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1. Motivation and Summary

I Tokamak plasmas spontaneously rotate toroidally even in the absence of momentum injection.

I Intrinsic rotation is important for ITER where deposition of momentum will have a limited effect.

I Toroidal rotation can stabilize MHD instabilities and reduce turbulent transport.

I Experimental evidence for the role of SOL flows in determining core rotation profiles in L-mode [1].

I SOL flows can determine the L-H power treshold [2].

I A simple theory for intrinsic toroidal rotation in the SOL is presented here.

I Results indicate that

I The sheath and the presence of pressure poloidal asymmetries act as sources of momentum
I Momentum is transported radially by ballooning-like turbulent transport

I Global 3D simulations with the analytical predictions.

I The analytical trends agree with main observed experimental trends.

2. SOL rotation theory

MODEL

I Within the drift-reduced Braginskii model [3]:
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ESTIMATE OF TURBULENT FLUX

I Linearising the parallel ion momentum equation:
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I Using the pressure continuity equation:
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I The turbulent radial momentum flux is then

ΓTURB
x ' −Bϕ

√
2Lp
R

cs
ky

∂v̄||i
∂x

2D EQUATION FOR THE EQUILIBRIUM FLOW

I We can write a 2D differential equation for the equilibrium parallel ion flow v̄||i(x , y):
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I The solution of this equation requires boundary conditions. At the magnetic presheath entrance [5],
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ANALYTICAL SOLUTION FOR THE TOROIDAL ROTATION PROFILE

I Taylor expand the equilibrium profiles in y , and impose boundary conditions

I Assume we know δn = (n+ − n−)/n0 and same for temperature

I Take Ti ∼ Te, φ ∼ ΛTe, and Lφ ∼ LT

I Consider M = σϕσy v̄||i/cs as the toroidal Mach number and assume M(0,0) = 0
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3. Global 3D simulations

MOTIVATION

I Test rotation theory with 3D fluid simulations of SOL plasma turbulence in a simple configuration.

THE GBS CODE [6,7]

I Drift-reduced Braginskii equations.

I Evolves 3D fields: n, Te, φ, V||e, V||i .

I No separation between equilibrium and fluctuations.

I Interplay between plasma outflow from the core, turbulent
transport, and parallel losses [5].

I Circular concentric magnetic surfaces

I Radially localized n and Te sources

I Toroidal limiter

TOROIDAL ROTATION IN GBS SIMULATIONS
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There is a finite volume-averaged toroidal rotation

SIMULATION VS THEORY COMPARISON (different limiter positions)
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Good agreement between simulations and theory

4. Expected experimental trends

I Toroidal rotation profile, half way from the two divertor legs or limiter sides:
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I |M||| . 1

I Typically co-current

I Rice scaling Vϕ ∼ Te/Ip

I Can become counter-current by reversing B
(σϕ) or divertor position (δn)

Analytical trends agree with main observed experimental trends
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