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1. Proof of the Theorem
Theorem 1. Consider a room with a loudspeaker and M ≥ 4 mi-
crophones placed uniformly at random inside the feasible region.
Then the set of first-order echoes uniquely specifies the room
with probability 1. In other words, almost surely exactly one
assignment of first-order echoes to walls describes a room.

Proof: It is sufficient to prove the claim for M = 4. Cases when
M > 4 follow by considering any subset of four microphones.
Draw independently and uniformly at random microphone
locations r1; . . . ; r4 in the feasible region. To this particular
choice of microphone locations we correspond vectors yk and ~yk
as follows,

yk;m =
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where ~sk is the location of the image source with respect to wall
k. We have in vector form
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Thanks to the condition
P4

m=1rm = 0, we have that
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The image source is found as

~sk =S~yk; [S5]

where S is a matrix satisfying

SR=

2
4 1 0 0 0
0 1 0 0
0 0 1 0

3
5: [S6]

It follows that

2
4
1⊤~yk +

��S~yk��2 = 0: [S7]

Vector ~yk corresponds to the kth wall, or kth image source (it is
the correct permutation). We now show that wrong permutations
cannot satisfy Eq. S7. We do it by replacing one, two, or three
entries in ~yk by wrong values and arguing that these are not good
combinations. We choose

S=

2
4 1 0 0 0
0 1 0 0
0 0 1 0

3
5R†; [S8]

where R† is the Moore–Penrose pseudoinverse of R. With this
choice, any column submatrix of S with n≤ 3 columns is rank n
with probability 1.

1. (1 replacement). Without loss of generality, let us replace the
fourth entry of ~ykð~yk;4Þ, by ~yk′;4, k′≠ k, and plug it into Eq. S7.
We can rewrite the equation as

α+ β~yk′;4 + γ~y2k′;4 = 0; [S9]

where α; β, and γ do not functionally depend on ~yk′;4, and γ ≠ 0
with probability 1. For any realization of ~yk;1; . . . ;~yk;3, the distri-
bution of ~yk′;4 is continuous, thus the probability that it assumes
any given value is zero (note that this is not true for ~yk;4—for
echoes coming from the same wall, knowing three of them con-
straints the fourth to two possible values). Therefore, the prob-
ability that ~yk′;4 is one of at most two real roots of Eq. S9 is zero.

2. (2 replacements). Now we replace ~yk;3 and ~yk;4 by ~yk′;3 and ~yk″;4.
We can have either (i) k′= k″ or (ii) k′≠ k″.We rewrite Eq. S7 as
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where A=S½:; 3 : 4�⊤S½:; 3 : 4� (with Matlab notation) is full rank
with probability 1 and is positive semidefinite. Also, A; a and a do
not functionally depend on

�
~yk′;3 ~yk″;4

	⊤
. Locus of the roots of

Eq. S10 is an ellipse. However, for any realization of ~yk;1 and ~yk;2
the distribution of

�
~yk′;3 ~yk″;4

	⊤
is continuous over some 2D subset

of R2 both in cases i and ii. Therefore, the probability that it
takes a value on the root ellipse of Eq. S10 is zero.

3. (3 replacements). Here we replace ~yk;2;~yk;3;~yk;4 with
~yk′;2;~yk″;3;~yk‴;4. If k′= k″= k‴, then the argument is the same
as in the case of one replacement. If k′= k″ or k′= k‴ or
k″= k‴, but not all three are equal, then we can just repeat
the argument for the case of 2 replacements (ii). Finally if
they are all different, we write

�
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Again B=S½:; 2 : 4�⊤S½:; 2 : 4� is full rank with probability 1, so
the locus of the roots of Eq. S11 is an ellipsoid. The set of values
that

�
~yk′;2 ~yk″;3 ~yk‴;4

	
takes is again some 3D region in R3 and

the probability that the triplet takes value on an ellipsoid is zero.
In conclusion, almost surely only one (correct) combination

of echoes satisfies Eq. S7, so almost surely only one room cor-
responds to collected first-order echoes.

2. Experimental Setup
2.1. Equipment. We used a Lange D12A dodecahedron omnidi-
rectional loudspeaker (Fig. S1A) and a two-way directional ac-
tive monitoring loudspeaker Genelec 8030A (Fig. S1B). The
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horizontal beam patter of Genelec 8030A is depicted in Fig. S2.
The horizontal directivity sonogram of Lange D12A is shown
in Fig. S3.
To record the responses, we used five nonmatched Behringer

ECM 8000 omnidirectional measurement microphones (Fig.
S1C). The microphones and the loudspeaker were interfaced
with a PC through a Motu 896HD unit (Fig. S1D) operating at
a sampling frequency of 96 kHz.

