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Abstract
The aim of the present thesis is to provide a numerical tool for the mechanical modeling

of dynamic failure in concrete. This widely used construction material is characterized by

a non-linear failure behavior, which is consequently difficult to describe with macroscopic

quantities. In order to grasp the mechanical damage response of this heterogeneous brittle

material, our approach is based on a meso-mechanical point of view. The whole research

work is, therefore, mainly focused on the understanding of the mechanisms that are linked

with the material’s heterogeneous composition. The advantage of this level of observation

is that it allows to represent the most important concrete constituents (e.g. aggregates and

cement paste), thus facilitating the physical identification of the material parameters of the

model and of the mechanisms (interaction between matrix and inclusions) that characterize

its constitutive behavior.

For this purpose we exploit the capabilities of a two-dimensional finite-element model. The

onset of fracture is explicitly modeled using the well-known cohesive approach. We first

investigate the dynamic tensile response of concrete specimens. Different simulations are

carried out to assess the influence of aggregates properties on peak strength and dissipated

fracture energy at different strain rates. The model aims to explain the strain-rate strengthen-

ing through structural effects. However, to capture the full extent observed experimentally,

our results suggest that is not possible to discard the combination of inertial with material rate

hardening mechanisms. Next, in order to account for crack-interactions as well as path depen-

dent behavior, the model is enriched with the introduction of an explicit contact algorithm and

a mode-dependent fracture energy. To demonstrate the capability of the proposed approach

to provide accurate results, the model is first applied to two benchmark tests in masonry engi-

neering. Afterwards, the developed framework is applied to reproduce dynamic compressive

failure of meso-scale concrete samples. Simulations involving different strain rates and levels

of lateral confinement are conducted. An energetic analysis shows that dissipation of energy

through fracture and friction is an increasing function of the applied confinement and strain

rate. Our results underline thus the importance of capturing frictional mechanisms, which

appear to dissipate a raising amount of frictional energy with increasing strain and applied

pressure.

Finally, a multi-scale computational framework is developed to up scale the obtained fine

scale response to the coarse scale. The selected approach considers concrete macroscopically

as being homogeneous and to behave linear elastically aside from the propagating cracks. The

cohesive macroscopic tractions are however extracted from the response of meso-scale repre-
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sentative volume elements, which are activated on the fly when a macroscopic discontinuity

propagates. Parallel simulation shows the capability of the model to predict the structural

response of a tested unit including the physical mechanisms occurring at the fine scale.

Keywords: numerical methods, dynamic fracture, cohesive zone, frictional contact, concrete,

meso-scale, parallel computing
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Résumé
Ce mémoire de thèse a pour objectif de développer un outil numérique pour la modélisation

mécanique du béton (sous sollicitation dynamique). Ce matériau couramment utilisé dans

la construction est caractérisé par un comportement non linéaire à la rupture. De plus, ce

matériau fragile est très hétérogène conduisant à une délicate description macroscopique de

sa réponse mécanique. Dans ce travail, le point de vue mésoscopique du comportement du

béton a été adopté. L’ensemble de l’étude s’est focalisé principalement sur la compréhension

des phénomènes liés à la composition hétérogène du matériau. L’avantage de ce niveau d’ob-

servation est de représenter les constituants les plus importants du béton (granulats et matrice

cimentaire) pour faciliter l’identification physique des paramètres matériels du modèle et la

description des mécanismes (interaction entre la matrice et les inclusions) caractérisant son

comportement constitutif. La réponse mécanique du béton a été simulée dans un cadre bidi-

mensionnel et la fissuration est explicitement modélisée en utilisant la méthode des éléments

cohésifs.

Une première partie de ce travail a été consacrée à la réponse dynamique d’échantillons en

béton sujets à une traction simple. Différentes simulations ont été effectuées pour évaluer

l’influence des propriétés des granulats sur la résistance du béton et l’énergie dissipée par la

variation de la vitesse de chargement. Ces simulations ont permis d’expliquer le durcissement

du béton produit par les effets de vitesse à travers un phénomène structural (microfissuration

diffusée). De plus, les résultats ont montré que la combinaison entre les effets d’inertie et les

mécanismes de durcissement du matériau est inéluctable.

Dans la seconde partie de ce mémoire, le modèle a été enrichi par l’introduction d’un algo-

rithme de contact et d’une énergie de rupture dépendant du mode d’ouverture pour prendre

en compte les interactions entre les fissures et de la dépendance du chemin suivi. Cette nou-

velle approche numérique a d’abord été validée sur deux tests de référence en génie de la

maçonnerie. Par la suite, le comportement dynamique du béton en compression a été repro-

duit. Différents niveaux de vitesse de chargement et de pression de confinement latéral ont

été menés. L’analyse dynamique a montré que la dissipation d’énergie obtenue par frottement

et par la rupture est une fonction croissante du niveau de confinement et de la vitesse de

déformation. Ces résultats ont révélé l’importance d’inclure les mécanismes de frottement

dans le model.

Enfin, dans la troisième partie de ce travail, un modèle d’homogénéisation numérique a été dé-

veloppé pour transférer, au niveau macroscopique, la réponse mécanique obtenue à l’échelle

mésoscopique. Dans cette approche, hors endommagement, le béton est considéré comme
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étant macroscopiquement homogène (avec un comportement linéaire élastique). De plus,

la propagation d’une discontinuité macroscopique est contrôlée par l’activation dynamique

de volumes élémentaires représentatifs, dans lesquels se propagent les fissures. A partir de

ce nouveau modèle, un calcul parallèle a été réalisée et a démontré ainsi la capacité de cette

approche à prédire la réponse mécanique d’une structure tout en incluant les mécanismes

physiques à l’échelle mésoscopique.

Mots Clés : méthodes numériques, fissuration dynamique, approche cohésive, contact frottant,

béton, échelle mésoscopique, calcul haute performance
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1 Introduction

1.1 Context

Concrete is a widely used material around the world in civil and industrial structures. The

constitutive behavior of this construction material is often described by macroscopic models

that assume concrete as being homogeneous. However, this assumption entails the introduc-

tion of complex modeling variables into the description in order to accurately reproduce the

non-linear behavior that concrete shows during failure.

Another possibility is to consider concrete at a lower scale of observation, where the hetero-

geneous structure can be explicitly represented. The advantage of this approach is that it

allows monitoring the interactions between constituents, which finally originate the observed

macroscopic response. In addition, the explicit representation of the concrete heterogeneities

facilitates the characterization of the dynamic response of concrete. During its life a structure

might be indeed exposed to dynamic solicitations (either accidental or intentional). Relevant

examples include nuclear power plants, which must be designed to sustain terrorist explosions

or impact of a falling aircraft, and common civilian structures, which can be subjected to

violent solicitations during earthquakes.

Besides those catastrophic events, the kinematic aspects should be taken into account also

during failure modes that might originate under static loads, but that entail rapid crack prop-

agation (the dynamic aspects of damage are often evident by the noise accompanying the

failure process).

Since failure events are difficult to predict, it is important to develop analytical and numerical

models to understand them better. This could lead to better design of structures to prevent

failure and make them more resistant against such events. An accurate modeling provides

indeed a complementary analysis tool to the verification through design codes, which some-

times fail to provide adequate guidelines to assess the load carrying capacity of a structural

member to withstand unexpected situations, especially under extreme dynamic loading.
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Chapter 1. Introduction

1.2 Challenges and objectives

Failure of concrete is characterized by complex phenomena that originate at the micro-scale.

Nucleation of cracks takes place at the weakest links (between matrix and aggregates) as

a result of the applied solicitations. As this process occurs, micro-cracks are originated at

different locations (seemingly random) within the material. The meso-structure together

with the line forces in statics and stress wave’s network in dynamics constitute the main

ingredients of the nucleation phase. For instance coalescing cracks respect the arrangement

of the (inclusions) geometry. The micro-cracks coalescence leads to cracks that, in general,

tend to open following the principal direction of loading (perpendicularly to the maximum

tensile stress direction). However, they do not necessarily continue to open in the direction

perpendicular to the crack plane, since, as a consequence of cracking, the distribution of

stresses is affected when comparing to the un-cracked regime causing the material to behave

more anisotropically. Besides this, it should also be pointed out that cracks with different

orientations might propagate within the material, since the motion of a crack alters the stress

field leading to dependence between propagating crack direction and surrounding cracks.

Additionally, the heterogeneous composition increases this effect.

As a consequence, the stress state can produce parallel motion between cracks. The relative

displacement, experienced by the opposite surfaces of the crack, leads thus the asperities

that characterize the shape of the crack surface to intercept the opposite ones. Therefore

cracks are required to transmit, apart from normal forces, shear forces. This mechanism that

causes shear stresses to develop if any relative displacement is applied, is known as aggregate-

interlock [Walraven 80].

In addition, the deformation rate that the material undergoes during the damaging process

highly affects the micro-structural evolution. Experimental observation indicates that concrete

is bounded with a higher dissipation of energy with increasing rate of loading. It is therefore

important to understand the dynamic evolution of the damage mechanisms, which govern

the behavior of the material. The characterization of the rate-dependent behavior of concrete

and the evolution of the stress state presents a crucial point if the safety of industrial or civil

structures needs to be assessed against the dynamic loadings produced by extreme conditions

such as earthquakes, explosions or accidental collisions (e.g. [Brühwiler 90]). A fine scale

level of observation allows us to avoid the introduction of a dynamic increase factor (a fit

parameter) directly into the macroscopic model.

All the outlined aspects need a careful treatment in order to reach an accurate description of

such level of complexity. Aside from analytical models, advances in computational mechanics

and the increase of available computational power offer a rigorous tool to tackle these issues.

However, several challenges need to be addressed within the development of a computational

model. This includes the modeling of:

• Time-dependent non-linear evolution of the meso-structure.
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1.3. Computational approach

• A dense network of micro-cracks interacting with the complex meso-structural compo-

sition.

• A frictional contact algorithm to account for the interactions between multiple propa-

gating cracks.

In this thesis we are choosing to evaluate the constitutive behavior of concrete starting from

a meso-mechanical point of view. This should allow us to predict macroscopic behavior,

avoiding the use of complex phenomenological laws to describe the material constitutive

response. Indeed, the modeling at the meso-scale can in principle be achieved by representing

more fundamental physical mechanisms, which are strictly related to the micro-structural

details of the material composition. Moreover, the constitutive behavior extracted at this scale

needs to be transferred at the macro-scale to simulate the damaging process at a bigger scale.

We propose to couple multiple time and length scales using a multi-scale framework that

resorts to computational homogenization. Our objective is to provide an accurate numerical

solution while preserving an efficient use of computational resources.

We will limit our analysis to a concrete with conventional material properties in a two dimen-

sional plane-strain setting.

1.3 Computational approach

The objective of this research work is to develop a computational model for concrete behav-

ior avoiding the use of phenomenological macroscopic constitutive laws. At the structural

level concrete is often considered as a homogeneous material. However, to reproduce the

non-linear behavior of concrete the adopted constitutive models need to have recourse to

phenomenological modeling such as (visco)-plasticity and/or continuum damage formula-

tion.

To avoid such assumptions, we have started our investigation from a biphasic approach, which

represents mortar and aggregates. At this level it is possible to observe and explicitly model

the interactions between these two constituents that lead to the characteristic behavior of this

construction material. Concrete can be thus analyzed at the mesoscopic scale, which is an

intermediate scale situated in between the micro-mechanical observation of the phenomena

taking place in the cement paste and the macroscopic assumption of concrete homogeneity.

Commonly, two main computational approaches are employed for the meso-modeling of

concrete. The first class is represented by discrete approaches, commonly referred as lat-

tice models. The particularity of this popular method, is to represent the material through

a network of beams (or lattice) relating discrete points. Those beams are thus responsible

for the forces that generate between the material points. This implies that the constitutive

response of the lattice model is defined by the behavior of the beams. Though able to provide

good estimates of concrete behavior for several loading conditions, in this thesis we have
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not selected this methodology since it introduces a non physical length scale in the material

description (lattice beam spacing between fictitious particles).

This problem disappears in the second class of methods, which is represented by finite element

models with fracture capability. The bulk material is there represented by means of classical

elements, while cracking is explicitly represented having recourse to cohesive zone theories.

With this approach cracks generate from the nucleation and coalescence of micro-cracks. We

indeed believe that most sources of the non-linear behavior, which concrete displays, can

be traced back to an accurate modeling of the cracks and to the correlated mechanisms. For

instance, depending on the applied loading condition, a frictional contact algorithm might be

necessary to model the interaction between two cracked surfaces. In addition, to be able to

reproduce the strengthening effect, that concrete shows when subjected to increasing loading

velocities, a dynamic framework has been selected. More precisely, the coupling between

cohesive zone modeling and the impenetrability constrain has been performed within an

explicit dynamics scheme.

The selected meso-mechanical model enables us to physically identify the material parame-

ters. However, a disadvantage of this technique is that to achieve a precise representation of

the aggregates a fine-mesh is needed, which is bounded with high computational costs. There

is thus a need to up scale the constitutive behavior extracted at this scale to the coarse-scale.

Computationally, there are different approaches to model the behavior of materials that are

involving processes at multiple spatial scales, or temporal scales simultaneously. As a result

different techniques have been developed to tackle such problems.

A common method, that has been widely employed to analyze the behavior of complex struc-

tures, resorts to the hierarchical approach. This approach is characterized by the sequential

modeling at different time and length scales. The relationship extracted from a model is then

injected into the next model to compute the global response (usually having recourse to finite

element methods). The hierarchical approach allows thus for a global-local analysis. The

obtained constitutive behaviors are, therefore, characterized by parameters that are chosen ac-

cording to the selected phenomena that need to be included in the formulation. This method

is attractive since it can predict well the behavior in many cases.

However, one of the drawbacks of this approach is that it requires a high number of parame-

ters to model highly heterogeneous materials such as concrete. This implies that it becomes

difficult to clearly identify the parameters from simple experiments. Another problem is that

this coupling scheme supposes a strict separation of scales.

A second class of methods is represented by the family of homogenization techniques, which

resorts to the simultaneous presence of both micro and macro-scale within the same simula-

tion. The incorporation of the micro-structure within the formulation allows the incorporation

of relevant information in the modeling, with the aim to describe as accurately as possible the

interactions at the micro-level.

Two main (computational) classes can be distinguished in homogenization analysis. In both

approaches it is assumed that the scales are separated, but the formulations are conceptu-

ally different. The first one is known as asymptotic homogenization. This approach applies
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microscopic fields as expansion of the macroscopic displacement and stress fields. However,

this approach is usually restricted to simple microscopic models and geometries. Another

drawback of asymptotic mean field is that it requires two completely separates length scales for

the treated problems. However, industrial applications often do not allow this hypothesis. This

is also the case in concrete where the size of the inclusions might not be negligible compared

to the dimensions of the structure (depending on the specimen size which is analyzed).

On the other hand, the second class, which is based on the notion of so-called unit-cell or

Representative Volume Element (RVE), allows a higher complexity of the micro-structural

mechanical behavior of the cell. The RVE size is chosen according to the heterogeneous

composition of the micro-structure and is much smaller than the dimensions of the macro-

structure.

The idea of homogenization is to introduce two computational scales that are resolved. The

first scale is the so-called macro-scale which represents the whole structure of interest. The

second one contains the micro-structure and is strictly linked with the integration points of

the first one. It is used to extract the constitutive behavior for the macro-scale, and it thus

replaces the classical constitutive laws. We will follow this second class of approach.

1.4 Outline of the chapters

The thesis is structured as follows.

At first (Chapter 2), a brief review of the experimental behavior of concrete and of the available

computational tools to simulate its behavior are presented. Moreover, we describe the hetero-

geneous composition of concrete, which represents an important feature in the modeling of

this material and one that is increasingly taken into account in current research.

The third chapter is dedicated to the description of the chosen numerical framework used.

The finite element method, which represents the general skeleton, and the cohesive approach,

which handles the fracture process, are described.

Chapter 4 presents a first application on a meso-scale concrete specimen. Samples are

subjected to tensile loading under different strain rates. In addition, we focus on different

distributions of aggregates, in their mechanical properties and sizes showing the influence of

these factors on peak strength and dissipated fracture energy.

Mixed mode loading is tackled in Chapter 5. In this chapter we present the coupling between

the cohesive approach and a contact algorithm to prevent penetration of the generated cracked

surfaces. The methodology includes a novel initially rigid extrinsic traction separation law,

which enables us to define two separate values for the dissipated fracture energy, in mode I

and II. The method is then validated by comparing the numerical results to experimental data

(recorded in masonry engineering) at the meso-level and structural level.

In Chapter 6 the method is applied to meso-scale concrete specimens subjected to compres-
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sive loading. The chapter focuses on the influence of lateral confinement on the response and

provides comparison with available experimental data on triaxial loading. The influence of

strain rates is considered too.

The multi-scale dynamic framework is finally discussed in Chapter 7. It reports a description

of the adopted technique, which couples cohesive macroscopic fracture modeling with meso-

scale failure behavior (in a FE2 settings). The applicability of the proposed framework is

illustrated by means of a numerical example.

The last chapter states the conclusions that can be drawn from this research work and proposes

research perspectives.
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2 Modeling of concrete

This chapter focuses on the meso-scale representation of concrete. More precisely, the pur-

pose of this section is to underline the importance of including an explicit description of

the material’s heterogeneities into the model. Indeed, this level of observation enables to

model the influence of the inclusions properties on the overall behavior, which emerges from

experimental observations with different concrete mixtures.

The chapter is divided as follows. The first section is devoted to a brief description of the

experimental settings that are commonly adopted to characterize concrete behavior and

thus to extract the relevant macroscopic material properties. Afterwards, a review of existing

numerical models for concrete is presented. A comparison between approaches, that includes

those in which information about the heterogeneous composition are comprised and those

that consider the material as being homogeneous, is provided. This leads to a more detailed

description of some characteristics of the adopted meso-mechanical numerical framework

(which is further described in Chapter 3).

2.1 Experimental characterization

The stress-strain relationship of concrete is characterized by an asymmetric behavior between

tension and compression. This can be extracted from different experimental tests; ranging

from uniaxial compression or tension, triaxial compression, cyclic loading, dynamic load-

ing,. . . From the experiments carried out under quasi-static regime it is possible to obtain the

elastic properties of concrete, i.e. tensile ft and compressive strength fc , Young’s modulus E

and Poisson’s ratio ν. Dynamic tests (e.g. split Hopkinson bar) are performed to investigate

the dynamic mechanical response of concrete. Experimental data show indeed a rate effect on

strength, and on the dissipated fracture energy, in the high loading rate regime. Typically, dy-

namic tests provide increase factors that quantify the raise in strength and dissipated fracture

energy of concrete subjected to high strain rates.

There are various tests to obtain the tensile strength of concrete, which is approximately ten

times lower than the one in compression. A first possibility is given by direct tensile test

7



Chapter 2. Modeling of concrete

(e.g. [Toutlemonde 94]).

The direct test consists in loading a concrete sample in its axial direction under traction. Due

to the difficulties to properly attach the specimen to the loading machine (guaranteeing a

uniform stress distribution) and the brittle post-peak behavior of concrete, it is a difficult test

to achieve. On the contrary, indirect tests are simpler to achieve. Commonly the Brazilian

(for instance [Fairhurst 64]) and the three points bending test (for instance [Monteiro 93]) are

performed. In addition, in those experiments it is easier to measure other quantities, such as

the dissipated fracture energy. The specimen in the bending test is indeed notched allowing

the propagation of a clear single crack.

σ 

ε

(a)

 

 

σ 
 

(b)

Figure 2.1: Characteristic behavior of concrete under (a) tension and (b) simple compression.

The compressive behavior is recorded through a simple direct compression test (e.g. [Mon-

teiro 93, Sfer 02]). The compressive strength is one of the main characteristic of concrete.

Usually experiments are performed 28 days after casting of the samples. We illustrate the

constitutive behavior by means of a typical response illustrated in Figure 2.1b. At early stage

of loading (30-40 % of fc ) concrete behaves linear elastically. Then micro-cracks nucleate and

the response becomes non-linear. The micro-cracks align parallel to the loading direction in

the proximity of the peak strength. This phase is followed by a non-linear softening (“ductile”)

with subsequent additional dilatation of the sample.

It should be pointed out that the applied boundary conditions highly influence the concrete

response. The specimen response is, indeed, sensitive to friction between the plates as well as

the final cracking path, which can show a characteristic x.

The application of a lateral confinement significantly affects the stress-strain relationship.

The peak strength as well as the ductility of the specimen increase with increasing levels of

lateral confinement. Experimentally biaxial and triaxial tests are widely used to quantify the

influence of lateral confinement. Conventional triaxial tests are performed by applying a

compressive loading under a constant radial compressive pressure. Another possibility is to
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use an odometer, which blocks the radial deformation (for instance [Burlion 01]).

Among the several tests performed by different authors ([Bazant 86, Candappa 01]), in this

manuscript we refer to the series conducted by Sfer [Sfer 02]. During these experiments it is

observed that the more the confining pressure is increased the more inclined to the loading

direction the rupture crack becomes.

Another effect that strongly influences the constitutive response, under every loading condi-

tion, is represented by the speed at which concrete is loaded. Indeed the strain rate influences

various properties of concrete, but fc and ft are mostly affected. It has been observed that

dynamically-loaded samples can carry larger loads than their static strength. This increase is

explained by two mechanisms: the presence of free water in the pores, which generates the

so-called Stefan effect ([Rossi 94]), and inertial effects [Janach 76]. The behavior is recorded in

experiments having recourse to split Hopkinson bars (e.g. [Rossi 94, Ross 95, Brara 99]). The

influence of dynamic loading is tackled in Chapter 4.

The concrete composition influences the mechanical properties giving different peak values

in the aforementioned experimental tests. Indeed, various factors can affect its strength:

for instance the ratio of cement paste to aggregate, the bond strength between mortar and

aggregates, the adopted grading, the shape and the strength of the aggregates itself, water

to cement ratio, type of cement used, . . . . The variation of just one parameter can indeed

influences the behavior of the obtained concrete. For instance in [Wu 01] the results of a

series of tensile and compressive test carried out by selecting a different coarse aggregate type

revealed that the strength, stiffness, and fracture energy of concrete depend on the type of

aggregate, especially for high-strength concrete. The experimental evidence of the constituents

influence underlines thus the importance of selecting a fine scale level of observation for the

modeling.

2.2 Macro and meso modeling of concrete

Concrete is a material, which is made of cement (8-15%), water (2-5%), air (5-7%) and about

(70-75%) of aggregates including gravel, sand, limestone filler and finally other chemical

additives in proportions smaller than 0.5%. The result of this mixture is a quasi-brittle ma-

terial, whose wide range of ingredients defines the mechanical behavior. Furthermore the

interactions between these constituents, highly influence the constitutive response. Although

all the ingredients influence the final mechanical behavior, it seems that every ingredient has

an influence according to its characteristic length. In this sense, and according to the levels of

observation proposed by Wittman ([Wittmann 83]), meso-scale (m−3) and micro-scale (m−6)

should be the logical working scales for material scientists in concrete research. Nevertheless,

the micro-scale is still far from the computational capabilities if real size specimens needs to

be analyzed. Thus, different meso-scale models have been tested by several authors for the

simulation of concrete behavior and fracture (see subsection 2.2.3 and 2.2.4).

At the macro scale, the ingredients that characterize concrete’s heterogeneity are not repre-
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Chapter 2. Modeling of concrete

sented and one considers it as a homogeneous material. In this class fall damage models,

(visco-) plastic models and fracture based models. However, this leads to models with a rela-

tively high number of fit parameters, which are difficult to relate to physical mechanisms that

occur during failure.

The second class focuses on the explicit representation of the concrete composition at a

meso-level of observation. At this scale two principal phases are represented: aggregates

and mortar. The main methods in this category are so-called particle models (lattice) and

finite-element with cohesive capability. So it is possible to assign to every material phase a

specific constitutive behavior, which enables reducing the number of fit parameters. Indeed

this permits a physical identification of all material parameters of the model. Another par-

ticularity of this level of observation is that it allows the simulation of the fracturing process

within the specimen. Fracture of these materials involves the opening of local micro-cracks,

which may propagate, coalesce and subsequently enter into contact influencing the nonlinear

failure process. The evolving damaging process is strictly related to the geometry of the meso-

structure.

Furthermore meso-modeling enables to reproduce the influence of different arrangements of

the meso-structure. Nonetheless, it should be noted that the computational cost increases

considerably with increasing specimen size and thus, simulation at this scale are limited

to small samples. As a consequence, as already stated, there is a need to transfer the ob-

tained constitutive behavior from the meso-scale to the macro-scale through an appropriate

multi-scale technique.

2.2.1 Damage models

Damage models have been widely used to describe the constitutive response of concrete at

the macro-scale, taking into account the effects of cracking. In addition, the current available

models are often coupled with (visco-) plasticity formulations (see next subsection).

In case of isotropic damage (i.e. equal distribution of damage in all directions) and considering

an arbitrary section within the material, the presence of micro-defects contributes to the

reduction of the surface that can be subjected to loads (F ). The surface S can thus be divided

into two distinct areas; one called undamaged or effective area (S) and another one, which

contains all the micro-cracks, damaged surface (SD ). This leads directly to the concept of

effective stress, which is given by (for the one-dimensional case):

σ̃= F

S −SD
= F

S
(
1− S

SD

) = F

S (1−D)
= σ

1−D
(2.1)

where σ is the stresses associated with deformation ε and D is the local scalar variable that

describes the attained damage within an element. This enables to define a relationship

between the Young’s modulus of the damaged material and the undamaged one (E and Ẽ

10



2.2. Macro and meso modeling of concrete

respectively).

σ= Ẽε with Ẽ = (1−D)E (2.2)

The damage approach is thus based on a stiffness reduction with increasing deformation,

whenever the strain exceeds a threshold value. D is computed with the help of a damage

law, which depends on the amount of experienced deformation and a threshold law. Two

popular threshold functions, which resort to the same free energy, are represented by the

model defined by Mazars [Mazars 84] and the one of Marigo [Marigo 81]. Damage models

have been introduced initially to simulate the phenomenon of micro-cracking in metallic

materials ( [Lemaitre 78]). Mazars ([Mazars 84]) extended the model to account for the tensile-

compressive asymmetric behavior of concrete.

