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Summary

Nowadays, the energy storage systems are being incorporated in many applications.
For example, they are enabling a better integration of renewables. Apart from the
stationary applications, these devices are also presented in mobility applications. The
electric vehicle is a good example of this kind of applications. Energy storage systems
have some limitations, such as safety and lifetime, which are being addressed during the
last years. Nevertheless, these are not the only challenges that need to be faced, as their
optimal rating and exploitation are also critical.

In fact, when an energy storage system is introduced in any application, two main
issues must be solved. On the one hand, the energy storage system must be rated in order
to satisfy the application requirements, mainly the power and energy requirements. On
the other hand, it must be optimally managed in order to make the most of the installed
capacity. Moreover, these two aspects are strongly coupled. In this thesis, it is proposed
to address this problem, opening this coupling and solving the management problem
first (assuming a given energy rating).

Between the different possible energy management strategies, this work is focused on
a rule based control strategy which is optimized by implementing a Dynamic Program-
ming based optimization technique. For that purpose, an implementation methodology
is proposed for a systematic development and implementation of these optimized con-
trol strategies, valid for deterministic and stochastic applications. The cost function
proposed for the optimization technique is based on the stock management theory. In
addition, a new representation of stochastic applications is also proposed, which relates
the energy requirements of an application with their probabilities of occurrence.

The proposed methodology has been applied to a vertical transport application with
energy storing capacity. The proposed control strategy has been tested first in simu-
lation and then experimentally validated in a full-scale elevator with a supercapacitors
based energy storage tank. In addition, a non-optimized rule based control strategy
has also been analyzed, developed, implemented and compared to the optimized control
strategy. These results have validated the proposed methodology and demonstrated that
the optimization techniques based on Dynamic Programming are well-suited for energy
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Summary

management applications, and they achieve an optimal behavior of the system.

Key Words: Dynamic Programming, elevators, energy management, energy storage,
modeling, optimization, stochastic systems, supercapacitors.
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Résumé

De nos jours, les systèmes de stockage d’énergie sont introduits dans nombre d’appli-
cations. Par exemple, ces systèmes permettent une meilleure intégration des ’energies
renouvelables. Au delà d’applications stationnaires, ces systèmes sont aussi présents
dans les applications embarquées. Le véhicule électrique est un bon exemple de ce type
d’applications. Les systèmes de stockage ont des limites, telles que la sécurité et la durée
de vie, qui ont été prises en compte au cours des dernières années. Néanmoins, ce ne
sont pas les seuls défis qui doivent être relevés. En effet, leur dimensionnement ainsi que
leur exploitation optimale sont également des éléments essentiels.

De fait, lorsqu’un système de stockage d’énergie est introduit dans n’importe quelle
application, deux problèmes principaux doivent être résolus. D’un côté, le système de
stockage d’énergie doit être évalué pour satisfaire correctement les conditions d’appli-
cation, spécialement la puissance et l’énergie. D’un autre côté, il doit être géré de façon
optimale, afin d’exploiter au mieux la capacité installée. Ces deux aspects sont de plus
fortement liés, puisqu’un nouveau degré de liberté est ajouté au système. Dans cette
thèse, il est proposé de résoudre cette problématique, en associant le dimensionnement
d’un accumulateur aux considérations liées à la gestion de l’énergie stockée (en supposant
un taux d’énergie donnée).

Parmi les différentes stratégies possibles de gestion de l’énergie, ce travail est basé sur
une stratégie de contrôle établie sur des règles, et mise en œuvre par une technique de
Programmation Dynamique optimale. Dans ce but, une méthodologie d’implémentation
est proposée pour un développement systématique de ces stratégies de contrôle, tant
pour des systèmes déterministes que stochastiques. La fonction de coût proposée par
la technique d’optimisation repose sur la théorie de gestion du stock. Par ailleurs, une
nouvelle représentation des applications stochastiques est présentée, qui met en évidence
les besoins énergétiques de l’application et leurs probabilités d’événement.

La méthodologie proposée a été mise en œuvre sur une application de transport ver-
ticale avec une capacité de stockage d’énergie. Cette stratégie de contrôle a été première-
ment vérifiée en simulation, puis validée expérimentalement dans un ascenseur à échelle
réelle. Ce dernier comprend un accumulateur de type supercondensateurs. Par ailleurs,
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Résumé

un contrôle basé sur une stratégie non-optimisé a aussi été analysé, développé, exécuté
et comparé par rapport à la stratégie de contrôle optimisée. Ces résultats ont validé la
méthodologie proposée et ont confirmé que les techniques d’optimisation basées sur la
Programmation Dynamique conviennent pour les applications de gestion de l’énergie,
permettant un comportement optimal du système.

Mots Clés: Programmation Dynamique, élévateurs, gestion de l’énergie, stockage
d’énergie, modélisation, optimisation, systèmes stochastiques, supercondensateurs.
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Chapter 1. Introduction

Summary
Nowadays, energy storage systems are used in many applications such as the inte-

gration of renewable energy systems and mobility. However, there are many challenges
associated to their use that must be solved yet. Two of these aspects are on the one hand
their optimal rating and on the other hand their optimal management. Indeed both as-
pects are strongly coupled. This chapter introduces the main energy storage technologies,
the dilemma between rating and management and some management strategies.

1.1 Energy Storage Systems

In this section the benefits of storing energy are firstly stated. After that, the main
energy storage technologies are presented and compared. Then, several applications
that include energy storage systems are analyzed. And finally, the rating principle of an
energy storage system is described.

1.1.1 The Benefits of Energy Storing

The introduction of an Energy Storage System (ESS) into an electric application
transforms the concept of the application itself. There are two main reasons for intro-
ducing an ESS in an application. On the one hand, allowing the operation in isolated,
using the ESS as the primary power supply and suppressing the dependence on other
energy supplies. On the other hand, it can provide new functionalities and operation
modes to the application and even an efficiency improvement. Figure 1.1 presents two
examples of applications that incorporate ESS.

The first group is formed by applications where the ESS are used as the primary
power supply such as consumer electronic devices [1], Electric Vehicles (EV) [2] and
some special tramways [3]. In this type of application the main objective is to replace
the main power supply (grid, internal combustion engines or Renewable Energy System).

The applications of the second group combine ESS with other power generation units
in order to increase the functionalities of the conformed combination. The benefits ob-
tained depend on the application (RES integration, domestic and transport applications,
etc). For example, the grid integration of renewable power plants (like wind and solar
farms) can considerably be improved thanks to ESS [5–7]. An appropriately controlled
ESS could filter the power variations due to weather fluctuations (wind, solar radia-
tion, temperature) of renewable power plants and hence allow a more constant power
production [8, 9].

Concerning home applications, the ESS in combination with Renewable Energy Sys-
tems can reinforce a self consumption pattern and even a zero-energy building behav-
ior [10]. Other additional functionalities that could be achieved are the peak-shaving [11]
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1.1. Energy Storage Systems

(a) (b)

Figure 1.1: Examples of applications with energy storage systems: (a) electric vehicle
(Tesla Roadster [4]) and (b) renewables application with energy storing capacity.

and the load leveling by means of power smoothing to reduce the power level contracted
from the utility [12].

In transport applications, ESS have given way to the Hybrid Electric Vehicle (HEV)
and to the Plug-in Hybrid Electric Vehicle (PHEV). In both cases the ESS allow to
minimize and even completely remove fuel consumption and hence maximize the effi-
ciency [13]. In vertical transport applications, with the introduction of ESS the power
smoothing can be achieved and an automatic rescue mode can be implemented for outage
cases [14].

As it has been stated in this section, the application areas and benefits of introducing
energy storage systems are divers, interesting and plausible. For that reason, in the
following section a state of the art and comparison of the most representative and widely
established energy storage technologies is presented.

1.1.2 Energy Storing Technologies

Once the interest of storing energy has been pointed out, in the following the main
energy storage technologies are presented. Basically, these systems can be classified into
three main categories: mechanical, electrical and electrochemical systems.

Concerning the first ones, the mechanical systems, the principle consists in storing
energy as a potential or a kinetic energy, as shown in figure 1.2. The potential energy
can be stored in two different ways. Pumped hydro systems are composed by two water
reservoirs located at different vertical levels which are connected by a duct, and where,
a turbine or group of turbines is installed inside it. The upper reservoir works as the
energy store as the amount of stored energy is directly related to the mass of water at
the top and height between the two reservoirs. The system is discharged when the water
flows from the upper reservoir to the lower reservoir, generating power in the turbines.

3



Chapter 1. Introduction

(a) (b)

(c)

Figure 1.2: Mechanical energy storage systems: (a) pumped hydro, illustration ex-
tracted from [15], (b) flywheel (Beacon Power [16]) and (c) compressed air energy stor-
age, illustration extracted from [17].

In contrast, the system is charged when the turbines pump water from the lower level
to the upper level, consuming power in the turbines.

The Compressed Air Energy Storage (CAES) technology also stores energy as po-
tential energy. In this case, the energy is stored as a pressure difference. The principle
consists in compressing air in a tank using a pneumatic motor and hence consuming
power. After that, the air inside the tank is released through the pneumatic motor and
power is generated. This is a pure CAES application, but these systems are usually
combined with a gas turbine which uses this compressed air in combination with the gas
as fuel to burn it in the turbine and generate power. That means that the pneumatic
motor is only used to compress the air.

Flywheels store energy as kinetic energy. The principle consists in rotating a disk
making it possible to store the energy while the disk is rotating. The amount of stored
energy is directly related to the moment of inertia of the disk (mass and disk morphology)

4



1.1. Energy Storage Systems

(a) (b)

Figure 1.3: Electrical energy storage systems: (a) supercapacitor, illustration extracted
from [18] and (b) superconducting magnetic energy storage, illustration extracted from
[19].

and proportionally related to the square of the rotational velocity. The motor connected
to the disk consumes electric power to increase the speed. In the discharging process,
the speed is decreased as the motor is generating power.

Electrical energy storage systems are capable of storing the energy as a potential
field or as a magnetic field, see figure 1.3. The Supercapacitors (Scaps), also called
Electric Double-Layer Capacitors (EDLC) or Ultracapacitors, store the electrostatic
charge as a potential field. They are composed of two electrodes into an electrolyte
with a separator between them. Although an electrolyte is required, Scaps are not
electrochemical devices due to absence of electrochemical reactions. The amount of
stored energy is directly related to the electrodes surface and inversely related to the
distance between electrodes, similar to capacitors.

The Superconducting Magnetic Energy Storage (SMES) systems store energy as a
magnetic field. They are composed of a coil which is cooled to low temperatures (cryo-
genic levels) in order to become a superconducting material. The resistance is almost
zero, and by injecting direct current through the coil, a magnetic field is created and
energy is stored. The amount of stored energy is directly related to the coil inductance
and is proportional to the square of the direct current. The key point of this ESS is the
operating temperature.

Concerning electrochemical energy storage systems, batteries are the most represen-
tative devices, as it can be seen in figure 1.4. Their operation principle consists in storing
energy in a chemical mode. They are composed of two electrodes (cathode and anode)
immersed in an electrolyte where the chemical reactions create a potential voltage be-
tween electrodes, necessary to make it possible the circulation of electric current. When
each electrode is immersed in different electrolytes, these electrolytes are separated by a
membrane. When the current flows from the anode to the cathode, the battery is being
charged. The battery is being discharged when the current sense is changed, flowing
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Abstract- Vanadium redox flow batteries offer many 
advantages over other energy storage technologies. In the 
context of wind farm operation, these batteries could 
greatly enhance the interaction of intermittent renewables 
with the power system and can provide ancillary services 
such as frequency control. This allows renewable sources to 
behave more like conventional plant. In this paper a novel 
power system model of a Vanadium redox flow battery is 
introduced and validated, demonstrating the importance of 
round trip efficiency modelling. 
It is then proposed to use such batteries as energy storage 
on a large wind farm, connecting through an IGBT SVC. It 
has been clearly demonstrated that such an implementation 
enables fast active power regulation  that permits both the 
wind farm and storage to provide frequency regulation 
services. Several methods of controlling the energy storage 
to provide a power reserve response to large frequency 
deviations are also analysed, including a critical evaluation 
and analysis of the associated losses from such schemes.  

 
Index Terms— Energy Storage, Batteries, Vanadium 

Redox Flow Battery, IGBT SVC 

I. INTRODUCTION 

Intermittent renewable energy sources represent a 
growing share of the power generation capacity in many 
countries around the world. As the impact of renewable 
energy source variability becomes more significant in 
power systems, the case for energy storage grows. 
However, historically the only widespread energy storage 
deployments have been hydroelectric pumped storage 
facilities. Figure 1 illustrates the reason why, with 
Compressed Air Energy Storage (CAES) and pumped 
hydro facilities offering significantly lower costs than 
other technologies. 

0.0001 0.001 0.01 0.1 1 10
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Pumped Hydro
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Supercapacitors

Lead Acid

Lithium Ion

Zinc-Bromine
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Metal Air

Nickel Cadmium

Effective Generation Cost ($/kWh)  
Figure 1: The Effective Generation Costs from 
Storage Systems1,2,3,4,5 

CAES and hydro power are only appropriate in certain 
geological formations and with much of the developed 

world having exhausted their possible locations, there is a 
potentially huge market for new systems that reach 
economically competitive price points. In view of Figure 
1, it is unsurprising that the first new technology to reach 
the market, with a financial model based entirely on grid 
services, was a flywheel6. 

However, the economics of energy storage are 
complex, with multiple possible revenue streams, broadly 
categorised into four uses: 
• Arbitrage – Buying at times of low prices and 

selling during peak pricing. 
• Firming renewable capacity to improve market 

price taking. 
• Grid ancillary services – primary and secondary 

frequency response and voltage control. 
• Upgrade deferral. 
With these possible uses and revenue streams, the 
flexibility of the Vanadium Redox Flow Battery 
(VRFB), which has an effective generation cost that is 
comparable to the flywheel, becomes of technically 
and potentially economically viable. 

II. VANADIUM REDOX FLOW BATTERIES 

History and Chemistry 
Flow batteries or cells are a type of open battery, 

whereby liquid electrolytes are circulated through a 
reaction cell, where separated by a thin membrane, a 
redox reaction occurs and ion transfer through the 
membrane creates a current flow. The VRFB is a product 
of the University of New South Wales in Australia and 
was first proposed in 19867. A VRFB system is shown in 
Figure 2. 

 

 Figure 2: Vanadium Redox Flow Battery System 
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Figure 1.4: Electrochemical energy storage systems: (a) vanadium redox battery, illus-
tration extracted from [20] and (b) lithium-ion battery (Saft Batteries [21]).

from the cathode to the anode. It must be noted that there are many different tech-
nologies of batteries: lead-acid, nickel-metal hybrid, lithium-ion, vanadium redox flow,
etc.

1.1.3 Technology Comparison

Once the main energy storage technologies have been presented, a comparative anal-
ysis between them is carried out. In this analysis, the first step consists in well defining
the parameters in which the comparison will be based on. An energy storage system
is mainly defined by two parameters in order to answer two main questions: “How
Much” and “How”. There are obviously more characteristics to compare the different
technologies (lifecycles or lifetime, capital cost, volume, weight, temperature, safety, ef-
ficiency, etc.), but in the scope of this PhD the comparison will be focused on these two
parameters in order to get a global overview of the differences between technologies.

