
Ian David Lockhart Bogle and Michael Fairweather (Editors), Proceedings of the 22nd European
Symposium on Computer Aided Process Engineering, 17 - 20 June 2012, London.
© 2011 Elsevier B.V. All rights reserved.

Proposition of methodology for optimization of en-
ergy system design under uncertainty
Matthias Dubuisa, François Maréchala
aIndustrial Energy Systems Laboratory (LENI), Ecole Polytechnique Fédérale de Lau-
sanne, CH-1015 Lausanne, Switzerland

Abstract
Current superstructure size for energy system design is increasing with computing facil-
ity improvement. Despite such approach allows to link and to analyse a lot of elements,
demonstrating the advantage of a global optimization, non-negligible uncertainties are in-
troduced. They may be due to the level of detail of modelisation, predictive aspect of the
model, or simply the stochastic nature of some parameters (like outdoor temperature by
example). In the present paper, different approach for optimizing energy system under
uncertainty will be discussed, taking into account ability of the system to adapt to uncer-
tain variables variations.
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1. Introduction
In current optimization of energy system design, uncertainties are often treated by con-
sidering their mean value, which shall be determine by data reconciliation techniques
(Heyen et al. (1996)). However, not including uncertainties in the optimization procedure
may leads to suboptimal solution that can be classified in three levels of seriousness. In
best cases, performance changes will be observed due to a non-adapted control strategy
or design. A worse case would be soft constraint violation, which would induce a penalty.
Difference between these two cases can be describe by a heat stream to be cooled, consid-
ering uncertain temperatures. If a direct cooling system is considered, performances will
change with respect to the ∆Tmin/2 (performances increase or decrease). If these streams
temperatures are lower than the cooling system, a penalty (a refrigerating system) has to
be bought. The third case, being the worst is hard constraint violation making the system
unable to be operated.
In consequence, it is important to study influence of uncertainty on objectives f (x) and
constraints g(x). This influence can be quantified by maximum variation, quantile or
probability distribution function.
Several methods allow to propagate uncertainties through a model. Monte-Carlo sim-
ulation are totally based on the deterministic model. However, computing time grows
exponentially with the number of uncertain variables nu. Moreover, energy system super-
structure are often non-injective. It implies that probability of having a set of uncertain
variables is not the same as the probability of having the corresponding performance.
Hoffmann (2001) has used orthogonal polynomials, also called Wiener-Hermite polyno-
mial chaos expansion. Without going in the details of such method, one of the key step
is estimating coefficient of polynomials (Hermite for normal distribution). This can be
done by collocation method, but necessitates several calls to the deterministic model. The
number of these calls is hard to determine independently of the model and then hard to
implement in a generic manner. Hence perturbation method has been considered. It is
already widely used in structure mechanics (Hong et al. (1999); Mekid and Vaja (2008))
and in aerodynamics (Hirsch et al. (2011)).



2. Problem formulation
Globally, optimization problem under constraints are formulated as:

min
!x

!y = f (!x)

s.t. h(!x) = 0
g(!x)! 0

(1)

In case of energy system design, f (!x), h(!x) and g(!x) consist in a model that will be called
the deterministic model. Objectives ( f (!x)) usually considered may be efficiency, invest-
ment cost or any environmental factor like CO2 emissions. Such model are based on
flowsheeting software, or include energy integration (MILP - Mixed Integer Linear Pro-
gramming). Hence, explicit function are not necessary available.
Variables !x can be classified in several categories. In the first classification level, !x in-
cludes decision variables!z and parameters!θ with:

!x =
(
!z
!θ

)
=





!zcv
!zuv
!zco
!zuo
!zcd
!zud
!θc
!θu





Certain design variables
Uncertain design variables
Certain operating variables

Uncertain operating variables
Certain Design decision
Probable design decision

Certain parameters
Uncertain parameters

(2)