In fact the use of damage within a numerical scheme entails some problems. For instance

the strain-softening in tension should differ from the one in compression, but this is not

represented by the basic damage models. In addition, a damage law in conjunction with a

finite-element framework, results in a generally small area where large deformation occurs.

This leads to a spurious localization zone, with consequent mesh dependency and a dissipated

energy that tends to zero with increasing level of mesh refinement.

To avoid this problem different methods have been developed. A first possibility is to fix

the mesh size to an optimal value, so-called simple crack band model ([Pietruszczak 81]).

A second approach foresees a density of energy that is variable depending on the selected

size of the finite elements ([Willam 86]). Yet, a third approach introduces an internal length

scale directly into the constitutive behavior. This is the so-called non-local theory (developed

in [Pijaudier-Cabot 87]). An exhaustive study of different non-local approaches can be found

in [Jirásek 98]. Damage models are not often coupled with a meso-structural representation,

nevertheless an example can be found in [N’Guyen 10a].

2.2.2 Plasticity Models

As damage models, plasticity theories have been conceived first for metals. The main problem

that arises, in their application to concrete, is that they fail to capture the brittle nature

of this material in tension. On the contrary, under compression (unconstrained as well as

constrained) concrete undergoes non-reversible deformation and thus its representation

through plasticity modeling is straightforward.

In the elastic range concrete is assumed to be an isotropic linear elastic solid. However,

with increasing applied deformation concrete undergoes both elastic and non-reversible

deformations. The total strain increment (dε) can thus be decomposed into elastic (dεe ) and

plastic (dεp ) increment, which is given for the one dimensional case by:

dε= dεe +dεp (2.3)

The limit of elasticity is defined by a failure surface (usually referred as the yield or loading

surface in traditional plasticity theory). Beyond this surface the material undergoes plastic

11
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deformations. This can be expressed as follows:

Y < 0 elastic behavior (2.4)

Y = 0 and Ẏ = 0 yielding (2.5)

Y = 0 and Ẏ < 0 elastic unloading (2.6)

The yield surface depends clearly on stress variables, but can also depend upon other variables,

such as the plastic strain, or constant parameters, often called hardening parameters. Besides

the well-know Tresca and Von Mises criterion, a widely used criterion is the model of Drucker-

Prager. The problem of the choice of the failure surface can be traced back to the fact that

concrete does not exhibit distinct yielding.

The hardening function defines the behavior after yielding. This allows for the failure surface

to expand and change shape as the concrete is plastically loaded (plastic flow). This function

is a variable part of the loading function that depends on some hardening parameters. Those

hardening parameters account for different behavior of concrete such as effective plastic

strain, plastic work, and volumetric strain.

Among the various works that resort to this method we can recall [Murray 79, William 84,

Feenstra 96].

Plasticity and damage

In the last decades, plasticity models have been coupled with damage models in order to

reproduce more accurately the behavior of concrete in a wide range of loading ([Ottosen 79,Ser-

combe 98, Bažant 00, Gatuingt 02, Grassl 06, Pedersen 08, Gatuingt 08, Desmorat 10b, Pon-

tiroli 10, Desmorat 10a]). In this approach it is also possible to introduce rate effects through

introduction of visco-plasticity (e.g. [Dubé 96]) as well as cyclic loading response (e.g. [Rague-

neau 98]). [Bažant 02] provides a survey over plasticity and damage models.

2.2.3 Particle (lattice) models

Particle models represent a popular method to simulate concrete behavior at the meso-scale.

The particularity of this approach consists in the discontinuous formulation. Indeed the

material is represented through a network of beams (or lattice) relating discrete points (hence

the alternative name lattice model). Therefore, the displacement field can be determined only

at the center of those particles. The first application to concrete of this model can be traced

back to the work of Schlangen and van Mier [Schlangen 92].

The basic idea of those models consists in representing the concrete meso-structure through

a lattice system that is obtained starting from the aggregates disposition. The disposition is

obtained, usually, through the grading curve of the chosen concrete or, alternatively, recon-

structing the distribution of aggregates of an experimental sample depicted in a digitalized
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image. So, on the basis of the heterogeneities center Delaunay triangulation (for 2D) tetrahe-

dralization (3D) can be performed. Each edge of the generated triangle or face of tetrahedrons

respectively gives the number of interactions with the neighborhood particles. The domain

tessellation (e.g. Voronoi) defines the geometrical interaction between the aggregates, i.e.

the section of the beams that connect the points and consequently the interaction forces

that are transmitted from one to the other aggregate. During this process each heterogeneity

is included in a single polyhedral cell and different material properties are assigned to the

various lattice elements according to the meso-structural phases.

The constitutive response of this meso-mechanical approach is defined by the behavior of

the beams. Normal forces, shear forces and moments are calculated using a conventional

simple beam theory. In addition other simple rheological models account for non-reversible

deformations, viscous effects and fracture. This is achieved by degradation of the beams,

whose tensile strength has been exceeded, and consequent removal.

Among the numerous researchers that have had recourse to this models we may recall

[Schlangen 92, Bolander Jr. 98, Cusatis 06, Kozicki 07, Grassl 10].

Particle models can thus provide good estimates of concrete behavior for several loading con-

ditions, however, they introduce a non physical length scale in the material description (lattice

beam spacing), since they are based on fictitious particles. In addition, they face difficulties in

reproducing exactly simple elastic deformations (see for instance [Jerier 12]). Moreover, in

case of compressive shearing, the broken stiffness connections should be recovered in order

to model aggregates interlock. Thus, we have chosen to select a meso-mechanical model

that does not show the aforementioned problems and that resorts to simple constitutive

assumptions, avoiding phenomenological modeling.

2.2.4 Finite Element with fracture capability

Meso-modeling of concrete within a finite-element framework with an explicit representation

of cracks can be traced back to the work of [Roelfstra 85]. Similarly to the lattice approach, this

class of models aims to represents accurately the concrete components at a meso-scale level

of observation. However, to achieve a precise representation of the aggregates a fine-mesh

is needed. For this reason, most researchers have focused on two-dimensional models that

allow reducing the high computational cost and thus achieving better modeling ([Carol 01, Ti-

jssens 01, Willam 04, Wriggers 06]) while only few have moved to 3D (e.g. [Caballero 06]).

This approach describes concrete as composed by mortar and aggregates with an interfacial

transition zone between them. Cracking is represented having recourse to cohesive zone

theories. The cohesive crack model has been first applied to concrete by [Hillerborg 76] under

the name of fictitious crack model. This method resorts to classical cohesive approach, but

considers that micro-cracks can initiate anywhere in the specimen and not only along a pre-

determined path. The propagation of cracks is, indeed, controlled by the interfacial strength

of the cohesive elements. The bulk elements around the interfacial transition zone behave

elastically or following a more phenomenological constitutive relationship (e.g. [Grassl 08]).

The inclusions can be represented following, more or less, a realistic distribution. Specimens
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with inclusions showing a fixed size, irregular sizes, and spherical shape of the heterogeneities

or polygonal form have been adopted in the different models. The size of the smallest inclu-

sions is related to the mesh size too. In general 2D models allow greater mesh refinement

and thus to better follow a grading curve. Examples of early applications for mixed-mode

fracturing in homogeneous concrete samples include the works of [Planas 91] and [Carol 92].

In this thesis we have elected this class of models with an explicit representation of cracks.

We have chosen to allow cohesive insertion anywhere in the mesh, while bulk elements are

assumed to behave linear elastically. Therefore all source of non-linearity is assumed to

be concentrated in the cohesive elements. This strategy has been chosen in order to avoid

recourse to more phenomenological laws, which entail a larger number of parameters that

might be difficult to identify physically.

2.3 Meso-structure

As already stated, the meso-modeling of concrete enables one to describe the heterogeneous

internal material structure of concrete. During failure of concrete micro-cracks initiate and

propagate characterizing the nonlinear stress-strain response of concrete. The fracture be-

havior is clearly influenced by the diameters of the biggest inclusions, which can show sizes

up to the order of some centimeters. For instance one might think about the composition’s

influence on the final shape of the crack path. Indeed, if normal-strength concrete is consid-

ered, damage tends to initiate at the interfaces between cement paste and aggregates. The

interface between these two components is usually called Interfacial Transition Zone (ITZ).

Afterwards cracks tend to propagate along the ITZs and to bridge the gap between these failure

zones developing within the matrix. Therefore, at this scale concrete can be represented as a

biphasic material made of inclusions embedded in a cement paste matrix. In our approach

the interface transition zone is represented (when cracking starts) by means of dynamically

inserted cohesive elements. Cracks are represented explicitly in the matrix phase and inclu-

sions too, while other authors have recourse to cohesive elements only at the inter-element

boundary between matrix and particles.

Usually only big and medium aggregates are modeled, while all particles with a diameter

smaller than 2 mm (i.e. sand) are assumed to be mixed up with mortar and small pores estab-

lishing the matrix phase. Therefore this phase is considered as a homogeneous component at

the meso-scale. The material properties of the mortar phase are thus strongly depended on

the type of cement used, amount of pores, water to cement ratio and other additives present

in the concrete. The bond strength of the ITZs is also influenced by these parameters, as

well as by the shape of the inclusions. Experimentally and numerically it has been observed

that spherical particles have a negative influence on the tensile and compressive strength of

concrete. In the experimental literature, it is possible to find different values for an estimation

of the strength and fracture energy of this transition zone (e.g. [Aquino 95, Caliskan 02]).
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2.3.1 Mesh-generator

The aggregate fraction in concrete, if only particles with a diameter above 2 mm are con-

sidered, is around 30% and can rise up above 70 %, if smaller inclusions are considered too.

Aggregates can be made of different types of stones, which gives a large scatter in the measured

experimental properties. Moreover they can show various kind of geometry, according to

their manufacturing process, from rounded ones to more irregular shapes if the particles

have been obtained through crushing. In numerical simulations, both kinds of inclusions

have been employed by different authors. Besides the shape, the size distribution and spa-

tial arrangement of the aggregates within the specimen highly influences the behavior of

concrete. Usually the grading of the particles is chosen according to a Fuller and Thompson

density curve ([Fuller 06]). In order to reproduce a meso-structure for the numerical model

it is possible to have either recourse to a (random) generator of aggregates or to recover an

experimental arrangement through an image processing technique. The first approach has

been undertaken in this investigation. In this work the geometry has been obtained with

different generator: one based on a Voronoi mesher (see Chapter 4), another that creates

regular circles following experimental reported values for the grading (Chapter 4) and a third

one that produces irregular polygons following a Fuller curve (Chapter 6).

Figure 2.2 depicts three examples of specimen obtained with the different meso-structure

(a) (b) (c)

Figure 2.2: Examples of different meso-structure geometries: (a) obtained with a Voronoi
mesher, while (b) and (c) are generated according to a grading curve with circular and polygo-
nal inclusions respectively.

generators. It is possible to notice that for the second and third samples there are inclusions,

which intersect the specimen edges. In order to avoid an artificial increase of the volume

matrix due to this boundary effect, the heterogeneities are placed in a larger sample with a

final cut of all parts outside of the concrete specimen. Once the geometry has been created it

is possible to generate the mesh with a finite-element mesher.
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3 Numerical framework

3.1 Fundamental concepts of the Finite-Element Method

As stated in the Introduction Chapter, the representation of complex material behavior that un-

dergoes several physical processes during brittle failure, needs a careful numerical treatment.

A very popular and powerful tool to tackle such problems is offered by means of numerical

simulations. Those have originated with the start of the computational mechanics branch dur-

ing the 50’s, when pioneer engineers worked closely with the aircraft and aerospace industry.

The birth of the Finite-Element Method (FEM) can be traced back to these years. It is generally

attributed to the seminal work of [Turner 54].

From this time up to the present, much effort has been devoted to the development of compu-

tational techniques. Nowadays, thanks to this progress and the raising computational power

of the machines, many complex engineering problems, involving elaborate multi-physical

behavior (that would be impossible to be solved analytically), can be addressed. In the follow-

ing we will first describe the adopted general FE-framework, and then present a review of the

cohesive approach for fracture mechanics.

3.1.1 Strong form: governing equations

The dynamic motion of a continuum body, as the one depicted in Figure 3.1, is considered. The

figure illustrates two different configurations: the initial one also called reference configuration

(time t0), and the current or deformed configuration (time t ). In the Lagrangian description the

reference configuration plays an important role in the analysis, since all equations are referred

to it. Associated with these two states are the material (Lagrangian) coordinate denoted by

X and the spatial (Eulerian) coordinate, indicated with x . All variables referred to the initial

configuration will be indentified by a subscript zero. At every time t (t ∈ [t0, tend ]) the current

configuration and subsequent motion of the body are described by the following function:

x =ϕ(X , t ) ∀X ∈ B0 (3.1)
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Figure 3.1: Lagrangian deformation of the body B0.

where ϕ is called deformation mapping between the initial and current positions. The dis-

placement u(X , t ) is given by the difference between the deformed and reference configuration

u(X , t ) =ϕ(X , t )−X = x −X ∀X ∈ B0 (3.2)

The deformation of infinitesimal material neighborhoods is described by the deformation

gradient

F =∇0ϕ(X , t ) ∀X ∈ B0 (3.3)

where ∇0 is the material gradient operator. Let J be the Jacobian, which represents the ratio of

an infinitesimal volume in the deformed configuration to the corresponding volume in the

undeformed body

J = det(F) > 0 ∀X ∈ B0 (3.4)

To transform quantities that are defined with respect to the area in deformed configuration to

those relative to the area in the reference configuration, and vice versa, we use the Nanson’ s

relation

d A n = J d A0 F−T N (3.5)

where d A is an area of a region in the deformed configuration, d A0 is the same area in the

reference configuration, and n is the outward normal to the area element in the current

configuration while N is the outward normal in the reference configuration.

The stress measure, which is used in the Lagrangian formulation, relates the forces in the

current configuration with the cross section in the reference configuration and is called first

Piola-Kirchoff stress tensor. This can be related to the Cauchy stress tensor (σ) as follows:

P = JσF−T (3.6)
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Figure 3.2: Body B0.

Let us consider the body of Figure 3.2 with body forces acting per unit reference denoted

with ρ0B . Its surface its characterized by a traction boundary Γt , Neumann part, and a

displacement boundary Γu , Dirichlet part. The continuum problem is governed by the balance

of linear momentum and the boundary conditions

∇0 ·P+ρ0B = ρ0ϕ̈ ∀X ∈ B0 (3.7)

P ·N = T̄ (X , t ) ∀X ∈ Γt (3.8)

ϕ = ϕ̄ ∀X ∈ Γu (3.9)

To complete the problem, initial conditions must be provided:

ϕ (X , t0) = x0 ∀X ∈ B0 (3.10)

ϕ̇ (X , t0) = v0 ∀X ∈ B0 (3.11)

It remains to define the constitutive behavior of the material that can be obtained by deriving

the strain energy density function Ŵ with respect to the deformation gradient F

P = ∂Ŵ

F
(3.12)
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3.1.2 Weak form and discrete formulation

The momentum equation presented above (also called strong form, Equation 3.7) cannot be

applied directly to the FEM formulation and needs, therefore, to be reformulated in a weak

form. The weak form is obtained by multiplying the moment equation with a test function

and integrating over the domain. The test function has to satisfy continuity conditions and the

displacement boundary conditions and it represents, therefore, a virtual displacements ∂u.

Hence, each terms in the weak form represents a virtual work due to the virtual displacement

∂u (=∂ϕ). The weak form can be written as (plane )∫
B0

(
P : ∇0∂u +ρ0ϕ̈ ·∂u

)
dV0 −

∫
B0

ρ0B ·∂u dV0 −
∫
Γt

T̄ ·∂u dΓt = 0 (3.13)

The equilibrium above represents the principle of virtual work (also called principle of virtual

displacements), which is the basis of the FEM. The principle requires that for any small virtual

displacements (imposed on the body in its state of equilibrium) the sum between internal

and external work has to vanish. The discrete equations are obtained from the principle of

virtual work by using finite-element interpolants for the virtual displacements. The domain

is discretised in elements. In our case, we work in two dimensions with six node triangular

elements. Thus, we can describe the virtual displacements using the element interpolation

∂ue =
6∑

a=1
Na(X )∂ua (3.14)

where ∂ua are the nodal values of the virtual displacements and ∂ue those within each element,

of which Na represent the shape functions.

When the discretization (Equation 3.14) is inserted into Equation 3.13 and the integrations are

carried out, the discretized equation of motion becomes

Mϕ̈+ f int = f ext (3.15)

where M is the mass matrix, a (= ϕ̈) is the nodal acceleration vector, f int and f ext represent

the internal and external forces vectors.

3.1.3 Time integration

In order to find the solution of the equilibrium equation (3.15), we need to use a conve-

nient finite-difference expression to approximate the accelerations and velocities in terms of

displacements. One popular procedure of time integrators is the Newmark β-method [New-
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mark 59]:

un+1 = un +∆t vn +∆t 2
[(

1

2
−β

)
an +βan+1

]
(3.16)

vn+1 = vn + 1

2
∆t

[(
1−γ)

an +γan+1
]

(3.17)

M an+1 = f ext(tn+1)− f int(tn+1) (3.18)

where u, v and a denote the material displacement, velocity and acceleration fields. β and γ

are Newmark’s parameters, which control the algorithm’s stability and accuracy. By setting γ

equal 0.5 the algorithm has no damping, and if β is equal to zero, we obtain the second order

explicit scheme (adopted in this work)

un+1 = un +∆t vn + 1

2
∆t 2 an (3.19)

an+1 = M−1
(

f ext(tn+1)− f int(tn+1)
)

(3.20)

vn+1 = vn + 1

2
∆t (an +an+1) (3.21)

Whereas, if β is set different to zero, the time integration is indicated as implicit. This solution

method has the advantage to be unconditionally stable for linear problems and to allow large

time step. On the other hand, an explicit scheme requires a smaller time step but having

recourse to a lumped mass matrix, the equations are not coupled and can be solved directly

(no matrix inversion). This algorithm is stable under the condition that the time step is below

a critical time step, which is

∆tstable =α


le√

λe +2µe

ρe


mi n

(3.22)

where le is the length of the element, λe and µe are the Lamé coefficients of the element and

ρe its density (
√
λe +2µe /

p
ρe is the longitudinal wave speed). The stable time step is chosen

equal to the smaller value over all elements in the mesh multiplied with a security coefficient

α (typically around 0.1).
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3.2 The cohesive zone approach

3.2.1 Origins of the cohesive approach

As introduced in Chapter 2, in order to model dynamic fracture and damage in brittle materials,

two main classes of computational methods have been developed during the last decades. One

method is based on continuum damage models and the other one on cohesive zone theories.

In the first method the fracture process is included in the material constitutive behavior. The

accumulated damage in an element is responsible for the degradation of the material elasticity.

This means that fracture is modeled in a continuum sense and the discrete nature of cracks is

lost (however this homogenization allows modeling of large scale problems).

The second approach is the cohesive one, and was introduced by Dugdale [Dugdale 60] and

Barenblatt [Barenblatt 62] in the 1960’ s. The model basically describes fracture as a separation

process, which occurs at the crack tip (Figure 3.3). The debonding process is assumed to

Figure 3.3: Debonding process between the atoms at the crack tip.

be confined in a small region of material called the cohesive zone, which accounts for the

breaking of the atomic bonds during crack propagation. In this region, crack face separation

occurs producing a displacement jump∆ (Equation 3.24). The constitutive relationship, which

relates the traction acting on the separating surfaces to the relative opening displacement

vector (∆), is called the Traction Separation Law (TSL):

T = T (∆) (3.23)

with

∆=ϕ+−ϕ− = [[ϕ]] (3.24)

where ϕ+ and ϕ− represent the deformation mappings of the two cohesive surfaces of the

body (depicted in Figure 3.3). Therefore damage is accumulated in the cohesive zone via

degradation of the cohesive tractions, while the bulk material outside the cohesive zone

remains undamaged and continues to behave linear elastically without a crack tip singularity.

In a computational framework, the cohesive zone is represented by interface elements (in

which the TSL is implemented). These elements, called cohesive elements, are placed at

the boundaries between bulk elements, constraining the cracks to propagate following the
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interelement boundaries, which are determined by the discretisation (mesh dependency). In

order to avoid this problem, it is necessary to have recourse either to fine meshes or adaptive

meshing techniques. Other solutions are offered by different methods like the extended Finite-

Element Method (X-FEM), where the crack can propagate within the elements. Usually the

TSL is related to a potential (φ), which represents the stored fracture energy for a specific

interface. Because of this formulation it is possible to obtain the components of the traction

vector (T ) simply by differentiating the potential with respect to the opening displacement

vector:

T = ∂φ

∂∆
(3.25)

Rice [Rice 68] demonstrated the non-dependency of the TSL from the bulk material using

the J -integral, which is independent from the bulk material that surrounds the crack. The

situation is schematically illustrated in Figure 3.4 for a two-dimensional crack problem with

the crack tip aligned with the x1-axis. The J -integral is defined as

J =
∫
Γ

W d x2 −
∫
Γ

Ti
∂ui

∂x1
dS (3.26)

where S denotes the curve length along Γ (which is a contour going around the crack in

counter-clockwise direction around the tip), Ti are the components of the traction vector and

W is the strain energy density. As shown in Figure 3.4 the integration path Γ can be chosen

Figure 3.4: Cohesive approach and integration path for the J integral.

just outside the failure process zone. The integral reduces in this case as follows

J =−
∫
Γ

Ti
∂ui

∂x1
dS =

∫ ∆∗

0
T (∆) ·d∆ (3.27)

where∆∗ is the separation distance beyond which complete debonding has occurred. Using

the assumption of Equation 3.25, coupling it with the last equation and performing the
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integration enables one to relate value φ(∆∗) with the J -Integral. This is called the work of

separation.

J =Gc =
∫ ∆∗

0
T (∆) ·d∆=φ(∆∗) =φsep (3.28)

If J is evaluated far away from the process zone (e.g. Γmatches the external boundaries of the

fractured specimen) it can be calculated from the applied far-field loading. As the J -integral

is path independent the two computed values must be identical. Thus, the dissipated fracture

energy during decohesion corresponds to the available (through far field loading) elastic

energy (and is equal to the potential energy decrease rate of the uncracked system). Moreover,

since the area under the TSL is equal to two times the surface energy, the cohesive zone

theory gives the same prediction in terms of fracture behavior as the energy-based approach

postulated by Griffith [Griffith 20].

3.2.2 Intrinsic and extrinsic cohesive approach

In the computational framework, the cohesive zone is represented by interface elements (in

which the TSL is implemented). These elements, called cohesive elements, are placed at the

boundaries between bulk elements.

It is possible to distinguish between two main categories of TSL, depending on the response

of the interface before the softening behavior. With the extrinsic approach (see Figure 3.5b),

which is used in this work, the surface shows only a softening behavior (the response of the

surface prior crack initiation is assumed to be rigid). Whereas, with the intrinsic approach

(see Figure 3.5a), the TSL exhibits generally an initial linear elastic behavior prior to softening,

which requires cohesive elements to be present from the beginning of the simulation.

δδc

σc

(a)

δδc

σc

(b)

Figure 3.5: (a) Intrinsic and (b) extrinsic approach.
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3.2. The cohesive zone approach

Therefore, this implies that the crack path is determined a priori. A common application is the

modeling of the delamination process in material composites, where the separation occurs at

the well-known material interfaces (e.g. [Chaboche 97, Geubelle 98]).

3.2.3 Xu and Needleman exponential cohesive law

Among the several intrinsic TSLs (with different shapes) that have been proposed, we present

here one of the most popular version: the Needleman [Xu 93] exponential cohesive law. In a

one-dimensional setting is expressed as:

φ(∆) =σc δn exp

[
1−

(
1+ ∆

δn

)
e−

∆
δn

]
(3.29)

where δn is the value of the opening displacement, beyond which softening begins. σc is the

maximum normal cohesive stress (σc = ft is often chosen for concrete), which can be attained

for an opening equal to δn (Figure. 3.6). As a free energy function is assumed, the cohesive

traction can be obtained, according to Equation 3.25, simply by differentiation.

T =σc
∆

δn
e1− ∆

δn (3.30)

The potential form for two-dimensional cases with coupling between normal and tangential

opening was presented by Xu and Needleman [Xu 93].

δn

σc

∆

Figure 3.6: Needleman exponential cohesive law [Xu 93].

The presence of the cohesive elements, with an initial elasticity in the uncracked body at

the beginning of the simulation, causes an artificial elasticity at the element interfaces. This

leads to a partial reflection of incident stress waves at the inter-element boundaries and to an

unrealistic reduction of the stiffness. This phenomenon is denoted as artificial compliance.

In order to reduce this effect, the initial slope of the elastic response can be increased. However,

the bigger problem is that if the initial slope increases, the critical time step must be reduced

to avoid numerical instabilities. This issue is resolved with the extrinsic approach.
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Chapter 3. Numerical framework

3.2.4 Camacho-Ortiz linear irreversible cohesive law

As previously mentioned the characteristic of the extrinsic approach is the initial rigid response

before reaching a critical stress value. To achieve this within a computational framework, a

cohesive element is inserted between an inter-element boundary only after the stress at the

boundary of the two elements has reached a critical value (this process is called dynamic

insertion). The inserted elements have initially a thickness equal to zero. In two dimensions

the mid-node at the inter-element edge is duplicated, whereas the end-node of the segment

are duplicated only if they are shared by an adjacent cohesive elements. In this case the

end-node is duplicated allowing the crack tip propagation. One of the most popular TSL for

δδcδmax

σc

Tmax

Gc

Figure 3.7: Camacho-Ortiz linear decreasing cohesive law [Camacho 96].

the extrinsic approach was proposed by Camacho and Ortiz [Camacho 96] in 2D (and Pandolfi

and Ortiz [Pandolfi 99] in 3D). There, the cohesive law is a linear decreasing function (depicted

in Figure 3.7) of the effective opening displacements and is derived from a free potential

energy.