The first question, “How Much”, is referred to the amount of energy that can be
stored. It represents the capacity of the energy storage system which is commonly
measured in Watt-hours, or in Joules. The second question, “How”, is referred to the
charged/discharged ratio of the ESS. In other words it represents the maximum power
level of the ESS. It is measured in Watts [W ] and it can be positive or negative. The sign
criterion is commonly adopted to represent the charging process of the ESS by positive
values, and the discharging process of the ESS by negative values.

As it can be observed, these two parameters are linked by the time factor. The power
is instantaneous while the energy is the evolution of this power. Figure 1.5 shows the
relationship between the power and the discharge time at rated power of different energy
storage technologies.
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Figure 1.5: Energy storage systems power rating vs. discharge time at rated power,
illustration extracted from [22].

Pumped hydro and CAES are technologies are able to store very large amounts of en-
ergy. Their rated power is also high because their installations are composed of turbines
and gas turbines. In consequence, these technologies are well adapted for applications
characterized by a long discharge time and high power. The batteries are able to store
large amounts of energy, specially the flow batteries and vanadium redox flow batteries,
but their rated power is lower than the one of pumped hydro and CAES technologies.
Other technologies of batteries like lithium, have a larger capacity than flow batteries but
with a lower rated power. To sum up, it can be concluded that these three technologies
(pumped hydro, CAES and batteries) are well-suited for long-term energy applications.

The other three technologies (supercapacitors, flywheels and SMES) are capable of
storing less energy. From the point of view of the rated power, Scaps have a wide range
of operation from low power applications to medium power applications. Flywheels
can store more energy but their power operation range is smaller. Therefore they are
adapted for medium power applications. Finally, SMES are able to inject or absorb high
power, but as it is shown in the figure, their energy capacity is limited. In brief, it can
be concluded that these technologies are designed for short-term energy applications.
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 Abstract – This paper presents the design and development 

process of a supercapacitor storage based elevator. The main 
design aspects of the storage system are described: the storage 
system rating and the DC/DC converter design. Based on this 
design procedure, a supercapacitor based Energy Storage 
System has been developed based on a multichannel buck-boost 
converter. Comparing with a conventional elevation system, the 
designed device is able to achieve an improved efficiency, 
reducing grid-absorbed power and guaranteeing automatic 
rescue. A 5kW prototype has been developed and tested first in 
simulation and then experimentally, both in laboratory and in a 
real elevator, validating the energy storage system design and its 
different operation modes. 
 

Index Terms – Supercapacitor, DC-DC power conversion, 
elevators 

I.   INTRODUCTION 
Current vertical mobility technologies present two 

important weaknesses: on the one hand, they cannot be used 
in case of emergency (which is a significant drawback for the 
evacuation of handicapped people for instance) and on the 
other hand, they present a high energy consumption 
(currently around 3% of the total building consumption but 
with an estimated increase up to 6% in the following years, 
due to the expected decrease of the rest of the building 
facilities [1]). 

In this context, Supercapacitor based Energy Storage 
Systems (SESS) can play a very important role for improving 
the functionalities and the efficiency of conventional 
elevation systems [2]. Several enhancements can be expected 
from high dynamics energy storage system connected to the 
DC bus of an elevation system:  

1. Grid peak power reduction: absorbed traction power 
can be partly derived from the SESS and consequently 
grid power peaks can be reduced.  

2. Automatic rescue mode: in case of grid unavailability 
the stored energy can be also used for automatic 
rescue purposes. 

                                                           
This work was supported in part by the Spanish Center for Industrial 

Technology Development (CDTI) in the context of the Technology Research 
Consortium (CENIT) called “Net0Lift, Research on Net ZERO Elevation 
Technologies”. 

3. Efficiency improvement: The SESS can be charged 
from the energy regenerated during the braking of the 
motor. 

The objective of this paper is to present a supercapacitor-
based elevation system designed and developed by 
IKERLAN-IK4 and ORONA, in the framework of the 
Spanish CENIT Net0Lift project [1]. The paper is mainly 
focused on the design of the energy storage system (taking 
into account its different operation modes) and its associated 
power converter. 

II.   DESIGN REQUIREMENTS 
Fig. 1 presents the simplified block diagram of the 

considered supercapacitor-based elevation scenario. As it can 
be observed, the SESS must be connected to the DC bus of a 
commercial motor drive composed of the following elements: 
a three-phase rectifier, a braking circuit (with a crowbar 
resistor) and a three phase inverter. 

 
Fig. 1 Elevation system with energy storage. 

The SESS must supply the following features for an 
ORONA M33 elevator with 8 passengers, a speed of 1 m/s 
and a 6 floor building: 

1. 40% reduction on the maximum grid power, allowing 
a rating reduction of filters, switchgear and protection 
elements. 

(c) (d)

Figure 1.6: Applications with energy storing capacity: (a) wind power and ESS based
on CAES, illustration extracted from [23], (b) HEV and battery based ESS, illustration
extracted from [24], (c) elevator and Supercapacitors based ESS, illustration extracted
from [25] and (d) solar PV and battery based ESS, illustration extracted from [26].

1.1.4 Representation of Energy Storing Capacity Applications

Once the benefits of storing energy stated and the main technologies of ESS pre-
sented, in this section four common applications (depicted in figure 1.6) are analyzed.
The objective is to show that all the applications can be represented by the same general
block diagram.

In the first application a wind farm is combined with a CAES based ESS. The wind
turbines generate power that can be injected to the grid, or stored in the CAES in order
to use this energy in the on-peak hours. The CAES can also be charged through the
grid, during the off-peak hours.

The second application is a hybrid electric vehicle with a battery system. The electric
motor of the vehicle is powered by an Internal Combustion Engine (ICE) and an energy
storage system based on batteries. The batteries are charged by the ICE, as well as
by the electric motor during the braking process, improving the efficiency of the whole
system.
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Energy Storage 

System

Power Source Application

Figure 1.7: General block diagram representation of applications with energy storing
capacity.

The third application is a vertical transport application, composed of an elevator
and a supercapacitor based ESS. The elevator is powered during the traction process by
the grid and the energy storage system. On the contrary, in the braking process, the
regenerative power is stored in the Scaps that can be also charged from the grid in order
to add new functionalities to the system (i.e. automatic rescue mode).

The last example is another RES system composed of a solar Photo Voltaic (PV)
plant accompanied by an ESS based on batteries. The batteries are charged by the PV
panels and they are discharged through the loads (considering a stand-alone application).

These four different examples or systems can be represented by the same generic
scheme: a power supply accompanied by an ESS and the application. It should be
pointed out in this PhD the application is referred to a part of the whole system, en-
compassing the part of the system that must be powered or whose power must be
absorbed, such as, for example active or passive loads. Indeed, the system consists of a
primary power supply responsible for satisfying the power and energy requirements of
the application in combination with an energy storage system. This ESS can be charged
through the primary power supply, or by the application (in cases where the application
is capable of generating power). For this reason, a general block diagram, shown in figure
1.7, is proposed in order to represent all these systems with energy storage capacity. The
three blocks represent the main elements of the system: Power Source, Energy Storage
System and the Application.

In order to clarify and validate the proposed representation, the main elements of
the four examples have been identified and shown in Table 1.1. It can be concluded
that the proposed general block diagram is valid to represent all these energy systems
independently of the application and ESS technology.
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System Power Source Energy Storage System Application

Wind power Aerogenerator CAES Grid
HEV ICE Battery Motor
Vertical transport Grid Supercapacitors Elevator
Solar PV power PV panel Battery AC & DC Loads

Table 1.1: System elements identification in the general block diagram.

1.1.5 Rating of Energy Storage Systems

In previous sections the interest of storing energy has been stated, the main tech-
nologies of ESS have been presented and the applications where ESSs are introduced
have been analyzed. Finally, in this section, and based on the general block diagram
shown in figure 1.7, the basic steps of energy storage systems rating are presented.

The rating process of an ESS considered in the scope of this PhD is based on a
methodology applied to supercapacitors [27] which can be extended also for other tech-
nologies. The methodology consists of three steps, as it can be seen in figure 1.8. In the
following, these steps will be presented.

System Requirements Definition

In this step the requirements and constraints of the system are defined. The require-
ments are referred to the application power and energy needs. The power requirements
are defined by the maximum power level injected by the power source and by the max-
imum power level injected or absorbed by the application. In consequence, the energy
requirements are related to the evolution of these two power profiles over time. Once
these values are defined, and according to the figure 1.5 and as a first approximation,
the adequate energy storage systems technologies can be identified.

System Requirements Definition

Energy Storage Systems Rating

Family of Solutions Verification

Figure 1.8: Methodology for an energy storage system rating.
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Type Parameter

Requirement Power and energy.
Constraint Voltage, volume, mass, capital costs, lifecycles, op-

erating temperature, efficiency...

Table 1.2: Summary of requirements and constraints of an energy storage system rating.

After that, the constraints are analyzed and applied to limit the variables of the rating
process. These constraints are related to the characteristics of the application, such as
electrical parameters (voltage), mechanical parameters (volume and mass), capital costs,
etc. Table 1.2 summarizes the objective of this step.

Energy Storage Systems Rating

According to the defined requirements and constraints, the second step consists in
the rating process in order to obtain a solution or a family of potential solutions. It is
divided into two parts: characterization and rating. The characterization of ESS devices
consists in obtaining the main parameters of commercial energy storage devices. The
subsequent rating process consists in defining a commercial device or a combination
of devices, connected in different configurations (in series/parallel), which accomplishes
previously defined requirements and constraints [28]. The resultant equivalent energy
storage systems are the potential solutions of the rating problem. Table 1.3 summarizes
the objective of this step.

Family of Solutions Verification

In the third and last step of this methodology, the solution or family of solutions are
verified (see figure 1.9). The objective is to define the ESS that will be installed in the
application. For that, a comparison of all the equivalent energy storage systems that
fulfill the requirements and constraints is carried out. At this point, two ways, the last
step or the dashed arrow to the first step, are identified as it has been presented in figure
1.8. On the one hand, the definitive energy storage system can be obtained. In that case,
the rating process is finished in the last step. On the other hand, new constraints can
be redefined in order to reevaluate the rating process and get a new family of solutions
that improve the results of the previous ones, going back to the first step and becoming
an iterative rating process.

Task Description

Characterization To extract the main parameters of commercial ESS devices.
Rating To obtain a family of equivalent energy storage systems.

Table 1.3: Summary of tasks required in order to carry out the rating process.

11



Chapter 1. Introduction

Power Energy

Volume ...

Figure 1.9: Family of potential solutions for an energy storage system rating.

1.2 The Dilemma of an Energy Storage System: Rating
vs. Management

In this section the dilemma of energy storage systems is presented and analyzed.
When an ESS is introduced into an application, two important questions arise. One it
is related to the rating of the storage system which has been addressed in the previous
section. And the other one it is related to the management of the storage system since a
new degree of freedom is introduced in the control of the system in order to satisfy the
application requirements. As it will be proved both aspects (rating and management)
are strongly coupled, and how, these aspects cannot be simultaneously addressed. In
this section this coupling is analyzed and a solution is proposed to address it.

1.2.1 The Representation of the Problem

In the rating process of an ESS, the system requirements and constraints are firstly
defined. Regarding to the requirements, they are composed of power and energy values.
As it has been explained in the previous section, power requirements are defined by the
maximum power level injected by the power source and by the maximum power level
injected or absorbed by the application. The energy requirements are obtained from the
power evolution over time.

12



1.2. The Dilemma of an Energy Storage System: Rating vs. Management

0 100 200 300 400 500
0

1

2

3

 t [s]

P
[k
W

]

(a)

0 100 200 300 400 500
0

1

2

3

 t [s]

P
[k
W

]

(b)

0 100 200 300 400 500
−2

−1

0

1

2

Pmax

Pmin

 t [s]

P
[k
W

]

(c)

0 100 200 300 400 500
0

50

100

150

200

Emax

 t [s]

E
[k
J
]

(d)

Figure 1.10: Analysis for an ESS rating where the power source and application power
profiles are well-known: (a) power source power profile, (b) application power profile,
(c) ESS power profile and (d) ESS energy profile.

Figure 1.10 shows an example of the power and energy requirements of a system
where the power source and application power profiles are well-known and the power
source cannot be controlled. In this case the ESS operates as a buffer, storing energy
when the power generation is higher than the consumption (positive values) and injecting
power when the generation is lower than the consumption (negative values). From the
ESS power profile, the maximum and minimum power values are obtained (Pmax, Pmin)
and from the ESS energy profile (the integral of power over time), the maximum energy
capacity is identified (Emax).

Once an ESS is rated and included in a system, it must always be managed as
the amount of energy to be charged/discharged, or alternatively the state of charge of
the system must be defined. In this example the ESS is managed in order to achieve
the load balancing by means of compensating the difference between the generation and
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Figure 1.11: Analysis for an ESS rating where the application power profile is well-
known and the power source and ESS are controlled: (a) power source power profiles,
(b) application power profile, (c) ESS power profiles and (d) ESS energy profiles.

consumption. The problem of rating arises when the power source is also manageable. In
this case, the rating of the ESS is more complex since the application requirements must
be satisfied by the combination of the power source and the energy storage system. In
fact, ESS requirements (power and energy) are influenced by the management strategy
of the power source and on ESS adopted.

Figure 1.11 shows two energy storage system requirements for two different man-
agement strategies of the power source and ESS, while the application power profile
is maintained. The capacity requirement (Emax) is lower for the management strat-
egy 1 than for the management strategy 2. On the contrary, the power requirements
(Pmax, Pmin) are more restrictive in the case of management strategy 1.

From these results it can be concluded that the rating of an energy storage system
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RATING MANAGEMENT 

Figure 1.12: The representation of the energy storage system dilemma: rating vs.
management.

for a specific application with particular power and energy requirements is dependent
on the power source and ESS management strategy adopted.

At the same time, the management strategy is dependent on some of the parameters
of the ESS, such as its State Of Charge (SOC), or simply, the capacity of the ESS (1.1).

Power Source = f(SOC,Capacity, V oltage, Lifecycles · · · ) (1.1)

It is therefore shown that both aspects, rating and management, are coupled. The
close loop created between both aspects and that represents the dilemma of an energy
storage system is depicted in figure 1.12. Once the management strategy is defined, the
requirements for the ESS rating can be determined. At the same time, the management
strategy is based on ESS rating parameters.

It must be pointed out that this conclusion is valid both for applications where the
application requirements are known in advance as well as for applications where these
requirements are unknown (i.e. hybrid electric vehicle).

1.2.2 The Approach to Solve the Problem

In this section a solution to the coupling problem between the rating and the manage-
ment of an ESS is proposed. It must be remarked that both aspects cannot be addressed
simultaneously. Consequently, the closed loop shown in figure 1.12 should be opened.
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RATING MANAGEMENT 

Figure 1.13: The approach to solve the dilemma of energy storage systems.

In this context, there are two possibilities to proceed. The approach adopted in the
scope of this PhD consists in tackling the management aspect before the rating. The
proposal is depicted in figure 1.13. According to that, first of all the management is
developed regardless to the accurate values of the ESS and then the rating requirements
are specified. It must be pointed out that the definition of some basic ESS parameters
is necessary to begin with the management strategy development.

The main reason for adopting this approach is that the rating methodology is al-
ready developed and it is well-known, as it has been presented in the previous section.
Thereby, if the system requirements are correctly defined, the rating can be successfully
developed. In contrast, the management strategies are usually customized for each en-
ergy application. In the literature, there exist several management strategies oriented
to applications including energy storage, but there are no formalized methodologies for
their development and implementation. In addition, the lack of consideration of the
management strategy in the rating process could lead to an oversized ESS.

