genetic vari-

ants may be important drivers of selection at detected loci. Thus,

landscape genomics provides a priori hypotheses for follow-up

functional genomics experiments, especially important for non-

model organisms. However, the ability of landscape genomics

methods to detect environmental drivers of selection may also

be a drawback in some cases. To identify loci that are under en-

vironmentally driven selection, judicious choice of biologically

appropriate and functionally relevant predictor variables is re-

quired; yet, this task may be difficult (e.g., Joost et al. 2010). For

example, sampling design must be carefully planned to capture

the appropriate scales of environmental variation for the species

or population under consideration (Schoville et al. 2012). This

includes sampling homogenously across the landscape with the

aim of maximizing environmental variation (Manel et al. 2012a).

Furthermore, when important variables for selection are not in-

cluded in analyses, models are expected to have poor explanatory

power (Manel et al. 2010a). However, Moran’s eigenvector maps

(Borcard et al. 2004) may be appropriate to deal with this prob-

lem because they can be included as explanatory variables in the

regression analysis as proxies for unmeasured variables (Manel

et al. 2010b). Landscape genomics approaches also rely on the

assumption that selection has occurred over a long enough period

of time to establish a detectable relationship between genes and

the environment (Joost et al., in press). If selection is recent in a

population then landscape genomics methods may have reduced

power in detecting selection.

Until recently, AFLP genome scans, like the one used in

this study, were one of the most commonly used genetic data

sets for non-model organisms. However, because AFLP mark-

ers are dominant (decreasing their information content) and gen-

erally have low marker density, these data sets are being used

less frequently (Manel et al. 2010a). In addition, high-throughput

sequencing technologies are generating comprehensive genomic

data for many natural populations at lower costs. These data offer

incredible opportunities to uncover genetic variation in popula-

tions but place a premium on bioinformatics tools and analytical

methods capable of handling them. Correlative approaches must
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be used cautiously when analyzing high-throughput data, given

that these methods are sensitive to false positives as a result of LD

or spurious correlations with environmental variables (Manel et al.

2010a; De Mita et al. 2013). However, the fast processing capac-

ities of regression and classification-based landscape genomics

methods make them well suited to analysis of next-generation

genomic data (Ekblom and Galindo 2011; De Mita et al. 2013).

Current landscape genomics research is already heading towards

using larger genomic and environmental data sets to uncover the

genetic basis of adaptation (Eckert et al. 2010; Frichot et al. 2013;

Vincent et al. 2013).

In addition, landscape genomics offers a flexible framework

for investigating genetic variation. By identifying associations

between genes and environmental variables, the genetic archi-

tecture of selection can be investigated at multiple scales (e.g.,

individual, population, metapopulation, subspecies) while incor-

porating the effect of spatial heterogeneity of the landscape on

patterns of allelic variation (reviewed in Schoville et al. 2012).

This approach is useful when sampled populations have weak or

clinal population structure or unknown structure. Because pop-

ulation differentiation methods may not be appropriate for such

data sets, individual-based landscape genomics analyses provide

an excellent alternative. Our analyses of simulated clinal pop-

ulations indicate that these methods perform well under such

circumstances.

Again, the flexibility of landscape genomics approaches may

also be a weakness if they are used without appropriate data

screening. If population structure is present, correlated allele fre-

quencies between populations can substantially increase type I

errors in certain landscape genomics approaches (De Mita et al.

2013). Interestingly, in their simulation study De Mita et al. (2013)

found that correlative approaches actually produced more false

positives than population genomics approaches under patterns of

IBD. Thus, we advocate supplementing landscape genomics anal-

yses with additional spatial analyses to more thoroughly investi-

gate candidate loci to tease out spurious correlations. Latent factor

mixed models (Frichot et al. 2013) may be an appropriate land-

scape genomics method to investigate selection while accounting

for population structure and correlated allele frequencies. Latent

factor mixed models account for population structure through

unobserved variables and thus can estimate effects of residual

population structure or IBD; however, this method requires an

a priori definition of the number of latent factors, which may be

challenging in nonmodel species. Population-based landscape ge-

nomics methods such as Bayenv (Coop et al. 2010) or Bayenv2

(Günther and Coop 2012) that incorporate allele frequency cor-

relation between populations may also be a suitable alternative to

individual-based approaches to account for population structure.

Ideally, correlated allele frequencies and population structure can

be calculated from an independent genetic data set and translated

into a matrix, which is then accounted for in further analyses with

different genetic data sets.