φ(δ) = 1

2
σc δ

(
2− δ

δc

)
(3.31)

Where σc represents the local material strength and δc represents the effective relative dis-

placement beyond which complete de-cohesion occurs. The potential is assumed to depend

not directly on the relative displacement vector,∆, but on an effective scalar displacement,

which has the following form:

δ=
√
β2∆2

t +∆2
n (3.32)

where∆n and∆t represent the normal and the tangential separation over the surface with unit

outward normal n and unit tangential vector t respectively. The parameter β accounts for the

coupling between normal and tangential displacements. The derivation of the free potential

energy with respect to the opening displacement leads to the cohesive tractions (2D):

T = ∂φ

∂∆
= T

δ

(
β2∆t t +∆nn

)
(3.33)
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3.2. The cohesive zone approach

This traction in case of crack opening is given by:

T(δ, δmax) =σc

(
1− δ

δc

)
for δ= δmax (3.34)

Where δmax stores the maximal effective opening displacement attained. Whereas for crack

closure or reopening (δ smaller than δmax) the functional form is assumed to have the form

([Pandolfi 99]):

T(δ, δmax) = Tmaxδ

δmax
for δ< δmax (3.35)

Where Tmax is the value of the effective traction when δ is equal to δmax. Moreover, δmax also

accounts for the irreversibility of the law allowing successive loading/unloading steps.

Note that the definition of σc and δc implicitly establish the existence of an effective fracture

energy Gc , which corresponds to the area under the curve of Figure 3.7.

Gc = 1

2
σcδc (3.36)

It is well known that the relationship between the cohesive law and the critical energy release

rate Gc introduces a length scale into the material description. The size of the mesh elements

has to be chosen taking into account this length. This means that the cohesive zones are

sensitive to the size of the specimen. The derivation of this length scale can be found in the

work of Palmer [Palmer 73] and is called cohesive zone length lz . As shown in Figure 3.8 the

cohesive zonetrue crack

 

Figure 3.8: Representation of a crack with a cohesive zone fictitious crack tip subjected to far
field loading σ∞.

introduction of a cohesive zone eliminates the stress singularity predicted by LEFM at the

crack tip by introducing a stress distribution (traction) across a virtual crack tip. An estimate of
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Chapter 3. Numerical framework

the cohesive length can be obtained by superposing the stress acting on a traction-free crack

subjected to far-field loading σ∞, with the stress distribution generated by the distributed

load (p), acting on the cohesive zone.

K I = K I ,σ∞ +K I ,p = 0 (3.37)

where K I is the mode-I stress intensity factor (subscripts σ∞ and p stand for far-field loading

and distributed load respectively). Assuming a linear decreasing law that act on the cohesive

zone and relating K I with the energy release rate of the material Gc

K 2
I =Gc E∗ (3.38)

where E∗ is the Young-modulus (E∗ = E for plane stress, E∗ = E/(1−ν2) for plane strain). The

resulting cohesive zone length can be written as

lz = 9πE Gc

32(1−ν2)σ2
c

(3.39)

This length has an important influence on the mesh size around the crack tip in numerical

simulations. In general the following relation, proposed by Falk et al. [Falk 01], has to be

satisfied

le ¿ lz ¿ W (3.40)

where le is the maximal element size in the fracture area and W is the size of the specimen.

This relation implies that the mesh size has to be chosen according to this length scale in

order to fully resolve the decohesion process and that the cohesive length should be small,

compared to the specimen size.

Another characteristic measure, which was first derived by Camacho and Ortiz in [Cama-

cho 96], is the characteristic opening time

∆tc = ρ c δc

2σc
(3.41)

where c is the longitudinal wave speed and ρ the mass density. According to this characteristic

time, the material response is different when subjected to fast or slow strain rates. This

phenomenon reproduces in fact the real dynamic behavior of brittle solids.

3.2.5 Formulation involving an interface

Let us consider again the body of Figure 3.2, but crossed by an interface (as depicted in

Figure 3.9). The body is thus partitioned into two sub bodies B±
0 , which are situated on the top

or bottom surface of the cohesive surface S0. These surfaces are denoted with S±
0 . Therefore,

we can add to the balance of linear momentum (Equation 3.7) the following condition over
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3.2. The cohesive zone approach

 

Figure 3.9: Body B0 with a cohesive surface S0 .

the discontinuity to ensure equilibrium

[[P ·N ]] = [[T ]] ∀X ∈ S±
0 (3.42)

The introduction of an interface also results in an additional term in the weak formulation of

Equation 3.13. The weak form can thus be rewritten as∫
B0

(
P : ∇0∂u +ρ0ϕ̈ ·∂u

)
dV0 +

∫
S0

T · [[∂u]]dS0 −
∫

B0

ρ0B ·∂u dV0 −
∫
Γt

T̄ ·∂u dΓt = 0 (3.43)

This formulation will be applied to a tensile test of a two-dimensional concrete specimen in

the next chapter.
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4 Influence of the meso-structure in
dynamic tensile loading

In this chapter we investigate the dynamic behavior of concrete in relation to its composi-

tion within the adopted computational framework. In order to understand the loading-rate

sensitivity of concrete, we simulate direct tensile-tests for strain rates ranging 1–1000 s−1.

We investigate the influence of aggregate properties (internal ordering, size distribution and

toughness) on peak strength and dissipated fracture energy. We show that a rate independent

constitutive law captures the general increase of peak strength with strain rate. However, a

phenomenological rate-dependent cohesive law is needed to obtain a better agreement with

experiments. Furthermore, at low rates, peak strength is sensitive to the inclusions’ toughness,

while the matrix dominates the mechanical behavior at high rates. The results presented

here have been published in [Snozzi 12b]. While the last section of the chapter before the

conclusions summarizes a later investigation, which is reported in [Gatuingt 12].

4.1 Introduction

Structures made of concrete, a highly heterogeneous material, are often subjected to dynamic

loads. These may include impact, explosions and seismic loads. Although it is well known

that the mechanical behavior of concrete depends on strain rate, the rate dependency of this

material under dynamic loading conditions is usually not taken into account in the design

codes.

Among others, peak strength, strain at peak strength and total dissipated fracture energy have

been shown to be dependent on strain rate, ([Malvar 98,Ross 95]). In general, concrete exhibits

a higher peak strength when it is loaded at higher strain rates and this increase has been shown

to grow linearly with the strain rate. Fortunately, the augmentation of strength is accompanied

by a larger dissipation of fracture energy, so concrete does not become more brittle.

Nevertheless, the dynamic behavior of concrete under high-strain-rate tensile loading has still

not completely been understood. For instance it is not yet clear what the physical origins of

this stress increase are. In addition, the influence of the internal micro structure of concrete,
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

and the mechanisms which lead to different crack patterns when varying the loading rate,

remain open questions. Unfortunately performing a proper dynamic experimental test in

direct tension brings some difficulties. One of the biggest limitations is how to attach properly

the specimen to the testing machine. Therefore, some authors have used, for high strain

rates, an indirect method employing the Hopkinson bar ([Rossi 94, Brara 07]). In this case,

a compressive wave, sent to the specimen, travels through the sample until it finds the free

boundary and reflects back already as a tensile wave. Then, the specimen breaks by spalling.

However, it is still not clear whether or not the incident compressive wave could have affected

the material before the tensile wave initiates its way back.

This chapter aims at exploiting the capabilities of the meso-mechanical model of concrete.

The objectives of our work are twofold. First, we wish to make explicit the influence of the

toughness of aggregates on the macroscopic response. To this end, we consider two different

types of aggregates differing in their properties (called hard and soft aggregates). The spatial

ordering of the meso-structure and the aggregates size are investigated as well. Second, we

study the rate dependence of concrete in relation with its meso-structure composition. We

propose to adopt a rate dependent cohesive law to reproduce with better accuracy the ex-

perimental observations of strain-rate strengthening. While rate dependency has been taken

into account in several concrete models, using either a rate-dependent damage formulation

([Dubé 96, Ju 89]), visco-plasticity ([Sluys 92]) or a coupling between both formulations ([Gatu-

ingt 02]), little attempts have been made to couple rate dependency with a meso-scale model-

ing of concrete. A noteworthy exception includes some recent work, for instance [Cusatis 06]

within the lattice framework and [Pedersen 07] within a (viscoelastic viscoplastic) damage

formulation with interfacial transition zone. Our work will extend this line of thought to the

finite-element/cohesive-element approach.

This chapter gathers a mesh convergence analysis and parametric studies showing the influ-

ence of aggregates properties, spatial ordering, sizes, and strain rates. A discussion on the

advantage of a rate-dependent cohesive law formulation is brought towards the end of the

chapter.

4.2 Meso-structure characteristics

As already explained in Chapter 2 our model considers concrete as a material made only of

two components. In this study the large aggregates have been initially represented by means

of Voronoï polyhedrons. To generate them, a program starting from a Voronoï mesher has

been developed.

To prevent the final Voronoï geometry of presenting tiny edges ([Caballero 06]) a Body Cen-

tered Cube (BCC) was chosen for the initial distribution of points. The generation points

code is linked to the Voronoï generator program and the resulting geometry (in terms of

Delaunay mesh) is linked to another code which detects each polyhedron, shrinks, moves and

rotates it following an uniform random distribution. As a result, a set of Voronoï polyhedrons
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4.2. Meso-structure characteristics

surrounded by a box is obtained, Figure 4.1.

The matrix phase is created automatically using the capabilities of a mesh generator program

by considering the specimen surface (external box) and excluding the Voronoï polyhedrons

(aggregates). Notice that this is possible since the cohesive element methodology does not

require an a priori definition of the possible fracture planes, since cracks are constrained

to propagate following the inter-element boundaries ( [Roelfstra 85, Stankowski 90, Vonk 93,

Caballero 06]).

With this method, we generated 2D (plane strain) square specimens with an external size h of

0.1 x 0.1 m2.

Figure 4.1: Schematics of the generation of concrete’s meso-structure.

Meso-mechanical models need to be fed with specific material parameters, which may require

specific experiments. In particular, fracture properties of the components (aggregate, matrix,

which includes mortar and small aggregates, and aggregate-matrix interface) are needed.

In real concrete, the value of those parameters influences strongly the macroscopic mechanical

behavior. In particular, the strength and stiffness of large aggregates (with respect to the

matrix’s ones) and the strength of the aggregate-matrix interface are directed correlated with

the final experimental results, i.e. cracking patterns, fracture energy, critical crack opening,

softening curve and Young’s modulus ( [Guinea 02]).

This work only considers mean values of those parameters. Nevertheless two different types of

aggregates have been considered. In Table 4.1, a summary of the chosen material parameters

is given In order to validate our model, we have performed two simulations using the same

specimen geometry of the quasi-static tests presented in one of the references ( [Rosselló 04])

from which the aggregate and matrix properties have been taken. The numerical results lie

within the experimental scatter and were therefore in good agreement with the experimental

load displacement behavior.

4.2.1 Measure of damage

When using continuum damage models, damage is defined as a variable at the constitutive

level. The visualization of this variable can therefore give an approximate idea about the

irreversible deformation of a structure and the underlying damage. On the contrary, with the
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

Table 4.1: Summary of fracture material properties taken from [Rosselló 06,
Rosselló 04].

Material properties Density [Kg/m3] E [GPa] ν Gc [J/m2] σc [MPa]

Hard Aggregate 2700a 19 0.2 60 16

Soft Aggregate 2700a 2.1 0.2 20 1.7

Matrix 2200a 31 0.2 52 4.7

Aggretate-Matrix - - - 30 4.7b

a These values are generic and chosen from [Caballero 05]
b This is an estimated value, set equal to the matrix-matrix interface strength, as direct

experimental data was not found.

cohesive element approach, cracks are modeled explicitly, giving an opportunity to construct

relevant damage indicators and to monitor their time evolution. To this effect, we defined the

following variable.

Damage normalized fracture work (DNFW)

The index accounts for the ratio between the work fracture spent (already dissipated fracture

energy W ) and the fracture energy necessary to split the interior specimen in two. I.e. it is the

fracture energy corresponding to a length equal to h, which is the specimen width (this allows

to have an index insensitive to the mesh size).

DN FW =
∑nb interfaces

i=1

∫
li

Wi dli

Ḡc ·h
(4.1)

Where li is the length of cohesive element i , Wi the partially dissipated cohesive energy

and Ḡc represents a mean fracture energy, weighted with respect to the amount of fracture

energy potentially released by each inter-element component. In order to distinguish and to

localize damage, the above damage variable has been also defined for each material phase:

aggregates, matrix and aggregate matrix, and can be identified (as for the other variables) with

a corresponding subscript: a, a-m and m.

4.3 Results

4.3.1 Geometry and boundary conditions

All the specimens are loaded under displacement control. To avoid stress wave propagation

from the boundaries and early fracture near the boundaries, all the nodes are given an initial

velocity, ( [Miller 99]), see Figure 4.2. Nodes of the finite-element mesh which are located on
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h vyv0-v0

yv0

v0

x

y

Figure 4.2: Boundary (left) and initial (right) conditions.

the upper and lower boundaries are forced to move at a certain constant velocity v0:

v0 = ε̇h

2
(4.2)

where ε̇ is the strain rate and h the height of the specimen. The initial velocity of the nodes is

therefore given by

vy (y) = 2v0

h
y (4.3)

In the following subsections the work is focused first on the convergence of the simula-

tions 4.3.2; later an investigation on the influence of the aggregates toughness 4.3.3 and their

ordering 4.3.4 and size 4.3.5 is given.

4.3.2 Effect of mesh size, geometry and material parameters

The fracture process in brittle solids is usually assumed to be a toughness controlled phe-

nomenon, which means that the process is controlled by Gc and is therefore independent of

σc of the cohesive zone.

Conversely, if the macroscopic strength is linked with σc , the process is said to be strength

controlled. This must be valid not only theoretically but also when running a numerical

simulation, which uses the cohesive zone approach. As already exposed in Subsection 3.2.4,

the relationship between the cohesive law and the critical energy release rate Gc introduces

a length scale into the material description, which is called cohesive zone length (see Equa-

tion 3.39). This imposes a constraint on the mesh size. This length has an important influence

around the crack tip in numerical simulations. In general, for toughness-controlled fracture,

the relation of Equation 3.40 has to be satisfied. This means that the cohesive zone must

contain several elements (typically around four) and that the cohesive zone should be small in
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

comparison to the specimen size. Table 4.2 shows the calculated values of the cohesive zone

length for the different components of concrete. Note that is not possible to clearly calculate a

Table 4.2: Cohesive zone lengths lz [mm] for the different components of
concrete meso-scale model. For Aggregate-Matrix interfaces: EM , EH A and
ES A refer to the Young’s Modulus of the matrix, the hard aggregates and the
soft aggregates respectively.

Material Hard Aggregate Soft Aggregate Matrix Aggregate-Matrix

EM EH A ES A

lz [mm] 4.1 13.4 67.2 38.8 23.7 2.6

cohesive zone length for the interfaces between aggregates and matrix (because the choice of

Young’s modulus is ambiguous). The cohesive zone length for the hard aggregates and the one

between soft aggregates and matrix have the smallest values; therefore they will determine

an upper limit for the size of the elements when generating the mesh. In order to verify the

relationship between the different length scales a series of numerical tests was carried out. A

first test was simply to load the 0.1x0.1 m concrete specimen varying the degree of refinement

of the mesh in order to verify the mesh sensitivity. We ran several simulations for concrete with

soft and hard inclusions for different loading rates. The results for two different loading rates

and concrete with soft aggregates are reported in Figure 4.3. From Figure 4.3a it is possible to
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Figure 4.3: Macroscopic peak strength σmax [MPa] versus average element size lm [mm] for
(a) ε̇ = 10s−1 and (b) ε̇ = 1000s−1 (with soft aggregates).

observe that there is convergence for an average element length (lm) smaller than about 0.25

mm. Considering this length and looking back at Table 4.2 we can remark that lm should be at
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least roughly ten times smaller than the Rice’s cohesive zone length of the interface, which was

derived for pre-cracked specimen with homogeneous materials and without meso-structure.

Most published work having recourse to the cohesive-element framework use an estimate of

lm ≤ lz /3. Our work demonstrates the importance of using a more conservative estimate in

the absence of a complete mesh-convergence study. The scenario is similar at high strain rates

(e.g. beyond 100 s−1), Figure 4.3b, although the peak strength is higher and apparently a finer

mesh is needed to reach fully converged results. The chosen mesh-size for the simulations

presented in this chapter is set to 0.4 mm. Although this value seems to be related with some

limited mesh dependency, it allowed us to save some computational time.

A closer inspection of Table 4.2 reveals yet another challenge. The matrix cohesive length has

roughly the same dimension of the tested specimen; therefore the relation of Equation 3.39

is not respected. We carried out a second study in order to highlight the influence of this

second requirement on the macroscopic strength. A pre-cracked specimen (Figure 4.4a),

made only of one component, has been chosen for this test. The specimen is loaded with a

strain rate of 10 s−1, the horizontal displacements of the left-boundary nodes were blocked

and the matrix-component was selected as reference material. We ran different calculations

keeping Gc constant (52 J/m2) and varying the critical opening strength σc between 1.175 MPa

(0.25×σc,m) and 75.2 MPa (16×σc,m). According to the previous investigation of convergence,

the mesh has been refined in the fracture area, where the elements have an average edge

length of 0.5 mm.
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Matrix
Soft Aggregates
Hard Aggregates

[MPa]

[M
Pa

]

σmax 

σc 
0

10

15

0 8020 40 60

5

(b)

Figure 4.4: (a) Mesh of the pre-cracked specimen. (b) Evolution of the macroscopic peak
strength σmax varying σc . The square and triangular symbols are located in the plot with the
same cohesive length as for soft respectively hard aggregates.

The results are displayed in Figure 4.4b. One can distinguish three domains. On the first one as
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

on the third one, the macroscopic strength is clearly an increasing function of σc , while region

two is staying quite constant. The domain two is clearly the toughness-controlled regime,

whereas domain one and three are strength-controlled.

On domain one, lz is bigger than 0.01 m, which is a too big value compared to the specimen

size h (0.1 m). On the third domain the cohesive zone becomes too small compared to the size

of the chosen mesh (lz < 2.5 mm), which means that the mesh is not fine enough to capture

the cohesive zone. The cohesive lengths for matrix (round symbol) and soft aggregates (square

symbol) are included in domain one. Whereas, for hard aggregates (triangular symbol), the

cohesive length is located in the toughness-controlled region (domain two).

We further carried out two tests to quantify the influence of the chosen specimen size on

the peak strength. Both tests are conducted for a fixed mesh size. One consists in taking a

specimen with a regular meso-structure and the standard geometry tested in this chapter

(0.1 x 0.1 m), but with a pre-crack. The specimen width has been increased by keeping the

height constant (Figure 4.5). We could observe (Figure 4.6a) that the peak strength decreases

hih0

Figure 4.5: Pre-cracked specimen with variable width.

with increasing h and converges to a fixed value for a width of approximately 0.6 m (which

corresponds roughly to ten times the cohesive zone length for the matrix).

The other test consists in enlarging the size of the specimen keeping the same degree of mesh

refinement (Figure 4.6b). We have run simulations with double and quadruple specimen sizes.

In this case the size does not seem to affect the peak strength (only a small variation in order of

two percent could be observed). When comparing the results of the two specimens, one can

remark that, if there is a pre-crack, the size of the specimen clearly affects the peak strength as

the cohesive length of the matrix is in the same order as the chosen specimen width. Whereas,

if the sample is not pre-cracked, it seems that the chosen size has not the same influence (as

long as the chosen specimen size can be considered a representative volume element). For

the chosen specimen geometry, and material parameters, the presented results are not in a

well-defined regime. We have tried to reduce as much as possible the mesh dependency, but

this is complicated by the presence of a meso-structure. The concept of toughness-controlled

regime applies well for homogeneous materials and pre-cracked specimen. However, in our

case, where multiple cracks are opening (during the simulations) and interacting, the upper

limit for the specimen size of Equation 3.40 has to be relaxed. Moreover, because of the

meso-structure, which is composed of different materials, it is not possible to clearly define a

cohesive zone length. Without a rigorous estimate, it was decided to use a mesh size smaller

than a quarter than the smallest cohesive zone estimate.
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Figure 4.6: (a) Macroscopic normalized peak strength σmax versus specimen with h [m] and
(b) specimens with double and quadruple size.

Thus, it can be concluded that, for the geometry of the concrete specimens presented in

this chapter, the present work lies in a mixed strength-controlled and toughness-controlled

regime.

4.3.3 Soft vs. Hard aggregates and strain rate effect

To study the influence of the mechanical properties of the aggregates on the behavior of

concrete, two different types of aggregates, differing in their material properties, have been

considered: soft and hard (see Table 4.1). The concrete meso-structure is modeled with

the geometry and mesh presented in Figure 4.7. The response of the two types of concrete

Figure 4.7: Concrete meso-geometry with 79 aggregates (left). Zoom of the corresponding
finite-element mesh (right).

depends on the strain rate at which the specimen is loaded. For instance, two stress-strain

39



Chapter 4. Influence of the meso-structure in dynamic tensile loading

diagrams are plotted in Figure 4.8; (a) for a low strain rate (ε̇ = 10 s−1), (b) for a high strain

rate (ε̇= 1000 s−1). From Figure 4.8a one can recognize that the aggregate type influences the
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Figure 4.8: Macroscopic stress-strain (σ−ε) comparison between hard and soft aggregates: (a)
at low strain rate (ε̇ = 10 s−1) and (b) at high strain rate (ε̇ = 1000 s−1).

response of the concrete specimen only at low strain rates. As mentioned previously, we keep

the value of β, the coupling parameter in the cohesive law, equal to 1. Since we are in mode

I, this parameter does not influence significantly the peak strength (a study of the influence

of β was conducted but is not shown here). The variation of peak strength with strain rate

for the two different aggregates is highlighted in Figure 4.9a. The results display a strain rate

hardening. However, the computed increase of strength is smaller than the experimental one,

see Figure 4.9b. We will go back to this point in the discussion section, where we motivate the

use of a phenomenological rate dependent cohesive law.

Under a low strain rate, the presence of soft aggregates within concrete makes the material

softer in its pre-peak behavior. However, this effect starts to disappear when the strain rate is

increased above 10 s−1. The peak strength is also decreased by the presence of soft aggregates

when concrete is loaded under low strain rates (the peak strength for hard aggregates is

approximately double than for the soft ones). Finally, at low ε̇ the softening branch shows a

more attenuated decay when comparing soft vs. hard aggregates.

This scenario changes completely when analyzing the same specimens under high strain rate,

Figure 4.8b. The results show that there are no differences between soft and hard aggregates in

terms of stress-strain diagrams. The stress-strain plots are, almost identical, exhibiting same

elastic slope, peak strength and softening decay up to the last computed time.

The same distinction between the behavior at low and high strain rates can be done when
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Figure 4.9: (a) Macroscopic peak strength σ [MPa] – strain rate ε̇ [s−1] for soft and hard
aggregates for a rate independent law. (b) Comparison with experimental values extract
from [Brara 06], which itself has used the following experimental data: [Brara 99, Ross 95,
Birkimer 68, Toutlemonde 94, Mc Vay 88, John 92] (note that the vertical axis is normalized by
the static strength).

looking at the deformed mesh configuration, which is plotted in Figure 4.10 for the two

different types of aggregates. One can remark in the case of hard aggregates, that at low strain

(a) (b) (c)

Figure 4.10: Crack propagation in the mesh: at low strain rate for hard (a) and soft (b) aggre-
gates, at high strain rate (c) just one zoom is showed (crack nucleation occurs everywhere in
the matrix independently of aggregate type).

rates some macro-cracks propagate in the matrix avoiding the aggregates, whereas the cracks

cross the aggregates if soft inclusions are chosen. Therefore the failure process is dominated

by crack propagation. By increasing the loading rate cracks start to nucleate in the matrix and
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

have less time to propagate before the peak strength is reached. At high strain rates (1000

s−1) the crack path for soft and hard aggregates is the same. This means that there the peak

strength is dominated by crack initiation.

This phenomenon can also be highlighted when considering the damage normalized fracture

work. Figure 4.11 shows the damage diagrams for each of the different concrete phases:
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Figure 4.11: Damage on aggregates, matrix and interfaces vs. tensile-strain. Comparison
between soft and hard aggregates: (a) low strain rate, (b) high strain rate.

aggregates, matrix and aggregate-matrix interfaces respectively. In all figures, damage is

plotted against the total tensile strain applied to the specimen, which is measured as the total

elongation divided by the original length of the specimen. Soft aggregates (SA) are compared

vs. hard aggregates (HA) under both: (a) low and (b) high strain rates.

As noticed from the deformed mesh configuration, under a low strain rate, hard aggregates do

not experience any damage, whereas the damage on soft aggregates increases with increasing

strain level. For both aggregates the damage in the matrix appears first. This is congruent with

the fact that at early stages of loading, i.e. before peak strength, a large amount of micro-cracks

starts to be nucleated within the matrix. With increasing strain those micro-cracks begin to

propagate and therefore damage outside from the matrix phase can begin.

When a tensile wave travelling throughout the matrix reaches an aggregate, it induces a tensile

strain on it. However, the deformation that the aggregate will experience will depend on

the Young’s modulus ratio between the matrix and the aggregate. Thereby, the stiffer is the

aggregate with respect to the matrix, the lower the deformation on the aggregate will be. This

implies a larger opening of the interface. Therefore, the introduction of aggregates much

harder than the surrounding matrix will concentrate the damage on the interfaces rather than
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in the inclusions as in the case of soft aggregates.

Damage in the matrix for hard aggregates is also higher when compared with soft aggregates.

This agrees with a larger value of dissipated fracture energy and higher peak strength. After

the peak strength has been reached and the softening behavior starts to be more accentu-

ated the rate of fracture energy dissipation decreases for the damage indicators of the three

components.