Therefore, this PhD is focused on the analysis and the proposal of optimized energy
management strategies for applications with energy storing capacity.
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Energy Management

Power Management

Power 

Electronics

TIME

Figure 1.14: Representation of the hierarchical control and management of a power
electronic system, illustration extracted from [32].

1.3 Energy Management Strategies

In this section, a review of different Energy Management Strategies (EMS) is pre-
sented. The review is complemented with an analysis of the optimization methods and
techniques that can be implemented in order to get an optimal behavior of EMS [29,30].
But first of all, the framework and the objectives of an EMS are stated.

In [31] Rosario et al propose the hierarchical structure depicted in figure 1.14 to
represent the control and management structure of any manageable power device. This
structure is known as Modular Power and Energy Management Structure (MPEMS).

The energy management level is located at the top of this hierarchy and its objective
is to define the long-term evolution of the system, i.e., to define the strategy. This is the
reason of its lowest dynamics (in the order of few seconds). This control level defines the
control parameters such as the operation modes, as well as the limits and constraints
for the Power Management level.

The main objective of the Power Management level is to define the medium-term
evolution of the system, i.e., to define the policy. It defines the power references for the
next control level in order to carry out the strategy set in the upper level. The time
response of this control level is faster than the one of the Energy Management level (in
the order of few milliseconds).

17



Chapter 1. Introduction

Level Objective Output Timing

Energy management Strategy Control parameters Long-term [s]
Power management Policy Power references Medium-term [ms]
Power electronics Process Modulation Short-term [µs]

Table 1.4: Main characteristics of the MPEMS hierarchy.

Finally, the objective of the power electronics level, which is at the bottom of this
hierarchy, is to physically manipulate the interface, i.e. to execute the process. This
control level includes all the control loops from the power references to the modulation
of the converter and it acts is in the order of microseconds.

This hierarchy can also be analytically represented in order to identify the different
links between control levels. The link between the power management level and the
energy management level is represented in equation (1.2). The energy is the evolution
of the power over time. For this reason, the energy management level should be slower
than the power management level.

E =
∫
P dt (1.2)

The link between the power management level and the power electronics level is
given by equation (1.3). Indeed, the power is the product of the voltage and the current
that flows through a power converter. These variables are controlled by inner control
loops implemented in the power electronics level.

P = V · I (1.3)

The main characteristics of the hierarchical structure of the control and management
of power electronics applications (MPEMS) are summarized in table 1.4.

1.3.1 Review of Energy Management Strategies

The main energy management strategies are presented and analyzed in this section.
In particular four different control strategies are considered: rule based strategy, cuttoff
frequencies, Fuzzy Logic and Artificial Neural Network.
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SOC     > 75%

Pmax  =  4kW Pmax  =  2kW

Yes No

Figure 1.15: Rule based strategy to control the state of charge of an energy storage
system.

The strategies based on rules are algorithms where decisions are taken on the basis
of the current state of the system. The Rule Based Strategy (RBS) states a set
of conditions, commonly implemented like IF-CONDITION-THEN sentences, in order
to set the control parameters. These strategies are characterized by a combinational
behavior, in other words, the decisions are adopted regarding to the current information
of the application, neglecting the past information or future estimations related to the
evolution of the system. A typical structure of these kinds of strategies is shown in figure
1.15.

This kind of energy management strategies is widely implemented. In some Photo
Voltaic applications for instance the energy management is based on relatively simple
strategies. The EMS checks the difference between the power generation of the PV
and the load power in order to set the control parameters for the energy storage system
[33,34]. These strategies are more complex in the case of elevator or traction applications
with Supercapacitors based ESS. In those applications the EMS considers the State Of
Charge of the ESS and the operation mode of the elevator (traction or regenerative) to set
the control parameters [25, 35]. Finally in Electric Vehicle, Hybrid Electric Vehicle and
Plug-in Hybrid Electric Vehicle applications the control strategy is even more complex.
The EMS sets the control parameters taking into account several conditions such as
the SOC of the ESS, the power requirements of the vehicle, the vehicle speed and the
operation mode (accelerating or braking), etc [36,37].

These energy management strategies require a low computational cost, and in conse-
quence, they are suitable for an online implementation. They can also be developed and
implemented relatively fast. In contrast, they require a wide knowledge of the applica-
tion to set the conditions in an adequate manner. Besides, they are hardly appropriate
for a large number of control parameters since the set of conditions can increase hugely
if all possible combinations must be considered. Concerning their robustness, these
strategies are subject to the model of the application. In consequence, if the system is
modified, the energy management strategy could not work correctly. Moreover the self
learning ability is totally dismissed.
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II. FC/BATTERY/SUPERCAPACITOR HYBRID POWER SOURCE 

A. Structure of Hybrid Power Source 
There are many possible structures to connect a main 

source and two storage devices with the utility dc bus. One of 
the good solutions is depicted in Fig. 1. It is composed of a 
step-up converter for a FC stack, and two bidirectional 
converters for battery and supercapacitor modules. It is the 
most sufficient configuration when comparing mass, volume 
and cost, as detailed in [15], [16]. 

For reasons of safety and dynamics, these converters are 
primarily controlled by inner current loops, classically [11], 
[14]. These current loops are supplied by three reference 
signals: iSCREF, iBatREF, and iFCREF, generated by the hybrid 
control algorithm presented hereafter. 

 

B. Control Algorithm of Hybrid Power Source 
To manage the energy exchanges between the dc bus, the 

main source and the storage devices, three operating modes 
(or states) can be identified here again [11], [14]: 

1)  Charge mode, in which the main source supplies 
energy to the storage devices and to the load. 

2)  Discharge mode, in which main source and storage 
devices supply energy to the load. 

3)  Recovery mode, in which the load supplies energy to 
the storage devices. 

As mentioned earlier, FC has slow dynamics. It can be 
compensated by faster dynamics from storage devices. 
Batteries have the best energy density but a bad power 
density and provide slow dynamic cycles. Contrary to 
batteries, supercapacitors have lower energy density (1 000 
times lower) but higher power density (100 times higher) and 
provide very fast dynamic cycles (close to 1 ms) [1], [11]. 

Furthermore, battery lifetime is limited, providing few 
cycles (typically 1 000 cycles for a lead-acid battery or 2 000 
cycles for a modern Li-Ion battery). Battery lifetime depends 
on the operating temperature (about 20°C), on the number 
and on the depth of discharge cycles. To optimize the lifetime 
of the batteries, it is advisable to use them only for slow 
dynamic power cycles. On the other hand, supercapacitors 
can provide more cycles than batteries (virtually infinite 
cycles) [1] and are well suited to very fast dynamic cycles.  

The energy management strategy here based on a 
frequency approach aims at distributing the global power 
mission of the vehicle into the sources in such a way that each 
source is optimally used. According to the three points 
mentioned above embedded energy sources can be classified 
in the frequency space as portrayed in Fig. 2. The FC 
generator is controlled as the lowest frequency power source. 
Supercapacitor is the highest frequency power source, which 
provides the fast dynamic power supply [17], [18]. 

The proposed algorithm here lies in using the 
supercapacitor (the fastest energy source), for supplying the 
energy required to achieve the dc bus voltage regulation. The 
batteries are controlled as the power source (with dynamic 
limitations, f2) that supplies energy to supercapacitors to keep 

them charged. Then, the FC is functioned as the generator 
(with dynamic limitations, f1) that supplies energy to batteries 
to keep them charged. 

Consequently, the supercapacitor converter is driven to 
realize a classical dc bus voltage regulation. The battery 
converter is driven to maintain the supercapacitors at a given 
state-of-charge, here the supercapacitor voltage regulation. 
Then, the FC converter is also driven to maintain the batteries 
at a given state-of-charge, here the battery voltage regulation. 

 
1)  DC Bus Voltage Control Loop 
The first one is presented in Fig. 3. It uses the dc bus 

capacitive energy EBus as state variable, and the 
supercapacitor delivered power as command variable, to 
obtain a natural linear transfer function for the system [11]. If 
the losses in the FC, battery, and supercapacitor converters 
are neglected, the dc bus capacitive energy is given versus 
supercapacitor power pSC, battery power pBat, FC power pFC 
and load power pLoad by the following differential equation: 

 
( ) ( ) ( ) ( ) ( )tptptptp

dt
tdE

LoadFCBatSC
Bus −++=          (1) 

 
which shows that the transfer function “EBus/pSC” is a pure 
integrator [11]. The bus energy measurement is carried out by 
means of the following classical calculation: 
 

( ) ( )tvCtE 2
BusBusBus 2

1
⋅⋅=           (2) 

 
where CBus is the total capacitance of capacitors at the dc bus. 
It enables the generation of both bus energy reference and bus 
energy measurement, through dc bus voltage reference vBusREF 
and dc bus voltage vBus, respectively. Supercapacitor power 
reference pSCREF is generated by means of a proportional–
integral (PI) controller. So, a first-order filter is used for EBus 

 
 
Fig. 2.  Classification of the embedded sources in the frequency space. 
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Fig. 3.  DC bus voltage regulation loop. 
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Figure 1.16: Energy management strategy based on the cuttoff frequencies for a hybrid
energy storage systems composed of fuel cell, battery and supercapacitor, illustration
extracted from [40].

In energy management strategies based on cutoff frequencies (COF) the control
parameters are set according to the dynamics of the power consumed by the application
(loads) and the capability of response of the different power sources (power supplies and
energy storage systems). The idea is to divide the power requirements of the application
in the frequency domain, implementing low-pass filters in order to filter the instanta-
neous system power consumption. Then, the control parameters are set according these
requirements and taking into account the dynamics of power sources. The objective is
to avoid any damage in the power sources. Figure 1.16 illustrates this EMS.

COF strategies are usually implemented in applications composed of hybrid energy
storage systems. A possible application can be a hybrid vehicle where the electric motor
is supplied by a combination of a fuel-cell, a battery and supercapacitors [38–40]. In
that case, the slowest dynamics is assigned to the fuel-cell, the middle-term dynamics
to the battery and the fastest dynamics to supercapacitors. COF can also be imple-
mented in wind power applications with energy storage systems composed of batteries
and supercapacitors, assigning low dynamics to the batteries and high dynamics to the
supercapacitors [41].

These energy management strategies must be executed online since they are com-
posed of filters. They require a relative low computational cost because digital filters
can be implemented in a control unit based on a digital signal processor. The key point
and difficulty of these control strategies is how to define the bandwidth of each filter.
For that, the model of each power source must be known in order to be able to define
its dynamics. In this case the number of control parameters is equal to the number of
filters or, the number of power sources. The robustness is tightly tied to the behavior of
power sources. If they are time invariant, which is unlikely to happen, the EMS will be
robust. The self learning ability is dismissed because once the filters are developed and
implemented, they cannot be modified.
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Figure 1.17: Fuzzyfication process of the state of charge of an energy storage system in
a fuzzy logic based EMS.

The energy management strategies based on Fuzzy Logic (FL) are capable of set-
ting configuration parameters for situations where the information has a high uncertainty
degree. The information cannot be absolutely quantified and it is relatively quantified
between two values (known as heuristics rules), becoming a subjective information. This
control strategy is divided in three steps. First, the subjective information is extracted in
the fuzzification process from measurable variables, as shown in figure 1.17. Then, this
subjective information is compared to heuristic rules. Finally, the defuzzification process
is carried out, setting the control parameters from the obtained result in heuristic rules.

These control strategies are used in applications with complex models or which are
difficult to model. They are extensively used in HEV vehicles or buses where the energy
storage system is composed of different technologies (fuel-cell, batteries and supercapac-
itors) and the application requirements, from an electrical point of view, are difficult
to define. In these cases the objective of the EMS is to define the control parameters
according to the operation modes, SOC of the ESS and trying to achieve the maximum
efficiency of the whole system [42–44]. They can also be used in RES applications (wind
and photovoltaic) [45,46] as well as in load regulation applications [47].

These energy management strategies are generally executed online. They require a
low computational cost to carry out the three steps of the algorithm. The fuzzification
and defuzzification process are composed of arithmetic operations and the heuristic rules
are implemented with IF-CONDITION-THEN sentences. Nevertheless, it is required a
wide knowledge of the application to set the heuristic rules since the decisions are adopted
taking into account subjective information. These strategies are able to manage several
control parameters but the heuristic rules increase exponentially. The main advantage
of these algorithms is their robustness, because they use low precise and subjective
information. In addition to that these algorithms have optionally the self learning ability.

The energy management strategies based on Artificial Neural Network (ANN)
are based on a computing methodology inspired on biological models. These control
strategies are composed of a high number of simple elements, known as nodes, that are
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Figure 1.18: Representation of the layers of an Artificial Neural Network based energy
management strategy.

interconnected. These nodes process the information in terms of their dynamic state as
an answer to the external inputs. These nodes are grouped in different layers, and in
each layer, the nodes are not interconnected. An ANN consists of three layers (input,
hidden and output), as it can be seen in figure 1.18.

The characteristics of artificial neural networks make it possible their use in several
applications. Typically, neural networks have been implemented in fields such as pat-
tern recognition [48], prediction problems [49], or robotics [50]. In energy management
applications, they have been implemented in applications composed of hybrid energy
storage systems [51, 52] and for load profile prediction purposes [53]. It is also possible
to complement them with FL strategies, using the FL to solve the energy management
problem and the ANN to solve the prediction problem [54].

These energy management strategies are executed online with a fast time response.
However, the computational cost is increased if the number of layers and their nodes is
high, since they are composed of arithmetic operations. The key point of these control
strategies is that they must be trained before their implementation. To do so, all possible
situations where the EMS can be found should be considered. They are appropriate for
applications with complex models or systems that are difficult to model. In contrast,
the casuistry of these systems must be known in advance in order to train the ANN and
this training process can be long. The main advantage of these control strategies is their
robustness and the fact that, they can incorporate the self learning ability.

1.3.2 Optimization Techniques for Energy Management Strategies

In the previous section, some examples of energy management strategies used in ap-
plications including ESS have been presented and analyzed. These management strate-
gies are capable of controlling the applications, but they do not guarantee an optimal
behavior of the system. The optimal behavior of the application could be achieved by
applying optimization methods to the management strategies. In this section the main
optimization methods applied to energy management strategies are described.
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Figure 1.19: Representation of an optimization process composed by the main three
elements.

All the optimization techniques are composed of three elements:

• Objective or cost function: It is a measure element that is used to quantify the
quality of the results or solutions. All the calculated solutions are compared in
order to minimize or maximize this cost function and define the best solution for
the optimization problem.

• Variables: They are the elements of the system that can be modified by the opti-
mization process in order to get a family of potential solutions of the optimization
problem.

• Constraints: They represent the restrictions or bounds of the system variables and
are represented as inequations or equations.

The optimization process is applied as follows. The optimization method modifies
the variables of a system that are subjected to constraints, and as a result it gets a
family of possible solutions. These solutions are later quantified by means of evaluating
the defined cost function, as it is shown in figure 1.19.

