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Abstract 

 
Hot tearing and loss of dimensional stability are two key defects related to industrial aluminum 
alloy casting processes. In order to investigate their occurrence, a new semi-solid constitutive 
law [20] for AA5182 that takes into account cooling rate, grain size and porosity has been 
implemented into a Direct Chill casting process model for round billets. The semi-solid stress-
strain predictions provided by this new constitutive law as well as the effects of processing 
parameters were then examined to demonstrate the relationships between defect formation, 
microstructure, and processing variables.  
 

Introduction 
 
In aluminum alloy Direct Chill (DC) castings, variable thermal, strain, and strain-rate 
combinations will spawn abnormally high thermal stresses that result in the formation in several 
types of imperfections within the cast component. Defects including loss of dimensional stability 
and hot tearing are two of the main quality concerns related to thermo mechanical behavior. Over 
the past few decades, a number of models have been developed [1-7] to predict the formation of 
stresses and strains within the casting, which in turn provides an assessment of when and how 
these defects can arise. One of the main findings has been the relative importance of processing 
parameters [8, 9]. Casting speed is believed to be the most important parameter that affects hot 
tearing defects [9, 10], while pouring temperature and cooling water flow rate are of reduced 
importance [9].The physical effect of increased casting speed is both an overall increase in the 
solidification rate, and a proportional increase in the thickness of the mushy zone region [8].  
 
Since early 1970s, numerical models have been used to simulate the DC casting process. The 
earliest models were simple heat transfer simulations [eg. 5,11]. More recently, complex thermal 
stress models [e.g. 4, 12, and 13] have been developed which take into account the constitutive 
behavior of the material in both solid and semi-solid states. The constitutive equations used to 
describe material behavior in the solid include plastic-strain [14] and creep based power-law 
equations [15] as well as internal state variable models that includes a term for microstructure 
evolution [16]. The generally accepted practice is to include the effects of strain hardening and 
strain rate sensitivity, usually through the use of the so-called modified Ludwik equation,  
 

𝜎(𝑇, 𝜀, 𝜀) = 𝐾 𝑇 𝜀! + 𝜀!!
!(!) 𝜀! + 𝜀!!

!(!)
     (1) 

 
where K, m, and n are alloy specific and temperature dependent parameters. In Eq.(1), σ is the 
stress (MPa), K is a material constant related to the strength of the material (MPa), n (m) is the 
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strain hardening (strain-rate sensitivity) exponent, and 𝜀!(𝜀!) is the plastic strain (strain-rate, 
𝑠!!). The offset constants 𝜀!!and 𝜀!!are used to circumvent convergence issues.  
 
However, when simulating defect formation such as hot tearing, it is the semi-solid constitutive 
behavior that is key. Modeling the metallic-alloy semi-solid behavior has always been a 
challenge because of the large range of viscosity between 0 <fs< 1, and the stochastic nature of 
the solidification process. In the context of DC casting, one successful approach, initiated by 
Drezet and Eggeler, was to use a modified creep law to describe the semi-solid behavior of 
AA5182 [17]. In this work, it was assumed that liquid cannot carry any load, which is entirely 
carried by the existing solid network. This constitutive law was refined by Van Haaften et al. 
[14] to consider the critical term to be (1- fLGB), where fLGB is the fraction of grain boundary area 
covered by the liquid, instead of the fraction solid, fs. A further refinement, to utilize an internal 
variable to represent the state of cohesion of the mush, was proposed by Ludwig et al. [18]. 
 
A second methodology has been to simply extend the range of Equation (2) up to the temperature 
corresponding to the fraction solid for mechanical coherency, Tcoh,(e.g. [13,19]), and then to 
assume a low elastic modulus and high yield stress rheology above this point. Although this 
methodology is relatively easy to implement in FE and has the advantage of minimizing false 
strain accumulation in the semi-solid, its main drawback is that there is no link to microstructural 
features. Recently, a new constitutive equation for semi-solid AA5182 has been proposed by 
Phillion et al. [20] that takes advantage of the benefits of the Ludwik equation formulation within 
an FE simulation while also including microstructural features. The reader is referred to [20] for 
further details of the formulation of this constitutive law, along with its validation. In this law,  

! fs, fp,d( ) = fs! s ! " p + "0( )
n(T )

!Kp ! 1"
fp

1" fs

#
$%

&
'(

     (2) 

with: 
𝜎! = (483.5− 0.77𝑇)𝜀!.!"#!!.!!! !"!      (3) 
ℎ = 𝑑 1− 𝑓!