At high strain rates the damage is localized mainly in the matrix. The high loading rate does

not allow cracks to propagate before the peak strength has been reached. Micro-cracks start to

nucleate everywhere in the matrix, which displays the highest stress wave speed and therefore

crack propagation speed too. This more diffuse micro-cracking is related to the intrinsic

characteristic opening time of the cohesive law (derived in [Camacho 96]). Therefore, for our

computations, we cannot explain the increase of strength with a more transgranular fracture

([Yan 06]).

Interestingly, the dissipated fracture energy at peak strength seems to be only slightly affected

by the loading rate. However, post-peak dissipation of energy rises with increasing strain rate

and is clearly an increasing function of the loading velocity.

The presence of two different types of inclusions not only affects the damage value but also the

crack pattern and its evolution. To this fact we consider the variable, Ncluster s , which accounts

for the number of “clusters” present in the specimen. A cluster is a group of cracks (i.e. a group

of fully broken interfaces for which the opening of the cohesive elements is beyond δc ), which

are interconnected to each other.

In general there is a relation between strain rate and when the clusters appear. Relatively, a

higher strain rate delays the formation of the first clusters. At low strain rates (10 s−1), the first

clusters appear for soft aggregates just before the peak strength has been reached, whereas for

hard aggregates they appear immediately after (the process being more energy consuming).

With increasing strain rate, the clusters will appear only when a bigger amount of fracture

energy has been spent and the peak strength will be reached with a more diffuse nucleation of

micro-cracks. Unlike for ceramics where the material breaks down when a cluster has reached

a length corresponding approximately to the specimen size ([Kraft 08]), it seems that it is not

possible to find a critical cluster length to be related with the failure of the material.

4.3.4 Ordered vs disordered meso-structure

This section discusses the effect that the meso-structure has on the final fracturing behavior

of concrete. The main target is to evaluate what is the influence of the location of aggregates

and their external shape. Three different meso-structures are considered:

• Fully uniform, where all the aggregates have the same shape (excepted those located

near to the borders due to the Voronoï generation process), same orientation and are
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

(a) (b) (c)

Figure 4.12: Different meso-structures: (a) uniform aggregates (U), (b) rotated aggregates
(URot ) and c) completely random (R).

uniformly distributed. This distribution will be referred as U.

• Fully uniform plus random rotation, where as in the previous distribution all the aggre-

gates have same external shape but they are randomly rotated with respect to their own

center. This distribution will be referred as URot .

• Fully random, aggregate’s shape and position are randomly assigned. This distribution

will be referred as R.

Figure 4.12 shows the three different meso-structures considered. All the meso-structures have

the same ratio of aggregate volume, 30%, although due to the randomness they differ in the

number of aggregates. Thus, U and Rot meso-structures have 67 aggregates of approximately

8.5 mm whereas R distribution has 79 aggregates, where most aggregates have sizes between

6 and 10 mm. All the computations have been carried out considering particles as hard

aggregates, since the influence of the meso-structure is not significant for the soft inclusions

(which are weaker than matrix grains interfaces). Figure 4.13 plots the stress-strain diagrams

for the different meso-structures under low (Figure 4.13a) and high (Figure 4.13b) strain rate.

From Figure 4.13 we can extract the following conclusions.

The initial elastic slope is not affected by the meso-structure.

The peak strength is always lower for the U distribution. This is probably due to the fact that,

in the U distribution, all the aggregates have two faces orthogonally aligned to the loading

direction, which reduces the maximum strength. Indeed, considering the dissipated fracture

energy of the interfaces (Figure 4.14) for the U specimen, one can remark that it is larger than

those of the other two meso-structures (URot and R). On the contrary, the dissipated fracture

energy of the matrix is smaller for the U specimen.

The preferential direction of failure is avoided in the URot and R distributions. Comparing

URot and R specimens, the fully disordered meso-structure increases the possibility of having
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Figure 4.13: Stress-strain diagrams obtained for the three different meso-structures under (a)
low and (b) high strain rate.

weak zones (grain-matrix interfaces are closer in some places). In such regions, damage might

grow faster and therefore the global mechanical response softens earlier.
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Figure 4.14: Dissipated fracture energy for the matrix (in green) and interfaces (in red) vs.
tensile strain. Comparison between specimens with the three different meso-structures.

Finally, material softening is slightly more attenuated in the R distribution. As mentioned

before, the R distribution contains “weak zones”, which facilitates the initiation of cracks and

45



Chapter 4. Influence of the meso-structure in dynamic tensile loading

their local growth. However, after an initial growth and nucleation of cracks, the disordered

meso-structure may obstruct the further propagation of cracks (we are under the assumption

of hard aggregates), and forces the cracks to deviate around the aggregates, which requires

more energy (the dissipated fracture energy in the matrix of the R distribution is slightly higher

compared with the one of URot distribution).

4.3.5 Influence of aggregate’s size

In this section the effect of the aggregate’s size is analyzed. Three different specimens with the

(a) (b) (c)

Figure 4.15: Specimens with different mean size of aggregates: (a) 66 aggregates, (b) 297
aggregates and (c) 1198 aggregates.

same standard geometry of 0.10 x 0.10 m2 are considered. In all specimens, volume ratio of

aggregates is kept constant and equal to 30%, whereas the size of the aggregate is decreased

as the number of inclusions is increased. The average aggregate size of each specimen is: 8.5

mm, 3.9 mm and 2 mm (corresponding to a number of aggregates of 66, 297 and 1198). The

three different specimens considered are shown in Figure 4.15. Both types of aggregates, soft

and hard, are considered.

Figure 4.16 shows the obtained stress-strain diagrams for the different concrete specimens

under low and high strain rates. At both loading rates the elastic modulus appears to be

independent of the aggregate size. At low loading speed the peak strength for hard aggregates

is not significantly affected by the number of inclusions (not shown in figure). Whereas, for

soft aggregates, it is possible to notice an increase in peak strength with increasing number of

aggregates (Figure 4.16a).

In a concrete material with large aggregates (which represent weak zones in the case of soft

aggregates) cracks can nucleate before and propagate easier within the inclusions than in a

concrete with small aggregates. Indeed, cracks nucleate first in the matrix and then propagate

from the matrix in the aggregates too. Therefore, if the aggregates are bigger, the cracks will

cross them easier breaking a larger area of aggregates leading to lower peak strength.
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Figure 4.16: Stress-strain diagrams obtained for the different aggregate sizes under (a) low and
(b) high strain rate.
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Figure 4.17: Dissipated fracture energy vs. tensile-strain. Comparison between specimens
with 66, 297 and 1198 aggregates: (a) at low strain rate and (b) at high strain rate.
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This phenomenon can also be observed when looking at the graph for the dissipated fracture

energy (Figure 4.17a). The dissipated energy in the matrix increases with increasing number

of aggregates. In contrast, the aggregate’s dissipated energy reduces with decreasing size of

inclusions.

The scenario changes when considering high strain rates (Figure 4.16b). In this case the peak

strength is higher for large inclusions (independently of aggregate type). We recall that at

high strain rate the cracks nucleate in the matrix and aggregate-matrix interfaces leading

to a similar stress-strain behavior for the two types of inclusions. Therefore, even though

aggregates seem not to be directly the cause of the variation of the strength, a larger number

of aggregates implies also a higher probability for a growing crack to find an interface between

mortar and aggregates (interfaces are weaker than matrix).

As shown in Table 4.3, for the same volume ratio of inclusions, the total length of the interfaces

(between aggregates and mortar) increases roughly four times between the 66 and 1198

aggregates specimens. This is congruent with a decreasing ratio of dissipated fracture energy

at the interfaces with increasing aggregates size (Figure 4.17b).

Table 4.3: Interface length between aggre-
gates and matrix for the three different speci-
mens.

Aggregate’s number 66 297 1198

Interface length [m] 1.69 3.58 7.17

4.4 A rate-dependent cohesive law

In this section we discuss the limits of the proposed approach. Although, the presented meso-

mechanical model is bound with a certain freedom, there are also some limitations. Indeed,

(as noticed in the results section) one can remark that the strain-rate hardening obtained with

the rate-independent cohesive law is not comparable with the experimental one. Moreover

the dissipated fracture energy at peak in the simulations seems to be roughly independent of

strain rate (however post peak dissipation of energy is clearly an increasing function of strain

rate).

Experimental results have shown that energy dissipation increases with the loading rate [Rossi 94,

Brara 07]. Although, there is a general agreement on this observation, it is still not clear what

are the mechanisms or physics which govern it. The increase is attributed to two different

aspects by different authors: structural or material. According to the structural effect hypoth-

esis, the explanation resides in a more diffuse micro-cracking, which should be linked with

higher fracture energy [Van Doormaal 94,Brara 07]. On the contrary, the material explanations

sustains that the increase of toughness could be an effect of internal material “hardening”

[Lambert 00]. We argue that this mechanism should be related to the chosen modeling scale.
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I.e. when considering a large modeling scale (macro-scale), the toughness parameter of the

cohesive approach could be a function of the loading rate, as the mesh size cannot be small

enough to capture all micro-cracking mechanisms. Whereas, decreasing the scale should

entail a rate independent toughness parameter.

Nevertheless, the small increase in strength with increasing loading rate in comparison to

experiments seems to call for the introduction of a phenomenological rate-dependent cohe-

sive law. Therefore, we decided to slightly modify the linear-decaying cohesive law in order to

take into account the strain rate effect. Among the various possible laws, we identified two

different ones differing in their shape and which are also function of different rate-dependent

parameters.

The first variant [Zhou 05] assumes that the opening cohesive strength is a material constant

value, while the critical opening displacement is a function of the crack opening rate.

Therefore the linear cohesive law is enriched with the following relationship for the rate-

behavior of the critical opening:

δc = δco(1+ δ̇

δ̇o
) (4.4)

where δco corresponds to the critical crack opening displacement for the rate-independent

law (static value) and δ̇o represents a scaling crack opening rate. The introduction of this rate-

dependent crack opening increases the value at which complete separation of the cohesive

zone occurs with increasing opening rate. This should also lead to a higher dissipated fracture

energy, which could be related with a more diffuse micro-cracking that the actual meso-scale

is not able to capture. We ran several simulations with this modified cohesive law for different

δδcδco

δ

fct

(a)

δδco

ε
fco

(b)

Figure 4.18: Two rate-dependent cohesive laws: (a) generalized cohesive law with crack
opening displacement as a function of crack opening rate, (b) cohesive stress and crack
opening are both function of strain rate.

loading rates in order to verify the strain rate-dependence. Surprisingly, we could not notice

a remarkable difference in the peak strength values and dissipated fracture energy with the
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

rate-independent law. This may be related with the chosen sample’s size, for which one we

are in presence of a mixed strength and toughness controlled regime. Therefore, we decided

to use a second variant where both σc and δc are sensitive to the loading rate. This results in

a law, which expands outwards with increasing loading rate as shown in Figure 4.18a. The

inconvenients with this kind of law is that the cohesive strength can be several times higher

than the macroscopic material strength, which is physically questionable. Moreover, because

we are assuming an initial rigid behavior (explicit approach), the cohesive strength needs to

be known a priori. Therefore, we decided to link the law directly with the macroscopic loading

ratio, introducing the following strain rate dependencies:

σc = σco(1+ ε̇

ε̇o
) (4.5)

δc = δco(1+ ε̇

ε̇o
) (4.6)

where δco and σco correspond to the static values of cohesive strength and critical opening

displacement respectively. Thus the two values are increased of the same amount with increas-

ing loading rate (Figure 4.18b). Thanks to the simple loading condition and geometry of the
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Figure 4.19: (a) Macroscopic peak strength σ [MPa] – strain rate ε̇ [s−1] for soft and hard
aggregates for a rate dependent cohesive law. (b) Comparison with experimental values
extract from [Brara 06], which itself has used the following experimental data: [Brara 99,Ross 95,
Birkimer 68, Toutlemonde 94, Mc Vay 88, John 92] (note that the vertical axis is normalized by
the static strength).

presented specimens, this second variant has been implemented specifically for the proposed

virtual experimental setup. For more complicated loading conditions, it would be necessary to

bound the strain-rate dependence with the deformation rate of the four Gauss points adjacent
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to the inter-element boundary. Another possibility would be to take the static critical stress for

insertion and to add, within the cohesive law, a rate-dependent viscosity parameter which

depends on the opening rate (for instance [Kubair 03]). A different approach, which would not

involve a cohesive-approach, would consist in having a visco-plastic bulk material (such as

proposed in combination with a continuum damage formulation in [Hervé 05]).

As for the previous variant, we ran several simulations varying the loading rate. The resulting

peak strengths are depicted in the graph of Figure 4.19a. One can remark that with this law

the increase in peak strength and dissipated fracture energy is much more pronounced and

is therefore closer to the experimental values (Figure 4.19b) and a better agreement can be

simply reached by calibrating with the experimental values. The fit could be perfected by

choosing a non-linear relationship for σc and δc (Equations 4.5 and 4.6).

4.5 Additional analysis on rate dependency

This section presents an extension of the work presented in the chapter until here. We report

here a summary of what was published in [Gatuingt 12]. For this new analysis the range of

stiffness of the constituents, as well as the interface properties, has been enlarged to reproduce

a concrete with more common material properties. The stiffness ratio between aggregates

and mortar adopted until here is indeed quite low. Therefore a higher value for the Young’s

modulus of the inclusions has been considered (Table 4.5). This results in a stiffness ratio

between heterogeneities and matrix of 3. Additionally, from the table it is possible to see that

the estimated strength of the ITZ has been decreased with respect to the one of the matrix (in

order to have the same value of the effective opening displacement for both matrix and ITZ).

The effect of the stiffness of the aggregates on the macroscopic tensile behavior has thus

been addressed. The study presents results of the influence of the meso-structure on the

tensile strain-stress curve and on the dynamic increase factors for the tensile strength and

dissipated fracture energy. Moreover we provide a comparison with experimental results on

Split Hopkinson Bar (SHB) and modified SHB tests depicted in Figure 4.20. The derived data

on strength and fracture energy of these tests are summarized in Table 4.4.

Table 4.4: Strength, fracture energy and dynamic/static ratio for these values for concrete at
different loading rates (from [Weerheijm 07]).

Load Rate Tens. Strength Fract. Energy ft (d yn)/ ft (st at ) G f (d yn)/G f (st at )

σ̇ [GPa/s] ft [MPa] G f [N/m]

Static 10−4 3.3 120 1 1

SHB 39 5.58 120 1.7 1

Mod. SHB 1685 17. 1505 5.2 12.5

These experimental data show a rate effect on strength, and on the dissipated fracture energy,

in the high loading rate regime. Table 4.4 also shows that for the higher loading velocity the
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Figure 4.20: Experimental stress-displacement curves for static, SHB and Modified SHB tests
(from [Weerheijm 07]).

dynamic increase factor is more important for the dissipated fracture energy than for the

tensile strength. In addition, some authors have shown experimentally that the deformation

capability of concrete under uniaxial tensile loading increases due to a rate effect [Kormel-

ing 87, Oh 90, Rossi 94].

In several models it is common to introduce this dynamic increase factor directly in the macro-

scopic behavior (e.g. [Chambart 09]). However, this has to be done with care as it is not clear

how much structural effects affect the dissipation of energy.

4.5.1 Extended material parameters and meso-structure

(a) (b)

Figure 4.21: Two different meso-structures generated with the same aggregates size distribu-
tion.

For this study the geometry of the specimens has been generated according to a sieving

method [EN 09]. The inclusions are represented with circles with a diameter ranging from 4
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mm to 25 mm. Consequently, as in [N’Guyen 10a], knowing the aggregates size distribution,

the number of perfect circular (in 2D) aggregates can be calculated.

Then, from the obtained image of the geometry the meshes can be generated using the

PPM2OOF [Langer 09] public domain software created at the National Institute of Standards

and Technology (NIST). This software superimposes a mesh on any image. The simplest

meshing algorithm tries to divide each image pixel into two triangular elements. The chosen

Table 4.5: Material properties of concrete.

Aggregate Mortar ITZ

Density – ρ [Kg/m3] 2700 2200 –

Young’s modulus – E [GPa] 75 25 –

Poisson’s ratio – ν 0.2 0.2 –

Fracture Energy – Gc [J/m2] 60 50 30

Tensile Strength – fct [MPa] 10 4 2.4

Cohesive zone length – lz [mm] 41 72 –

interface properties are summarized in Table 4.5. It is possible to notice that the tensile

strength of the interfacial transition zone (ITZ) is lower with respect to the previous study.

Its value is indeed estimated from Gc of the ITZ with δc equal to the value obtained for the

mortar. With this assumption one obtains a fct smaller in the ITZ than in the mortar, which is

commonly accepted for a classical concrete.

In addition, also the ratio between the Young’s moduli of aggregates and cement paste reflects

a common ratio for a standard concrete. A mesh sensitivity analysis (see [Gatuingt 12])

performed with different degrees of mesh refinement established that, although the peak

strength convergence could be addressed, an element size of ≈ 1 mm is a little bit too coarse

to have a good representation of the cement paste between two close aggregates. However, for

smaller element sizes the response of the specimens converged for the entire range of applied

loading velocities. Consequently, the average element size has been set to 0.5 mm.

4.5.2 Influence of the specimen size

“Large”

“Small”

Figure 4.22: Large vs small size of the specimen.
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In order to quantify the influence of the specimen size on our results, we generate a large

sample from which we cut out a smaller one. This in order to have the same aggregate/paste

ratio and the same aggregate arrangement (see Figure 4.22) for both specimens. The large

sample has a surface SL = 0.15×0.15 cm2 while for the small one SS = 0.1×0.1 cm2. The

consequence is that we increase the width of the sample of 50% and the surface of 225%.

Figure 4.25 and Figure 4.23 show the results obtained for two different loading rates (ε̇=1s−1

Large,    = 1 s-1

Small,    = 1 s-1
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Figure 4.23: Influence of the specimen size on the stress-strain curves: (a) ε̇ = 1−1 (b) ε̇ = 10
s−1.

and ε̇=100s−1). We can notice that the crack path obtained is very similar for the two sample

sizes. This result is confirmed with the macroscopic stress-strain responses of the specimens.

Nevertheless we can observe that the peak strength is a little bit smaller for the large sample

compared to the small one. This size effect in quasi-brittle materials such as concrete is a well

known phenomenon and there are a number of experimental and theoretical studies (see for

example [Reinhardt 81, Bažant 84, Ožbolt 94]) which confirm the existence of it. Moreover in

the Figure 4.23 the post-peak response is clearly different for the two sample sizes. This result

is not surprising because the post-peak response is more governed by the fracture energy. This

is confirmed in Figure 4.24a where the evolution of the dissipated fracture energy (per unit

sample depth) is plotted for different strain rates. As expected, for a larger sample we obtain a

higher dissipated energy. If we assume an horizontal single crack, we can divide this energy by

the width of the specimen and plot a normalized dissipated fracture energy (Figure 4.24). In

this figure we can see that the assumption of a single crack is not so bad for the lower strain

rate (ε̇ = 1s−1) where a “single” crack appears (Figure 4.25). For higher strain rates (ε̇ = 100s−1),

due to the multiple cracks this assumption is no longer true and the normalized dissipated

fracture energy strongly depends on the specimen size. The larger the sample, the bigger is

the Dynamic Increase Factor (DIF). In our case, we obtain a DIF equal to 8 for the smaller
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Figure 4.24: Influence of the specimen size on the dissipated fracture energy: (a) total energy
and (b) normalized energy.

sample and equal to 10 for the larger one. We can conclude that in high loading rate regimes

the numerical (and experimental) results are affected by this structural effect and it is not

straightforward to properly quantify the true fracture energy values (the size of the sample is

important).

a/ b/

Figure 4.25: Influence of the specimen size on the fracture path: a/ ε̇ = 1s−1 b/ ε̇ = 100s−1.

To choose the sample, we can notice that the size of the numerical "small" specimen is bigger

than the experimental one (cylinder with a diameter of 74 mm [Weerheijm 07]) in which case

a smaller DIF value should be obtained. We recall that the numerical DIF is 8 for the small

sample whereas the experimental DIF is 12. As the aim of this work is not to study how we

can reproduce the size effect with our model (even if the global trend seems to be good) we

decided to keep the smaller size of the specimen.
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

4.5.3 Loading rate effect and dissipation

In this subsection we will investigate the strain rate dependence of the model. Similarly to the

previous investigation only micro-inertia effects have been considered.

As already stated, experimental results on dynamic tension tests show a high rate sensitivity

of tensile strength [Vegt 06, Erzar 10]. Figure 4.9b presents results obtained in literature.

From this figure it is possible to distinguish between two different modes in the increase of

strength. In the first mode – ε̇ < 1 s−1 – the dynamic resistance increase is probably due to

the presence of water in the material. The free water in the micro-pores is assumed to exhibit

the so-called Stefan-effect causing a strengthening effect in concrete with increasing rate of

loading [Rossi 92]. This Stefan-effect is the phenomenon that occurs when a viscous liquid is

trapped between two plates that are separated quickly, causing a reaction force on the plates

that is proportional to the velocity of separation. In [Cadoni 01] a different explanation for the

influence of the moisture content is given. Their interpretation is based on the principle of

wave propagation in concrete. When a pore is not filled with water, it will locally reflect the

incoming stress wave. The multiple reflections of all pores together can cause a considerable

increase in stress. When a stress wave meets a pore that is filled with liquid the reflected

stress is not big enough to cause the increase in stress that locally induces damage within the

material. Therefore, the wet concrete will exhibit a more pronounced rate effect than the dry

concrete. This interpretation only gives an explanation of the difference between wet and dry

concrete and does not explain the increase in strength between static and dynamic loading.

At a larger scale (constitutive level), Ozbolt et al. [Ožbolt 01] believe that the rate dependency

consists of two parts: the first one related to the nucleation of micro-cracks, while the second

one is due to the creep of concrete between the micro-cracks.

Figure 4.26 shows the numerical rate effect in tension obtained for the two different meso-

structures considered here. One can see on this figure that the computed increase with strain

rate is slight concerning the tensile strength. We obtain here a dynamic increase factor – equal

to the ratio of the static versus the dynamic strengths – of 1.3 for ε̇ = 100 s−1 while it is equal to

approximately 3 in the experiments. This result shows that the assumption of no rate effect in

the cohesive traction law is not realistic. The micro-inertia effects in the fracture process zone

are not sufficient to explain the rate dependency of concrete in tension even at the highest

loading rate velocities. To get a better agreement one should introduce a rate dependency at

the material level as already performed in the previous part.

Figure 4.27 depicts the evolution of the dissipated fracture energy as function of the macro-

scopic strain of the specimen for different loading rates and heterogeneities. One can see

on this figure that, as already observed in Figure 4.26, the dissipated fracture energy strongly

depends on the loading rate even with a rate independent local fracture energy (see Equa-

tion 3.37 and Figure 3.7). Here we obtain a ratio G f (d yn)/G f (st at ) equal to approximately 8 –

depending on the meso-structure – for ε̇=100 s−1. In the experimental data (see Table 4.4),

with a Young modulus of the concrete approximately equal to 40 GPa we obtain a ratio of 12
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Figure 4.26: Rate effect in tension for the two meso-structures depicted in Figure 4.21: (a)
Figure 4.21a and (b) Figure 4.21b.
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Figure 4.27: Influence of the meso-structure on the dissipated fracture energy for different
strain rates for the two different meso-structures: (a) Figure 4.21a and (b) Figure 4.21b.
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

for ε̇=40 s−1 (compared to quasi-statics). We note that even if the dynamic increase factor for

the tensile strength is not large enough, it is less the case for the dissipated fracture energy.

Moreover, and as expected, the dissipated fracture energy depends on the meso-structure

(Figure 4.27a vs Figure 4.27b) due to the differences observed in Figure 4.26 on the post-peak

curves.

(a) (b)

Figure 4.28: Influence of the loading rate on the final cracking for the meso-structure depicted
in Figure 4.21a: (displacement has been magnified by a factor of 100): (a) ε̇ = 0.1 s−1, (b) ε̇ =
100 s−1.

As already observed in the first part of the chapter, simulations results seems to call for the

introduction of a rate-dependent cohesive law. However, the introduced law should not

increase to much the total dissipated fracture energy and the material ductility, but it should

affect more the material strengthening. A possibility would be to adopt a similar law as the one

proposed by Bažant and Li [Bažant 97]. Nevertheless, an additional question arises: should

the rate dependent function be applied only to a specific interface (most probably ITZ) or to

all the parts of the meso-structure as done in Section 4.4? We believe that this point will be

difficult to answer without some specific experiments on the different constituents of a real

concrete.

4.6 Discussion

In this chapter we have investigated the influence of the aggregate’s properties (e.g. referred

to soft and hard aggregates, which differ in toughness and strength, but have a narrow range

of elastic stiffness), the effect of the internal meso-structure (arrangement and shape of the

aggregates) and the influence of their sizes. From the obtained results we can extract the

following salient conclusions.
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4.6. Discussion

While the constitutive law used to model the interfacial behavior is insensitive to the loading

rate, the model is able to capture the increase in peak strength and strain at failure with

increasing rate of loading. The increase in strength with the strain rate resides in a more diffuse

micro-cracking and is related to the intrinsic characteristic opening time of the cohesive law.

However, the dissipated fracture energy at peak strength seems to be roughly independent of

strain rate (although, post-peak dissipation of energy is clearly an increasing function of strain

rate). Therefore, for our meso-mechanical approach, we cannot discard the combination

of inertial with material rate hardening mechanisms. The introduction of a rate dependent

cohesive law increases the difference of the computed peak strength between low and high

strain rates, leading to a closer match with experiments.

In addition, simulations carried out for two different types of aggregates (soft and hard)

concluded that the peak strength is considerably sensitive to the toughness of the inclusions,

but only at low strain rates. There, the crack patterns for the two different aggregates are

different. However, at high strain rates, micro-cracks nucleate in the matrix and have no

time to propagate in the aggregates before peak strength is reached. This lead to a similar

stress-strain behavior for the two aggregate types (inertial forces dominate the overall behavior

in terms of strength).