Depending on the implemented energy management strategy, the objective of the
optimization process could be different. In the case of rule based control strategies,
these optimization methods are usually implemented in order to define thresholds of
conditional sentences. For cutoff frequencies, they are implemented to define the band-
widths of low-pass filters for each energy storage system. In the case of fuzzy logic based
strategies, they are used to optimize the fuzzification process. And finally in ANN based
control strategies, they are usually used to try to build the best architecture of layers
and nodes.
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Figure 1.20: Classification of optimization methods for energy management applica-
tions.

In order to complete the analysis of optimization methods, in the following, the main
optimization methods applied in energy storage applications are described. Optimiza-
tion methods can be classified according to various criteria, as it can be seen in figure
1.20. From an analytical approach, the optimization can be carried out using Linear
Programming (LP) for applications where the optimization problem is formulated as a
linear function (cost function and system model), variables are real and positive, and
constraints are also linear [55]. The major problem is that the system model must be
linear or it must be linearized, decreasing the accuracy of the optimization problem. In
applications with energy storing capacity it is more suitable to use the Mixed Integer
Linear Programming (MILP) [56, 57] when the problem can be formulated linearly. It
is a variation of the LP method. The difference is that variables are real, positive, and
some of them are necessarily integer. In case the application model can be obtained but
it is strongly nonlinear and neither can be linearized, or simply, the objective function
or constraints are nonlinear and variables are real and positive, the Nonlinear Program-
ming (NLP) could be the solution [58, 59]. There is particular case of the Nonlinear
Programming where the cost function form is already defined (Lagrange multiplier).
In that case, the Quadratic Programming (QP) is able solve the problem faster than
NLP [60,61].

These last optimization methods are related to the analytical formulation of the
problem and they are capable to get an optimal solution or a sequence of independent
optimal solutions. However, there are optimization problems which require a solution
formed by a sequence of dependent decisions, getting an optimal behavior of the se-
quential problem. These applications are classified in function of the knowledge of the
system evolution, i.e., according to the system model. If the system evolution cannot be
known in advance, being totally unknown or only it can be described from a statistical
point of view, it is known as a stochastic system. In contrast, if the system evolves over
time in a totally known manner, i.e. its statistical value is always equal to one, it is a
deterministic system.
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For deterministic systems, the Model Predictive Control (MPC) is well suited, using
a dynamic model of the application and evaluating a finite horizon of decisions [62, 63].
The Dynamic Programming (DP) or Deterministic Dynamic Programming (DDP) is
also implemented for these kinds of optimization problems [64, 65]. The principle is to
break the sequential problem into subproblems, and then, each subproblem is solved in-
dividually. The main advantage is that the computational cost is decreased because each
subproblem is solved once, and the global solution, is the sum of subproblem solutions.
In contrast, memory requirements are increased. In the case of stochastic systems,
the Dynamic Programming can also be implemented, known as Stochastic Dynamic
Programming (SDP). It is solved similarly to Deterministic Dynamic Programming, in-
corporating the statistical description of the system or introducing a Markov decision
process of the application [66, 67]. The Game Theory can be implemented, identifying
the application and energy storage systems as players and trying to find the best strategy
in order to define the best interaction between players for solving the problem [68,69].

When the optimization problem is strongly complex and nonlinear, the best option
is to use a Genetic Algorithm (GA) [70–72]. They belong to the evolutionary algorithms
(stochastic methods of optimization), solving the problem inspired by natural evolu-
tion. Genetic Algorithms are capable to find the optimal solution, or at least a very
good approximation for different problems. However, these techniques require a high
computational cost.

1.4 Motivation of the Present Work

The main challenges associated to the installation of energy storage systems in dif-
ferent applications are their rating and their management, and both aspects are strongly
coupled. In the scope of this PhD, the approach proposed to open this coupling consists
in first of all addressing the management aspect and then carrying out the rating by
applying an already known procedure and previously presented. The main reason for
adopting this approach is that there is a lack of systematic formalized methodologies
for the development and implementation of energy management strategies oriented to
applications including energy storage.

In this context, the objective of this PhD is to propose a methodology to adapt
and implement a particular energy management strategy for applications with energy
storing capacity. The proposal includes an optimization procedure of the management
strategy, aimed at reaching the optimal behavior of the application. The selected energy
management strategy is based on rules and is optimized by a Dynamic Programming
based optimization technique. The proposed methodology has been applied to a vertical
transport application including energy storage and experimentally validated in a full-
scale elevator.
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1.5 Structure of this Document

Regarding to the structure of this document, apart from this introductory chapter
where the problem of applications with energy storing capability is explained and the
motivation of the work is presented, the document is composed by another four chapters.

In the second chapter an implementation methodology for energy management strat-
egy based on Dynamic Programming is proposed. Firstly this optimization technique
is introduced. After that, its application in systems with energy storing capacity is
presented, and besides, the implementation methodology is also proposed. Addition-
ally, the cost function evaluated by the optimization technique is presented and a new
modeling for stochastic applications is proposed, relating the energy requirements of the
application with its statistical description.

In the third chapter the case study selected for this PhD is presented. It is an
elevation system with energy storing capacity based on Supercapacitors. First the intro-
duction to the elevation application is carried out. After that, the system modeling is
developed, applying the energetic macroscopic representation, analyzing the electrome-
chanical conversion system and carrying out the proposed representation for stochastic
applications. Finally, the implementation methodology is applied to the elevator and
simulation tests are carried out. Additionally, a simple rule based strategy is also im-
plemented in order to compare with the optimized control strategy.

In the fourth chapter the experimental validation on a full-scale elevator is pre-
sented. Firstly the test bench is presented. Then, the results of three experimental
tests are presented in order to validate the optimized energy management strategy. The
methodology and the energy management based on Dynamic Programming is experi-
mentally validated, demonstrating a superior behavior compared to a non-optimized but
conventional rule based control strategy.

In the fifth and last chapter of this document the conclusions and contributions
extracted and drawn from this thesis are presented and some possible future works are
presented as well.

26



2
Dynamic Programming Based
Energy Management Strategy



Chapter 2. Dynamic Programming Based EMS

Summary
In this chapter a new methodology to develop and to implement Dynamic Program-

ming (DP) control strategies is proposed. The methodology consists of five steps, in which
the cost function is based on the stock management theory. In addition, a new represen-
tation for stochastic applications, relating the energy requirements of an application and
the probabilities of occurrence, is also proposed in this chapter.

2.1 Introduction to the Dynamic Programming

The Dynamic Programming optimization method was originally introduced by R.
Bellman in 1952 [73]. One year later, this technique was firstly introduced for solving
problems known as “bottleneck” problems [74], where the goal was to define an optimal
decisions policy. The first book regarding to the Dynamic Programming was published
by R. Bellman in 1957 [75], in which “the principle of optimality” was presented and
the “Dynamic Programming Algorithm” was formulated. Some years later, the IEEE
association recognized this field as a system analysis and engineering topic. Since then,
this optimization method has been widely used in computer science [76, 77], economics
[78,79] and engineering [80,81].

The objective of the Dynamic Programming is to solve a decision problem in an
optimal way, achieving an optimal decision policy. This optimization method can be
applied to deterministic or stochastic systems, to discrete or continuous time systems
and to finite or infinite horizon problems.

The Dynamic Programming optimization method splits a large decision problem
into smaller subproblems. The principle of optimality states that any optimal policy
has the property that, whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the
first decision [75]. Taking into account this principle, any large decision problem can
be solved step by step evaluating all subproblems, and finally, obtaining the optimal
decision policy.

The solution is achieved implementing the Dynamic Programming algorithm, which
is a recursive manner to solve the problem. The main advantage of this method is that
the computational cost is relatively low because the intermediary operation results are
stored in a table, and later, they are used for the following decisions (due to the coupling
between all the decisions of the sequence).

When a decision problem is solved by the Dynamic Programming optimization
method, four fundamental objects must be identified and defined, as it is outlined in
table 2.1. These four objects define how long the problem is (the dimension), in which
state the system is (the state variables), which the optimal system evolution should
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Object Description

Dimension It is the size of the decision problem.
State variable(s) It defines the current situation of the system.
Decision variable(s) It defines the desirable evolution of the system.
Objective function It quantifies the cost of the possible decisions.

Table 2.1: Main objects of a system controlled by a DP based strategy.

be (the decision variable) and how each potential decision is quantified (the objective
function). It can be noted, that depending on the application, additional objects can be
identified and defined such as perturbation variables.

Figure 2.1 shows a well-known example, the shortest path problem, which is op-
timally solved implementing the Dynamic Programming technique. The objective is
to start from state 1 and to finish in state 9, going through intermediate states and
achieving the lowest possible cost. The main objects are presented in table 2.2.

In this study, this optimization method will be used for applications with energy
storing capacity in order to manage optimally the system during a period of time. For
this purpose in the next section, the development and implementation of this advanced
technique is presented.

2.2 DP Applied to Energy Management Applications

A new methodology for a systematic implementation of an optimized DP control
strategy is proposed. The methodology consists of five steps.

Figure 2.2 shows an application with energy storing capacity. It is composed of
three elements: the power source, the application and the energy storage system. The
power source supplies the energy to the application and to the energy storage system.
The application consumes or provides energy, depending on the nature of the system.
Finally, the ESS is capable to decouple the power source from the application.

Object Identification

Dimension 4 (from 1 to 9)
State variable Circles (1 .. 9)
Decision variable Arrows
Objective function Arrow’s value

Table 2.2: Shortest path problem objects.
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Figure 15.1: A simple acyclic shortest path problem

s = 8, 7, . . . , 1 — in this order. In the case of the forward Pull, we begin at
s = 1 and then conduct the operations for s = 2, 3, . . . , 9 — in this order.
Consider the case where ⊕ = +. Since the identity element of + is equal

to 0, in the case of the backward Pull operation we set F [9] = 0 and in the
case of the forward operation we set F [1] = 0.
The remaining values of F computed impromptu by the Pull operations

are shown in Figure 15.2 next to the respective nodes.
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Figure 15.2: Summary of Pull operations

To illustrate, for s = 5 the backward Pull operations yields

F [5]← min
x∈Suc(5)

{r(5, x) + F [x]}

= min
x∈{7,8,9}

{r(5, x) + F [x]}

= min {r(5, 7) + F [7] , r(5, 8) + F [8] , r(5, 9) + F [9]}
= min {4 + 3, 3 + 1, 6 + 0} = min {7, 4, 6} = 4

The forward Pull operation yields

F [5]← min
x∈Pred(5)

{r(5, x) + F [x]}

= min
x∈{1,2,3}

{r(5, x) + F [x]}

Figure 2.1: Shortest path problem.
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Figure 2.2: Elemental energy management problem representation for applications with
energy storing capacity.

As it has been shown in the previous chapter, an energy management strategy is
required in order to define the necessary power flow to satisfy the application require-
ments. Besides, if this power flow should be defined during a time period, this problem
becomes a sequential decision problem, where the Dynamic Programming optimization
method is especially well-suited.

As it has been explained in the previous section, the main objects of the system
must be identified in order to achieve an optimized control strategy based on DP. Table
2.3 summarizes these objects. The problem dimension (N) has been associated to the
number of times in which energy is absorbed from the power source in a period of time.
The state variable (xk) is related to the state of charge of the energy storage system.
The decision variable (uk) is related to the energy absorbed from the power source.
The objective function (gk) is based on the stock management theory, which is able to
quantify the decisions (it will be described in the following section). Finally, as it can
be seen on the table, an optional object has been introduced, a perturbation variable
(wk) which is related to the application energy requirements.

Once identified the main objects of the considered system, the objective of the DP
based EMS for this kind of application can be stated as:

“The objective of the optimized energy management strategy based on Dynamic
Programming for applications with energy storage capacity is to define a sequential
energy consumption strategy from the power source in order to satisfy the energy
requirements of the application and using the ESS as a decoupling system. More-
over, this decision strategy is aimed at achieving the optimal value of the cost
function based on the stock management theory.”

In this work, a new methodology is proposed for the development and implementation
of this kind of control strategies in the next section.
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2.2. DP Applied to Energy Management Applications

Notation Object Identification

N Dimension Times of energy consumption from
the power source.

xk State variable State of charge of the energy storage
system.

uk Decision variable Energy absorbed from the
power source.

gk Objective function Cost function based on the stock
management theory.

wk Perturbation variable Energy consumed or provided by
the application.

Table 2.3: Main objects of application with energy storing capacity controlled by a
Dynamic Programming based strategy.

2.2.1 Implementation Methodology For DP Techniques

The implementation of these optimization techniques in energy management ap-
plications can be unintuitive. For this reason, a new implementation methodology is
proposed in order to explain in detail the required steps for developing this kind of
optimized control strategies.

Figure 2.3 shows the proposed methodology, which consists of five steps. The first
three steps prepare the sequential decision problem to reach the optimal solution. The
last two steps carry out the analytical resolution of the problem, defining an optimal
decisions policy. In the following sections, each step of the proposed methodology will
be analyzed.

1 - Decisions and Costs Map Creation

In this first step two features of the application are considered. On the one hand,
the possible values that the decision variable can have are analyzed. In addition, the
influence of this variable and the perturbation variable on the possible values of the state
variable is also analyzed. The objective of this step is to represent the different states in
which the system is, as well as the values that must be assigned to the decision variable
in order to move from one state to the next one.

In equation (2.1) the state variable of the system in the next instant (xk+1) is pre-
sented, where (xk) is the state variable of the system in the instant (k), (uk) is the
variable of the adopted decision in the instant (k), (wk) is the perturbation variable of
the energy requirements of the applications and (fk) is the function that describes the
evolution of the system from instant (k) to instant (k+1), according to the current state
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Decisions and Costs Map Creation

Global Map Division
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Figure 2.3: Proposed Dynamic Programming based control strategy implementation
methodology flowchart.

and the adopted decision.

xk+1 = fk(xk, uk, wk) (2.1)

On the other hand, the costs related to the system evolution are also defined. The
objective is to represent the associated cost (it does not have to be dimensional), of
modifying the state of the system from instant (k) to instant (k+ 1), by setting a value
to the decision variable while it is being disturbed by the perturbation variable. The
mathematical expression that defines this cost is represented by the function (gk) (2.2).

gk(xk, uk, wk) → Stock Management Theory Cost Function (2.2)

Finally, by evaluating all the possible states, the adopted decisions and the associated
cost, it is possible to create an optimal decision map. It has to be underlined that these
maps can be one-dimensional or multi-dimensional, depending on the nature of the
application (wk).

In the case of deterministic applications where the behavior of the application is
completely defined, the representation is one-dimensional, as it can be seen in figure 2.4
(the circles represent the values of the state variable and the arrows represent transitions
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Figure 2.4: Decisions and costs maps representation: (a) deterministic application and
(b) stochastic application.

between two consecutive states, defined by the decision and perturbation variable). How-
ever, for stochastic applications where the behavior of the application is unpredictable,
the representation is multi-dimensional, as it is shown in figure 2.4. Each map represents
one of possible evolution of the decision variable (the circles represent the state variable,
the arrows represent transitions between two consecutive states, which are defined by
the perturbation variable).

2 - Global Map Division

Once the maps have been defined, the next step consists of dividing the map in
different zones, according to the instants where the decisions will be taken (2.3). The
objective of this step is double. On the one hand, the first objective is to divide the
global problem into different subproblems with a sequential behavior, in order to apply
the Bellman’s principle of optimality.

k = 1, 2, 3, . . . , N + 1 (2.3)

On the other hand, the second objective is to define when the algorithm must take the
decisions. Furthermore the problem dimension is defined, i.e., the number of decisions
that must be determined by the optimized energy management strategy (N). The result
of this division is presented in figure 2.5. Note that all maps are divided identically, either
for deterministic or stochastic applications.