Finally, we urge caution in interpreting results from land-

scape genomics studies. Results from these approaches cannot be

interpreted in a population genetic context and are not to be taken

as proof of selection. Exploratory landscape genomics or pop-

ulation genomics analyses should be followed with sequencing

of candidate genes and functional assays to ascertain important

selective processes and the functional significance, if any, of the

candidate locus. In this sense, the use of landscape genomics

methods on next generation sequencing data will allow for more

rigorous inferences about functional relevance of detected loci

using a comparative genomics approach (e.g., Eckert et al. 2010).

Conclusions
Genome scans are an appealing method for identifying candidate

loci under selection because they can be easily used in nonmodel

organisms without prior knowledge about the forces driving selec-

tion (Stinchcombe and Hoekstra 2008). However, different ana-

lytical methods may be preferable under different types of popula-

tion structure. In particular, landscape genomics, which combines

spatially explicit statistical methods and genetic data to elucidate

complex evolutionary responses of species to their environment,

may be most useful when individual-based analysis is warranted,

for example in clinal populations. Landscape genomics methods

provide the most information when used in an ensemble con-

text (to rank candidate loci based on agreement or disagreement

across methods), in concert with complementary methods that can

independently verify potential loci under selection (Manel et al.

2009). We advocate the use of landscape genomics, population

genomics (when applicable), and additional spatial analyses to

maximize information content of candidate loci and disentangle

demographic from selective signals. Given their fast processing

capacities, landscape genomics is a promising approach to analyze

large next-generation single nucleotide polymorphism (SNP) data

sets. Landscape genomics methods will likely become increas-

ingly useful given the burgeoning of genomic and environmental

data sets that require statistical tools to detect loci under selection.
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and A. Guisan. 2009. Predicting future distributions of mountain plants
under climate change: does dispersal capacity matter? Ecography 32:
34–45.

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters
of individuals using the software structure: a simulation study. Mol. Ecol.
14:2611–2620.

Excoffier, L., M. Foll, and R. J. Petit. 2009. Genetic consequences of range
expansions. Annu. Rev. Ecol. Evol. Syst. 40:481–501.

Falush, D., M. Stephens, and J. K. Pritchard. 2003. Inference of population
structure using multilocus genotype data: linked loci and correlated allele
frequencies. Genetics 164:1567–1587.

Foll, M., and O. Gaggiotti. 2008. A genome-scan method to identify selected
loci appropriate for both dominant and codominant markers: a Bayesian
perspective. Genetics 180:977–993.

Freedman, A. H., H. A. Thomassen, W. Buermann, and T. B. Smith. 2010. Ge-
nomic signals of diversification along ecological gradients in a tropical
lizard. Mol. Ecol. 19: 3773–3788.

Frichot, E., S. D. Schoville, G. Bouchard, and O. François. 2013. Testing
for associations between loci and environmental gradients using latent
factor mixed models. Mol. Biol. Evol. 30:1687–1699.

Gugerli, F., T. Englisch, H. Niklfeld, A. Tribsch, Z. Mirek, M. Ronikier, N.
E. Zimmermann, R. Holderegger, and P. Taberlet. 2008. Relationships
among levels of biodiversity and the relevance of intraspecific diversity
in conservation—a project synopsis. Perspect. Plant Ecol. Evol. Syst.
10:259–281.

Guisan, A., T. C. Edwards Jr, and T. Hastie. 2002. Generalized linear and
generalized additive models in studies of species distributions: setting
the scene. Ecol. Model. 157:89–100.

Günther, T., and G. Coop. 2012. Robust identification of local adaptation from
allele frequencies. Quant. Biol. In: eprint arXiv: 1209.3029.

Haldane, J. B. S. 1948. The theory of a cline. J. Genet. 48:277–284.
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains

and their applications. Biometrika 57:97–109.
Holderegger, R., D. Herrmann, B. Poncet, F. Gugerli, W. Thuiller, P. Taberlet,

L. Gielly, D. Rioux, S. Brodbeck, S. Aubert, et al. 2008. Land ahead:
using genome scane to identify markers of adaptive relevance. Plant
Ecol. Divers. 1:273–283.

Hurvich, C. M., and C. Tsai. 1989. Regression and time series model selection
in small samples. Biometrika 76:297–307.

Inouye, D. W. 2008. Effects of climate change on phenology, frost damage,
and floral abundance of montane wildflowers. Ecology 89:353–362.

Jensen, J. D., Y. Kim, V. B. DuMont, C. F. Aquadro, and C. D. Bustamante.
2005. Distinguishing between selective sweeps and demography using
DNA polymorphism data. Genetics 170:1401–1410.