The material parameters used in this study have been taken from the recent experimental

literature [Rosselló 04, Rosselló 06] without modification. For instance one should notice that

the stiffness of both types of inclusions is lower than the one of the matrix paste. Therefore, we

have carried out a further investigation presented in the last section, where we have extended

the range of stiffness (and strength) of the constituents in order to calibrate our model with

other experimental data. The modifications include a higher value for the Young’s modulus

of the aggregates and a lower value for the strength of the interfaces between inclusions and

matrix. Note that increasing the aggregates stiffness (and decreasing the interface strength)

may also lead to a reduction of the (slight) mesh-dependency that the model exhibits at very

high strain rates.

A comparison between three different meso-structures considered brings the following re-

marks. The specimen with uniform meso-structure reduces the maximum strength, because

of the aligned aggregate’s faces with the loading direction. Since this is avoided by rotating

the aggregates, the rotated meso-structure shows always the higher peak strength. Finally,

the random distribution increases the probability to have weak zones (interfaces between

aggregates and matrix are closer), which reduces the peak strength.

In addition, our results show that, having two concrete materials with same aggregate volume

ratio, the one with smaller inclusions will exhibit a larger strength at low strain rate in case of

soft aggregates. Large aggregates facilitate the propagation of cracks within inclusions. This

involves a larger area of broken aggregates, which is linked with a lower strength.

Additional investigation carried out with different material parameters and rate independent

cohesive law to investigate if the experimentally observed dynamic increase factor is due to a
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Chapter 4. Influence of the meso-structure in dynamic tensile loading

material effect or a structural (inertial) effect. With regards to tensile strength, the numerical

results exhibit a small rate effect that is not coherent with the experiments. This confirms

thus the need of the introduction of a rate dependent law to increase the strain-rate effect on

the peak load. On the other hand, the computed dissipated energy show a closer match with

experimental reported values. This means that the tensile strength increase is probably mostly

due to a material effect (moisture, visco-elasticity, . . . ) while the dissipated fracture energy

increase resides mainly in a finer networks of micro-cracks observed in the post-peak regime.
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5 Mixed mode loading

In this chapter the model is extended to include a mixed-mode crack propagation capability.

The content of this section reflects what was published in [Snozzi 12b]. In the following

we describe the selected approach, which couples together cohesive zone modeling with a

contact algorithm to enforce the impenetrability condition. We resort to the classical law of

unilateral contact and Coulomb friction. While the debonding process is controlled by a new

extrinsic traction separation law, which accounts for mode mixity, and yields two separate

values for energy dissipation in mode I and mode II loading.

5.1 Introduction

As already mentioned, a careful treatment of both micro-cracking and frictional contact mech-

anisms is needed to achieve a fundamental understanding of the failure of brittle materials

such as concrete. Indeed, fracture of such materials involves the opening of local micro-cracks,

which may propagate, coalesce and subsequently enter into contact. The contacting rough

surfaces play an important role in the amount of dissipated frictional energy, influencing the

structural strength.

The transition from debonding to sliding frictional contact is an often overlooked (but key)

dissipative mechanism in cohesive zone approaches. One of the first attempt combining

both fracture and frictional contact phenomena has been introduced by Tvergaard [Tver-

gaard 90]. In this approach the response of the surface is assumed to be frictionless until

complete debonding of the cohesive zone has occurred. Afterward, other authors considered

the onset of friction to start in conjunction with the onset of fracture, for instance by cou-

pling friction to decohesion, Chaboche et al. [Chaboche 97] and [Jean 01], or to adhesion,

Raous et al. [Raous 97] and Del Piero and Raous [Del Piero 10]. More recent works on this

topic include those on fiber pullout/push-out (e.g. Dollar et al. [Dollar 93], Chandra and

Ananth [Chandra 95], Lin et al. [Lin 01], Talon and Curnier [Talon 03] and [Tsai 05]) and

applications to structural engineering (e.g. plane and reinforced concrete by Cervenka et

al. [Cervenka 98], Raous et Karray [Raous 09], masonry walls by Alfano and Sacco [Alfano 06],

Sacco and Toti [Sacco 10], Fouchal et al. [Fouchal 09] and Koutromanos and Shing [Koutro-
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Chapter 5. Mixed mode loading

manos 12]) and to brittle materials (Acary and Monerie [Acary 06]).

In this chapter the adopted approach coupling cohesive zone modeling, to represent damage,

and a contact algorithm, for enforcing the impenetrability condition is presented. The key

features of the model are:

• A novel initially rigid extrinsic TSL law, which enables us to define two separate values

for the dissipated fracture energy in mode I and II. This formulation extends the work of

Von den Bosch et al. [Von den Bosch 05], which developed such a model for TSL with an

initial elasticity (intrinsic approach), such intrinsic cohesive laws are known to alter the

elastic properties of the specimen [Klein 01].

• A continuous transition from decohesion to the pure frictional state. Friction and

fracture occur simultaneously when a crack is forming under compression, avoiding

numerical instabilities due to a possible stress jump when transitioning from complete

debonding to pure frictional sliding.

Section 5.2 describes the developed mixed-mode cohesive approach, and applies the pro-

posed TSL to a benchmark [Von den Bosch 05]. In Section 5.3 the adopted frictional contact

enforcement algorithm is reported. The model has been successfully implemented in a finite-

element program and validated by experimental data at the material level and the structural

level.

Section 5.4 validates the model by comparing the numerical results to experimental data at

the meso-level and structural level. The first application consists of a shear test experiment

on masonry wallettes (a conventional test in order to determine the shear resistance of joints

between bricks), while the second application simulates a masonry wall loaded in compression

and shear.

5.2 Modified cohesive law for mixed mode loading

Since the Camacho-Ortiz TSL is based on a potential, it is clear that the dissipated fracture

energy for a growing crack does not depend on the opening path. Howerer, as reported

in [Von den Bosch 05], it can be argued that the dissipated fracture energy should be path

dependent, due to micro-structural details such as interface roughness which cannot be

depicted without an extremely fine discretization.

Hence the TSL should allow for independent values of the dissipated energy depending on

the loading path as depicted in Figure 5.1. We propose an alternative cohesive law based on

the classical model of Camacho and Ortiz by relaxing the hypothesis of a well-defined energy

potential (as previously done in [Von den Bosch 05] but for the intrinsic cohesive model of Xu

and Needleman [Xu 93]). We have preferred this option to a pseudo-potential formulation

(for instance proposed in [Park 09]) because of its ease of formulation. This results in a law

which is not anymore bounded by a free potential energy (i.e. only the tractions are defined).
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5.2. Modified cohesive law for mixed mode loading

Figure 5.1: Cohesive zone loaded with two different paths leading potentially to two distinct
values of dissipated energy.

A new independent parameter κ, which enables us to define the ratio between Gc,I and Gc,I I ,

is introduced.

κ= Gc,I I

Gc,I
(5.1)

We set the work of separation for a cohesive zone opened completely under Mode I (Gc,I ) to

correspond to the one computed with the Camacho-Ortiz model (Gc ). Therefore the cohesive

normal traction envelop has in this case an identical shape as in the Camacho-Ortiz TSL.

Conversely, because the introduced parameter, κ, is linked with the tangential direction, the

adjustment influences the shapes of the tractions, when the opening does not occur in pure

normal direction. Our model yields the following equation for the cohesive tractions in case of

crack opening:

T =
(
β2

κ
∆t t+∆nn

)
σc

δ

(
1− δ

δc

)
(5.2)

The effective opening displacement, previously defined in equation 3.32, needs to be redefined

as follows:

δ=
√
β2

κ2 ∆
2
t +∆2

n (5.3)

Normal and tangential tractions are shown in Figure 5.2 as function of the normalized normal

and tangential opening displacements. As postulated in [Camacho 96] damage is considered

to be an irreversible process. Unloading or reloading takes place when δ< δmax . In this case

the tractions are calculated with:

Tn = ∆n
σc

δmax

(
1− δmax

δc

)
(5.4)

Tt = β2

κ
∆t

σc

δmax

(
1− δmax

δc

)
(5.5)

With these equations the tractions are linearly interpolated between the origin and the trac-

tions at which the opening will be equal to the maximal attained effective opening displace-
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(a) (b)

Figure 5.2: Cohesive traction in (a) normal direction and (b) tangential direction (with β> 1).

ment in the new loading direction.

5.2.1 Work of separation under combined normal shear loading

If κ is set equal to one, the tractions and the dissipated energy match with those of the

Camacho-Ortiz TSL. Whereas, if κ is set different to one, the dissipated fracture energy be-

comes path dependent and therefore does not correspond for every loading path to the

mode-independent fracture toughness Gc . This energy can be computed by integrating the

tractions over the path. In order to depict the mode dependent behavior of the proposed TSL

and to verify our model we repeat the two different patch tests reported in [Von den Bosch 05].

In this work it was demonstrated that the classical Xu Needleman law failed these patch tests,

showing some unphysical/unexpected behavior in the computed amount of separation work.

The first one consists in loading a surface monotonically with an imposed constant loading

angle until complete separations occurs, Figure 5.3a (i.e. proportionality between tangential

and normal displacements). Whereas, in the second case, the cohesive zone is loaded first in

one direction up to a maximal value, and then broken completely in the other direction (non

proportional loading).

For a separation associated with a loading angle α, the work of separation can be expressed as

Wtot =
∫ ∆n,c

0
Tn(∆)d∆n +

∫ ∆t ,c

0
Tt (∆)d∆t (5.6)

The evolution of Wtot in respect to the loading angle is depicted in Figure 5.3b. The graph

has been normalized by Gc,I . Since we have chosen a higher value of the fracture energy in

mode II, the dissipated fracture energy increases monotonically by a factor of κ between the
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(a)

Wtot

Wn

Wt

W

(b)

Figure 5.3: (a) Cohesive zone loaded under a constant angle α as in [Von den Bosch 05] and
(b) resulting dissipated work as function of the loading angle expressed in units of Gc,I (with
κ> 1).

two extremes 0 and 90, which corresponds to the fracture energy for mode I and mode II

respectively. Indeed, increasing the angle is equivalent to increasing the work done by the

tangential traction (Wt ) and decreasing the portion corresponding to the normal traction

(Wn).

For the non proportional loading, the surface is opened in the first case up to a maximal

 

(a) (b)

Figure 5.4: Interface non proportionally loaded: (a) first in normal direction until ∆n,max

and then broken in shear and (b) first in tangential direction until ∆t ,max and then broken in
normal direction as in [Von den Bosch 05].

normal displacement ∆n,max and then broken completely in shear (Figure 5.4a). Conversely,

in the second case the zone is loaded first in tangential direction (up to the value ∆t ,max ) and

then separated in normal direction until complete separation occurs (Figure 5.4b).
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W Wtot
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W Wtot

Wn

Wt

(b)

Figure 5.5: (a) Work of separation when loading first in (a) normal direction and (b) in tangen-
tial direction respectively expressed in units of Gc,I (with κ> 1).

The dissipated fracture energy for case one and two can be expressed with

Wtot =
∫ ∆n,max

0
Tn(∆n ,∆t = 0)d∆n +

∫ ∆c,t

0
Tt (∆n =∆n,max,∆t )d∆t (5.7)

Wtot =
∫ ∆t ,max

0
Tt (∆n = 0,∆t )d∆t +

∫ ∆c,n

0
Tn(∆n ,∆t =∆t ,max)d∆t (5.8)

The results of the first case are reported in Figure 5.5a. Wtot is equal to Gc,I if ∆n,max is set

equal to δc and corresponds to Gc,I I if ∆n,max is equal to zero. An analogous behavior can

be observed in the second case, Figure 5.5b. In both loading cases it is possible to recognize

that the transition of the dissipated fracture energy as function of the maximal first opening is

smooth and does not show any kink or unphysical oscillation.

5.3 Contact enforcement

When a crack is growing under compressive shear loading, we enforce the impenetrability

condition by a master-slave explicit contact algorithm. Since our goal is to be able to deal

with multiple cracking, which causes numerous asperities to enter into contact, we have

preferred an explicit contact enforcement rather than a more traditional static or implicit dy-

namic formulation. Among this second class of methods, augmented Lagrangian multipliers

(for instance [Alart 91]) and penalty methods (for instance [Kikuchi 88]) have been widely

used. The first class is able to provide an accurate constrain enforcement circumventing

ill-conditioning. Nevertheless, the size of the problems might be limited due to the implicit

system of equations that one needs to solve, which can rapidly increase the computational cost
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5.3. Contact enforcement

with increasing system size. On the other hand, penalty methods allow a little interpenetration

of the contacting surfaces, which is inversely proportional to the value of the penalty parame-

ters. Nevertheless, a high value of these parameters can produce an ill-conditioned system

of equations, requiring a high number of iterations and leading to convergence problems.

Moreover, another drawback, in the explicit dynamic version of this method, is that the critical

time step decreases with increasing stiffness penalty parameter.

Thereby, in this work we have decided to address the above-mentioned difficulties enforcing

the impenetrability constrain using a ballistic method called Decomposition Contact Response

(DCR) developed by Cirak and West [Cirak 05]. This method is based on the conservation of

linear and angular momentum while the impenetrability condition is guaranteed by acting on

the displacements directly, e.g. by projecting the impacting nodes on the penetrated surface.

Therefore, the purpose of the method is not to resolve the impact time exactly for every node

(a) (b)

Figure 5.6: (a) Impact-time resolved exactly and (b) approximation of the DCR.

as depicted in figure 5.6a, but with an approximation as illustrated in figure 5.6b. Thus, nodes

which are allowed to penetrate the master surface within the predictor (t−i ), must subsequently

be projected back within the same time step (t+i ). The equations governing the impact (beside

the projection of the slave nodes on the master surfaces) are

pt+i −pt−i = λ∇xg (xt+i ) (5.9)[
pT M−1p

]t+i
t−i

= 0 (5.10)

where p = Mẋ represents the momentum vector of slave and master nodes (with M mass matrix,

which has the size 6x6 for edge to node contact), g is the gap function and λ a scalar parameter.

The approach modifies only the post impact velocities of the contacting nodes involved in

contact but only for their components in direction of the gap gradient. A closed form for the

post impact velocities can be derived using momentum decomposition. We will report here

the main equations for computing the momentum after collision (for a detailed derivation see

reference [Cirak 05]). First, velocities of all impacting nodes need to be decomposed into their
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normal (subscript n) and tangential (subscript t ) components giving

ẋ = ẋn + ẋt (5.11)

where the normal ẋn components are defined as

ẋn =
(

(∇g )T ẋ

(∇g )T M−1∇g

)
M−1∇g (5.12)

With the above equation, one can compute the normal components of the velocity before

impact of the contacting triplets (node to segment approach). The normal components of the

velocity after impact can be thus corrected as follow

ẋ+n = ẋ−n − ẋ−n (1+ cr es) (5.13)

where cr es represents the coefficient of restitution, which can range between 0 (completely

inelastic contact) and 1 (perfectly elastic contact) and the superscripts + and − denote quanti-

ties before and after projection respectively (in the application presented in this chapter, we

choose cr es = 0).

5.3.1 Frictional impact

A simple Coulomb friction law can be included by computing the relative motion between the

contacting entities. To this end the velocity needs to be decomposed into fixed and non-fixed

components

ẋ = ẋnon f i x + ẋ f i x (5.14)

where only the non-fixed components ẋnon f i x lead to a relative motion between the bodies.

In order to derive the non-fixed components of the velocity a separation vector between two

impacting points needs to be defined

h = xL −xR (5.15)

where xL and xR stand for the positions of the two impacting points. Consequently the non-

fixed components can be obtained as follow

ẋnon f i x = M−1(∇h)T
(

(∇h)ẋ

(∇h)M−1(∇h)T

)
(5.16)

Since the non-fixed velocity is the resultant between motion leading to interpenetration (ẋn)

and relative tangential displacement (sliding), the slide components are given by

ẋsl i de = ẋnon f i x − ẋn (5.17)
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5.3. Contact enforcement

According to the Coulomb model one can compute the slip velocity as follow

µ
‖ẋT

n M−1ẋn‖
‖ẋT

sl i de M−1ẋsl i de‖
ẋsl i de (5.18)

In order to account for stick-slip, the authors [Cirak 05] suggest to bound the maximal fric-

tional impulse which can be delivered during sliding with the minimum value between equa-

tions 5.17 and 5.18 (the stick and slip velocity respectively)

ẋ+t = ẋ−t −min

(
1,µ

‖ẋT
n M−1ẋn‖

‖ẋT
sl i de M−1ẋsl i de‖

)
ẋsl i de (5.19)

If the relative motion between two contacting bodies becomes too small, equation 5.19 will

cause most of the nodes to get into stick, leading consequently to an insufficient frictional

force between the sliding bodies. Therefore, the limitation criterion of equation 5.19 has been

removed, allowing bigger correction in the tangential quantity of motion within the predictor.

Nevertheless, this can produce too large values in the delivered frictional impulse. Thus, the

relative motion between the sliding nodes needs to be verified after Newmark’s corrector and

if necessary corrected.

5.3.2 Coupling with cohesive zone model

∆t

τ
 

 

Figure 5.7: Shear stress-tangential opening displacement relationship for a growing crack in
mode II with full onset of friction.

As already mentioned before, the contact algorithm is coupled in parallel with the TSL. This

implies that friction and fracture occur simultaneously in the cohesive zone when a crack is

growing under compression. A first possibility, as illustrated in Figure 5.7, is to assume a full

onset of friction at the beginning of decohesion. This superimposition combined with the

extrinsic approach gives a very steep (rigid) initial behavior followed by the softening branch.

Therefore, in order to reproduce the experimental interfacial behavior, a different transition
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from the onset of fracture to pure frictional sliding has been chosen (note that the accuracy of

the transition might depend on the level of observation and material). Our second approach

∆t

τ
 

∆t

τ

Figure 5.8: Adopted shear stress-tangential opening displacement relationship for a growing
crack in mode II with increasing frictional capability.

(depicted in Figure 5.8) considers a progressive shift to friction during debonding. When the

cohesive zone starts to damage, friction does not act on the interface, but it rises gradually

with increasing decohesion, giving a soft transition from debonding to the pure frictional

stage. The function that regulates the increase in the friction force depends on the amount of

damage experienced by the cohesive zone and is given by:

1− (1− δ

δc
)q (5.20)

where the exponent q has been set in this work to three. Note that the chosen cubic transition

function implies a relatively high dissipation of frictional energy already during the decohesion

process (and that the peak shear strength/traction remains essentially influenced by both the

cohesive strength and the amount of applied compressive force). To summarize, as depicted

in Figure 5.8 for a growing crack in Mode II the cohesive elements are inserted if the tangential

stresses exceed βσc . A fracture energy corresponding to κGc multiplied by the length of the

cohesive zone will have been dissipated when the tangential opening (∆t ) attains the critical

opening value (κδc /β). During this process, the cohesive zone experiences a continuous

transition from debonding to pure frictional sliding.
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5.4. Numerical validation

5.4 Numerical validation

As mentioned in the introduction, in order to validate our numerical model, we have selected

two problems related to the masonry engineering field. The first application is a simple

and representative experiment of a masonry wallette, which has been used to identify the

interface’s parameters. These parameters have then been used to predict the behavior of a

masonry wall loaded in compression and shear.

5.4.1 Application to a masonry wallette

Masonry is one of the most widely used construction material in civil engineering around the

world. Therefore, different tests have been designed in order to extract the properties of its

components. Among these, a common experiment in order to determine the ultimate shear

strength of the mortar joints, is a shear test of a masonry wallette, which consists of three

bricks linked with two mortar joints (shear triplet) as depicted in Figure 5.9a. For our work we

refer to the experimental data obtained by Beyer et al. ([Beyer 10] and [Beyer 11]).

Experimentally, the masonry wallettes have been tested on a loading machine. During the ex-

periment the inner brick is supported at the upper edge with two rigid blocks, while the shear

load is introduced on the lower edge of the two outer bricks. Horizontal rods are responsible

for the horizontal axial force, which guarantees constant normal stress acting on the mortar

joints during the shearing.

The virtual experimental setup chosen for the numerical test consists in half of the symmetric

(a)

p 

brick

195100

290

u

(b)

Figure 5.9: (a) Experimental test setup of the wallette [courtesy of Beyer [Beyer 10], [Beyer 11]]
and (b) corresponding finite-element mesh, corresponding to one half of the experimental
setup (all dimensions in mm).

part of the experimental setup and is drawn in Figure 5.9b with the adopted finite-element

mesh. The mesh has been chosen fine enough in order to achieve numerical convergence

leading to an element size of about 5 mm (element edge) at the inter-brick boundary. The

boundary conditions for the upper and lower edge have been simplified by extending the
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length for load introduction and support to the edge length. It should be pointed out, that this

change in the boundary condition has not a significant influence on the global behavior of

the wallette (in terms of shear stress-displacement relationship). The two bricks have been

modeled explicitly, whereas the mortar layer and the two interfaces between mortar and

bricks are represented by means of a line of dynamically inserted elements with the proposed

cohesive frictional capability.

Elastic constitutive behavior is assumed for the brick’s elements. The elastic material parame-

Table 5.1: Material properties of the ma-
sonry bricks.

Material E [Gpa] ν [-] ρ [Kg/m3]

Brick 14.0 0.15 940

ters are reported in Table 5.1 (and have been taken from [Beyer 10] for the density and Young’s

modulus and from [Alfano 06] for the Poisson ratio). Whereas, the cohesive parameters (see

Table 5.2) for the interfacial transition zone between bricks have been fitted, in order to achieve

a good agreement between the numerical and experimental shear-displacement relationship.

The value for the critical stress is of the same order as the values for the strength of the joints

reported in [Van der Pluijm 92] and [Lourenço 97]. Whereas, the values for the fracture ener-

gies are somewhat higher than the values suggested in these two references but on the same

order of magnitude as the ones given in [Pina-Henriques 06]. Moreover, κ has been set in

order to represent the usual ratio between the fracture energies in mode II and I in masonry

engineering. The fitting has been achieved by varying the value of the cohesive strength and

dissipated fracture energy. As depicted in Figure 5.10a larger values of σc increase the peak

shear resistance, whereas larger value of Gc,I , Figure 5.10b, shift the transition to the pure

frictional state toward higher values of the brick displacement. One can notice from Table 5.2

Table 5.2: Cohesive properties for interface elements, in bold assumed values
for the shear test.

Interface σc,I [MPa] Gc,I [J/m2] σc,I I [MPa] Gc,I I [J/m2] µ

Brick-mortar 0.2 0.3 0.4 75 125 200 σc,I 6 ·Gc,I 0.77

that only cohesive values for the interface between mortar and brick are given. Indeed, as

reported above, the propagation of cracks can occur only at the inter-element boundaries

between brick and mortar, while bricks are assumed to remain uncracked. Indeed, we have not

adopted a fully meso-scale representation of masonry (as for instance in [Pina-Henriques 06])

and all the cracking is concentrated at the straight interfaces.

In order to have a smoother transition from uncracked to cracked regime, variations in the

value of the critical stresses following a normal distribution (with standard deviation in the

order of 0.05 MPa) have been adopted. Moreover, in order to reduce oscillation during sliding

and to reduce the amount of energy injected in the system (which is due to the projection
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Figure 5.10: Shear stress plotted against shear displacement: (a) for different values of σc (Gc,I

kept constant) and (b) for different values of Gc,I (σc kept constant).

of the slave nodes) material damping has been adopted. Figure 5.11 shows the influence of

damping on the computed stress-displacement relationship and on the amount of kinetic

energy in the specimen for two different Rayleigh damping ratio ζ [Bathe 96]. As illustrated in

Figure 5.11b, the regularization through damping allows to maintain the right level of kinetic

energy (insufficient damping leads to an increase of energy in the system and to oscillations in

the stress displacement curve). For this application a damping ratio of 7 % has been used.

As in the testing machine, the specimen has been loaded with an imposed displacement with

a constant normal pressure level of 0.4 MPa. The outer brick has been displaced at a constant

initial velocity (v) of 0.025 m/s in order to avoid rate-effects (similar to [Bi 02]). Nevertheless,

loading velocities beyond 0.05 m/s increase the peak shear stress. Similarly to the experiments,

the shearing has been interrupted after a path of approximately 10 mm.

The comparison of the shear stress-displacement relationship between experiment and

simulation is illustrated in Figure 5.12. The stress (y-axis) in the figure is obtained by dividing

the shear force acting on the brick by the area of the interface between mortar and brick.

In general, the experimental and numerical curves are in good agreement. The transition to

the pure frictional regime is smooth and the model is able to depict friction correctly. This

demonstrates the robustness of our frictional cohesive model. The curved shape of the nu-

merical shear-displacement relationship at initial stage of loading can be traced back to the

assumed transient coupling between decohesion and friction.
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Figure 5.11: Regularization of damping on (a) the stress-displacement curve and (b) the
amount of kinetic energy in the system.
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Figure 5.12: Shear stress plotted against shear displacement: comparison between experimen-
tal envelope (dotted gray area) and simulation (continuous red line).
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5.4.2 Application to a masonry wall

The second selected application for the interface model is the simulation of a masonry wall

loaded in shear and compression under low and moderate strain rate. For this virtual experi-

ment we have chosen to reproduce one test unit of the experimental test program conducted

by Ganz and Thürlimann [Ganz 84]. The geometry of the wall is represented in Figure 5.13. The

415 kN

3600

2000

415 kN

Figure 5.13: Experimental setup of the masonry wall tested in [Ganz 84] (all dimensions in
mm).

specimen is 3.6 m wide and 2 m high (which represents approximately 80 % of a full-scale wall

in a building). Experimentally, each test unit has been loaded first with a normal compressive

force (kept constant during the shearing) and then displaced horizontally under a quasi-static

regime. The bricks that compose the wall are hollow clay bricks 29 cm long, 19 cm high and 15

cm thick, and thus similar to the bricks of the previous application. Since no experimental

data of the interface properties was available, we have used the parameters calibrated for the

first application.

The mesh adopted for the virtual experimental setup is illustrated in Figure 5.14. The bricks

have been modeled explicitly, whereas the interfacial transition zone is represented (as before)

by dynamically inserted elements with the proposed cohesive frictional capability. Since

cohesive insertion is allowed only at the interfaces between bricks, bricks are assumed to

remain uncracked (this assumption can be considered adequate for low to moderate values

of the horizontal wall’s displacement, because little crushing of the bricks is observed experi-

mentally). The bricks are modeled with elastic elements and their material properties are the

same as those reported in Table 5.1 except for the density which has been set to 855 K g /m3.