3 - Origin and Destination Identification

Once the map is divided into different subsections, the origin and destination of the
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Figure 2.5: Decisions and costs map division and origin/destination identification.

problem must be defined. Then, it is possible to set the values of (k) to every subproblem,
as it can be seen in figure 2.5. In the previous step, the dimension of the problem has
been established, and in this step, the direction of the system evolution is established.
The objective is to define how the problem will be solved during the resolution phase.

4 - Objective Definition

In this step, the objective is to define the behavior of the system. Thus, the equation
to evaluate the costs is formulated in order to quantify the system behavior in a sequence
of decisions. Objective functions are usually equations in which the costs are maximized
or minimized.

As it can be seen in the example (2.4), the objective is to minimize the costs over
(N) decisions. It can be underlined that one more term has been introduced, for instant
(N + 1), in order to take into account a possible final cost of the system due to the
adopted decision at instant (N).

min
uk∈Uk

E[gN+1(xN+1) +
N∑

k=1
gk(xk, uk, wk)] (2.4)

5 - Problem Resolution

The fifth and last step of the proposed methodology is the problem resolution. The
resolution is carried out systematically using a technique called “backward induction”
[82]. The objective of this step is to obtain a decision policy, from the origin to the
destination, fulfilling the defined objective in an optimum way.
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The algorithm can be executed online or offline. In the case of deterministic systems
the algorithm is usually executed offline due to the fact that the evolution is well known.
Therefore, it is possible to evaluate the algorithm before taking the final decisions. For
stochastic systems, the algorithm can be executed online or offline but, as the behavior
of the system is unpredictable, it is advisable to evaluate the system online in order
to obtain an optimal decisions policy using the most recent information (statistical
information) extracted from the application. In this case, the algorithm includes the self
learning capability, providing a wide range of adaptation to different situations.

The problem is solved from the destination to the origin of the decisions and costs
map, evaluating at each step back the costs associated to all possible decisions. Once
the costs have been evaluated in each step, it is unnecessary to evaluate them again.
Thus, this principle decreases significantly the total computational cost.

The analytical expression (recursive formula) which achieves the optimal decisions
policy is presented in equation (2.5), being a modified expression of the objective function
(2.4) which incorporates the backward induction principle.

JN+1(xN+1) = gN+1(xN+1)
Jk(xk) = min

uk∈U
E[gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))] k = N, . . . , 2, 1 (2.5)

The implementation of this recursive formula is less intuitive. Thus, a flowchart with
three nested loops is proposed in figure 2.6. The flowchart is composed of three nested
loops. The main loop (events) goes from the last event to the first one, carrying out the
backward induction. Inside this loop, the state variable loop (values xk) can be found,
which analyzes all possible values of this variable (taking into account all possibilities
of the state variable in each event). Finally and inside this second loop, the decision
variable loop (values uk) is in charge of evaluating the cost function. Thus, it quantifies
each decision for each state variable in each event. After that, the best decision is defined
(Cost Function Optimization) and the result is stored for the next computations.

Once these five steps have been carried out, an optimal decision policy has been
achieved. In the case of deterministic applications, the decision variable is defined de-
pending on the current instant of the system (k) (shown in figure 2.7). However, for
stochastic applications, the decision variable is defined depending not only on the cur-
rent instant of the system, but also on the current value of the state variable (k, xk), as
it can be seen in figure 2.7.
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Figure 2.6: “Backward induction” based flowchart proposed for the problem resolution.
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Figure 2.7: Control Strategy based on Dynamic Programming: (a) deterministic appli-
cation and (b) stochastic application.
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2.2.2 Stock Management Theory Based Cost Function

The cost function used in these kinds of applications is based on the stock manage-
ment theory. It is widely used in economics [83], where it is used to define the best
provisioning policy in order to satisfy client requirements and to obtain the maximum
profit or the minimum cost. This cost function has been modified and adapted for engi-
neering applications [84], and particularly, when an optimal decision policy is required
(in deterministic or stochastic applications).

In our case and taking as reference figure 2.2, the client is associated to the application
while the best provisioning policy must be defined by the optimized control strategy
based on Dynamic Programming. The warehouse in this case is associated to the energy
storage system. Finally, the profits are the objectives of the energy management strategy.

The stock management theory defines a general expression composed by four ele-
ments in order to evaluate the costs (2.6). Depending on the application, the expression
may have fewer terms, because some costs could not exist or cannot be quantified.

(
Total

Cost

)
=
(
Fixed

Cost

)
+
(
V ariable

Cost

)
+
(
Storage

Cost

)
+
(
Shortage

Cost

)
(2.6)

In this study, the elements of the cost function have been associated to the energy
flow of the system (power source, energy storage system and application), stated in the
first step of the methodology and expressed as (gk) by linking expressions (2.2) and
(2.6). The description and association of each term of the expression is:

• Total Cost: It is the overall cost corresponding to the addition of all individual
costs.

• Fixed Cost: It is a cost that is independent from the number of goods that are
introduced into the system. This cost term has been removed, because the power
source does not generate costs apart from the variable costs.

• Variable Cost: It is a cost that depends on the number of goods that are introduced
into the system. This cost has been associated to the amount of energy absorbed
from the power source. It represents the cost of introducing energy from the power
source into the system.

• Storage Cost: It is the cost corresponding to the fact of storing goods in the
warehouse, proportional to the quantity. This cost has been associated to the
amount of energy wasted in the application. It represents the situations of energy
recovering from the application to the energy storage system. Once is fully charged,
it will not be able to absorb more energy.
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• Shortage Cost: It is the cost corresponding to the goods not provided to the client,
proportional to the quantity. This cost has been associated to the non-provided
energy to the application. It represents the situations where the energy absorbed
from the power source and the energy stored in the ESS are not enough to satisfy
the energy requirements of the application.

Finally, the general expression of the cost function based on the stock management
theory for implementing a DP based EMS in applications with energy storing capacity
is obtained (2.7). As it can be seen, three terms of the expression are weighted (c, h,
p), because not all terms have the same relevance depending on the the application.
Another term for limiting the capacity (Xmax) of the energy storage system is added.
Besides, the perturbation variable has also been introduced (wk).

gk(xk, uk, wk)︸ ︷︷ ︸
T otal Cost

= c · uk︸ ︷︷ ︸
V ariable Cost

+h · [xk + uk −Xmax − wk]+︸ ︷︷ ︸
Storage Cost

+ p · [wk − xk − uk]+︸ ︷︷ ︸
Shortage Cost

(2.7)

As the application requirements are stochastic, the previous expression must be mod-
ified in order to introduce a statistical description of the application. This means that
it is necessary to introduce the probability of occurrence of them (Pwk) for evaluating
the cost function (2.8).

gk(xk, uk, wk) =c · uk+

h ·
m∑
1

(
Pwk · [xk + uk −Xmax − wk]+

)
+

p ·
m∑
1

(
Pwk · [wk − xk − uk]+

)
(2.8)

2.2.3 Stochastic Systems Approach: Generalized Energy and
Statistical Description

In this section, a new representation for stochastic applications called GESD (Gen-
eralized Energy and Statistical Description) is proposed. In this representation, the
energy requirements are related to the probability of occurrence. The objective is to
be able to describe the application from a statistical point of view for upcoming energy
requirements. Besides, this information is requested by the cost function evaluated in
the DP based control strategy in equation (2.8).

Two parameters are taken into account for the representation (2.9). First, all pos-
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sible energy requirements values of the application (wk) are considered (in this case,
the perturbation variable). And then, the probabilities of occurrence for each energy
requirement (Pwk) are defined. Figure 2.8 shows the graphical representation of the
proposed model.

wk vs. Pwk (2.9)

In the vertical axis the normalized probability of occurrence (Pwk) is defined while in
the horizontal axis the energy requirements of the application are defined in (wk in kJ).
As it can be seen, there are positive and negative values for the energy requirements.
Keeping in mind figure 2.2, negative values represent the energy provided from the
application to the energy storage system (the power source is not capable to absorb
power). Positive values represent the energy absorbed by the application from the power
source, from the energy storage system or from a combination of both.

These two figures describe the same application with different resolutions of the
perturbation variable (wk). It means that different energy requirements can be grouped
when the differences between them are less than the considered resolution. And in
consequence, the probability is increased. As it can be seen in figure 2.8, there are more
bars on the top figure due to the fact that the resolution is three times higher than on
the bottom figure. Thus, the probabilities are smaller on the first case.

Furthermore, in the proposed representation the repetition of energy requirements
is also considered, i.e., if these energy values are required several times in a period of
time, its probability increases. Moreover, some GESD representations can be developed
according to different periods of time (hours, days, months, season...), or depending on
the desired accuracy. In addition, if the behavior of the system is modified, the represen-
tation can be updated online (monitoring the energy consumption of the application).
In consequence, the optimized control strategy can be reevaluated online, improving the
energy manager and incorporating the self learning ability.

It can be concluded that the representation is able to group similar requirements,
and to define more accurately upcoming energy requirements. Besides, the time factor
(taking into account the repetitions and periods of time) and the capability to provide the
self learning ability to the optimized control strategy (monitoring online the application
energy requirements) are introduced.
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Figure 2.8: Generalized Energy and Statistical Description (GESD) of an stochastic
energy application: (a) incremental of 2kJ and (b) incremental of 6kJ .

2.3 Conclusions

In this chapter the Dynamic Programming optimization method has been presented.
The objective of this advanced algorithm is to solve a sequential decision problem in an
optimal way, achieving an optimal decision policy.

Furthermore, a new methodology has been proposed to develop and to implement
these optimized control strategies. It consists of five steps, where the first three steps
prepare the problem (defining the decisions and cost maps, dividing these maps and
identifying the origin and destination of these maps). And, in the last two steps, the
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analytical resolution is carried out (defining the objective and solving the problem in a
recursive way, backward induction).

In addition, a cost function based on the stock management theory has been proposed
due to the similarity between a warehouse and an energy storage system (where this
theory is able to quantify its use). Finally, a new representation for stochastic energy
applications has been proposed (GESD), relating the energy requirements and their
probabilities of occurrence.
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Chapter 3. Elevator with Energy Storing Capacity

Summary
This chapter presents an introduction to an improved elevation system with energy

storing capacity, as well as, to its modeling. Then, the objectives of the energy man-
agement strategy are defined and analyzed. After that, an optimized control strategy
based on Dynamic Programming is developed, by applying the proposed implementation
methodology within this thesis. In addition, a non-optimized but conventional rule based
strategy is also developed in order to make a comparison. Finally, the control strategies
are tested in simulation.

3.1 Introduction to the Elevation Systems

The objective of transport applications is to displace passengers and loads between
two different places or levels. The displacements can be carried out horizontally (places),
or vertically (levels). Vertical transport applications, known as elevators, mainly com-
prised of escalators and elevators. This thesis is focused on elevation systems.

In the field of elevators, the displacement of passengers and loads between two levels
or floors is known as a mission or single mission. Similarly, the evolution of these
missions over time, or simply, a sequence of missions, is known as the elevator traffic
profile. The traffic term can also be referred to a single elevator or a group of elevators
of a building. Regarding elevation system technologies, elevators can be classified in
three groups: pneumatic vacuum elevators, electromechanical elevators and hydraulic
elevators, as it can be seen in figure 3.1.

Pneumatic vacuum elevators are based on the operation principle of pressure differ-
ence between the top and the bottom of the cabin. When the cabin is going up, the
pressure at the cabin top is lower than the pressure at the bottom (atmospheric pres-
sure). A turbine is responsible for suctioning this air. When the cabin is going down, the
pressure at the top is regulated by a valve, releasing air and increasing the pressure in a
controlled manner. It should be pointed out that the cabin top must be sealed in order
to assure the turbine suctioning. The pressure beneath the cabin must be atmospheric
in order to assure passenger transportation.

Hydraulic elevators are based on the principle operation of the cabin displacement
through a fluid-driven piston inside a cylinder and directly connected to the cabin. When
the cabin is going up, the fluid is driven (usually oil) from the reservoir to the cylinder
through a rotary pump, increasing the pressure, expanding the piston and pushing up the
cabin. When the cabin is going down the process is similar to the pneumatic vacuum, a
valve between the cylinder and reservoir is opened, releasing the pressure in a controlled
manner in order to return the fluid, collapsing the piston and lowering the cabin.
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Figure 3.1: Elevation system technologies: (a) pneumatic vacuum elevator, illustration
extracted from [85], (b) electromechanical elevator, illustration extracted from [86] and
(c) hydraulic elevator, illustration extracted from [87].
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Electromechanical elevators convert electric power into mechanical power in order
to get the cabin displacement through an electric motor (electromechanical conversion
system). The motor has a pulley installed in the motor shaft where the cables of the
elevator are supported. The cabin is attached at one end of the cables while the counter-
weight is attached to the other end. Depending on the rotation direction, the cabin can
be displaced upward or downward. Obviously, the counterweight is moved in the oppo-
site direction. The counterweight is mainly used by two reasons; to balance the mass
displacement, in order to reduce the power consumption, and to limit the maximum
torque of the electromechanical conversion system.

In any case, from an energy point of view, when a mission is completed, it means that
the potential energy of passengers and loads has been increased or decreased, due to the
height difference between two floors (3.1). Therefore, elevation systems independently
of their technology must be capable of providing and absorbing this amount of energy
in each mission.

∆W = me · g ·∆hf (3.1)

In the case of pneumatic vacuum and hydraulic elevators, it can be deduced that the
system must be powered for upward missions in order to increase the potential energy,
with the turbine and rotary pump, respectively. While the cabin is going down the
elevator must be able to absorb that power, releasing the air and fluid pressures through
their respective valves.

In contrast, in electromechanical elevators, due to the counterweight mass balancing
effect, the upward motion of the cabin does not necessarily mean that the system must
be powered. In these systems, there are two masses on the move, cabin and counter-
weight. Therefore, while the cabin acquires potential energy, the counterweight yields
potential energy. In consequence, the electromechanical conversion unit must be capable
of providing and absorbing the difference between these two potential energies. As an
example, if the counterweight is heavier than the cabin, i.e. if the latter one is empty
and it is moving downward, the system will consume power in order to complete the
mission. In this kind of systems, the electromechanical conversion unit is reversible. On
the one hand, when the motor is consuming, i.e. when power is injected from the grid,
the elevator is in traction mode. On the other hand, if the motor is generating power,
i.e. generating electric power (generally dissipated in a braking resistor), the elevator is
in regenerative mode.

Therefore, it can be concluded that an elevator, regardless of the technology, must
be able to provide and to absorb power in order to complete the mission. Whenever the
elevator is transferring energy to the passengers and loads, this energy is consumed from
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Fig. 3. Frequency-converter-controlled hydraulic elevator using hydraulic ac-
cumulator counter balance and shaft-speed-controlled PM units with embedded
controller.

B. Type 2, Developed in 2001

Xu developed another type of energy-saving mechanism us-
ing both a hydraulic accumulator and a frequency converter, as
shown in Fig. 3 [3]. The key components in Fig. 3 are the pump
motor units (PM1 and PM2), connected by a common shaft; they
together act as a hydraulic transformer. PM1 is a high-pressure
small-displacement pump. Thus, the high-pressure accumula-
tor (size is smaller when pressure is higher) acts as “balance
weight” for the cabin.