Dependent variables are not mentioned since their can be found by solving h(!x) = 0. De-
sign variables !zv are continuous variables that will be fixed once the system is built. In the
opposite, operating variables !zo are those remaining influent after installation. It should
be noticed that these variables are decomposed in a set point value!z∗u and its variation!̃zu.
Design decision variables !zd consist only in binary variables. In that case, uncertainty is
translated in a probability of the decision, as by example the probability that a household
accept to be connected to a district heating. Hence, the different possibility will be treated
in a multi-scenario approach. Finally, parameters are constant variables.
At this level it is considered that the different scenario related to zd are optimized sepa-
rately, so that main issue concerns continuous uncertainties treatment. With respect to this
classification, two stage programming problem as described by Grossmann et al. (1983)
is expressed as:

min
zcv,z∗uv,zd

(2)
︷ ︸︸ ︷

E
z̃uv,z̃uo,θu

(
min

zco,z∗uo
f (z,θ)|g(z,θ)! 0

)

︸ ︷︷ ︸
(1)

︸ ︷︷ ︸
(3)

(3)

With E(x) being the expected value of x. Starting from the center, equation 3 can be
described as three layer:

1. The inlet layer can be expressed as finding the best operating conditions for a given
design and uncertain variables/parameters, respecting the constraints g(z,θ)! 0.

2. In the middle layer, the expected value on every uncertain variables is then consid-
ered to investigate the whole uncertainty space.

3. The outlet layer consist in the design optimization itself.
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However, this problem called infinite since operating conditions optimization is achieved
for any uncertain variables configuration, which is an infinite number of problem to solve.
Despite this may be solved by discretizing the uncertain variables space and solve it as
a multi-period problem (Sahinidis (2004)), number of model evaluation grows exponen-
tially with nu. It is then crucial to apply uncertainty efficient propagation method on the
model.

3. Perturbation method
From here one scenario will be considered (i.e. one configuration of!zud). For notation
simplification other uncertain variables (!zuv,!zuo and!θu) will be gathered in !u and certain
variables in!c.
Goal is to propagate uncertainties through a model by computing its characteristics, i.e.
mean µ, variance σ and skewness γ1. Principle is to consider Taylor series expansion of
f (!u) for given certain variables !c. This series allows to define, for the mean by example
as well as for other distribution parameters, µy as a function of µui . The fact that Taylor
series are valid only locally implies that propagation shall be computed each iteration of
the optimizer.
Second order Taylor expansion in!u = µ is expressed as:

y = f (!u)∼= f (!u)µ +
nu

∑
i=1

(
∂ f (!u)

∂ui

)

µ

· (ui −µui)+
1
2

nu

∑
i, j=1

(
∂2 f (!u)
∂ui∂u j

)

µ

· (ui −µui) · (u j −µu j)

(4)
So that mean and standard deviation are expressed as (Hong et al. (1999)):

µy =yµ +
1
2

nu

∑
i=1

(
∂2y
∂2ui

)

µ

·σ2
ui

σ2
y =y2

µ +
nu

∑
i=1




(

∂y
∂ui

)2

+

(
y

∂2y
∂u2

i

)



µ

σ2
ui
+

nu

∑
i=1

(
∂y
∂ui

·
∂2y
∂u2

i

)

µ

γui −µ2
y

γy =y3
µ +

3
2

nu

∑
i=1



2y

(
∂y
∂ui

)2

+

(
y2 ∂2y

∂u2
i

)



µ

σ2
ui

+
nu

∑
i=1




(

∂y
∂ui

)3

+3y
∂y
∂ui

∂2y
∂u2

i





µ

γui −µ3
y −3µyσ2

y

(5)

Derivative are estimated numerically at their first order:

∂y
∂ui

= f ′(ui)∼= lim
h→0

f (ui +h/2)− f (ui −h/2)
h

∂2y
∂u2

i
= f ′′(ui)∼= lim

h→0

f (ui +h)−2 f (ui)+ f (ui −h)
h2

(6)