The the cohesive parameters of the interfaces are reported in Table 5.2.
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415 kN
u

Figure 5.14: Adopted finite-element mesh.

The specimen has been loaded first with a vertical force of 415 kN. Little fluctuations in the

amount of vertical displacement of the nodes located on the top edge have been allowed in

order to maintain a constant level of compression during the shearing test. The shearing

has been applied to the top edge of the wall prescribing a displacement u. The test has been

performed at two loading velocities (v): a low one (0.05 m
s ), which can be considered rep-

resentative of a quasi-static regime, and a moderate one (0.5 m
s ) in order to show the rate

dependent response of the tested unit. The damping ratio has been set to 0.75 %. The numer-

ically computed and the experimentally recorded force displacement curves are compared

in Figure 5.15. One can remark that the model can successfully reproduce the experimental

behavior. Although the initial response of the wall is stiffer than the experimental one (prob-

ably because of the virtual setup and the assumed interface parameters), the peak strength

and the corresponding displacement at peak strength almost match the values reported by

Ganz. As depicted in the figure the response of the wall depends on the amount of horizontal

velocity. An increasing velocity causes a delay in the dissipation of cohesive energy and a more

diffuse cracking network that produces an overall increase in strength. The crack pattern for

the two different loading velocities is depicted in Figure 5.16. One can notice that the higher

applied velocity causes a higher number of cracks perpendicular to the loading direction.

The bigger amount of cracks is related to the intrinsic opening time of the cohesive zone

and is responsible for the increase in strength, which is obtained despite the rate insensitive

constitutive law used to model the interfacial behavior.
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Figure 5.15: Comparison of the horizontal force-displacement curves for the masonry wall
between the finite-element analysis (continuous red line and dotted blue line) and the experi-
mental results (dashed gray line) of Ganz [Ganz 84].

(a) (b)

Figure 5.16: Deformed mesh configuration (at u = 14.5 mm) for shear velocity of (a) 0.05 m
s

and (b) 0.5 m
s (magnification factor 25).
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5.5 Conclusions

In this chapter the numerical model is enriched with the introduction of a frictional contact

and a new cohesive law to account for crack propagation under mode mixity. The debonding

process is controlled by a traction separation law based on the popular linear extrinsic irre-

versible law proposed by Camacho and Ortiz [Camacho 96]. The law has been modified in

order to account for path dependent behavior and therefore to introduce a mode-dependent

fracture energy. The impenetrability condition is enforced by the DCR contact algorithm

developed by Cirak and West [Cirak 05]. We resort to the classical law of unilateral contact and

Coulomb friction. The contact algorithm is coupled together with the cohesive approach in

order to have a continuous transition from crack nucleation to the pure frictional state.

The model has been validated by simulating a representative shear test on a masonry wal-

lette. Furthermore, the calibrated values for the interfacial transition zone in the wallette

application have been used to reproduce a test on a masonry wall loaded in compression

and shear. The numerical results have shown the capability of the model to represent the

physical process involved during cracking in compression and to give a good prediction of the

structural response of the tested units. This is achieved with a relatively simple model, which

does not involve many parameters.

This formulation will be applied for the simulations under compressive loading of meso-scale

concrete specimens in the next chapter to capture the interlock between the generated cracked

surfaces.
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6 Compressive behavior of concrete
under dynamic loading

In this chapter the two-dimensional meso-mechanical finite-element model is applied to

analyze failure of concrete specimens subjected to compression. The content of the chapter

summarizes the work published in [Snozzi 12a]. Our intention is to extend the mesoscopic

approach that has been already applied to tensile loading in Chapter 4 by including the formu-

lation presented in Chapter 5 for mode II debonding of cohesive surfaces under the presence

of (local) compression.

In this chapter we will verify if the approach is able to reproduce the asymmetric tensile/com-

pressive behavior, strain-rate strengthening and confinement effects. We also quantify the

increase in the ratio between dissipated frictional energy and dissipated fracture energy as the

confining pressure is augmented.

The chapter is composed as follows. In Section 6.1 the meso-geometry with its material pa-

rameters is presented. Results are reported in Section 6.2 for uniaxial compression. While

results on biaxial compressive loading are listed in Section 6.3. Finally, concluding remarks

are stated in Section 6.4.

6.1 Meso-scale geometry

6.1.1 Mesh generation and aggregate distribution

The specimen geometry has been obtained using a pseudo-random generator of irregular

polygons. The polygons, which represent aggregates, are created according to a chosen

specific distribution. According to this, the approximate total number of inclusions can be

first determined before the geometry is generated. The boundaries of each aggregate are

then created by generating its faces; a random length is assigned to every edge (as well as

an arbitrary angle with the previous edge). However, these values have to lie between given

threshold values. Consequently, small inclusions are more likely to get fewer edges, while

bigger ones show more faces. Finally, the polygons can be placed randomly into the sample

starting from the biggest ones and avoiding possible intersections with the already present

inclusions by changing location and rotating them. Although, in order to have a regular
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Chapter 6. Compressive behavior of concrete under dynamic loading

distribution of the phases near the boundaries, the aggregates have been placed in a larger

area, from which the specimen has been cut out. Inclusions with the smallest diameter ranging

from 1.5 mm to 20 mm have been considered in this work. The distribution has been chosen

according to the Fuller and Thompson density curve [Fuller 06] with a value for the exponent

q equal to 0.7.

A(d) =
(

d

dmax

)q

(6.1)

Where A(d) represents the percent by weight (cumulated mass under a given diameter d)

and dmax the largest aggregate in the mixture. This idealized curve is plotted in Figure 6.1a

together with the recorded distribution within the sample having the generated meso-structure

of Figure 6.1b. The obtained distribution differs from the reference one of Eq. 6.1 in its starting

value (since inclusions smaller than 1.5 mm have been not represented explicitly) and in the

discontinuous shape (small specimen size and discrete inclusions).
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Figure 6.1: (a) Computed cumulated aggregates size distribution of the concrete meso-
structure (b).

The resulting ratio of aggregate area is around 31 % of the specimen area, which is a square

with an edge size equal to 100 mm. For the remainder of the chapter we have kept the same

geometry for every simulation. Indeed, a different meso-structure with a similar distribution

would not affect significantly the results as reported in [Gatuingt 12] for tensile loading (since

the specimen dimension can be considered large enough). Note that if we compare the

generated geometry with a section obtained by cutting a real concrete specimen (showing

the same aggregates distribution), they will look rather different. However, the assumption

of using the Fuller curve in two dimensions can be considered adequate for the strain plane

assumption (since inclusions are considered to be right prisms).
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From this geometry one can obtain meshes with different element sizes. Since a convergence

study on mesh sensitivity has already been performed in Chapter 4, we have set directly the

value of the average element size to 0.5 mm (which gives a mesh with roughly 120000 nodes).

6.1.2 Material parameters

The meso-mechanical approach requires defining the material properties for every compo-

nents. In Table 6.1 the material properties for the inclusions and matrix paste are summarized.

Those values are generic and suitable for a usual concrete and are similar to the values used

in Chapter 4. The values for the three different interfaces are reported in Table 6.2. These

Table 6.1: Material properties of the concrete’s components.

Material Density – ρ [kg /m3] Young’s modulus – E [GPa] Poisson’s ratio – ν [-]

Aggregate 2700 75 0.2

Cement paste 2200 30 0.2

material properties can be determined experimentally (for instance [Rosselló 06]). For this

work we have chosen values of the cohesive properties (Gc andσc ) similar to the ones reported

in Chapter 4 ([Gatuingt 12]) while the remaining pair (β, κ) had to be identified through a

parametric study as reported in Section 6.2.

Table 6.2: Cohesive properties and selected parameters for the interfaces.

Interface Fracture Energy Tensile Strength β κ Friction Coefficient

Gc – [J/m2] σc – [MPa] µ – [-]

Aggregate 60 16 3.5 10 0.7

Mortar 50 4.7 3.5 10 0.7

ITZ 30 2.7 3.5 10 0.7

6.2 Uniaxial compressive loading

In this section we analyze the dynamic compressive response of the concrete model.

6.2.1 Initial and boundary conditions

The samples are loaded under displacement control with an imposed strain rate ε̇.

Vy (y) = 2V0

h
y (6.2)
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hpx px

v0

Figure 6.2: Boundary and initial conditions for specimen loaded in compression.

Note that even if the linear gradient is not exact in case of a heterogeneous material, the

selected initial condition does not lead to oscillations at early stage of loading. As depicted

in Figure 6.2 all the nodes located at the upper edge of the finite element mesh are forced to

move at a certain constant velocity V0:

V0 =−ε̇h (6.3)

Whereas, the lower boundary is supported in y-direction and therefore the motion of the nodes

belonging to this edge is blocked in the vertical direction (while the horizontal displacement

of the nodes is unconstrained). If lateral confinement (px ) is applied (Section 6.3), the sample

is first loaded statically with a hydrostatic pressure corresponding to px . After this step, the

dynamic loading is applied until the end of the simulation.

To obtain the stress-strain curves presented thereafter, we define the macroscopic stress (σ) as

the boundary reaction force Fy divided by the initial width, and the macroscopic strain (ε) as

the change in height divided by the initial height h. The compressive stress and compressive

strain are identified with σc and εc respectively. Moreover, during simulation, a slight material

damping has been adopted in order to compensate for the slight increase of internal energy

(due to the enforcement of the impenetrability through projection [Cirak 05]) and reduce

numerical oscillations.

6.2.2 Identification of model’s interface parameters through simulations

In order to identify the two remaining parameters of the cohesive law, β and κ, we have ran

some simulations in order to extract them indirectly by comparing the macroscopic stress-

strain relationship with a semi-analytical model for concrete proposed in [Fernández Ruiz 07]

for the compressive behavior.

Since these two parameters influence mode II cracking, and have therefore little influence
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6.2. Uniaxial compressive loading

on the peak tensile strength and more generally on the global macroscopic behavior of the

specimens subjected to uniaxial tension, the fitting has been conducted by examining the

response in unconfined compression for a loading rate ε̇ = 1 s−1. The influence of β has

been investigated first. Its value affects the shear strength of the interfaces, which changes

considerably the compressive peak strength of concrete as depicted in Figure 6.3a. With an

increasing value of β, one obtains a higher compressive strength. Since with the interface
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Figure 6.3: (a) Influence of the β parameter on the compressive stress-strain behavior of
concrete (for κ= 10) and (b) influence of κ (with β= 3.5) for ε̇= 1 s−1.

properties of Table 6.2 a tensile strength slightly lower than 4 MPa (precisely 3.67 MPa) is

obtained, the authors have decided to set the value of β equal to 3.5 (a lower value compared

to the one chosen in [Ruiz 00]). This leads to a compressive strength roughly one order

of magnitude higher than the tensile one (see Figure 6.2), which seems a usual ratio for a

conventional concrete. The stress-strain behavior is also affected by κ, which increases the

dissipated fracture energy and therefore modifies mostly the post-peak behavior and shifts

the transition to softening towards higher strain values. This trend is graphically illustrated in

Figure 6.3b. Therefore, in order to obtain a concrete with softening starting around εc = 0.002

(which is a usual value for the peak strain of conventional unconfined concrete) we decided to

fix the value ofκ at 10 (same ratio between fracture energies estimated by Carol et al. [Carol 01]).

Note that this relatively high value should take into account frictional effects that might occur

for low normal openings of the surfaces that are not taken into account by the frictional

contact algorithm. This results in a concrete with a compressive strength of roughly 36.8 MPa

at a compressive peak strain around 0.0019. The obtained constitutive response is compared

in Figure 6.4a with the constitutive model proposed in [Fernández Ruiz 07]. The computed

peak strain and stress are in the same range of the experimental values (εpeak =0.0018-0.0021

and σpeak =32.8-38.8) recorded by [Sfer 02]. Note that we could not compare directly the
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curves since the experimental unconfined response is not drawn in [Sfer 02]. Nevertheless,

we will have recourse again to the data reported in this reference for the comparison with the

confined response in compression (Section 6.3). The stress-strain behavior is depicted for
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Figure 6.4: (a) comparison with empirical model of [Fernández Ruiz 07] and (b) asymmetric
tensile/compressive behavior of concrete (ε̇= 1 s−1).

tension and compression in Figure 6.4b. It is clear that the tension/compression asymmetry is

well captured.

6.2.3 Rate effect

In this subsection we analyze the behavior of concrete subjected to unconfined compression

under different loading rates.

As for tension, experimental results [Bischoff 91] show a clear rate sensitivity under compres-

sive loading. Commonly, the stress increase can be explained with lateral inertial confinement

(Poisson’s effect) and a more diffuse micro-cracking beside eventual material rate hardening

mechanisms.

Figure 6.5 shows the computed stress-strain curve for different loading rates. The results

display a strain-rate hardening with a DIF of about 1.9 for a strain rate of ε̇ = 100 s−1. In

contrast to our computed tensile DIF (≈ 2), this increase factor is consistent with experimental

results [Bischoff 91]. This results highlights the strong effect of lateral inertial confinement

alone that can explain the increase in strength as noticed in [Donzé 99] too. Indeed, in our

simulations, we do not consider any rate effect at the material level.

Figure 6.6 shows the crack pattern for ε̇ = 1 s−1 and 100 s−1. Cracks tend to propagate within

84



6.2. Uniaxial compressive loading

ε = 1 s-1

ε = 10 s-1

ε = 50 s-1

ε = 100 s-1

[%]

 [M
Pa

]

 σc 

εc
0

40

60

20

80

0 205 1510

Figure 6.5: Stress-strain response for different strain rates under compressive loading.

the matrix phase bypassing the inclusions except for few big aggregates that have been crossed.

One can notice that due to the absence of a horizontal constraint at the upper and lower

(a) (b)

Figure 6.6: Influence of strain rate on the crack path in compression: (a) ε̇ = 1 s−1, (b) ε̇ = 100
s−1. Note that the displacement field has been magnified by two different factors: 4 in (a) and
2 (b).

boundaries of the specimen, the crack pattern does not show the formation of a characteristic

cone, as mostly observed during simple compression experiments. Moreover, the cracks are

aligned parallel to the loading direction, conversely to a perpendicular orientation in case of

tension.
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The evolution of the dissipated fracture energy (WG ) and frictional work (Wµ) in the specimen
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Figure 6.7: (a) Dissipated fracture energy and (b) dissipated frictional work for different loading
rates.

is depicted in Figures 6.7a and 6.7b respectively. Both figures show that the raising number of

cracks with increasing strain rate causes a higher dissipation of energy within the damaged

specimen. This mechanism leads to a higher compressive strength and larger area (thus

toughness) under the stress-strain curve. In particular, the post-peak dissipation of energy

seems to be affected more by friction than by dissipation of fracture energy. Therefore, the

gain in strength can be traced back to an inertial effect alone (as suggested for instance

in [Cotsovos 08]).

6.3 Influence of lateral confinement

We now investigate the behavior of concrete subjected to moderate lateral confinement under

a strain rate ε̇= 1 s−1. The concrete specimens have been subjected to four level of transversal

confinement pressures (px ): 4.5, 9, 12 and 30 MPa (for comparison with experiments).

Figure 6.8a shows that the confining stress increases substantially the compressive strength

as well as the longitudinal compressive peak strain. Moreover, one can notice that confining

concrete results in a decrease of the slope of the post-peak branch indicating therewith a

moderate rise in the ductility of concrete. Among the several data that one can find in the

experimental literature of the stress-strain behavior, we have selected the data on triaxial

loading reported in [Sfer 02] for a direct comparison. As previously commented the concrete

tested in this reference almost matches in terms of peak strength and peak strain the computed

response in the unconfined case. The comparison between simulations and the results is
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Figure 6.8: (a) Influence of confining pressure on the stress-strain behavior (ε̇= 1 s−1) and (b)
experimental results of [Sfer 02].

illustrated in Figure 6.8. As already noticed, one can remark that the increase in peak strength

with lateral confinement in the simulations is lower than the one obtained experimentally.

Additionally, one can compute the gain in concrete strength of the confined specimens.

Usually, in concrete research, the Mohr-Coulomb failure criterion can be assumed to describe

the sliding failure in a confined concrete. This can be expressed as follows:

σc = fc +k ∗px (6.4)

where fc represents the unconfined compressive strength of concrete and k is a constant,

which is usually set to four [Richart 29, Lahlou 92, Candappa 01] for triaxial tests. In our case,

we obtain a k with a value somewhat lower than two for low confining pressures (and that

becomes even smaller if moderate pressures are considered), while the increase measured

by [Sfer 02] (Figure 6.8b) gives a k of roughly 3.5. Moreover, the values recorded by [Sfer 02]

show a considerable rise in ductility of the specimen with larger confinement. While simula-

tions show only a moderate increase. This becomes more evident for the highest confining

pressure (30 MPa) considered here. At such confining pressures the specimen response is

probably dominated by physical interactions at the micro-crack level that our model seems

to reproduce less accurately. The failure mechanism shifts from damage due to strain ex-

tension to compaction due to porosity reduction. Some authors (e.g. [Camborde 00]) are

able to reproduce compaction with a lattice based discrete element method introducing a

phenomenological model in their beam behavior. Another reason for the too little hardening

could partially reside in an insufficient dissipation of frictional energy in our simulations,

which leads to a larger negative slope after the peak strength has been reached. A better

modeling could perhaps be obtained by increasing the value of the friction coefficient and

acting on the coupling (apart from changing the value of the pair β and κ). Indeed, the chosen

onset of friction implies an initiation of cracks that is not influenced by the level of applied

lateral pressure. In addition, it should also be pointed out that the chosen 2D framework is
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Chapter 6. Compressive behavior of concrete under dynamic loading

limited and cannot capture realistic 3D micro-cracking networks. Indeed in three dimensions

to reach percolation is more difficult than in 2D, where cracks can coalesce easily. This implies

that in 2D the obtained micro-cracks density might be underestimated and consequently

the dissipation of energy as well. Moreover, the three-dimensional representation of cracks,

should also lead to a much bigger dilatancy of cracks and thus to an increase in the ductility of

the specimens. This work can be considered as a first attempt to extract concrete behavior

from a new approach and the foreseen improvement clearly requires an extension to 3D.
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Figure 6.9: (a) Dissipated fracture energy and (b) frictional work for px = 0, 4.5, 9 and 12 MPa
(ε̇= 1 s−1).

The comparison between the dissipated energies is illustrated in Figure 6.9. From Figure 6.9a

one can remark that an increase in the lateral confinement will delay the opening of cracks

and thereafter the start of the dissipation of fracture energy. This phenomenon has already

been observed with a meso-scale modeling of ceramics [Warner 06, Kraft 08].

However, the rise in the horizontal pressure ultimately increases the amount of dissipated

fracture energy. This is because cracks are more prone to open following a mode II fashion,

which is bounded with a larger value of stored fracture energy than mode I, and also because

there is a more diffuse fine crack network. Figure 6.10 shows this crack network. It also

illustrates that applying a confinement pressure forces the cracks to propagate at a faulting

angle of roughly 30◦, whereas their paths were more vertical for unconstrained compression

(Figure 6.6a). The increase in the faulting angle orientation, from axial splitting for unconfined

concrete to shear faulting for specimens subjected to lateral confinement, appears to be in

agreement with analytical models (see for instance [Horii 85] for rock mechanics).
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6.3. Influence of lateral confinement

(a) (b)

Figure 6.10: Deformed specimens for confinement pressures of (a) 4,5 Mpa and (b) 12 MPa.
Displacement has been magnified by a factor of 5.

Since we are using an explicit representation of cracks, it is possible to monitor their time

evolution and to extract relevant information. We have chosen to follow the formation of the

longest crack cluster (which is a group of fully broken interfaces which are interconnected

to each other), Lc,max , as well as the total number of crack clusters N Bc (as was done for

ceramics in [Warner 06, Kraft 08]). The first variable has been normalized with the edge size

of the specimen. As already observed, an increase in the level of confinement produces a

px = 0 MPa
px = 4.5 MPa
px = 9.0 MPa
px = 12  MPa

[%]

 [1
/h

]

 

εc

Lc,max

0

0.6

0.3

0.15

0.45

0 8642

(a)

px = 0 MPa
px = 4.5 MPa
px = 9.0 MPa
px = 12  MPa

[%]

 [-
]

 

εc

NBc

0

750

250

500

0 8642

(b)

Figure 6.11: (a) Maximal cluster length normalized over specimen size h and (b) number of
cracks for px = 0, 4.5, 9 and 12 MPa. The length at which softening starts, represented by circles
on graph (a), does not depend on the amount of confinement.
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delay in the formation of the first cluster. This is noticeable from both graphs of Figure 6.11.

Moreover, from the first graph (Figure 6.11a) one can see that the application of a horizontal

pressure causes the longest crack to be relatively shorter with a length of the range of 0.2h

(unfolded length) until the negative slope of the softening becomes more pronounced. On

the other hand, the number of clusters is not much affected by the application of lateral

confinement as depicted in Figure 6.11b. The unconfined sample shows initially a larger

number of cracks than the confined ones, which implies that the lateral pressure delays

the onset of micro-cracks coalescence. This can be confirmed by looking at the deformed

mesh configuration. One can see from Figure 6.10 that the application of the confinement

pressure triggers a finer net of smaller cracks, which exhibit a smaller opening (and are thus

not completely debonded). Finally, by looking at Figure 6.11a, it appears that the softening

phase can start, for the three confined cases considered here, when the longest cluster reaches

a length of approximately 0.15−0.2h (circles on the strain-Lc,max curve indicate the strain

immediately after peak strength has been reached) and thus does not depend on the level of

applied confinement (for the unconfined sample the transition is less clear to identify, since

the transition to a macroscopic crack is more rapid).

Note that the total length of a cluster has been considered here, whereas if one looks at the

cluster length projected on a line (similarly to what reported in [Prado 03] for tensile loading),

its maximal value will not increase much after the softening has started. That is, the maximal

projected length tends to stabilize around 0.2−0.15h.

6.4 Discussion and Conclusions

In this chapter we have simulated failure of concrete specimens under compressive regime.

To this end the meso-mechanical approach previously applied to tensile loading (Chapter 4)

has been enriched with the cohesive/frictional capability presented in Chapter 5. From the

obtained results we can draw the following conclusions.

The model naturally reproduces the characteristic asymmetric tensile/compressive behavior

of concrete. Similarly to tensile loading, simulations in compression show that the model gives

an increase in peak strength and strain at failure with increasing rate of loading although the

interfacial constitutive law is rate independent. This rise in strength resides in a more diffuse

micro-cracking and is thereby bounded with a higher dissipation of fracture energy as well as

energy dissipated through friction.

A comparison between our simulation results and experimental literature indicates that iner-

tial forces alone are sufficient to explain the increase in strength with increasing loading rate

excluding thus further strain-rate dependence at the material level (material hardening). Spec-

imens subjected to lateral confinement in compression exhibit an increase in peak strength

and strain at maximum stress with increasing confining pressure. However, the rise in strength

is lower than experimental reported values. It has been observed that an increase in the

lateral pressure produces delays in the formation of the first crack cluster and in micro-cracks
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coalescence. Dissipation of energy through fracture and friction is also an increasing function

of the applied confinement. The model also shows the importance of capturing frictional

mechanisms, which appear to dissipate a raising amount of frictional energy with increasing

strain and applied pressure (the work done by friction is on the same range of magnitude as

the energy dissipated trough crack opening under compressive loading).

It is however important to emphasize that our model needs further improvement to capture

experiments better. In particular, the ductility of the specimen is less affected by the confining

pressure than the one measured experimentally and the post-peak behavior remains more

brittle. This could perhaps be related to a yet insufficient increase in the amount of dissi-

pated frictional energy or to the lack of others physical phenomenon in the model (such as

compaction). Moreover, the chosen 2D setting is limiting to capture the complexity of 3D

micro-cracking. Indeed, in 2D the density of the cracks is underestimated since it is easier to

reach percolation than in 3D.

Besides this, the influence of the internal ordering of the meso-structure has not been investi-

gated in this chapter. This model has been included in the multi-scale framework, proposed

in the next Chapter, to simulate the behavior of concrete (including asperities interlocking) at

the fine scale.
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As stated in the introduction chapter, concrete is a good example of a construction material

that at the structural level is often considered homogeneous but reveals a heterogeneous

nature at a lower level of observation. The advantage of a low level of observation is that it

allows an explicit representation of some concrete ingredients, and thus enables to reduce the

number of model parameters and describing the interactions between matrix and inclusions.

It follows that the Direct Numerical Simulations (DNS) of specimens provide a rich set of

results. However, if real size structures need to be analyzed this technique requires too high

computational costs.

To overcome this problem it is possible to have recourse to multi-scale models. These methods

provide accurate solutions at a computational cost that is substantially lower compared to

DNS. Homogenization is based on the principle of separation of scales, which requests the

characteristic length of the fine scale heterogeneities to be much smaller than the characteris-

tic length of the macro-scale. Moreover, another assumption that is often pursued postulates

periodicity of the micro-structure within the macro-domain. This entails that the coarse scale

problem can be assumed to be composed by repeated unit cells or, alternatively, by regions

showing the same micro-structural morphology.

Therefore, the idea beyond homogenization is that the entire macro-domain can be solved

by a sequence of representative volume elements (RVEs). Once the necessary macroscopic

quantities have been determined (typically deformations, i.e. FM), they can be transferred

and applied to the cells, over which an analysis is performed to obtain the quantities of in-

terest (typically stresses, i.e. PM) that are collected back and transferred to the coarse scale.

This procedure is schematically illustrated in Figure 7.1b. The implementation of the entire

framework in a parallel environment is consequently particularly attractive, since it allows

to run sequential simulations on every available processor of a computer cluster as depicted

in Figure 7.1a. For the remainder of the chapter the subscript “M” indicates a macroscopic

quantity, while the subscript “m” refers to a microscopic quantity.