!/!          (4) 
𝑛 = −6.35×10!!ℎ! + 0.0202ℎ       (5) 

 
where 𝐾! is a parameter related to the fraction porosity, fp, 𝜎! is the solid flow stress (MPa) of 
type elastic-perfectly-plastic, 𝑑 is the average grain size, h is the thickness of the liquid channels 
between grains, and n is a strain hardening parameter related to the grain size of the solid 
skeleton. The phenomenological expression for n has been determined based on a regression 
analysis of semi-solid tensile deformation experiments and microstructure simulations. In the 
current work, the constitutive law presented in Eqs. (2)-(5) has been implemented into a 
previously-developed DC casting model for Al alloy round billets [21].Stress-strain predictions 
from a series of simulations were then analyzed with respect to the casting speed, grain size and 
different coherency temperatures. These results were used to investigate the effects between 
casting parameters, microstructure and hot tearing in DC castings. 

 
Model Formulation 

 
Finite Element Modeling  
The DC casting process for AA5182 was simulated using the commercial FE package ABAQUS 
– v6.10. The computational domain was assumed to be axi-symmetric, and the simulations were 
conducted in the usual way in which layers of elements of a given thickness are added to the 
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domain at regular time intervals corresponding to the casting speed. In total, 100 layers of 
elements were used, each 11 mm thick. The initial condition was the pouring temperature. The 
boundary conditions account for primary cooling through the mold, air gap formation, and 
secondary cooling where the water hits the billet and flows along its surface. The bottom of the 
billet was cooled using a constant heat flux of 1000 W/m2 to simulate heat transfer between the 
billet and the bottom block. Further details on these boundary conditions can be found in [21]. 
 
Thermophysical Properties 
The specific heat, latent heat, density, and thermal conductivity of the AA5182 alloy, along with 
the Young’s modulus and the coefficient of thermal expansion (CTE) used in the current study 
were taken from [22]. The solidification path of the alloy was taken from the work of Thompson 
et al. [23], with liquidus and solidus temperatures of 523˚C and 637˚C respectively. To properly 
simulate the DC casting process, the thermophysical properties need to include the change in 
behavior occurring during solidification, specifically, the variation of Young’s modulus and CTE 
that occurs with increasing fraction solid. The approach utilized by Drezet [13], is reproduced in 
the current model. As shown in Table 1, this approach considers that the Young’s modulus and 
CTE are only of significant value below Tcoh, whereas above they are reduced to a small value.  
 
Mechanical Behavior 
The mechanical behavior of the AA5182 alloy during the DC casting process was integrated 
within the ABAQUS FE package using the UHARD subroutine. At temperatures corresponding 
to the fully solid state, the mechanical behavior of the AA5182 material was modeled as an 
elasto-plastic material using the modified Ludwik formulation as per Alankar et al. [24] and 
shown in Table 1. At temperatures in the range Tsolidus<T<Tcoh, the constitutive law shown in 
Eqns.(2)-(5) was utilized to include the effects of 𝑑 on semi-solid deformation. Although this law 
also includes the effects of fs and fp, this variation in these parameters in different regions of the 
casting is not taken into account in this initial study (i.e. (a) fp is assumed to be 0 and hence  
Kp=1 [21], and (b) the cooling-rate effects on the evolution of fraction solid with temperature are 
ignored). At temperatures above Tcoh, the mechanical behavior was considered elasto-plastic with 
a small yield stress and independent of strain rate. This assumption is used to ensure a low level 
of stress in the region of the semi-solid where hot tearing does not occur. The resulting semi-
solid stress-strain relationships for AA5182 are presented graphically in Figure 1. 
 

 
Figure 1:  Graphical representation of the semi-solid stress-strain relationship after Eqns.(3)-(6) 
showing (a) the effect of fs at 𝜀= 10!! 𝑠!!and 𝑑= 150 µm, and (b) the effect of 𝑑 at fs = 0.90. 
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Table 1: Mechanical Behavior AA5182 (Temp. given in Celsius) 
  T25˚C<T<TS TS<T<Tcoh Tcoh<T<TL 

α (˚C-1) -0.0235+2x10-5T +4x10-8T2 -same- 0 
E (GPa) -0.162T2 + 7.52T + 71589 100.836 – 0.174T 0.01 @T=Tcoh +5K 
σ (MPa) See Reference [24] Eqns. (2)-(5) σy = σy

coh 
 

Results and Discussion 
 
Below, the semi-solid microstructure state along with the stress-strain predictions are provided in 
order to investigate the link between microstructure, processing parameters, and hot tearing. 
From a processing standpoint, the microstructural features taken into account in Eqns.(2)-(5) are 
related to the casting speed and the cooling water flow rate. Both of these processing parameters 
will modify the local fraction solid, grain size, and porosity for a given alloy composition. The 
cooling rates experienced by the billet during solidification are shown in Figure 2(a) for a typical 
casting velocity of 66 mm / min. The cooling rate has been calculated as follows, 
 

𝑇 = !!"!!!!"#
!"