2.2. Microphone Arrays. Table S1 contains the distances between
the microphones in the experiments. Distances were measured
between the tips of the omnidirectional microphones using a tape
measure.

2.3. Measurement Technique. We measured the room impulse
responses by the swept-sine technique (1). An excitation signal is
played back over the chosen loudspeaker while simultaneously
recording the signals arriving at the microphones. The played
signal is a sine sweep with an instantaneous frequency varying
exponentially with time,

xðtÞ= sin
�

ω1T
lnðω2=ω1Þ

�
e

t
T lnðω2=ω1Þ − 1

��
; [S12]

where ω1 is the start frequency, ω2 is the end frequency, and T is
the total duration of the sweep in seconds. The recorded signals
ðyðtÞÞ can be written in Fourier domain as Y ðωÞ=HðωÞSðωÞ.
Hence, the room transfer function ðHðωÞÞ can be computed by
spectral division,

HðωÞ=Y ðωÞ
SðωÞ : [S13]

Inverse Fourier transforming HðωÞ yields the impulse response.

2.4. Remark About Loudspeakers. Peak-picking and RIR measure-
ment techniques are out of the scopeof this paper. Nevertheless, the
loudspeaker size, build, and impulse response affect the quality of
the estimation. This effect is indirect through the peak shape. Size
is relevant, as we assume a point source. This assumption is satisfied
for the directional speaker that has a well-defined acoustic center.
However, the omnidirectional loudspeaker has widely placed
drivers, so it is a poor approximation of a point source. We can
partially compensate for the speaker size by assuming it is spherical
and using the Huygens principle, but the structure of the impulse
response still reflects the distributed drivers.

2.5. Delay of the Processing Chain. We measured the total delay of
theprocessing chain tobe365 samples at the sampling frequency of
96 kHz. This offset must be accounted for when processing the
impulse responses. In the case of the Lange omnidirectional
loudspeaker, we used a smaller offset of 338 samples. The reason
for this is to compensate for the loudspeaker size: At time 0, the
sound wave is already at a distance R from the center of the
loudspeaker, where R is the speaker radius. Therefore, the delay
until the sound reaches some point in space is smaller than for the
point source. Of course, this would be correct if the loudspeaker
was a perfect sphere. In practice, we can only compensate the
radius “in the mean.” That is also why in general, the results
obtained with the omnidirectional loudspeaker are slightly less
accurate than with the directional one.

2.6. Experiment in the Lausanne Cathedral. The measurements in
the side portal of the Lausanne cathedral were challenging as
a large part of the boundary surfaces are not flat (as assumed
by the algorithm, and as has been the case in the classroom
measurements).

The glass front (numeral 1 in Fig. 6F) and the floor beneath the
microphone array can be considered flat surfaces. For all of the
other boundaries of the room, this assumption does not hold.
The arched roof cannot be represented by a single height esti-
mate. The side windows (numerals 2 and 3 in Fig. 6F) with pillars
placed in front and erratic structural elements at the height of
the microphones, the rear wall, and the angled corners with large
pillars and large statues, all present irregular surfaces creating
diffuse reflections. Fig. 4 shows the details of the sidewall struc-
ture and the microphone arrangement. The waveform of a reflec-
tion from such diffusive architectural surfaces exhibits distinct
differences compared with one from a large, flat surface. In
general, such a reflection response is temporally spread and has
a lower peak amplitude than an impulse containing the same
energy (2). These characteristics are unfavorable for our algo-
rithm because it is harder to detect peaks that actually belong to
walls. Many of the detected peaks stem from reflections off small
structural elements. The purpose of this experiment was to get
an idea about the robustness of the echo-sorting algorithm to
inputs from measurements made in environments that violate
the assumptions made by the proposed algorithm.
Themeasurement procedure and equipment was the same as in

the EPFL classroom measurements. As has been the case before,
the microphones were not calibrated; the single channel preamp
potentiometers had approximately equal settings.
To measure an impulse response of a room, a high-level

broadband excitation signal is needed. Using an impulse as
excitation signal, the recorded signal is immediately the impulse
response. Unfortunately, impulsive sources (e.g., popping a bal-
loon or firing a starter pistol) have poor repeatability, produce
unpredictable spectra, and do not guarantee omnidirectionality
(3). Assuming that the side portal is a linear and time invariant
system, the required energy can be spread over time. We excite
the room with a deterministic signal, and the room impulse re-
sponse can be calculated from the signal recorded in the room.
We applied the swept-sine technique as described in SI Text,
section 2.3.
The loudspeaker used in this experiment is not omnidirec-