Skewness is considered since several parameters have great chances to be lower than what
is predicted, what may leads to high asymmetry in the probability density of objective
function.
It results from equation 5 that the three first moment of f (!u) can be computed with a
number nob j(2nu+1) evaluations (with nob j being the number of objectives, or the size of
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!
y). Compared to Monte-Carlo simulation, such approach is more competitive and enough
efficient to be included in an optimization procedure, even when using method demanding
a lot of iteration as evolutionary algorithm (mainly used in LENI).
However, unlike two stage programming problem (3), uncertainty propagation does not
include system ability to adapt by optimizing operating decision variables.

4. Two stage problem issues
The following proposition is an attempt to dissociate operating decision variables from
design variables. This approach requires a solver able to deal with a lot of decision vari-
ables, but does not necessitate more evaluation of the deterministic model. Principle is to
decompose problem in three subproblems. As represented in figure 1, operating variables
zco and z∗uo may have each a different value.

(a) Standard derivative estimation (b) “Two stage” derivative estimation

Figure 1: Derivative estimation

∂y
∂ui

= f ′(ui)∼= lim
h→0

f (ui −2h)−8 f (ui −h)+8 f (ui +h)− f (ui +2h)
12h

∂2y
∂u2

i
= f ′′(ui)∼= lim

h→0

− f (ui −2h)+16 f (ui −h)−30 f (ui)+16 f (ui +h)− f (ui +2h)
12h

(7)

This way, ability of the plant operator to compensate uncertainties effect to maximize
defined objectives. However, several issues shall be studied. First, Derivative estimation
becomes strongly related to operating variables optimality. Hence, constraint shall be set
so as to maintain zco,1 and zco,3 close to zco,2, respectively z∗uo,1, z∗uo,3 to z∗uo,2. Secondly,
It must be noticed that h is a critical parameter since it has to be small enough to ensure
derivative accuracy, and big enough so that optimizer may found different solution for
zco,1, zco,3, z∗uo,1 and z∗uo,3. In case such value can not be found, several alternatives are
possible but increase the number of model evaluations per iteration to nob j(4nu+1). First
possibility is to consider derivative with a fourth order accuracy (equation 7). In case 2h
remains not sufficient, derivative may be estimated based on h = h1 for zco,2 and z∗uo,2, and
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the “two stage” derivatives applied with h = h2 and h1 << h2, interpolating the influence
of operating variables on the derivative.

5. Conclusions and perspectives
Energy system design optimization problem are difficult to optimized since they may
present several local optima. Moreover, unless the model consists in explicit function,
there is no way to verify convexity and then to insure that optimality conditions are re-
spected. As a results of this, optimizer like evolutionary algorithm may necessitate a lot of
iteration to find the global optimum, what stress importance of propagating uncertainties
in as less model evaluations as possible.
Several uncertainty propagation methods have been studied. Monte-Carlo simulation ne-
cessitates the biggest number of evaluation and may not be used during an optimization.
However, it remains efficient for assessing solutions distribution accuracy. Polynomial
chaos may be too computer resource costly due to the number of evaluations demanded
for collocation. Hence, perturbation theory has been considered since it necessitates in its
basic form only nob j(2nu +1) deterministic model evaluation.
To reflect flexibility of the system, operating variables optimization has been included in
derivative estimation. Such approach allows to include two stage optimization in paral-
lel, solving design and corresponding operating strategy simultaneously. However, this
method remains highly sensitive to h parameter and increases the number of decision vari-
ables. Moreover in case of fourth order accuracy needed for the derivative, the number of
model evaluation per optimization iteration increase to nob j(4nu +1).
Several important issues still need to be answered. One of these is to insure feasibility
(i.e hard constraint respect) for every solution. Indeed, FORM/SORM methods may be
difficult to adapt since no explicit form of the constraint exist.
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