When the cabin is traveling upwards, the accumulator releases
energy through motor PM1, which drives pump PM2 to raise
the cylinder. When the cabin comes down, the potential energy
is passed to the accumulator through motor PM2 and pump
PM1. The converter-controlled electric motor is the main speed-
control component, which either compensates the driving force
when the output of motors (PM1 or PM2) is not large enough,
or stores the energy to the power net when output of pumps
(PM1 or PM2) is too large (working as a generator). The pilot-
operated check valves are the auxiliary valves for the safe and
smooth operation when the cylinder starts to move.

The main shortcoming of type 2 circuit is that it is quite
complicated and expensive.

III. LATEST NOVEL DESIGN

A. Considerations of the Latest Novel Design, Type 3

For the further development of the hydraulic elevator, the
following considerations should be taken into account:

1) high efficiency, low energy consumption;
2) small volume of oil;
3) simple structure;

Fig. 4. Frequency-converter-controlled hydraulic elevator using double-acting
cylinder and hydraulic accumulator counter balance in closed circuit with em-
bedded controller [4], [11].

4) small size of power unit, in order to avoid using any ma-
chine room;

5) good controllability.
In the previous traditional design, these requirements could

not be fulfilled. For example, the cylinder in traditional hydraulic
elevator is a kind of a long plunger that has a problem of buckling
of columns. This results in a larger diameter of the cylinder that
requires larger volume of oil, bigger power unit, and lower
pressure.

In order to achieve the aforementioned performance, a cre-
ative combination of three key solutions (technologies) has been
developed (see Fig. 4):

1) technology of all-quadrant-running hydraulic motor
driven by the electric motor with variable frequency vector
control as the speed control component, with very good
controllability and further possibilities of energy saving;

2) technology of hydraulic counter balance;
3) double-acting cylinder chosen instead of the plunger-type

cylinder to avoid the buckling of columns.
The diameter of the piston is much smaller than the normal

plunger. As the “hydraulic balance weight” of the cabin, the
pressure of the accumulator is also much higher than that in type
1. Since the higher pressure level can be chosen, the system can
be designed with the smaller flow rate and smaller components.
Thus, the power unit of this solution can be very compact, and
it is easy to realize the nonmachine-room installation.

B. Principle of Type 3

The principle of the new design is shown in Fig. 4, which ex-
actly fulfills the aforementioned considerations. The structure is
simple and symmetrical and easy to be manufactured. The con-
trollability is very good because the speed control component
is a vector-feedback converter controlled electric motor (all the
valves are ON/OFF controlled).

When the cabin is traveling upwards, the accumulator releases
the energy in order through valve 1, the PM, and valve 2 (see
Fig. 4) to drive the cylinder directly. If the power from the
accumulator is not enough, the variable-frequency-controlled
electric motor can add suitable power through the shaft of PM. In

(a)
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Fig. 3. Loading strategies for supercapacitors.

Fig. 4. Efficiency by exponential and constant current charging.

a series resistor. The horizontal curve in Fig. 4 (i.e., “Exponen-
tial loading”) illustrates the poor efficiency ( ) of that
charging strategy, independent of the charging time.

Only the charging with constant current [see Fig. 3(b)] is able
to provide an acceptable efficiency. Values close to unity can be
achieved if the charging current is kept extremely low. The in-
crease of the current causes a decrease of charging time, but
increases the losses inside the internal resistor (i.e., “Loading
with a constant current” in Fig. 4). Only power-electronic so-
lutions with control circuits can achieve this type of energy
transfer (controlled current) between a constant voltage source
and supercapacitor. Elementary and multichannel boosters are
state-of-the-art in this field, and have been intensively described
in [3], [5], and [6].

III. T HE POWERREQUIREMENTS OFELEVATORS: A SOLUTION

WITH ENERGY STORAGE

A. Definition of the Principle

Elevators have typical load cycles characterized by a low-en-
ergy balance between up and down movements. However, they
have a high power demand during acceleration in the up direc-
tion, as well as a high power restitution in the down movement,
especially during deceleration [1]. On the one hand, the strongly
modulated power demand represents an availability problem of
the feeding network. On the other hand, the traditionally used
breaking resistors in the frequency converter of the variable
speed drive are the cause of a high amount of wasted energy.

Fig. 5. General scheme of the elevator drive with supercapacitor storage.

Even if the solution using a regenerative rectifier circuit ap-
pears as evident for saving energy, its price is higher than the
price of the simpler circuit.

However, it has to be noted that such a solution for saving
energy does not solve the problem of the high power peaks
appearing on the power grid. It does not solve the induced
voltage variations or flicker effects either. To solve that partic-
ular problem, as well as the difficulties related to the pricing
policy of reinjected energy, a solution with energy storage is
proposed. A schematic overview of the drive converter with
storage interface is given in Fig. 5.

B. Power Demand of an Elevator

In the solution proposed in Fig. 5, the supercapacitive storage
device can cover not only the energy needed to cover the el-
evator dynamics, but also the energy used for overcoming the
potential energy while traveling at constant speed in the case of
unbalanced elevators. The typical power demand of an elevator
for a up movement to the tenth floor and down to the same level
is shown in the curves of Fig. 6. In the first and second graphics
of this figure, the elevator speed and position are represented,
while the corresponding power demand and energy consump-
tion are shown in the third and fourth graphs.

The different curves of Fig. 6 have been calculated by
simulation of a real elevator with a car weight of 720 kg,
balanced with a counterweight of 1440 kg. The car was loaded
with 1400 kg. The energy amount needed for the ten-floor up
run is equal to 220 kJ or 62 Wh. The maximum power demand
is approximately 33 kW.

C. Sizing the Supercapacitors Bank

Based on the required amount of energy, it must be veri-
fied that a supercapacitive tank is able to deliver the maximum
needed instantaneous power, reached at the end of the acceler-

(b)

Figure 3.2: Elevation systems with energy storing capacity: (a) hydraulic elevator,
illustration extracted from [88] and (b) electromechanical elevator, illustration extracted
from [14].

a power source. On the contrary, when this energy must be absorbed, the power source,
is not always reversible and the recovered power is wasted. In the case of pneumatic
vacuum and hydraulic systems, the pressure of fluid is released or the fluid temperature
is increased. Electromechanical elevators waste this power through a braking resistor,
or also known as crowbar resistor.

Due to this fact, an energy storage system could be an efficient solution to avoid
wasting energy. In the case of pneumatic vacuum elevators, the recovered power is
always wasted. In theory, it could be stored, but in practice, it is never stored. On the
contrary, in the other two technologies, the energy can be stored, as it can be seen in
figure 3.2.

Regarding hydraulic elevators, during an upward mission the fluid is driven from
the reservoir to the cylinder, consuming pump power and increasing the pressure. In a
downward mission, that same fluid is returned to the reservoir. Therefore, in hydraulic
elevation systems the energy can be stored as the potential energy of the fluid, similar
to the case of a compressed air energy storage system (CAES), although this pressurized
fluid is used for a different purpose. In these type of elevators, the objective is to store
that pressurized fluid in a pressurized reservoir in order to use it later, avoiding the
need of pressurizing it again, and in consequence, reducing the power consumption in
the pump [88].
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Characteristic Pneum. Vacuum Hydraulic Electromechanical

Power consuming Upward Upward Traction mode
Power generating Downward Downward Regenerative mode
Storing capacity No Yes Yes
ESS technology – Mechanical

(Compressed fluid)
Electrical
(Supercapacitors)

Objective of ESS – Efficiency Efficiency and
New functionalities

Table 3.1: Summary and comparison of vertical transport elevation systems.

As it has been mentioned previously, an electromechanical elevator consumes power
from the grid when it is operating in traction mode, not necessarily on upward missions
because of the counterweight. Meanwhile, when the elevator operates in regenerative
mode, the motor is working as a generator and the power is transferred from the me-
chanical system to the electrical one. In that point, between the power source and
the electromechanical conversion unit, it is possible to install an energy storage sys-
tem [14, 89]. The supercapacitors are the most extended and applied technology for
this kind of applications. They are well-suited due to the low energy and high power
requirements of the application as well as the required large number of lifecycles. The
main objective of the ESS is to improve the efficiency, reducing the power consumption
from the grid. Additionally, more functionalities can be added like storing regenerative
energy, or even charging capabilities from the grid, such as grid power smoothing due
to cabin accelerations [90,91] and automatic rescue in case of a blackout [25].

Table 3.1 presents a summary of the main characteristics of vertical transport eleva-
tion systems. In this thesis, an electromechanical elevator with energy storing capacity
based on Scaps will be studied.

3.2 Modeling of an Improved Elevator with Energy Stor-
ing Capacity

Figure 3.3 shows the general block diagram of an electromechanical elevator with
energy storing capacity with the following main elements:

• Power Source: The primary power source is the grid which is connected through
a three-phase non-controllable rectifier (unidirectional).

• Energy Storage System: The ESS consists of a supercapacitors tank and a six
channels interleaved reversible boost converter [25].

• Application: The application is composed of an electromechanical conversion sys-
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Figure 3.3: General block diagram representation of an electromechanical elevator with
energy storing capacity.

tem (converter + motor) connected to a common dc-link where the power source
and the energy storage system are also connected. Note that a braking resistor is
connected to the common dc-link for safety reasons.

Once the general system diagram has been introduced, the system modeling will
be presented. First of all, the Energetic Macroscopic Representation (EMR) and the
Maximal Control Scheme (MCS) representation are used in order to define all power
flows and control loops of the system regardless of the elevator mission. After that, the
electromechanical conversion unit will be modeled in order to define the elevator energy
requirements. Finally, the Generalized Energy and Statistical Description (GESD) is
used out in order to represent the behavior of an stochastic elevator in a one day traffic
profile.

3.2.1 Energetic Macroscopic Representation and Maximal Control
Scheme

In order to clarify and represent all the energy interactions between the different
subsystems of the elevator an Energetic Macroscopic Representation (EMR) has been
applied. It is a graphical tool for modeling and controlling mono-physical and multi-
physical systems. This method is based on the action-reaction principle according to
the physical integral causality [35,92].

Basically, it consists of: energy sources (green blocks), accumulation elements related
to state variables such as inductances and capacitors (orange blocks with an oblique bar),
conversion elements such as power electronic converters (orange blocks), and coupling
elements (orange overlapped blocks).
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Figure 3.4: Power source modeling: (a) general block diagram representation and (b)
EMR representation.

In our case, this method is applied to the three elements of the general block diagram
(power source, ESS and application), and finally, all elements are gathered, achieving
the whole system representation. After that, the model is inverted in order to obtain
the Maximum Control Structure (MCS) and to define all the necessary control loops.

Power Source

The power source in this case is a three-phase non-controllable rectifier connected to
the grid, as it can be seen in figure 3.4.

The EMR representation of the power source is an energy source circle (ES1) related
to the rectified three-phase current (irect) and connected to the common dc-link of the
application (vbus). In this representation the action is the rectifier grid current (irect)
and the reaction is the dc-link capacitor voltage (vbus). As it can be seen, there is no
conversion block. This is, because the rectifier is uncontrollable and the grid connection
can be represented as a current source.

Energy Storage System

The energy storage system is composed of a supercapacitor tank and a six chan-
nels interleaved reversible boost converter presented in [25] and specifically designed for
elevation systems (see figure 3.5).

The EMR representation consists of a source (ES3) related to the supercapacitors
tank (vsc, isc) and connected to the common dc-link (vbus) through the dc-dc converter.
The converter includes an inductance (Ldcdc) in order to be able to control the dc-dc
current (idcdc), by imposing the inductance voltage (vsl).

The analytical expressions of the supercapacitors tank are defined in equations (3.2)
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Figure 3.5: Energy storage system modeling: (a) general block diagram representation
and (b) EMR representation.

and (3.3).

vsc = 1
Csc
·
∫
isc dt (3.2)

and

isc = 1
Ldcdc

·
∫

(vsl − vsc) dt (3.3)

Regarding the dc-dc converter, voltage and current relations (3.4) are defined by the
modulation factor (Sdcdc). It should be pointed out that the converter has been modeled
as an average model, i.e. neglecting semiconductor switchings and focusing only on the
system level power exchange.

idcdc = isc · Sdcdc and vsl = vbus · Sdcdc (3.4)

Application

The application is composed of an electromechanical conversion system connected
to a common dc-link where the power source and the energy storage system are also
connected. In addition, a braking resistor is also connected in order to protect the
system from overvoltages. The application is shown in figure 3.6.

The EMR representation consists of a dc-link capacitor (Cbus, vbus) where all the
sources and the dissipator are connected. This is the reason why two coupling blocks
have been introduced (icouple_total, icouple_simp). The electromechanical conversion sys-
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Figure 3.6: Application modeling: (a) general block diagram representation and (b)
EMR representation.

tem, responsible for carrying out the elevator mission, is represented as a source (ES2),
defining the mechanical power requirements from the electrical point of view (ielevator)
(equation (3.5)). Note that this source is defined by the mission’s parameters (ECS)
that will be analyzed in a following section. Finally, the braking resistor (Rcrowbar) is
represented as a dissipator (DS) connected to the common dc-link through a chopper
(ibr), by imposing the braking resistor voltage (vsr).

ielevator = f(vbus, ECS) (3.5)

The analytical expression of the dc-link is expressed in (3.6) while the coupling blocks
connected to the dc-link are defined in equation (3.7).

vbus = 1
Cbus

·
∫

(irect − icouple_total) dt (3.6)
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where

icouple_total = ielevator + icouple_simp and icouple_simp = idcdc + ibr (3.7)

The general expression of the currents is defined in equation (3.8).

irect = idcdc + ibr + ielevator (3.8)

Concerning the braking resistor, the current is defined in equation (3.9) and its as-
sociated chopper is controlled through the modulation factor (Sbr) as shown in equation
(3.10).

isr = vsr

Rcrowbar
(3.9)

and

ibr = isr · Sbr and vsr = vbus · Sbr (3.10)

Elevation System Representation

The main advantage of this representation is that all the variables of the control
system are clearly identified and graphically represented. The conversion blocks and
their effect in the accumulation elements represent the state variables responsible for
transferring the power between sources.

In our case and as it can be seen in figure 3.7, the Energetic Macroscopic Repre-
sentation of the system is composed of three sources (grid, supercapacitors and elec-
tromechanical conversion system) and a dissipator (braking resistor), where all of them
are connected in a common dc-link through two coupling blocks. There are two control
variables related, on the one hand, to the energy storage system (Sdcdc) and, on the
other hand, to the braking resistor (Sbr) of the dc-dc converter. These variables control
the state variables of the system, i.e. an inductor (Ldcdc) and a capacitor (Cbus). The
requirements of the electromechanical conversion system (ielevator) must be satisfied by
means of these control variables in order to carry out the elevator missions.
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Figure 3.7: EMR representation of an improved elevation system with energy storing
capacity.

Table 3.2 summarizes all these elements, in which the EMR elements are related to
the system terms and the state variables.

Once the system modeling has been developed with the Energetic Macroscopic Rep-
resentation, the question that must be answered is how the state variables should be
controlled in order to be able to transfer the desired energy between all the sources. For
that purpose, the Maximal Control Scheme is developed and presented as follows.

EMR Element Term Description

Source ES1 irect Rectified grid current.
Source ES2 ielevator Electromechanical system current.
Source ES3 vsc Supercapacitors voltage.
Source DS isr Braking resistor current.
Accumulation capacitor vbus Dc-link capacitor voltage.
Accumulation inductor isc Supercapacitors current.
Conversion Sdcdc

Sbr

ESS dc-dc converter.
Braking resistor dc-dc converter.