tional. Therefore, in addition to the position of the loudspeaker
and the microphones, the measured impulse responses depend
on the orientation of the loudspeaker. This has been considered
by placing the directional loudspeaker close to one wall. The
microphone array was positioned in the lowered center part of
the portal, which was surrounded on all four sides by stairs. We
recorded the impulse responses with a randomly setup micro-
phone arrangement.
The described effects of the architectural structures in the

cathedral portal become apparent in the recorded impulse
responses. Fig. S5 shows a comparison of impulse responses
recorded in the lecture room and in the cathedral. We can see
that the number of distinct peaks in the cathedral impulse re-
sponses is smaller than in the classroom measurement, and that
the peaks in the cathedral RIR have lower amplitudes compared
with the direct sound than the peaks in the classroom (the
floorplan dimensions are comparable between the two cases, and
the timescale was chosen accordingly).

3. Distances in Fig. 5
For aesthetic reasons the distances in Fig. 5 of the manuscript
were specified to a single decimal place. Assuming the left lower
corner of the room as origin, the exact microphone and loud-
speaker positions are as follows
The upper wall is at a distance 200=15 from the origin. Higher

precision entries for the distance matrices are as follows,
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Daug;1 =2
666666664

000:000 011:000 002:000 010:000 002:000 161:111
011:000 000:0000 005:000 005:000 009:000 178:778
002:000 005:000 000:000 008:000 004:000 149:778
010:000 005:000 008:000 000:000 004:000 224:444
002:000 009:000 004:000 004:000 000:000 196:444
161:111 178:778 149:778 224:444 196:444 000:000

3
777777775

and

Daug;2 =2
666666664

000:000 011:000 002:000 010:000 002:000 349:556
011:000 000:0000 005:000 005:000 009:000 178:778
002:000 005:000 000:000 008:000 004:000 149:778
010:000 005:000 008:000 000:000 004:000 224:444
002:000 009:000 004:000 004:000 000:000 196:444
349:556 178:778 149:778 224:444 196:444 000:000

3
777777775
:

4. Multidimensional Scaling
As pointed out, in the presence of noise it is not favorable to use
the rank test on Daug. A very good way (as verified through
simulations) to deal with this nuisance is to measure how close
Daug is to a true EDM. To measure the distance, we use multi-
dimensional scaling (MDS) to construct a point set in a given
dimension (either 2D or 3D), which produces the EDM “closest”
to Daug.
MDS was originally proposed in psychometrics as a method

for data visualization (4). Many variations have been proposed
to adapt the method for sensor localization. We use the s-stress
criterion as proposed by Takane et al. (5). Given an observed
noisy matrix ~D, the s-stress criterion is

s


~D
�
=minimize 

X
i; j

�
d  2i; j − ~d

  2
i; j

�2

subject  to D∈EDM2:

We call sð~DÞ the score of matrix ~D. By EDM2 we denote the set
of EDMs with embedding dimension 2 (produced by point sets
in 2D). In the 3D case, EDM2 is replaced by EDM3.
From now on, we assume that the target space is R2. The 3D

adaptation is immediate. If we associate to each point in R2

a coordinate vector xi = ðxi; yiÞ⊤, we have that d  2i;j = kxi−xjk22 =
ðxi − xjÞ2 + ð yi − yjÞ2. Thus, the s-stress criterion can be rephrased as

s


~D
�
= minimize

xi; yi∈R
 
X
i; j

�

xi − xj

�2 + 

yi − yj

�2 − ~d
  2
i; j

�2
: [S14]

The objective function in Eq. S14 is not convex. However, it
has been shown to have less local minima compared with other
MDS criteria (5). Furthermore, it yields a meaningful definition
of the distance of a matrix from an optimal EDM.
To further skip the local minima of Eq. S14, we use coordinate

alternation for finding the optimal EDM : we compute Eq. S14,
by first minimizing over xi and then over yi. Although this ap-
proach is suboptimal compared with simultaneous minimiza-
tion with respect to xi, it leads to simpler computations.
Assuming that xi has to be updated by Δ xi to give the minimum

of sð~DÞ, we will have

s


~D
�ðk+1Þ
i =

Xn
j= 1

��
xðkÞi +Δxðk+1Þi − xðkÞj

�2
+
�
yðkÞi − yðkÞj

�2
− ~d

  2
i; j

�2
;