Computational multi-scale techniques, which allow for both the macro and the micro-scale to

be modeled, have been developed by several authors during the past years. Within the field of
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Figure 7.1: (a) parallel computational framework exploited for multi-scale simulations (the
master nodes queues the jobs distributing them between the cluster nodes). (b) Homogeniza-
tion scheme.

computational homogenization, a significant contribution is represented by methods having

recourse to an explicit modeling of the fine scale structure through a RVE, as firstly proposed

in [Suquet 85, Renard 87]. However, the RVE existence requires a clear separation of scales

such that the hypothesis of uniformity of macroscopic strains holds over the micro-structure.

To this end the RVE dimensions are chosen much smaller than the coarse scale size in first

order scheme. Higher order gradients [Kouznetsova 02, Feyel 03] are adopted, when first order

classical computational homogenization fails to satisfy the principle of separation of scales al-

lowing thus moderate strain localization. An extensive study over the available computational

schemes for first-order and second-order scale transition can be found in [Geers 10].

Nevertheless, problems that entail damage mechanisms occurring at the micro-structural

level (with consequent up scaling) represent a raising subject of interest in simulation-based

engineering field. For materials that undergo softening at the finer-scale, other methods

need to be considered in order to avoid possible scale separation problems that arise during

localization. In [Gitman 08] a method called coupled volume approach has been presented.

This approach, based on a classical first-order homogenization technique, includes the mi-

cro model directly into the macro-model. Consequently, the homogenized behavior is not

extracted from a RVE (since it is not thought to exist) but from a material sample, which shows

the same dimensions as the associated macroscopic element. Similar approaches have been

presented in [Markovic 06, Kaczmarczyk 10].

An additional approach is represented by embedded concurrent multi-scale approaches (for

instance [Hirai 84] or more recently [Unger 11]). In this class of methods, the problem is

discretized at the beginning of the simulation only at the coarse-scale, while the fine scale is

activated on the fly, only at necessary locations through an adaptive technique.
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A further approach, for micro-macro up scaling, is represented by the multi-scale cohesive

/adhesive failure, which incorporates the behavior extracted from the fine-scale into a macro-

scale fracture model.

The application of this method in a FE2 setting, can be traced back to the work presented

in [Kulkarni 10] and [Verhoosel 10]. The latter work proposed a homogenization methodology

that was applied besides adhesive fracture to cohesive failure of a heterogeneous microstruc-

ture. Similar results have been reported by Nguyen [Nguyen 10b, Nguyen 11, Nguyen 12], who

provided comparison with DNS and simulations of a Double Cantilever Beam (DCB).

In this work we aim to extend this line of though by extending the method developed by

Verhoosel et al. [Verhoosel 10] to explicit dynamics, which implies that strain-rate effect can be

represented too. In addition, in the proposed framework besides cracking the onset of friction

is also considered at the RVE level. Special periodic boundary conditions (similarly to the one

reported in [Coenen 12]) have been applied to the RVEs in order to allow the propagation of

arbitrary crack path within the RVE and thus to reduce macroscopic mesh dependency.

The chapter is organized as follows: Section 7.1 summarizes the adopted formulation at the

macro and meso-scale level, followed in Section 7.2 by a description of the chosen multi-

scale cohesive up scaling. Results are reported in Section 7.3, where the solution provided

by the multi-scale method is compared first to a DNS (substantially mode I) and second to

experimental recorded values of a push-off test (which involves shearing of the cracks). Finally,

closing remarks are stated in Section 7.4. This chapter will later be submitted to a numerical

methods journal.

7.1 Multi-Scale framework

The following section summarizes the adopted finite-element framework to model the macro

and the meso-scale simultaneously. At both scales the scheme, in order to find equilibrium,

needs to solve the discretized equation of motion (Equation 3.13) with the procedure described

in Chapter 3.

7.1.1 Macroscopic modeling

As usual in computational homogenization at the macro-scale the material is assumed to be

homogeneous. However its constitutive response is determined from the homogenized quanti-

ties obtained from the lower-scale. The continuum is assumed to behave linear-elastically with

effective properties according to the chosen meso-scale cell. However, if the bulk elements

experience too large deformations, cracking occurs and the crack propagation is modeled by

dynamically-inserted zero-thickness interface elements. The macroscopic fracture process

is thus described by the cohesive approach (Chapter 3). The computed displacement jump

(∆) at each quadrature point is imposed on a meso-scale RVE, from which the corresponding

cohesive tractions are extracted. The mechanical response of the macroscopic discontinuity is

thus determined from the meso-structure, establishing the macroscopic traction separation
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law (TSL):

T = T (∆) (7.1)

Details about the adopted up scaling procedure are given in Section 7.2. Outside this zone the

bulk material remains undamaged and it continues to behave linear elastically.

7.1.2 Meso-scale formulation

In this subsection, a simple test demonstrating the existence of an RVE made of concrete is

given. Furthermore the description of the adopted boundary value problem is outlined. The

constitutive model adopted for this fine-scale is the same as the one presented in the previous

chapter.

Meso-geometry

For the present investigation we generate our geometries using the same pseudo-random mesh

generator of irregular polygons already introduced in Section 6.1. Nevertheless, to respect

periodicity, the geometry has been modified to be periodic with respect to the principal axis

(i.e. inclusions intersecting an edge of the specimen must appear on both opposite faces). The

aggregate’s distribution has been obtained following a Fuller-Thompson grading curve. More

precisely, we have chosen to explicitly represent aggregates with a diameter ranging from 1.5

mm to 16 mm. The material properties and interfacial parameters selected are generic and

suitable for a usual concrete and reflect those adopted in Chapter 6 (Table 6.1 and Table 6.2

respectively). An example of a generated structure is depicted in Figure 7.2.

1 2

34

Figure 7.2: Deformed RVE showing a characteristic meso-structure. The numbers from 1 to 4
represent the index of the corner nodes.
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Choice of the Representative Volume Element (RVE)

A question that often arises from computer-modeling, is related to the specimen size that

should be adopted for virtual experiments, in order to gather a representative response from

the sample. This concept is very important for multi-scale simulations, where the choice of an

appropriate representative volume element (RVE) is crucial and determines the accuracy of

the model. Even in case of linear elasticity, the homogenized properties can be under/overes-

timated if the selected cell is too small and thus does not contain enough information about

the micro-structure itself (see for instance [Terada 00]). More recently RVE existence has been

demonstrated in [Gitman 07] for linear and hardening regimes. While in case of softening

problems the reader can refer to the proof provided in [Verhoosel 10, Nguyen 10b]. Never-

theless, we report here a brief verification of the RVE existence for our selected mesoscopic

model.

Elastic behavior

There are two fundamental requirements that are necessary for a RVE to be considered ap-

propriate for simulations. First, the selected area should be large enough, in order to contain

enough information about the morphological composition of the material. i.e. it should

be a statistically representative sample of the chosen meso-structure arrangement. This ap-

plies also if any multi-scale computation is performed. The second condition states that the

employed size should allow a sufficient accuracy in the computation of the homogenized

properties. This means that the RVE’s size depends on the type of information that are of

interest at the macroscopic scale, on the meso-structure heterogeneity and the constitutive

behavior assumed for the phases. Thus, a simple validation test, to select a representative RVE,

is to perform an analysis varying the size of the specimen to see if the homogenized properties

converge with increasing RVE size.

We report here a verification of the elastic properties for different meso-scale samples sizes

presenting an irregular arrangement of the meso-structure. If the selected specimen is too

small the recorded properties will differ from the “real” one. Whereas, if the sample is large

enough the homogenized properties will coincide independently of the applied boundary

conditions (BCs). In multi-scale homogenization, different type of BCs can be employed.

However, they can all be traced back to three types of BCs.

Traction boundary conditions In this case tractions (p) are imposed to all the nodes located

at the boundary edges of the RVE according to the imposed macroscopic stress PM.

p = PMN on Γ (7.2)

Note that this kind of boundary conditions constitute the weakest kinematic constraint for the

displacement of the boundary and that it does not prevent the sample from rotation around a

point.
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Displacement boundary conditions With this type of BCs, the constraint is applied to the

displacements of the nodes located on the boundary depending on the applied macroscopic

deformation

xi = FMXi with Xi on Γ (7.3)

Equation 7.3 determines the position of all the points on the boundaries and does not allow,

consequently, any fluctuation within the sample edges (i.e. edges remains straight).

Periodic boundary conditions Periodic boundary conditions are the most widely adopted

in the multiscale-community. This kind of condition prescribes the displacements of the

corner nodes according to the macroscopic deformation gradient.

ui = (FM − I) Xi for i = 1,2,4 (7.4)

Where the index i indicates the corner node considered and I stands for identity matrix.

The displacement field at the RVE’s edges can show fluctuations but these have to be peri-

odic on opposite faces. To depict this let us consider the periodic RVE drawn in Figure 7.3.

Periodicity imposes that the displacement of every node located on the top edge (face T in

B

T

L R

1 2

34

h

h

Figure 7.3: Schematic of a two-dimensional RVE.

Figure 7.3) matches the displacement of the corresponding node located on the bottom (face

B in Figure 7.3). Assuming that the mesh is periodic, this can be written for every pair of nodes

located on opposite surfaces as follows:

uT = uB +u4 −u1 (7.5)

uR = uL +u2 −u1 (7.6)
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Note that the constraint of Equation 7.6 is easier to impose if periodic meshes are used. But it

can be also applied to non periodic RVEs.

The same kind of constraint has been adopted for the velocities of corresponding (facing)

nodes, since the residual forces and accelerations are computed on every nodes, which are

composed by assembling the contributions of both opposite nodes. A similar principle is also

applied if the number of nodes, at one position, is not the same on both sides (e.g. cracked

edge only on one side). In this case the constraint is satisfied in an average sense. In addition,

this causes the constraint to be applied on the increment of the displacement at each time

step, instead of acting directly on the total displacement.

The geometry generated for assessing convergence of the elastic response is depicted in

Figure 7.4a. The meso-structure of the various specimens used in this investigation has been

obtained by selecting a specific (decreasing) area on the global surface. The volume fraction

of the aggregates is about 30%. While their distribution follow a Fuller curve with diameters

ranging from 4 mm up to 20 mm. It is possible to notice that the geometry of the obtained

samples is not periodic, which leads to convergence with larger RVE’s size.

All the different samples sizes have been loaded under simple shear and tension with the
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Figure 7.4: (a) Geometry of the meso-structure with the selected RVE regions and (b) resulting
macroscopic Young’s modulus for homogenized elastic behavior as a function of edge size.
TCB, PBC and DBC stand for traction, periodic and displacement BCs respectively.

three different boundary conditions, in order to compute the homogenized response. The

result of those computations is shown in Figure 7.4b, where the macroscopic homogenized

Young’s modulus is plotted as a function of the sample edge size. It is possible to notice from

this graph that with increasing size (from l ≈ 50 mm) the three curves tend to collapse in

one, leading thus the same value of the homogenized quantity. Whereas for small specimens

the apparent stiffness is overestimated by displacement boundary conditions while traction
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boundary conditions represent the lower bound. This means that in this case the selected size

is too small, while specimens showing an edge size of 50 mm or more are representative and

thus suitable for an elastic multi-scale analysis.

Non-linear behavior

We report here a brief verification of the RVE existence for our selected mesoscopic model for

the non-linear behavior (which we are more interest in). For this investigation three different

sample sizes have been considered: squares with an edge size of 25, 50 and 75 mm. The meso-

structure of the smaller sample has been generated with a ratio of aggregates corresponding to

roughly 40%. While, in order to have a comparable arrangement and grading of the aggregates

in the two bigger samples, they geometry has been obtained simply by assembling various

times the small unit. This means that the specimen meso-structures of the 50 and 75 mm

specimens are constituted by 4 and 9 times respectively the starting cell. The specimens

have been subjected to tensile loading in the vertical direction (i.e. corner nodes 3 and 4 of

Figure 7.2 have been displaced in the vertical direction). To obtain the stress-strain curves, we

define the macroscopic stress as the volume average of the microscopic stress tensor Pm over

the initial RVE volume V0.

PM = P̄m = 1

V0

∫
V0

PmdV0 (7.7)

While the macroscopic strain corresponds to the imposed macroscopic gradient FM on the

RVE shifted by the identity matrix (and is thus equal to the displacement of the corner nodes

divided by the edge length).

εM = FM − I (7.8)

The problem is that the damaging zone of a specimen does not scale with its size, leading to a

more brittle behavior with increasing sample size, as one can notice from Figure 7.5a. This

can be resolved by plotting the stress in function of the inelastic displacement experienced in

the RVE

uinelastic = u4 − ε̄mX4 (7.9)

with εm being the volume average of the strains in the bulk elements and the subscript 4 refers

to the upper left corner node (and thus represents the imposed displacement over the sample).

Indeed, it is possible to notice, from Figure 7.6, that the peak strength is almost independent

from the size of the specimen (small size effect since no statistical distribution for σc of the

interfaces has been introduced to model material’s defects). But this is not the case for the

strain at peak and at the end of softening. The softening behavior is indeed mainly governed

by the main crack that localizes in each sample. Nevertheless, convergence of the response

can be achieved by plotting the homogenized stress response as function of the homogenized
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Figure 7.5: (a) stress-strain behavior for different RVE-sizes and (b) homogenized stress-
displacement relationship.

inelastic displacement for the two bigger samples, as illustrated in Figure 7.5b. This plot

(a) (b) (c)

Figure 7.6: Crack path for three RVEs: edge size of (a) 25, (b) 50 and (c) 75 mm (displacement
has been magnified by a factor of 20).

shows that the size of 25 mm is clearly too small for the chosen meso-structure, but, the

inelastic response that the two bigger samples show is quite similar. Thus, although the two

curves do not perfectly match, the curve obtained for the 50 mm specimen can be considered

representative (probably with a regular meso-structure a better convergence can be achieved).

Thus, it can be concluded that for the presented random meso-structure the existence of a RVE
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could be confirmed. The edge size of the RVE has been set for the remainder of the chapter at

50 mm, which corresponds to roughly three times the size of the larger inclusions. Note that in

comparison with the elastic behavior a bigger RVE is thus required. Indeed in the un-cracked

case larger inclusions have been considered, suggesting the size of the RVE to be equal to 2.5

the size of the largest inclusion. Moreover, in the elastic regime the material is assumed to be

non periodic, which should entail a larger RVE size ( [Gitman 07]).

The computed ratio between RVE’s edge and coarsest aggregate size reflects what was observed

by other authors; for instance experiments carried out on concrete samples by van Mier [van

Mier 97] assess this ratio to range between three and five. While simulations performed by

Zubelewicz [Zubelewicz 87] show that the fracture front in a notched specimen has a width of

about three maximum particle sizes.

Aligned periodic boundary conditions

Classical periodic boundary conditions are suitable for brittle RVEs that are crossed by cracks,

whose alignments respect the direction of the periodic enforcements (i.e. aligned horizontally

or vertically). If this condition is not satisfied, the onset of cracking and development of cracks

will be significantly affected. Usually multiple (parallel) cracks will develop in the RVE to face

the “unphysical” displacement (unless high strain rates, which cause a diffuse network of

cracks, are applied to the RVE) that is imposed on periodic faces because of the misalignment

(Fig. 7.9c). One solution to bypass this problem would be to enforce boundary conditions in

a weak sense, as proposed in [Mesarovic 05]. In this reference the authors impose minimal

kinematic boundary conditions, such that only the desired overall strain is imposed on the

RVE. Nevertheless, a new technique of enforcing periodicity to overcome the problems that

arise with PBC, has been recently proposed in [Coenen 12]. The authors have developed PBCs,

which orient with the evolving localization band in an elasto-platic voided RVE. Inspired by this

new percolation-path aligned boundary conditions, we have adopted in this work boundary

conditions that evolve with the development of a crack. During the simulation, before a cluster

of cracks propagates, classical PBC are adopted. Indeed at an early stage of loading the sample

is uncracked and the position of the discontinuities (that will develop) is not known a priori.

Subsequently, when the longest cluster reaches a length of about half of the cell edge, the

alignment of the crack direction is estimated having recourse to linear regression analysis

(fitted using the least squares approach). At this point, if the determined orientation is not

parallel with the sides of the RVE, periodicity of the displacements is enforced on boundaries

by rotating the constraint alignment of nodes on opposite faces. The procedure is illustrated

with the help of Figure 7.7. Similarly to the aligned case, periodicity is enforced on opposite

sides acting on the increment of the displacement at each time step. The reference face,

which is intersected by the discontinuity, is considered first (left side of the RVE in Figure 7.7).

The increment of the fluctuation field is computed subtracting from the increment of the

displacement field (δu) the homogeneous part. This can be expressed as follows:

δwL = δu4 −δu1

h
X −uL (7.10)
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Figure 7.7: Schematic of a RVE crossed by a crack with applied aligned PBC on lateral faces.

The coordinates of the intersection points between the crack with the two faces is indicated

with XL and XR. This allows computing the relative coordinates on the periodic face.

X ∗
i = Xi − (XR −XL) (7.11)

With the help of the relative position, the periodic counterparts of each node on the reference

face can be determined. Next the increment of the fluctuation field that has to be applied on

the periodic face is computed as follows:

δwR = δŵL(X ∗
i ) = δwL(Xi − (XR −XL))−δwL(XR −XL) (7.12)

Note that the reference increment δwL needs to be shifted (with the amount δwL(XR −XL)) in

order to vanish at the corner nodes. Consequently, the increment of the displacement on the

periodic face is obtained through superposition of the fluctuations field and the “homoge-

neous” displacement field.

uR = δu3 −δu2

h
X +δwR (7.13)

Finally, it is possible to notice that, if the crack is aligned with the mesh (i.e. XL,2 = XR,2),

the aligned PBC reduce to the conventional ones. In addition, since we are using a dynamic

framework, a similar procedure has been adopted for the enforcement of the velocities on

opposite faces.

Comparison between classical and aligned PBC

The advantage of the aforementioned procedure, compared to classical PBC, is illustrated

ahead of an example. Let us consider the one-dimensional bar illustrated in Figure 7.8. The

bar can be discretized using triangular elements with inter-element boundaries oriented

with the loading direction (Figure 7.8a) or with diagonal interfaces at an angle of 30° with

the vertical axis (Figure 7.8b). In the first case, the TSL of the cohesive elements inserted

at the red interface of Figure 7.8a is extracted from a RVE, which is loaded with a traction
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(a) (b)

Figure 7.8: One dimensional bar discretized with two different meshes: (a) with inter-element
boundaries aligned with the loading direction and (b) with interfaces oriented at an angle of
30°. The thick red line indicates the location of the discontinuity.

parallel to the axis of the cell (thus respecting periodicity). Whereas, if the second mesh is

considered (Figure 7.8b), the sample is subjected to a loading which is not aligned with the

RVE boundaries.

Consequently, for this example three RVEs will be considered: one that corresponds to the

interface of Figure 7.8a and two representative of the diagonal interface depicted in Figure 7.8b.

The two RVEs of the second case are subjected to a tensile loading with an angle of 30° between

the principal direction and the horizontal axis of the RVE. The difference lies in the direction

along which periodicity is imposed. In one case classical PBC have been adopted, whereas in

the second case PBC that align with the evolving crack cluster have been selected.

The resulting homogenized TSLs for the three RVE is plotted in Figure 7.10a (homogenized

(a) (b) (c)

Figure 7.9: Crack path (displacement magnified by a factor of 15) for the RVE: (a) interface
aligned with loading direction, (b) interface at 30° with aligned PBC (c) interface at 30° and
classical PBC.

traction in x direction versus inelastic applied opening displacement). It is remarkable that the

stress at which softening starts is similar for the three cases considered here. The homogenized

response of the RVE loaded in x is very similar to the one with aligned PBC. Indeed, in both

cases, a unique principal crack localizes in the RVE (Figure 7.9a and Figure 7.9b). On the con-

trary, the response of the RVE without orientation of the PBC, is similar at the beginning, but it
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starts to differ during the softening phase due to the misalignment of the imposed periodicity.

This also causes the propagation of two big crack clusters that grow perpendicularly to the

loading direction as depicted in Figure 7.9c. The alignment of the imposed constraint between

faces, causes the crack to have the same propagation point on opposite sides. Therefore, as

in the case illustrated here, if the loading direction is not aligned with periodicity, the two

propagating cracks cannot then coalesce in the middle. This leads to a TSL law that cannot

be considered adequate. Whereas, the agreement between the constitutive response of the

samples of Figure 7.9a and Figure 7.9b is pretty good, even if the peak traction is slightly higher

for the case with loading aligned with the RVE sides. Therefore, it can be concluded that

aligned PBCs not only allow developing correctly cracks within a RVE but also reduce the mesh

dependency, that is caused by the macro-scale interface orientation.

As previously mentioned, during the simulation, the growing direction of the main crack is

Interface at 0o
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[mm]

 [M
Pa

]

 TM 

uinelastic
0

4

2

1

3

0 0.030.020.01

(a)

fit-line
crack

(b)

Figure 7.10: (a) Extracted TSL from the three RVEs of Figure 7.9 and (b) computed regression
line for the RVE depicted in Figure 7.9b

detected by means of a linear regression analysis. This simple technique minimizes the sum

of squared differences between observed values and predicted ones and it is illustrated for the

RVE case of Figure 7.9b. The middle node of the inserted cohesive elements is used to track

the cluster (green cross in Figure 7.10b). Consequently, the fit can be computed on the basis

of those points, giving a straight line (red dashed line in the figure). The obtained equation

allows thus computing the intersection between RVE boundaries and the fitted line. The

nodes, that are located on the RVE edge in the proximity of the computed point of intersection,

are checked for the presence of cohesive elements. The alignment of the periodicity can this

way be adjusted, to respect the onset of cracking already present on the faces.
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7.2 Upscaling

This section illustrates how the coupling from the meso to the macro-scale has been per-

formed. We recall that the problem is how to relate the macroscopic crack with the cells. We

adopt the same scheme already adopted in [Verhoosel 10, Nguyen 11]. At the macro-scale, the

material behaves linear elastically until crack initiation. I.e. when the inter-element stress

exceeds a critical stress value, interface elements are inserted. After nodal disconnection

has occurred, the macroscopic traction separation law is extracted from the response of the

meso-scale RVE. Therefore meso-scale RVEs are activated each time that a macroscopic dis-

continuity propagates (on the fly), conversely to conventional homogenization techniques,

where integration points are linked from the beginning of the simulation with corresponding

micro-scale RVEs. This is congruent with the dynamically inserted cohesive elements.

From the macroscopic boundary value problem, the deformation gradient together with the

crack opening displacements and the opening velocity is transferred to the cells. Whenever

a crack is initiated the RVE is loaded until the microscopic deformation gradient matches

the macroscopic gradient. It should be pointed out that, at this stage of loading, the RVE

usually already presents some micro-cracking, but the response is almost elastic and the

imposed strain is slightly lower than the strain at which softening (descending branch in the

stress-strain curve) starts. This coupling is illustrated in Figure 7.11. The selected coupling

causes the homogenized TSL to be initially rigid with some hardening before degradation of

the tractions starts Figure 7.11b. Thus, the extracted TSL defines a fracture process zone (FPZ)
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Figure 7.11: Homogenized macroscopic stress (traction) versus (a) meso-scale displacement
and (b) homogenized opening displacement of Equation 7.14. The dot (σo) represents the
status in the RVE at cohesive insertion.
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that includes effects of micro-cracks ahead of the macroscopic crack tip. Indeed, the stress

distribution within the FPZ will reach its maximum value before the end of the FPZ, at which

the tensile traction will drop to σo .

Since after this initial step the RVE is mainly subjected to the macroscopic opening displace-

ment ∆, the inelastic displacement on the RVE, representing the sum of all cracks opening

within the RVE, needs to be computed in the cell.

[[u]]M = u4, inelastic −u4, inelastic, in = u4 − ε̄mX4 − (u4,in − ε̄m,inX4) (7.14)

where 4 stands for the index of the 4th corner node (Figure 7.2). The equation above provides

the homogenized opening displacement over the sample. This is defined as the current inelas-

tic displacement in the RVE shifted by the initial amount of applied inelastic displacement. If

the RVE is aligned with the normal of the macro-scale cohesive elements (i.e. e2 = N ) the RVE

is loaded until

[[u]]M =∆ (7.15)

Then the homogenized macroscopic traction (TM) can be computed from the homogenized

stress as follows

TM = P̄mx2 (7.16)

This averaging scheme has been called in [Nguyen 11] as failure averaging technique (more-

over, in their publication the authors also provide a proof through an energetic equivalence

theorem of the well-posedness of this up scaling procedure). As reported in the previous

section, provided that the RVE is selected large enough, this homogenization approach also

allows obtaining a TSL which is almost independent of the cell dimensions.

One should note that this procedure applies in both cases of increasing or decreasing values

RVE

  

Figure 7.12: Cracked macro-body with crack tip normal N and corresponding rotated RVE

of∆, i.e. no further treatment is needed to handle unloading and reloading cases. What was
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reported so far works if N corresponds to e2. If this is not the case, the geometry of the cell is

rotated and it is aligned with the crack direction as illustrated in Figure 7.12. This procedure is

applicable since concrete does not have a microstructure with preferential direction of loading

(random meso-structure). In order to account for the macro-scale orientation, the quantities

of interest need to be transformed from the global (macro-scale) reference system to the local

one (RVE) using a rotation matrix. The local displacement jump is computed as follows

[[u]]M,loc = R∆ (7.17)

where R stands for the (2x2) rotation matrix (R = [
Ny −Nx ; Nx Ny

]
). The same procedure

applies to the deformation gradient:

FM,loc = RTFMR (7.18)

and the resulting macroscopic traction

TM = RTTM,loc (7.19)

After the first time step, beyond [[u]]M, the first component of the local deformation gradient is

applied to the unit cell. This allows accounting for lateral expansion/shrinkage that occurs

at the macro scale and thus recovering a more realistic biaxial stress/strain state within the

RVE. This deformation gradient is obtained by averaging the deformation gradients of the

closest integration points of the triangular element adjacent to the macro-scale interface

element. Moreover, since we are running a dynamic analysis, the opening velocity (∆̇) of the

macro-crack is transferred to the lower scale too. This velocity determines the number of

time steps needed to impose the macroscopic quantities and allows accounting for a rate

depended response of the material. The initial conditions at the beginning of each meso-scale

simulation are formulated according to the imposed displacement and velocity.

vi = Ḟ
Xi

h
(7.20)

respectively

vi = ∆̇ ∆

‖∆‖
Xi

h
(7.21)

This conditions should avoid important stress wave propagation and an early fracture near

the boundaries [Miller 99] at early stage of loading. Both Equations 7.20 and 7.21 result in a

linear gradient of velocities according to the reference position of each node. It is possible to

notice that when the specimen has undergone large deformation they could be modified to

account for the influence of a discontinuity of the velocity field.
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7.2.1 Computational aspects

The presented multi-scale procedure is solved performing an explicit dynamics analysis both

at the macro and RVE scale. Therefore no computation of the tangent matrix is needed. The

meso-scale RVE are initiated whenever a new crack segment is inserted at the macro-scale.