Coupling icoupling_simp

icoupling_total

Connection to the common dc-link.
Connection to the common dc-link.

Table 3.2: EMR representation summary of an improved elevation system with energy
storing capacity.
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Figure 3.8: Energetic Macroscopic Representation and Maximal Control Scheme repre-
sentations of an improved elevation system with energy storing capacity.

Elevation System Control

The control scheme of the system can be deduced from a step-by-step model in-
version, obtaining what is known as the Maximal Control Scheme (MCS) and defining
the inner and outer control loops. Each block of the EMR has its equivalent block in
the control scheme. Figure 3.8 shows the MCS representation of the elevator system as
well as the EMR representation. As it can be seen, each orange block (EMR) has its
equivalent blue block (MCS). Note that the energy sources have no equivalent block in
the control scheme.

The control of accumulation elements is implemented with basic controllers such as
feedforward Proportional Integral (PI) controllers. The objective is to control the state
variables of the system, the inductor current and the capacitor voltage (isc, vbus), to their
references (isc_ref ) and (vbus_ref ). The output of the current controller is the voltage
that must be imposed to the inductor to obtain the desired current (vsl_ref ), while the
output of the voltage controller is the current reference to the capacitor (icouple_toral_ref ).

This system consists of two conversion systems, the braking resistor and the ESS. The
braking resistor is modulated with the chopper modulation factor (Sbr) determined from
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the resistor current reference (ibr_ref ). The ESS dc-dc converter is modulated with the
dc-dc modulation factor (Sdcdc) determined from the voltage reference of the inductor
controller (vsl_ref ). Note that the modulation factor can also be used for estimating
variables (idcdc_ref , isc_ref ).

The coupling blocks are represented by the relation between the terms they link. The
objective is to define the value of each reference term according to the kind of coupling.
The lower coupling is defined by expression (3.11), with two well-known terms (inputs),
and a third one (output), which is the consequence of the two first terms.

icouple_simp_ref = ielevator − icouple_toral_ref (3.11)

In contrast, the upper coupling is more difficult to define. The block consists of two
outputs (idcdc_ref , ibr_ref ) and a single input (icouple_simp_ref ). Therefore, an additional
input is required in order to be able to define the outputs. The solution is to introduce
a distribution factor (kd) between 0 and 1, responsible for sharing the input current
reference into two output current references.

The analytical expressions are (3.12) and (3.13).

idcdc_ref = icouple_simp_ref · kd (3.12)

and

ibr_ref = icouple_simp_ref · (1− kd) (3.13)

However, the difficulty lies in the definition of the distribution factor. For that pur-
pose, an additional block must be introduced, which represents the energy management
strategy, shown as the EMS block. Light blue blocks can be grouped and referred as
the Power Management Strategy (PMS) level, responsible for controlling the system
instantaneously. On the contrary, the dark blue block can be referred as the EMS level,
responsible for driving the system in a desired manner over time. This is the hierarchical
structure introduced by Rosario [31] and identified in the EMR and MCS representa-
tions.

Therefore, the EMS block is responsible for defining the distribution factor. More-
over, the dc-link voltage reference (vbus_ref ) must also be defined by the same block
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because there is no other outer control loop to define it. In order to be able to make the
correct decisions, the EMS block inputs must provide the necessary information for the
system. In this case, three terms are required; First, the electromechanical conversion
system current which is necessary in order to know the power and energy requirements
and the operation mode (traction or regenerative). Second, the grid current (irect) in
order to control the grid energy consumption. And finally, the supercapacitors voltage
(vsc) in order to estimate the state of charge of the ESS. The analytical expression of
the EMS block is defined in equation (3.14).

[kd, vbus_ref ] = f(ielevator, irect, vsc) (3.14)

The EMR and the MCS have allowed the modeling of an improved elevation system
with energy storing capacity in order to determinate the framework of the DP based
energy management strategy. Furthermore, the input and output terms of the optimized
control strategy have also been identified and defined.

3.2.2 Electromechanical Conversion System Analysis

In the previous section the elevation system has been modeled from an energy and
control point of view. The framework of the optimized control strategy has also been
defined. The control strategy needs information from both the energy storage system
and the electromechanical conversion system. The ESS has already been analyzed in a
previous section but the electromechanical conversion unit has not yet been analyzed
and modeled. For that reason, the electromechanical system is physically analyzed in
this section in order to be able to formulate the analytical expressions for defining the
electrical power and energy requirements of the source (ES2) and its variable (ielevator)
in the EMR representation.

The electromechanical elevator is composed of several elements, as shown in figure
3.9:

• Cabin: The element where the passengers are mounted. It is composed of the
cabin mass (me) and the passengers mass (mp).

• Cable: The connecting element between the cabin and the counterweight. The
cable mass is divided in two parts, the cabin side mass (mc1) and the counterweight
side mass (mc2).

• Counterweight: The balancing element which reduces the maximum torque of the
motor. This mass is defined by (mc).
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Figure 3.9: Electromechanical representation of an elevator.

• Motor drive: The eletromechanical conversion system. It is able to transform
electrical power in mechanical power (τ , Ft) and vice versa.

• Power Electronics (PE) interface: It is responsible for providing or absorbing power
from the motor drive, according to the operation mode. It provides or absorbs the
elevator electric power (Pe).

The constraints and sign criteria must be defined before analysing the system. The
maximum travel length is expressed as the (Xmax_travel) parameter and the positive
direction of position, velocity and acceleration is for upward missions. The second law
of Newton is formulated in equation (3.15).

∑
Fi =

∑
mi · a (3.15)

Taking into account all these considerations, the general expression is formulated in
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equation (3.16).

Ft−mp ·g−me ·g−mc1 ·g+mc2 ·g+mc ·g = (mp +me +mc1 +mc2 +mc) ·a (3.16)

When the elevator is moving with a constant velocity (v), the mechanical power is
equal to the electrical power divided by the cabin velocity (3.17), neglecting the efficiency
terms.

Ft = Pe

v
(3.17)

The total cable mass is constant (Mf ), but depending on the cabin position (x), the
mass in each side (cabin and counterweight) is different, according to equation (3.18).

mc1 = Mf · (Xmax_travel − x) and mc2 = Mf · x (3.18)

The passengers mass is directly related to the number of passengers (Np) multiplied
by the average weight of a person (mpass) (3.19).

mp = Np ·mpass (3.19)

By introducing these considerations and by sorting out equation (3.16), the general
expression of an electromechanical elevator is obtained (3.20). The electric power is com-
posed by three terms. The first term is due to the cabin acceleration. The second term
is due to the cabin velocity. And finally, the third term is due to the cable displacement.

Pe = a · v · (Np ·mpass +me +Mf ·Xmax_travel +mc) +
v · g · (Np ·mpass +me +Mf ·Xmax_travel −mc)−
2 · v · x · g ·Mf

(3.20)

In the previous section, it was introduced a vector regarding to the mission’s pa-
rameters (ECS) in order to evaluate the power requirements of the electromechanical
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conversion system (Pe). And now, the terms of this vector have been identified in (3.21).

ECS = [a v x g Mf mc me mpass Np Xmax_travel] (3.21)

Once the general expression is stated, the two operation modes of the elevator must
be identified. For that purpose, from these three terms of the equation only the second
one is considered, the one referred to the cabin velocity. The term related to the cabin
acceleration is neglected due to the short time lapse during the starting and ending
mission phases. The term related to the cable can also be neglected due to its low mass
compared to the cabin and passengers mass.

Therefore, only taking into account the velocity term, the operation mode is directly
related to the cabin moving direction and the number of passengers. The elevator is in
traction mode when the elevator is moving upwards and the combination of the cabin
and passengers mass is heavier than the counterweight. Or on the contrary, when it
is moving downwards and the combination of the cabin and passengers mass is lighter
than the counterweight (3.22). It should be pointed out that for positive values of (Pe)
the system is in traction mode, while for negative values it is in regenerative mode.

Traction
mode

=
{
v > 0 → Np ·mpass +me > mc +Mf · (2 · x−Xmax)
v < 0 → Np ·mpass +me < mc +Mf · (2 · x−Xmax)

(3.22)

Regenerative
mode

=
{
v > 0 → Np ·mpass +me < mc +Mf · (2 · x−Xmax)
v < 0 → Np ·mpass +me > mc +Mf · (2 · x−Xmax)

(3.23)

In order to verify the stated expression, some acceleration, velocity and position
profiles have been defined, as shown in figure 3.10. These profiles are generated by the
elevator controller and they are extracted from a double speed elevator. The cabin is
accelerated until reaching the rated velocity. When the elevator is arriving to the floor,
it is decelerated to the approximation velocity. And finally, the cabin is stopped in order
to complete the mission. Note that the first half of the profile, from (t = 0s) to (t = 40s),
presents an upward mission and the second half, from (t = 40s) to (t = 80s), presents a
downward mission. Both of them show a mission of 18 meters long.

Figure 3.11 shows the electric power profiles (Pe) of an elevator with the parameters
summarized in table 3.3. As it can be seen, for the same two missions, and only modifying
the number of passengers, the elevator works in different operation modes. In the first
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Figure 3.10: Elevator controller upward and downward displacement profiles for a 18
meters mission: (a) acceleration, (b) velocity and (c) position.

mission, from (t = 0s) to (t = 40s), the top figure shows that the elevator is in traction
mode because the cabin and passengers are heavier than the counterweight. In contrast,
the bottom figure shows the elevator in regenerative mode because the cabin is empty.
The second mission, from (t = 40s) to (t = 80s), presents the opposite case. The fully
charged cabin is in regenerative mode and the fully discharged cabin is in traction mode.

Finally, as the EMR representation needs these power profiles, the mechanical system
model must be reflected in the (ielevator) term. The relation between these power profiles
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Figure 3.11: Electromechanical conversion system upward and downward power profiles
for a 18 meters mission: (a) 7 passengers (Np = 7) and (b) 0 passengers (Np = 0).

and the elevator current is presented in equation (3.24).

ielevator = Pe

vbus
(3.24)

It can be concluded that the general expression (3.20) is valid and that the op-
eration mode of an electromechanical elevator is related to the cabin charge and the
moving direction. Consequently, these power profiles have been introduced in the EMR

Term Value Term Value

Mf 0.5kg/m Np 0 or 8
mc 1083.5kg Xmax_travel 18m
me 800 g 9.81m/s2

mpass 78.75kg

Table 3.3: Summary of simulation parameters for the electromechanical conversion
system power profiles.
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representation of the system in order to define the application requirements.

3.2.3 Generalized Energy and Statistical Description of an Improved
Elevator

As it has been shown, the power and energy requirements of an electromechanical
elevator can easily be obtained in a mission. The problem arises when a sequence of
missions must be defined. The behavior of an elevator is apparently stochastic and
there is no analytical expression to model it. The missions sequence of an elevator
is directly related to the passengers needs and the place where it is installed. These
requirements can be different, depending on the number of passengers and the kind of
building (residential, public, hospital...).

In these systems, the Generalized Energy and Statistical Description (GESD) could
be a plausible solution. The objective of this modeling is to represent the energy re-
quirements of an stochastic application (wk) and to relate them with their probability of
occurrence (Pwk). Therefore, the energy requirements and their probabilities of occur-
rence must be identified and defined in order to carry out the statistical representation
of an elevator. Concerning the energy requirements (wk), they can be evaluated by
integrating the general expression of the electric power of the electromechanical conver-
sion system in a single mission (Pe), obtaining the energy value (Eelevator) expressed as
(3.25).

Eelevator =
∫
Pe dt (3.25)

Figure 3.12 shows the power and energy profiles of a mission corresponding to a
18 meters upward displacement with seven passengers inside the cabin. The energy
requirement (wk) is defined by the end value of the energy profile (Eelevator).

The probability of occurrence (Pwk) was provided by the elevation systems company
Orona based on empirical data obtained from a residential system composed of a five
floors elevator shaft and a maximum of eight passengers capability (Orona M34 - 1m/s,
5 floors, 8 passengers) in a one day traffic profile.

The elevation system considered in this thesis is represented by the GESD shown
in figure 3.13. In this system, there are as many different energy requirements as com-
binations of passengers as well as starting and ending floors. There are 90 possible
combinations (5 floors upward and downward, from 0 to 8 passengers). However, with
an incremental value of 2kJ the number of combinations is significantly reduced as shown
in this figure.
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Figure 3.12: Electromechanical conversion system upward mission profiles of 18 meters
and 7 passengers: (a) power profile and (b) energy profile.
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Figure 3.13: The Generalized Energy and Statistical Description (GESD) of an elevation
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Figure 3.14: Parameters identification on the EMR representation of the considered
elevation system.

3.3 Energy Management Strategy Implementation

In the present chapter an energy management strategy for the considered case study
is going to be developed and tested in simulation. For that purpose, firstly an analysis
of potential objectives for the EMS are presented. Taking the EMR representation as a
reference, the objectives are identified and the interest of optimizing them are presented.
Finally, the objectives for the optimization are selected and justified.

Then, two particular energy management strategies are developed. On the one hand,
the proposed methodology for Dynamic Programming based control strategy is applied
and an optimized energy management strategy is obtained. After that, a non-optimized
rule based strategy is also developed in order to make a comparison between both solu-
tions. These two energy management strategies are tested in simulation. The objective
is to be able to quantify the superior behavior of the DP based control strategy compared
to the non-optimized one.

3.3.1 Energy Management Objectives Analysis

The objective of an EMS in these systems is to satisfy the application requirements,
and at the same time, to optimize the behavior of the system, for example improving the
efficiency or reducing the energy consumption from an energy source. For that purpose,
in this section the potential objectives that could be optimized by the EMS are going to
be identified and defined.

The EMR representation of the elevation system shown in figure 3.14 allows the iden-
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tification of some key parameters of the system (rounded in red). These parameters are
directly related to the two energy sources, the grid and the energy storage system, as well
as with the dissipative source, the braking resistor. These parameters are responsible for
satisfying the electromechanical conversion system requirements (ielevator) which is non-
controllable. In our system, these terms are related to electric magnitudes. Therefore,
they correspond to voltage and current parameters, and they define instantaneously the
power and therefore also the energy. In addition, in the case of the ESS based on Scaps,
these terms also provide information about the state of the supercapacitors tank.

In the next lines, the potential optimization objectives are presented and described.
It should be noted that when a potential objective is identified, the optimization aims
to reach its maximum or minimum value. In our case, all of them must be minimized.

Grid (ES1)

In the case of the grid, the degrees of freedom are the rectified current (irect) and the
dc-link voltage (vbus). When the current is controlled, the power consumption from the
grid is also controlled (Pgrid), equation (3.26) and consequently the energy consumption
too (Egrid), equation (3.27).