[S15]

where

·�ðkÞ returns the value at iteration k. Taking the derivative

of sð~DÞðk+1Þi with respect to Δxðk+1Þi , we will have

∂  s


~D
�ðk+1Þ
i

∂Δxðk+1Þi

  = 4n
�
Δxðk+1Þi

�3
+ 3

Xn
j= 1

�
xðkÞi − xðkÞj

��
Δxðk+1Þi

�2

+
Xn
j= 1

�
3
�
xðkÞi − xðkÞj

�2
+
�
yðkÞi − yðkÞj

�2
− ~d

  2
i; j

�
Δxðk+1Þi

+
Xn
j= 1

��
xðkÞi − xðkÞj

�3
+
�
xðkÞi − xðkÞj

��
yðkÞi − yðkÞj

�2
−
�
xðkÞi − xðkÞj

�
~d
  2
i; j

�
:

[S16]

Setting Eq. S16 to zero yields at most three real solutions, and
comparing the value of sð~DÞðk+1Þ for the results gives the optimal
value for Δxðk+1Þi .
The complete optimization procedure is summarized in

Algorithm S1.

5. Room Reconstruction Procedure
The echo-sorting algorithm outputs a list of image sources. Some
of these image sources are first-order images that we use to re-
construct the room. Some of the output image sources are higher-
order sources, and we need to detect them and remove them from
the list. As explained in the text, higher-order image sources are
obtained as certain “combinations” of lower-order ones—a fact
that we use to discriminate between them, as explained below.
We process the candidate image sources in the order of in-

creasing distance from the loudspeaker. If the current image

Algorithm S1. Coordinate alternation for s-stress optimization

Input: Symmetric and zero-diagonal matrix ~D
Output: Estimate positions: x and sð~DÞ
1. Assume an initial configuration for the points x0

2. repeat
3. for i=1 to n do
4. Assume the configuration of the points different from i fixed,
5. Update xi using the ith row of ~D,
6. Update yi using the ith row of ~D,
7. end for
8. until convergence or maximum number of iterations is reached.

Algorithm S2. Room reconstruction procedure

Input: Candidate images ~s1, . . . ,~sP , loudspeaker location s0, distance
threshold e

Output: Room vertices
1. ½~s1,⋯,~sP �←SortByDistanceFromLoudspeakerð½~s1,⋯,~sP �Þ
2. deleted½1 : P�←false
3. for i=1 to P do
4. if ∃j,k< i,j≠k  s:t:  kCombineð~sj ,~skÞ−~sik< e then
5. deleted½i�←true
6. else if Planeð~siÞ intersects the current room then
7. Add Planeð~siÞ to the current set of planes
8. else
9. deleted½i�←true
10. end if
11. end for
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source cannot be obtained as a combination of closer sources, we
add the corresponding plane (halfspace) to the list of halfspaces
whose intersection determines the final room.
Beyond the “combining criterion,” if the halfspace (which is

really an inequality) that we are adding does not change the
room, we discard the corresponding image source. We also do it
if the new inequality perturbs the room only slightly.
This procedure is summarized in Algorithm S2. The following

definition is used in the algorithm (s is the loudspeaker):

Combine


~s1;~s2

�
=
def

~s1 + 2
�
p2 −~s1; n2



n2; [S17]

where p2 = ðs+~s2Þ=2 is a point on the (hypothetical) wall defined
by s2, that is, a point on the median plane between the loud-
speaker and s2. The outward pointing unit normal is defined as
n2 = ð~s2 − sÞ=k~s2 − sk.
Room is defined as the intersection of halfspaces generated by

the first-order image sources. With the above notation, halfspace
corresponding to the image source si is defined by

fx : hn⊤
i ; xi≤ hni; piig: [S18]

The plane corresponding to the image source si is denoted
simply by planeðsiÞ.
6. Negative Answer to Kac’s Question
The reader might be interested by the construction of the coun-
terexample to Kac’s question. Here, we explain a counterexample
presented by Gordon and Webb (6). The beauty of their example
is that elementary means suffice to understand why the two
geometrically distinct drums (the same as those shown in Fig.
1) have the same resonant frequencies. However, how to
systematically arrive at this construction (or other isospectral
drums) is far more involved and requires the knowledge of
advanced group representation theory (see the references in
the paper).
The homogeneous Helmholtz (time-harmonic wave) equation

on a domain D with clamped boundary is given as

Δφ+ λφ= 0 [S19]

φðxÞ= 0;  x∈∂D: [S20]

The solution needs to satisfy both Eq. S19 and Eq. S20. On
compact domains, this equation admits the solution only for
countably many eigenvalues λ, and the set of all admissible λ’s is
denoted as the spectrum. Two domains are called “isospectral” if
their spectra coincide (counting multiplicities). We note that the
actual frequency is proportional to

ffiffiffi
λ

p
, not to λ.