At each macroscopic time step, an analysis with several time steps needs to be performed in

every active RVE. We manage the farming procedure with the remote procedure call (RPC)

based client-agent-server system Gridsolve [Dongarra 06], which is a library that supports

C, FORTRAN, Matlab, and Mathematica. One master process (client) solves the macro-scale

boundary problem and performs GridRPC asynchronous calls to the servers through the help

of an agent, which manages the requests and assigns them to an appropriate server. The client

also collects back the results that are returned from the servers (each server runs sequentially

meso-scale simulations). To have a computationally efficient algorithm, which minimizes

waiting time, communication is kept as low as possible. The amount of transferred data is

minimized (every RVE-mesh is reconstructed starting from the original mesh on the basis

of few transferred information) and a call for a specific meso-scale RVE is performed only

if the macroscopic opening displacement has changed perceptibly, compared to the value

computed at the previous time step. The entire procedure is illustrated in the Algorithm 1.

Algorithm 1 Multi-scale algorithm for computational homogenization in explicit dynamics

1: while t ≤ simulation time do
2: Apply displacement boundary conditions
3: Predictor: u(ti )
4: Compute∆(ti )
5: for all number of active RVEs do
6: Call SOLVERVE
6: end for
7: Assemble residual: r (ti )
8: Check cohesive insertion
9: Corrector: a(ti ) and v (ti )

10: end while

1: function SOLVERVE .

2: Compute local quantities and restore status of RVE
3: repeat
4: Apply displacement on corner nodes
5: Solve RVE problem
6: until um, in ≈ [[u]]M, loc

7: Compute macro-traction:RTTM,loc

8: return TM

9: end function
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7.3 Numerical results

As already stated in the introduction section, we have selected two problems to demonstrate

the performance of the presented multi-scale model. The first application consists in a Double

Cantilever Beam (DCB), which entails the propagation of a macroscopic crack under mode

I. The purpose of the first virtual experiment is to validate the applicability of the proposed

method by comparing the recorded multi-scale response with the result of a DNS. While, the

second application involves shear displacement between the crack faces. To this end we have

reproduced a push-off test.

7.3.1 DCB specimen

We perform here a validation test on a concrete DCB specimen. The validation is provided

through comparison between the FE2 solution and the recorded response of a DNS. The cho-

sen specimen geometry and the boundary conditions for this test are illustrated in Figure 7.13.

As depicted in the figure, the specimen is 1 m wide and 0.8 m high with a notch of 0.4 m. In

600400

800

  

 

Figure 7.13: Geometry (all units in mm) and boundary conditions of the DCB test

both virtual experiments the samples have been loaded under displacement control.

To avoid a too large computational effort during the DNS test, the DCB specimen (depicted in

Figure 7.14b) has not been completely resolved at the fine-scale. Indeed a meso-scale band,

composed by repeated adjacent RVE geometries, accounts for the heterogeneous composition

of the material. This fine level of representation is located where the macroscopic crack is
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expected to propagate. Since only few micro-cracks should nucleate outside from this zone,

the surrounding material is considered to be homogeneous and to behave linear elastically.

The material properties of this region correspond to the uncracked properties of an RVE:

Young’s modulus 35 GPa and Poisson’s ratio 0.2. Whereas, the material in the meso-scale zone

accounts for the fracturing process and behaves thus exactly following the constitutive model

described in Section 7.1.2.

(a) (b)

Figure 7.14: DCB specimen for the virtual experiments: (a) Macroscopic mesh for the multi-
scale simulation and (b) adopted geometry for the direct numerical simulation.

The corresponding macro-scale mesh for the multi-scale simulations (Figure 7.14) has to be

chosen according to the cohesive zone length (lz ) resulting from the RVEs response (10 cm).

We recall that this length (see Equation 3.39) has to be considered for the choice of the mesh.

In order to resolve the decohesion process, the cohesive zone length must be discretized

with a few cohesive elements (typically around 3-5). Therefore, according to lz in the zone

where crack propagation occurs the mesh size of the coarse scale has been fixed to 2 cm.

The macroscopic mesh is composed by quadratic triangular elements, which entails that

each cohesive element has three quadrature points. As a result three RVEs are assigned to

every dynamically inserted interface element. This together with the necessary refinement’s

degree of the macroscopic mesh, implies that the horizontal central line along which a crack

is expected to propagate is represented by more than 12 adjacent unit meso-structures of the

DNS.

During the virtual experiments the upper and lower ends of the DCB have been displaced

vertically (Figure 7.13) in +e2 and −e2 direction respectively. The imposed vertical velocity

has been increased gradually up to a value of 0.025 m/s. Thereafter its value has been kept

constant during the rest of the simulation, in order to avoid rate-effects and thus make more

realistic the assumption of a single propagating horizontal macroscopic crack (with little

amount of nucleating micro-cracks ahead of the crack tip).
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2 1

(a) (b)

Figure 7.15: Developed crack path in the DCB specimen (displacement has been magnified by
a factor of 80). Comparison between (a) the multi-scale cohesive solution and (b) the DNS.

The evolution of the crack with the approaches is illustrated in Figure 7.15. The image depicts

the deformed configuration after the peak strength has been reached. Note that the two

images do not exactly depict the same time-frame, indeed the specimen of Figure 7.15a shows

a slightly longer crack.

In addition, Figure 7.16 illustrates the crack path in two different RVEs. The first one (depicted

(a) (b)

Figure 7.16: Deformed configuration (displacements have been magnified by a factor of 15)
of two RVEs corresponding to two different integration points located: (a) near the crack tip
(circle 1 in Figure 7.15a) and (b) more distant (circle 2 in Figure 7.15a) respectively.
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in Figure 7.16a) corresponds to a coarse scale integration point near the crack tip (circle 1 in

Figure 7.15a) and shows a few micro-cracks in the matrix and at the ITZs. While the second

one, which represents a Gauss point more far off the crack tip (circle 2 in Figure 7.15a), has

already undergone a bigger deformation (i.e. imposition of a larger opening displacement),

which entails the localization of a single crack within the RVE (Figure 7.16b).

The comparison of the recorded load-displacement curves is illustrated in Figure 7.17. From

this graph one can notice that the multi-scale model can successfully reproduce the behavior

of the DNS. Although the two curves do not match exactly (and an exact match cannot be

expected from a coarse multi-scale simulation), there is a good agreement between the two

responses, since the peak strength and the corresponding displacement at peak are similar for

the two solution techniques.

Finally, the FE2 analysis, ran on a cluster node with 10 CPUs, allowed to reduce the computa-
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Figure 7.17: Comparison of the vertical force-displacement relationships for the multi-scale
scheme and the DNS

tional time of about 4.5 times.

7.3.2 Push-off application

The aim of the second application is to demonstrate the applicability of the proposed method

to a common test in civil engineering, which is performed to investigate the mechanisms

related to shear transfer through cracks. For this purpose we have chosen to carry out a multi-

scale simulation of a push-off test. This problem involves frictional contact at the scale of the

inclusions through aggregate interlock. Because of to the large displacement experienced by

the crack surfaces, no comparison with a DNS has been performed. While, preliminary results

have been compared with experimental recorded values.

The geometry of the specimen is illustrated in Figure 7.18a. For this virtual experiment we have
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chosen to reproduce one test unit of the experimental test program conducted by Sagaseta et

al. [Sagaseta 11].
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(a) (b)

Figure 7.18: (a) Geometry of the tested unit by Sagaseta et al. [Sagaseta 11] with diameter of
reinforcement bars (all dimensions in mm). (b) Corresponding coarse-scale mesh for the
multi-scale analysis (the red dashed lines represent stirrups that have been modeled with bar
elements).

The sample is composed by two reinforced concrete blocks with an “L” shape. Experimentally

the specimen is pre-cracked in tension before the shear is introduced (the upper block is

moved in vertical direction toward the lower one, which is supported on a sliding support).

Horizontal stirrups constrain the widening of the specimen during the test. The relative

displacement experienced by the two blocks causes indeed the dilatation of the vertical macro-

crack between them, since the inclusions at the crack surfaces slide over each other. As a

consequence compressive normal forces are generated because of the presence of the stirrups,

while the resulting shear stiffness is due primarily to the mechanism of aggregate interlock.

The mesh used for the FE2 simulation is depicted in Figure 7.18b. Since the sample is made

of reinforced concrete, the macro-scale problem is considered to be homogeneous with

exception of bar elements simulating the steel-reinforcement. However, we do not model

the entire network of reinforcement bars, because crack propagation is allowed only at the
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interface between the two blocks. Therefore, only the stirrups, which cause the confinement

of the macroscopic crack, have been modeled explicitly (note that a perfect bond between

concrete and steel has been assumed). In addition, since experimentally the sample is pre-

cracked, for the simulation we have adopted RVEs with an initial vertical crack, which crosses

the RVEs.

Figure 7.19: Macroscopic deformed mesh configuration and shearing in a RVE located on the
vertical macroscopic crack.

The deformed mesh configuration of the sample is depicted in Figure 7.19. Moreover, the

same figure shows the deformation experienced by a RVE located on the macroscopic crack.

One notices that the inelastic displacement localizes in a main vertical crack. (Note that for

this application a smaller RVE has been selected, in order to reduce the computational cost.

However, since the RVE is pre-cracked the computed TSL originates primarily from shearing

of the cracks.)

The numerically computed and the experimentally recorded shear stress-displacement curves

are compared in Figure 7.20. For the comparison, experimental results obtained with concrete

inclusions made of marine dredged gravel (cracks propagate around aggregates) have been

selected.

From the graph one can remark that the model can reproduce some features of the experi-

mental behavior. After an initial peak, the computed response stabilizes indeed around a fixed

value during the pure frictional regime. However, the resultant shear stiffness (as well as the

initial stiffness) is lower than the experimental one. This might be traced back to the chosen

simplified modeling of the stirrups (we do not consider dowel action) and to the fact that we

are in a two-dimensional settings. In addition, the use of pre-cracked RVEs in conjunction
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Figure 7.20: Comparison of the shear stress-displacement curves for the push-off test be-
tween the FE2 analysis (dotted line) and the experimental results (continuos red line) of
Segaseta [Sagaseta 11].

with the bar elements causes some initial slip within the RVEs at early stage of loading, leading

to a lower initial stiffness in the force-displacement relationship.

7.3.3 Perspectives: application to a reinforced concrete beam

The aim of the work presented until here has been to develop the fundamental computational

aspects to simulate macroscopic material’s behavior explicitly by modeling the interactions

occurring at the fine scale. This goal has been achieved for the applications presented in the

previous subsection. However, further investigations should allow the virtual testing of more

complicated engineering’s problem, such as structural reinforced components. With respect

to the two selected applications, such a problem would indeed entail a more complicated

propagation of cracks under mode mixity (multiple cracks) as well as a higher number of

degrees of freedom to be modeled.

A possible application of interest, depicted in Figure 7.21, is represented by shear failure of a

reinforced beam. This failure mode is characterized by the growth and formation of a macro-

scopic well-defined crack that determines the ultimate load of the member. This problem is

particularly interesting because it involves, besides crack opening, shearing of the cracked

surfaces (similarly to the push-off test).

In the last decades, there has been a substantial research in understanding such failure events.

Semi-analytical models have been developed to describe brittle shear rupture of structural
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components (e.g. [Muttoni 08, Muttoni 12]). Therefore, it would be extremely interesting

to perform a multi-scale analysis of a specimen involving this geometry and to perform a

comparison with the analytical prediction especially for different aggregates contents. Note

that a comparison with a DNS would not be possible in this case due to the large system size.
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Figure 7.21: A possible future application of interest. Beam geometry of the tested unit
by [Leonhardt 62] with boundary conditions (all dimensions in mm).

7.4 Conclusions

In this chapter, a multi-scale approach to model cohesive failure for the analysis of concrete has

been proposed. The model has been implemented in a displacement-driven 2D FE2 framework

in explicit dynamics. Computational homogenization is applied only for the integration points

belonging to macroscopic interface elements. Consequently, the macroscopic debonding

behavior is extracted from mesoscopic RVE simulations, in which concrete is represented as a

biphasic material made of aggregates embedded in a cement paste matrix. In addition, the

fine scale enables an explicit representation of crack propagation. Thus, the homogenized

traction separation law depends on damage mechanisms that are governed by the geometry

of the meso-structure.

Since propagation of cracks under mode mixity generally entails a misalignment between

the RVE boundaries and the development of the localized crack, evolving periodic boundary

conditions (which follow the crack orientation) have been adopted. This also reduces the

fine scale dependence on coarse scale orientation of the interface elements leading to more

realistic failure patterns within the corresponding RVEs.

In order to show the applicability of the proposed computational approach to engineering’s

problems, the model has been validated by comparison with a reference DNS on a double

cantilever beam. Whereas, for the second application a push-off test, which involves shearing

between the crack-faces, has been selected.

The numerical results demonstrate the capability of the model to extract the macroscopic

fracture behavior from physical mechanisms occurring at the fine scale and thus to predict

the structural response of the tested unit.
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8 Conclusions and Outlook

In the following we summarize the main conclusions that have been reached during this

research work. Finally, we give possible directions for future research and development.

8.1 Summary and conclusions

In this thesis we have sought to grasp the physics underlying dynamic failure of concrete,

a widely used (quasi-) brittle material. This material, which is often modeled as homoge-

neous at the macro scale, shows a heterogeneous composition at a lower level of observation.

Since the macroscopic failure process is strictly related to the material’s meso-structure, a

meso-mechanical computational approach has been first exploited in this research work. The

advantage of this level of observation is that it allows for the representation of the most impor-

tant concrete constituents (e.g. aggregates and cement paste) as well as to provide information

about the spatial arrangement of the phases. This facilitates the physical identification of the

material parameters of the model and of the mechanisms (interaction between matrix and

inclusions) that characterize its constitutive behavior. Indeed, when subjected to sufficient

loading, the material undergoes a non-linear failure process. This involves the opening of

local micro-cracks, which propagate, coalesce and subsequently might enter into contact.

During the fracturing process, the material phases (bulk elements) are considered to behave

elastically, while cracking is explicitly modeled by to dynamically-inserted cohesive elements.

This computational framework has been first applied to analyze the dynamic tensile failure of

concrete specimens. We focused our investigation on the influence of aggregate properties

(internal ordering, size distribution and toughness) on peak strength and dissipated fracture

energy.

We showed that with a rate independent constitutive law, used to model the interfacial behav-

ior, the model is able to capture some of the increase in peak strength and strain at failure

with increasing rate of loading. Indeed, the increase in strength with the strain rate resides in

a more diffuse micro-cracking and is related to the intrinsic characteristic opening time of

the cohesive law. This mechanism leads to an increase in the amount of dissipated fracture

energy. Nevertheless, our results suggested that the full extent of the high-rate strengthening
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of concrete observed experimentally cannot be captured with rate independent constitutive

laws.

Therefore, for our meso-mechanical approach, we could not discard the combination of iner-

tial with material rate hardening mechanisms. The introduction of a rate dependent cohesive

law increases the difference of the computed peak strength between low and high strain

rates, leading to a closer match with experiments. On the other hand, the rate-independent

computed amount of dissipated energy seems to be closer to the one recorded experimentally.

This means that the tensile strength increase is, probably, mostly due to a material effect

(moisture, visco-elasticity, . . . ) while the dissipated fracture energy, observed in the post-peak

part, is mainly due to the increase of the number of micro-cracks with the loading rate.

We have considered different material properties for the concrete constituents. For instance a

different toughness of the inclusions affects also the peak strength as well as the dissipated

fracture energy. However, simulations carried out for two different types of aggregates (soft

and hard) concluded that the peak strength is considerably sensitive to the toughness of the

inclusions mostly at low strain rates (different crack paths). While, at high strain rates, inertial

forces dominate the overall behavior. Propagation of cracks in the inclusions occurs only after

peak strength is reached.

Besides this, the influence of the meso-structure geometry has been quantified too. In general,

specimens with heterogeneities following the same grading curve but with a different spatial

arrangement, show a difference mostly in their post-peak response. Comparisons between

specimens with different alignments of the inclusions revealed that a uniform meso-structure

can rise or lower the peak strength depending on the orientations of the inclusions. While, a

random distribution increases the probability to have weak zones (interfaces between aggre-

gates and matrix are closer), which reduces the peak strength.

In addition, our results showed that, having two concrete materials with same aggregate

volume ratio, the one with smaller inclusions will exhibit a larger strength at low strain rate in

case of soft aggregates. Large aggregates facilitate the propagation of cracks within inclusions.

This involves a larger area of broken aggregates, which is linked with a lower strength.

In order to be able to model failure of specimens subjected to compressive loading, the

cohesive law has been modified to account for path dependent behavior and, therefore, to in-

troduce a mode-dependent fracture energy. To this end a novel explicit traction separation law,

based on the popular law proposed by Camacho and Ortiz [Camacho 96], has been introduced

into the model. Besides this, to account for the possible interactions between generated rough

surfaces during cracking, a contact algorithm that enforces the impenetrability condition has

been included too. The formulation proposed in [Cirak 05] has been adopted. We resorted to

the classical law of unilateral contact and Coulomb friction. The contact algorithm has been

coupled together with the cohesive approach in order to have a continuous transition from

crack nucleation to the pure frictional state.

To demonstrate the capability of the proposed approach to provide accurate results, the model

has been validated firstly by applying it to two benchmark tests in masonry engineering: a

shear test on a wallette and on a wall. The calibration, by comparison with experimental
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values, has been carried out for the first application. The calibrated values, of the interfacial

transition zone, have been then used to reproduce a test on a masonry wall loaded in com-

pression and shear. The numerical results have shown the capability of the model to represent

the physical process involved during cracking in compression and to give a good prediction of

the structural response of the tested units.

Afterwards, the developed framework has been applied to the investigation of dynamic com-

pressive failure of meso-scale concrete samples. Simulations in compressive regime with

increasing rate of loading showed that the model is able to capture the increase in strength

and strain at failure. This rise resides in a more diffuse micro-cracking (as already observed

for tensile loading) and is thereby bounded with a higher dissipation of fracture energy as

well as the energy dissipated through friction. A comparison, between our simulation results

and experimental literature, indicates indeed that inertial forces alone, in case of compressive

loading, are sufficient to explain the increase in strength with increasing loading rate con-

versely to what observed for tensile-loading (where material hardening should be added in

order to achieve a higher strengthening).

Specimens subjected to lateral confinement in compression exhibit an increase in peak

strength and strain at maximum stress with increasing confining pressure. However, the

rise in strength is lower than experimental reported values. It has been observed that an

increase in the lateral pressure produces delays in the formation of the first crack cluster and

in micro-cracks coalescence. Dissipation of energy through fracture and friction is also an

increasing function of the applied confinement. The model also showed the importance of

capturing frictional mechanisms, which appear to dissipate a raising amount of frictional

energy with increasing strain and applied pressure (the work done by friction is on the same

range of magnitude as the energy dissipated trough crack opening under compressive load-

ing).

It is however important to emphasize that our model needs further improvement to capture

experiments better. In particular, the ductility of the specimen is less affected by the con-

fining pressure than the one measured experimentally and the post-peak behavior remains

more brittle. This could perhaps be linked to a yet insufficient increase in the amount of

dissipated frictional energy or to the lack of other physical phenomena in the model (such as

compaction). Moreover, the limited chosen 2D setting cannot capture the complexity of 3D

micro-cracking. The cracks density is underestimated since it is easier to reach percolation in

2D than in 3D.

Finally, the meso-mechanical model has been used in simulations across scales to extract

the constitutive behavior avoiding the use of phenomenological macroscopic modeling. In

the developed multi-scale framework, the fracture process that undergoes the coarse scale,

is strictly linked with micro-cracking and localization experienced at the fine scale. Com-

putational homogenization was indeed applied only for the integration points belonging to

macroscopic interface elements. Consequently, the macroscopic debonding behavior was

extracted from the mesoscopic behavior. Thus, the homogenized traction separation law

depends on damaging mechanisms that are governed by the geometry of the meso-structure.
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Since propagation of cracks under mode mixity generally entails a misalignment between

the RVE boundaries and the development of the localized crack, evolving periodic boundary

conditions (which follow the crack orientation) have been adopted. This also reduces the

fine scale dependence on coarse scale orientation of the interface elements, leading to more

realistic failure patterns within the corresponding RVEs.

Two applications to show the applicability of the proposed computational approach to macro-

scopic problems have been selected. The model has been first validated by comparison with

a reference direct numerical simulation on a double cantilever beam. Whereas, as second

application we have reproduced a push-off test, which involves shear transfer through cracks.

The numerical results have shown the capability, of the model, to extract the macroscopic

fracture behavior from physical mechanism occurring at the fine scale and, thus, to predict

the structural response of the tested unit.

8.2 Perspectives

Several aspects, tackled in this thesis, could offer space for further, deeper investigations. One

of the most significant possible development would be to extend the proposed computational

framework to three dimensions. In particular, the meso-scale model would benefit from this

extension. Indeed, as demonstrated by simulations under compressive regime, the proposed

two-dimensional model narrows the chances to capture the full development of crack local-

ization. In 2D the density of the cracks is underestimated since it is easier to reach percolation

than in 3D. It would be interesting thus to quantify the influence of the third dimension on

the simulation results. However, as already observed by other researchers, this extension

is bounded with a higher computational cost (if the meso-structure is to be analyzed with

the same level of accuracy). Therefore, simulations would most probably require the use of

parallel computing.

Besides this, the third dimension might lead us to reconsider the solidity of the assumption

of the chosen transition from debonding to pure frictional sliding. To this end, it would be

appealing to have recourse to experimental techniques to better characterize the strength of

the bonds and the development of cracks at the fine level. For instance X-ray computed to-

mography, which is a non-destructive technique for gathering information about the internal

composition of opaque samples (trough X-rays that cross the material in several directions

producing a set of digital images), would allow analyzing the particles geometry (surface

roughness) and better delineating the ITZs within concrete specimens. In addition, applying

this testing technique to damaged samples, would enable to compare the development of

micro cracks with subsequent localization between experimental and virtual testing.

Another opportunity to increase the accuracy of the modeling, can be offered by the compari-

son with experimental measurements of the bond-strength of the interface between cement

paste and inclusions. It is widely accepted, indeed, that the interface strength is a very impor-

tant factor, which is linked with the formation of micro-cracks patterns between aggregates

and matrix. The clarification of this damage process can thus provide a better knowledge
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about the evolution of the internal structure in concrete during loading. A suitable method,

which can be used to deduce the micro-strength of this transition zone, is represented by

indentation tests.

Moreover, a statistical distribution of the interface-strengths between constituents could be

added into the model in order to represent material defects and thus to get a more pronounced

size effect when the specimen dimensions are varied.

There would be also space to further improve some other computational aspects of the meso-

model. For instance, the selected contact algorithm, which allows us to handle frictional

contact in an explicit dynamic setting trough projection of the penetrating nodes, causes an

increase in the potential energy of the system. It would be interesting to develop a method

that minimizes the amount of injected energy into the system.

Another interesting aspect could be the extension of the model to multi-physics. Including

chemical reaction and heat transfer would give, indeed, access to a wider range of applicability

for the model. Time dependent phenomena such as creep, shrinkage and aging could be

so incorporated in the proposed framework. The effect caused by those time dependent

processes in concrete structures is indeed important, since it affects not only the deformations

but also the stress field and the strength properties of the material itself. Consequently, the

stress redistribution and lower resistance should be considered to make a better assessment

of the load carrying capacity of a structural member.

The meso-scale formulation can thus be enriched in order to include various additional

capabilities. This improvement would also require the transfer of more information across

scales, leading to a parallel enhancement of the up scaling procedure and, subsequently, to

the coarse scale behavior too. On the other hand, the adopted concurrent multi-scale scheme

also offers plenty of possibilities. The chosen up scaling procedure might be combined with

other discretization techniques to enrich the macroscopic displacements field (such as XFEM).

This could probably further reduce the coarse-scale crack orientation dependence on the

chosen macroscopic mesh.

Space for fine tuning is offered by the calibration of the model and careful investigation of

the dynamic effects within the multi-scale framework. This could lead to a possible accurate

investigation of virtual testing series on a wide range of sample sizes, assessing the influence

of the specimens dimensions on peak strength and brittleness (size effect).

Additional improvement to the model could include the extension to more complicated failure

modes and computationally expensive cases. The effect of steel reinforcement on cracks

propagation and structural resistance could be assessed. Moreover, the usually assumed

perfect bond between concrete and steel-reinforcement could be replaced by a more accurate

modeling, which considers the stress field that develops in proximity of the steel-concrete

interface. This could be achieved with the help of a multi-scale representation of the steel-

bars, which could lead to explicitly model the movement between the reinforcement and the

surrounding concrete that can originate in case of severe loading.

To conclude, all the improvements made to the model are aimed to raise the accuracy in

predicting the material’s behavior. Moreover, this mechanical-framework would certainly
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benefit of further developments to extend it to model failure of other brittle materials, whose

behaviors are clearly influenced by their micro-structural composition. We indeed believe that

the understandings, gained through a computer analysis, should be included already during

the design phase of a structure. In addition, computational modeling could help engineers,

during the conception and development of new advanced structural materials, by offering a

virtual testing platform.
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