          (6) 
 

where Δt is the time difference between the liquidus and coherency temperatures. This averaged 
cooling rate was used since it provides a measure of the variation in billet cooling conditions that 
define the microstructure state at the start of the coherency regime. The contour plot shown in 
Figure 2 reveals that although the highest cooling rate is achieved near the casting surface, there 
is not a large difference between the surface and centerline solidification rates using the 
definition shown in Eq.(6) as all values are in the range of -1˚C/s. Thus, in inoculated 
commercial aluminum alloys, such as AA5182, the grain size will be similar throughout the 
casting. A study of DC cast Al-Cu alloys [25] confirms this hypothesis, and has also shown that 
an increase in casting speed results in substantial grain refinement over the entire cross-sectional 
area, as well as a ceasing of grain coarsening close to the billet center. In Figure 2(b), the cooling 
rate over the final solidification regime (i.e. Tcoh<T<Tsol) has been presented. In comparison to 
Figure 2(a), the solidification rates are now quite different between the surface and the center, 
since solidification occurs rapidly once the water sprays begin to cool the surface of the billet 
 

 
Figure 2:  Cooling-rate contour plots over 
the range (a) [Tliq, Tcoh] and (b) [Tcoh, Tsol] 
over the first 300 mm of cast length. 

Figure 3: Evolution in σHoop and T with time; 
t=0s corresponds to Tliq at each location. 
 

 

262



 
 

 
whereas the centerline remains in the mushy state for the longest time and thus is prone to hot 
tearing. The highest cooling rates in this range are on the order of -6˚C/s. Note that the large 
white area in the upper left-hand corner of Figure 2(b) has not yet reached the Tsol. 
 
The FE simulation can be used to provide a detailed description of the evolution of stresses, 
strains, and temperature during the casting process. The predicted evolution in hoop stress and 
temperature at two locations within the billet have been chosen for comparison and shown in 
Figure 3. Location 1 is 44 mm above the bottom block and on the centerline while Location 2 is 
at the same height but just below the casting surface. The hoop stress is shown since it is 
considered to be the major driving force for hot tearing initiation. As can be seen from the figure, 
the cooling curves are significantly different throughout the entire solidification regime with 
Location 1 cooling in 15 s compared to 65 s at Location 2, owing to the water-cooling at the 
surface of the billet. At Location 2, the hoop stress is seen to be tensile throughout the entire 
solidification regime, increasing to 4 MPa at the solidus, while at Location 1 the stress is initially 
compressive but then evolves to tensile at the end of the solidification regime. This variation of 
thermal stresses arises from the differential cooling conditions at these two locations. 
 
The variation in the predicted hot tearing strain accumulated in the brittle transition region 
(∆𝜀!"𝐵𝑇𝑅) and hoop stress at fs = 0.98 as a function of distance above the bottom block at the 
centerline of the billet is shown in Figure 4 for three different grain sizes, 𝑑 = 75, 150, and 300 
µm at a casting speed of 66 mm/min and a coherency temperature of 602˚C (i.e. fs,coh = 0.75). 
Here the hot tearing strain is assumed to be the component of strain in a direction perpendicular 
to the direction of heat flux in the solid-liquid interface [26]. Furthermore, only the strain 
accumulated between the coherency temperature and fs=0.98 is considered, as shown below, 
 
𝜀!" = 𝜀!!𝑠𝑖𝑛𝛾 − 𝜀!!𝑐𝑜𝑠𝛾 + 𝜀!!        (7) 
∆𝜀!"𝐵𝑇𝑅 = 𝜀!" 𝑓! = 0.98 − 𝜀!"(𝑓! = 𝑓!,!"!)      (8) 
 
where, 𝜀!!, 𝜀!! and 𝜀!! are the strains in the radial, axial and hoop directions, and 𝛾 is the angle 
between the heat flux  and 𝜀!!. Unfortunately, the relationship between cooling rate and grain 
size has not yet been established in this alloy. Additional simulations were also conducted using 
a slower casting speed (40 mm/min) and a lower coherency temperature (580˚C, i.e. fs,coh = 0.90). 
The value of fs = 0.98 was chosen since the grains will have mostly coalesced to the point where 
the solid will form a continuous skeleton with a mechanical strength close to that of the solid.  
 