To understand the counterexample we need to use two
properties of the solutions to the above equation,

i) Linearity: Linear combination of solutions is again a solution;
and

ii) Reflection principle: If we have a solution on a domain bounded
by a straight line segment with the clamped (Dirichlet) bound-
ary condition, we can extend the domain and the solution by
mirroring it over the line segment and changing the sign. This
procedure ensures that the solution continues smoothly into
the mirrored domain.

Now consider the two drumheads in Fig. S6 (these are the
same as in Fig. 1). The drums are segmented and annotated as in
Gordon and Webb (6). Let the vibrations of D1 be described by
a function φ supported on the drum. The function φ satisfies both
Eq. S19 and Eq. S20, for a given λ. Also, as indicated in Fig. S6, let
A, B, . . ., G denote the restrictions of φ to corresponding triangular
segments.
There happens to be a way to “transplant” the waveform from

D1 to D2, so that the resulting waveform on D2 still satisfies
both the Helmholtz Eq. S19 and the boundary condition Eq.
S20. This transplantation is effected by placing linear combina-
tions of A, B, . . ., G on D2, as indicated in Fig. S6, while ob-
serving the edge colors to ensure proper orientations.
We can check that the transplanted waveform indeed satisfies

Eq. S19 and Eq. S20. Consider for example triangles A+C+E
and −A+D+F on D2. We require that the corresponding wave-
forms combine smoothly over the blue edge. Triangles C and D
share the blue edge on D1. The same holds for triangles E and F.
This means that they combine smoothly on D1 so C+E and D+F
will combine smoothly on D2 as well. Now observe that the blue
edge of A on D1 is the boundary edge, so A vanishes along the
blue edge. By reflection principle we can continue A smoothly
over the blue edge by mirroring it and multiplying by −1. Finally,
this implies that A+C+E and −A+D+F will stitch smoothly. To
check that the boundary conditions are satisfied, consider for
example the triangle −A+B+G and its red boundary edge.
Triangles A and B share the red edge in D1, so they necessarily
have the same value on the red edge. Thus, −A+B is zero over
the edge. In triangle G, red edge is the boundary edge, so G is
zero on that edge, and −A+B+G must be zero on the boundary
edge. It is easy to check that all of the triangles in D2 satisfy Eq.
S19 and Eq. S20.
We showed that the Eq. S19 holds with the same λ for both

drums. Therefore, every resonant mode of D1 is also a resonant
mode of D2. As we can also do a reverse transplantation pro-
cedure, every resonant mode of D2 is a resonant mode of D1,
thus the two sets coincide, and the drums are isospectral.
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Fig. S1. Equipment used in the experiments: (A) Lange D12A omnidirectional loudspeaker. (B) Genelec 8030 directional loudspeaker. (C) Behringer ECM 8000
omnidirectional microphone. (D) Motu 896HD unit.

Fig. S2. The upper curve group shows the horizontal directivity characteristics of the 8030A measured at 1 m. The lower curve shows the system’s power
response.
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Fig. S3. Directivity sonogram of D12A polar response with 1∘ resolution. Measurements made at 1 m distance.
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Fig. S4. Details of the cathedral side portal (Left), microphone arrangement in the cathedral measurements (Right).
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Fig. S5. Comparison of room impulses responses recorded in the lecture room and in portal of the cathedral.
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Fig. S6. Isospectral drums with annotations as in (6).
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Table S1. Microphone distances in centimeters used in experiments 1, 2, and 3

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

M1 00.0 57.0 43.0 51.6 21.0 00.0 19.0 32.5 29.0 24.5 00.0 31.0 42.0 52.5 50.0
M2 57.0 00.0 25.0 43.5 44.0 19.0 00.0 42.5 45.5 40.0 31.0 00.0 54.0 54.5 31.0
M3 43.0 25.0 00.0 29.3 25.0 32.5 42.5 00.0 49.0 25.0 42.0 54.0 00.0 51.5 49.0
M4 51.6 43.5 29.3 00.0 32.3 29.0 45.5 49.0 00.0 27.5 52.5 54.5 51.5 00.0 42.5
M5 21.0 44.0 25.0 32.3 00.0 24.5 40.0 25.0 27.5 00.0 50.0 31.0 49.0 42.5 00.0

Table S2. Exact position of microphones and the loudspeaker in
Fig. 5

Object x y z

Mic1 175=15 85=15 150=15
Mic2 220=15 100=15 165=15
Mic3 190=15 100=15 150=15
Mic4 220=15 70=15 150=15
Mic5 190=15 70=15 150=15
LSPK 100=15 140=15 150=15
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