Jensen, J. D., K. R. Thornton, C. D. Bustamante, and C. F. Aquadro. 2007.
On the utility of linkage disequilibrium as a statistic for identifying tar-
gets of positive selection in nonequilibrium populations. Genetics 176:
2371–2379.

Joost, S., A. Bonin, M. W. Bruford, L. Després, C. Conord, G. Erhardt, and
P. Taberlet. 2007. A spatial analysis method (SAM) to detect candidate
loci for selection: towards a landscape genomics approach to adaptation.
Mol. Ecol. 16:3955–3969.

Joost, S., L. Colli, P. V. Baret, J. F. Garcia, P. J. Boettcher, M. Tixier-Boichard,
P. Ajmone-Marsan, and The GLOBALDIV Consortium. 2010. Integrat-
ing geo-referenced multiscale and multidisciplinary data for the man-
agement of biodiversity in livestock genetic resources. Anim. Genet.
41:47–63.

EVOLUTION 2013 1 3

http://CRAN.R-project.org/package$=$MuMIn
http://CRAN.R-project.org/package$=$lme4


SPECIAL SECTION

Joost, S., S. Vuilleumier, J. D. Jensen, S. Schoville, K. Leempoel, S. Stucki, C.
Melo de Lima, J. Rolland, I. Widmer, and S. Manel, 2013. Uncovering
the genetic basis of adaptive change: on the intersection of landscape
genomics and theoretical population genetics. Mol. Ecol. 22:3659–3665.

Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain
ecosystems. 2nd ed. Springer, Berlin, Germany.

Landguth, E. L., and S. A. Cushman. 2010. cdpop: a spatially-explicit cost
distance population genetics program. Mol. Ecol. Res. 10:156–161.

Landguth, E. L., S. A. Cushman, and N. A. Johnson. 2012. Simulating natural
selection in landscape genetics. Mol. Ecol. Res. 12:363–368.

Lewontin, R. C. 1974. The genetic basis of evolutionary change. Columbia
Univ. Press, New York.

Lewontin, R. C., and J. Krakauer. 1973. Distribution of gene frequency as a
test of the theory of the selective neutrality of polymorphisms. Genetics
74:175–195.

Luikart, G., P. R. England, D. Tallmon, S. Jordan, and P. Taberlet. 2003. The
power and promise of population genomics: from genotyping to genome
typing. Nat. Rev. Genet. 4:981–994.

Lynch, M., and B. G. Milligan. 1994. Analysis of population genetic structure
with RAPD markers. Mol. Ecol. 3:91–99.

Manel, S., C. Conord, and L. Després. 2009. Genome scan to assess the respec-
tive role of host-plant and environmental constraints on the adaptation
of a widespread insect. BMC Evol. Biol. 9:288.

Manel, S., S. Joost, B. K. Epperson, R. Holderegger, A. Storfer, M. S. Rosen-
berg, K. T. Scribner, A. Bonin, and M. Fortin. 2010a. Perspectives on
the use of landscape genetics to detect genetic adaptive variation in the
field. Mol. Ecol. 19:3760–3772.

Manel, S., B. N. Poncet, P. Legendre, F. Gugerli, and R. Holderegger. 2010b.
Common factors drive adaptive genetic variation at different spatial
scales in Arabis alpina. Mol. Ecol. 19:3824–3835.

Manel, S., C. Albert, and N. G. Yoccoz. 2012a. Sampling in landscape ge-
nomics. Pp. 93–112 in A. Bonin and F. Pompanon, eds. Methods in
molecular biology series. Humana Press, New York.

Manel, S., F. Gugerli, W. Thuiller, N. Alvarez, P. Legendre, R. Holderegger,
L. Gielly, P. Taberlet, and IntraBioDiv Consortium. 2012b. Broad-scale
adaptive genetic variation in alpine plants is driven by temperature and
precipitation. Mol. Ecol. 21:3729–3738.

Meirmans, P. G. 2012. The trouble with isolation by distance. Mol. Ecol.
21:2839–2846.

Meirmans, P. G., J. Goudet, and O. E. Gaggiotti. 2011. Ecology and life
history affect different aspects of the population structure of 27 high-
alpine plants. Mol. Ecol. 20:3144–3155.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. 1953.
Equation of state calculations by fast computing machines. J. Chem.
Phys. 21:1087–1092.

Nielsen, R., I. Hellmann, M. Hubisz, C. Bustamante, and A. G. Clark. 2007.
Recent and ongoing selection in the human genome. Nat. Rev. Genet.
8:857–868.

Pavlidis, P., J. D. Jensen, and W. Stephan. 2010. Searching for footprints
of positive selection in whole-genome SNP data from nonequilibrium
populations. Genetics 194:907–922.
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