As can be observed from Figure 4(a), the relevant strain is compressive for the first 100 mm of 
casting, but gradually shifts to a tensile value and is very large at approximately 150 mm from 
the bottom block. Industrially, this is the region of the billet where hot tears are known to initiate. 
The strains are smallest when a slow casting speed of 40 mm/min is used since there is a smaller 
thermal gradient and hence a smaller differential thermal contraction at low cooling rates. 
Actually, the strain for this slow casting speed really does not shift to the tensile region at all. 
The effect of grain size is somewhat counterintuitive. Although, as shown in Figure 1, the semi-
solid strength increases with decreasing grain size, the centerline of the casting is more deformed 
using the smaller grain sizes. This counterintuitive result is obtained since the metal close to the 
centerline is the last to solidify and thus as the metal around this region is cooler, it also has 
higher strength with a smaller grain size. So, all the stresses are transferred to the weak semi-
solid and consequently a higher strain is observed. The effect of coherency temperature is a shift 
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in the strain further away from the bottom block when the coherency temperature is reduced to 
580˚C. The variation in hoop stress shown in Figure 4(b) corroborates this analysis. As expected, 
the hoop stress is tensile, with slower casting speeds and lower coherency temperature generating 
smaller hoop stresses as predicted by Figure 1. The effect of grain size on stress is minimal. 
Another important issue in Figure 4 is the variability in the predicted strain. This fluctuation is 
due to the addition of the layers of elements at each time step, which causes a sudden change of 
stiffness in the model domain and consequently the strains oscillate. Neglecting this issue, the 
important trends can still be observed. 
 
The variation in ∆𝜀!"𝐵𝑇𝑅 and hoop stress at fs = 0.98 as a function of distance from the 
centerline of the casting at 143 mm above the bottom block is shown in Figure 5 using the same 
five simulation conditions as in Figure 4. As can be seen in Figure 5(a), ∆𝜀!"𝐵𝑇𝑅 is tensile in 
close to the centerline and gradually becomes compressive towards the surface in all five cases.  
 

 
(a)       (b) 

Figure 4: Variation in the predicted (a) hot tearing strain and (b) hoop stress at fs = 0.98 as a 
function of distance from the bottom block and at the centerline of the casting. 
 
 

 
(a)      (b) 

Figure 5: Variation in the predicted (a) hot tearing strain and (b) hoop stress at fs = 0.98 between 
the centerline and the surface of the billet at 143 mm above the bottom block. 
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The highest tensile strain is obtained at approximately 30 mm from the centerline. This high 
tensile stress region is most prone to hot tearing. In the compressive regime, the strains also 
oscillate because of the layer additions. Similar trends are seen in Figure 5(a) as discussed with 
respect to Figure 4, i.e. the predicted semi-solid deformation is strongly affected by casting speed 
and moderately affected by the grain size. Furthermore, the strain is largest in the simulation 
using Tcoh = 580˚C because the semi-solid material remains quite weak until this temperature is 
achieved. Thus, as the outer parts of the billet cool and contract, the center will deform in 
tension. In terms of the hoop stress, it can be seen in figure 5(b) that the centerline is under 
tensile load, which then transitions to compressive further out. The surface load is strongly 
tensile because of the high heat flux boundary condition cooling the billet. The billet cast using 
the slower casting velocity experiences a lower centerline tensile loading because the 
corresponding thermal gradient is quite low. 
 

Conclusions 
 
A new semi-solid constitutive model that takes into account microstructural features has been 
successfully incorporated into a FE simulation of the Direct Chill casting of AA5182 aluminum 
alloy billets. Based on an analysis of a series of simulations under different microstructural and 
processing conditions, the following conclusions can be drawn: 
 
1. The equivalent plastic strain is highest at the centerline of the billet, and decreases towards 

the surface. Similarly, the strain increases with increasing distance from the bottom block. 
2. The choice of the coherency temperature has a major influence on the evolution of stresses 

and strains with the DC cast structure. A higher coherency point results in decreased semi-
solid plastic strains and increased tensile stresses. 

3. Under identical cooling conditions, a lower casting speed results in reduced semi-solid 
strains. Thus, a decrease in casting speed should reduce the vulnerability of the cast structure 
to hot tearing defects as reported industrially.  

4. Grain size plays an important role in quantifying semi-solid deformation and hence hot tear 
formation. The total accumulated semi-solid plastic strain and grain size are inversely related 
with strain decreasing with increasing grain size. Conversely, there appears to be little 
variation in stress due to grain size effects. 
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