Pgrid = irect · vbus (3.26)

and

Egrid =
∫
Pgrid dt =

∫
irect · vbus dt (3.27)

Therefore, the optimization objectives of the EMS are related to the power and energy
consumption from the grid, equations (3.28) and (3.29), respectively. In the case of the
grid power, the objective is to reduce short-term power peaks due to cabin accelerations.
And in the case of the grid energy, the energy consumption must be reduced in order to
improve efficiency.

min(Pgrid) = min
irect∈[0,∞)

(irect · vbus) (3.28)
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and

min(Egrid) = min
(∫

Pgrid dt

)
= min

irect∈[0,∞)

(∫
irect · vbus dt

)
(3.29)

Energy Storage System (ES3)

Regarding to the supercapacitors, the degrees of freedom are their current (isc) and
voltage (vsc). As in the case of the grid, the Scaps power (Pscaps) and the exchanged
energy between Scaps and the application (Escaps) are expressed in equations (3.30)
and (3.31), respectively. Furthermore, the depth of discharge (DOD) of the Scaps can
also be controlled, equation (3.32). Additionally, the maximum current through the
supercapacitors (Iscaps_max) and the number of life cycles (Nscaps) can also be optimized.

Pscaps = isc · vsc (3.30)

and

Escaps =
∫
|Pscaps| dt =

∫
|isc| · vsc dt (3.31)

and

DODscaps =
(

1−
(

vsc

vsc_max

)2
)
· 100 (3.32)

The optimization objectives for the energy storage system are expressed in equations
(3.33), (3.34), (3.35) and (3.36). The Scaps power can be limited in order to reduce losses
or to limit the maximum power of the ESS. The Scaps energy amount exchanged between
the ESS and the application can be limited due to the Scaps capacity limitation or due to
the energy losses during the charging-discharging processes. The ESS depth of discharge
can also be limited in order to prevent the premature degradation of supercapacitors.
The maximum current through supercapacitors can be reduced due to the ESS current
limitations. Finally, the number of life cycles can be controlled in order to prevent the
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Scaps degradation, and in consequence, the loss of energy storage capacity.

min(Pscaps) = min
isc∈R

(isc · vsc) (3.33)

and

min(Escaps) = min
(∫
|Pscaps| dt

)
= min

isc∈R

(∫
|isc| · vsc dt

)
(3.34)

and

min(DODscaps) = min
vsc∈[0,vsc_max]

((
1−

(
vsc

vsc_max

)2
)
· 100

)
(3.35)

and

min(Iscaps_max) and min(Nscaps) (3.36)

Braking Resistor (DS)

For the braking resistor, the degrees of freedom are the current (isr) and the voltage
(vsr). When the voltage is imposed, the power dissipated in the braking resistor is
controlled (Pcrowbar), equation (3.37), and consequently the energy losses too (Ecrowbar),
equation (3.38).

Pcrowbar = isr · vsr (3.37)

and

Ecrowbar =
∫
Pcrowbar dt =

∫
isr · vsr dt (3.38)
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Source Objective Description

Grid (ES1) min(Pgrid)
min(Egrid)

Short-term power peak reduction.
System consumption reduction.

ESS (ES3) min(Pscaps)
min(Escaps)
min(DODscaps)
min(Iscaps_max)
min(Nscaps)

ESS efficiency improvement.
ESS efficiency improvement.
ESS technology limitation.
ESS system limitation.
ESS system limitation.

B. Resistor (DS) min(Ecrowbar) System efficiency improvement.

Table 3.4: Summary of potential optimization objectives for the improved elevation
system.

The optimization objective for the braking resistor is expressed in equation (3.39). In
this case, there is only one objective because the power, as well as the energy dissipated
in the braking resistor, are only related to the system efficiency. Therefore, the system
efficiency can only be increased minimizing the energy losses.

min(Ecrowbar) = min
(∫

Pcrowbar dt

)
= min

vsr∈[0,∞)

(∫
isr · vsr dt

)
(3.39)

Optimization Objectives Selection

Table 3.4 summarizes all the potential optimization objectives. As it can be seen,
there are eight potential optimization objectives for the EMS.

These objectives can be achieved individually (mono-objective) or they can also be
grouped for a multi-objective EMS. The problem of the latter ones is the number of
possible combinations, as shown in equation (3.40).

Cr
s = r!

(r − s)! · s! (3.40)

Figure 3.15 shows the number of possible subsets in function of the multi-objective
order (s) by using the eight basic mono-objectives. It can be appreciated how the number
of combinations grows up, until reaching 70 different combinations for a fourth order
multi-objective control strategy. Then, the combinations go down until a single EMS of
8th order.

Figure 3.15 shows a comparison chart (spider chart) between control strategies where
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Figure 3.15: Optimization objectives grouping: (a) number of possible combinations
and (b) EMS comparison chart.

the axis are the potential optimization objectives, presented in table 3.4.

Between all the possible objectives, the energy management strategy will be devel-
oped for a multi-objective optimization based on two objectives.

The grid is mainly affected by two aspects in elevation systems: on the one hand, the
energy consumption (Egrid), and on the other hand, the power peaks due to cabin accel-
erations (Pgrid). Both of them can be reduced when an ESS is introduced and correctly
managed. The grid power smoothing or short-term power peaks reduction presents
more advantages than the energy consumption reduction. First, the electric installa-
tion or switchgear can be smaller if the maximum power peak is reduced. Furthermore,
if this power peak is significantly reduced, the elevator could even be connected to a
single-phase grid instead of using present three-phase connections. Moreover, from the
economic point of view, it is also more interesting to reduce the maximum power peak
instead of reducing the energy consumption. Therefore, the maximum power peak from
the grid must be minimized:

• EMS Objective 1: Grid power smoothing (min(Pgrid)).

Nevertheless this is not the only aspect to be taken into account. The considered
elevation system incorporates a dissipative source, the braking resistor. If this term
is not taken into account by the control strategy, much energy could be wasted in
regenerative mode as the ESS would always be completely charged in order to provide
energy for maximum grid power smoothing in traction mode. Therefore, it is necessary
to minimize braking resistor losses too:

• EMS Objective 2: Braking resistor energy losses minimizing (min(Ecrowbar)).
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Notation Object Case Study Identification

xk State variable State of charge of supercapacitors tank.
uk Decision variable Energy absorbed from the grid.
wk Perturbation variable Energy consumed or provided by

the electromechanical conversion system.
gk Objective function Stock management theory cost function.
Pwk Occurrence of wk Statistical information extracted

from the GESD.
m Length of Pwk Statistical information array length

extracted from the GESD.
Xmax ESS capacity Supercapacitors tank maximum capacity.

Table 3.5: Main objects of a Dynamic Programming based strategy for an improve
elevation system with energy storing capacity.

Note that no objectives referred to the energy storage system have been considered.
The reason is that the system has been designed and developed as efficient as possi-
ble (Pscaps, Escaps), and furthermore, it does not any significant present operational
limitations for this application (DODscaps, Iscaps_max, Nscaps).

3.3.2 Dynamic Programming Based Energy Management Strategy

Following, the proposed implementation methodology for energy management strate-
gies based on Dynamic Programming is going to be applied in order to develop and to
obtain an optimal control strategy for an elevation system with energy storing capacity
based on supercapacitors.

1 - Decisions and Costs Map Creation

In this step, the possible values of the decision variable (uk) are analyzed, and also,
how this variable and the perturbation variable (wk) influence the possible values of the
state variable (xk). The objective is to represent the different states where the system is,
and the values that have to be assigned to the decision variable in order to evolve from
one state to the next one. It should be pointed out that due to the stochastic behavior of
the considered elevator, the result will be a multi-dimensional representation of decisions
and costs maps.

But first, the variables for the DP based EMS must be identified. For that purpose,
table 3.5 summarizes all the variables identified in the considered system.

The evolution of the considered system (fk), from the instant (k) to (k+1), is defined
by equation (3.41). The SOC of Scaps (xk) is increased of decreased in function of the
amount of energy exchanged with the grid (uk) and the amount of energy that has been
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Initial State Intermediate States Final State
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Figure 3.16: Graphical representation of the cost function in the decisions and cost
maps.

consumed or provided by the electromechanical conversion unit (wk).

xk+1 = fk(xk, uk, wk) = xk + uk − wk (3.41)

Once the evolution expression is stated, the associated costs for each decision must
be defined using a proper cost function (gk). In this case, as mentioned before, the
function is based on the stock management theory (equation (3.42)).

gk(xk, uk, wk) =c · uk+

h ·
m∑
1

(
Pwk · [xk + uk −Xmax − wk]+

)
+

p ·
m∑
1

(
Pwk · [wk − xk − uk]+

)
(3.42)

In order to present graphically the penalties introduced by the cost function, a single
decisions and costs map extracted from the multi-dimensional representation is shown in
figure 3.16. The three terms of equation (3.42) are represented as red blocks. The first
term, referred to the variable cost and the optimization objective of power smoothing,
is associated to each map of the multi-dimensional representation. The second term,
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referred to the storage cost and the optimization objective of energy losses reduction,
represents the situation where the Scaps are fully charged and some power is absorbed
from the grid or regenerated by the electromechanical conversion system. Therefore,
this power must be dissipated in the braking resistor. The last term, referred to the
shortage cost, represents situations in which the power absorbed from the grid and the
energy stored in the Scaps is not enough to satisfy the electromechanical conversion
system needs.

Finally, by evaluating all the possible states, the adopted decisions and the associated
cost, it is possible to create a multi-dimensional map where the decisions are taken in an
optimum way by the DP strategy. Note that the representation is the same as the one
presented in figure 2.4 for the stochastic application and the number of maps (nuk + 1)
is equal to the possible discrete values of the decision variable (uk), expressed in (3.43).

uk = [0, 1, 2, . . . , nuk] ·∆uk (3.43)

2 - Global Map Division

In this step, the maps are going to be divided in zones, defining the instants where
the decisions must be taken, and also, the number of decisions that must be taken by
the optimized control strategy (N), (3.44).

k = 1, 2, 3, . . . , N + 1 (3.44)

Figure 3.17 presents the global maps division. As it can be seen, all maps are
identically divided. It should be pointed out that the global map division breaks the
sequential decision problem into smaller subproblems, making it possible to apply the
Bellman’s principle of optimality in order to reach an optimal solution.

3 - Origin and Destination Identification

When the map is divided into different zones, the origin and destination of the
problem must be identified. After that, the values of (k) related to every subproblem
are set, as it can be seen in figure 3.17. The objective is to define the way of solving the
problem in the last step of the proposed methodology.

4 - Objective Definition

In this step, the objective is defined, namely, it is decided if the cost function must be
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Figure 3.17: Improved elevation system decisions and costs maps division and orig-
in/destination identification.

maximized o minimized. In our case, the objective is clear because the multi-objective
control strategy is aimed at reducing the maximum short-term power peak from the grid
(EMS objective 1), and also, at reducing the energy losses in the braking resistor (EMS
objective 2). Therefore, the cost function must be minimized.

The objective is defined in equation (3.45) for a sequence of (N) decisions. The cost
function (gk) was previously defined in equation (3.42). Note that one more term is
introduced, for the instant (N + 1), in order to take into account a possible final cost of
the system due to the adopted decision at instant (N).

min
uk∈[0,nuk·∆uk]

E[gN+1(xN+1) +
N∑

k=1
gk(xk, uk, wk)] (3.45)

5 - Problem Resolution

In this last step, the problem is solved and the optimized DP control strategy is
obtained. For that purpose, the resolution is carried out through the backward induction
technique, where subproblems are solved from the last instant (k = N + 1) to the first
one (k = 1), and finally, getting an optimal decision policy for the sequence of decisions.

In order to carry out the resolution, the recursive expression of the DP algorithm
must be reformulated, taking as reference the general expression (2.5) and introducing
the considered cost function for the elevation system (3.46).
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Term Value Term Value

wk GESD (figure 3.13) c 1
Pwk GESD (figure 3.13) h 55
Xmax 60kJ p 5
∆uk 0.3kJ N 7
nuk 150 m 53

Table 3.6: Summary of parameters for the resolution of the control strategy.

JN+1(xN+1) = 0
Jk(xk) = min

uk∈Uk,wk

E[c · uk+

h ·
m∑
1
Pwk · [xk + uk −Xmax − wk]+ +

p ·
m∑
1
Pwk · [wk − xk − uk]+ +

m∑
1
Pwk · Jk+1

(
[xk + uk − wk]+

)
] k = N, . . . , 2, 1 (3.46)

Once all steps are completed, the analytical resolution can be carried out, evaluating
the DP algorithm in each subproblem of the global map and applying the backward
induction technique for minimizing the cost function. The algorithm is going to be
executed offline, and then, it will be tested in simulation. For that purpose, table 3.6
summarizes the parameters for the analytical resolution. Note that several values, such
as the ESS capacity and the GESD representation, are referred to a full-scale elevator,
where finally, this energy management strategy will be experimentally validated.

Figure 3.18 presents the obtained DP based EMS for an stochastic application. In
each mission of the sequence (k) and according to the energy stored in the supercapac-
itors just before starting the mission (xk), the control strategy defines the energy that
must be absorbed from the grid during this mission (uk), (3.47). Note that the EMS has
been presented in a two-dimensional figure instead of a three-dimensional figure. The
reason is that the figure contains too many bars for a three-dimensional representation.

uk = f(k, xk) (3.47)

This control strategy is able to manage an elevator in seven different missions, as it
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Figure 3.18: Optimized control strategy based on Dynamic Programming for an im-
proved elevation system.

has already been defined in the parameters. If the elevator must be managed in more
missions than the decision length (N), the strategy will be applied as a sliding window,
repeating the EMS window after (N) missions. This is because the computational cost
is exponentially increased for large decisions policies. Applying a sliding window, the
obtained results are similar for the whole decision policy and the computational cost is
assumable for the considered application.

3.3.3 Rule Based Energy Management Strategy

In order to quantify the behavior of an optimized control strategy based on DP, a
non-optimized rule based control strategy has been developed and implemented. The
objectives are the same as these defined for the DP based strategy: grid power smoothing
and braking resistor energy losses reduction. This control strategy is combinational, i.e.,
the past and future statistical information are not taken into account. The energy
manager make decisions based only on the present mission information.

With regard to the implementation, two terms of the system must be provided to
the EMS. On the one hand, the supercapacitors voltage (vsc) in order to estimate their
SOC. On the other hand, the power consumed or provided by the electromechanical
conversion system (Pe) in order to define the operation mode (traction or regenerative
mode) and to know the amount of power consumed by the grid.

Concerning to the SOC of the Scaps, figure 3.19 presents the management of the ESS
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Vrbs_max

Vrbs_nom

Vrbs_min

Vrbs_0

0

Figure 3.19: Supercapacitors tank division by a non-optimized rule based control strat-
egy.

based on supercapacitors which is divided in four zones of energy, defined by voltage
thresholds:

• From (vsc = 0) to (vsc = Vrbs_0): it is a not-usable energy zone due to the low
voltage level.

• From (vsc = Vrbs_0) to (vsc = Vrbs_min): it is the amount of energy reserved for
the automatic rescue mode and it cannot be used during normal operation.

• From (vsc = Vrbs_min) to (vsc = Vrbs_nom): it is the amount of energy reserved for
grid power smoothing. This amount must be enough for the worst case in traction
mode.

• From (vsc = Vrbs_nom) to (vsc = Vrbs_max): it is the amount of energy reserved
for regeneration (braking resistor energy losses reduction). This amount must be
enough for the worst case in regenerative mode.

Once the information required by the EMS is provided and the energy storage system
division is carried out, the control strategy based on rules can be developed. Figure 3.20
presents the flowchart corresponding to this non-optimized control strategy.

The rules are defined depending on the operation mode. In traction mode, if the
electromechanical conversion system consumes a power level (Pe) higher than the EMS
threshold (Pgrid_rbs), the energy storage system provides the difference between this
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Pe > 0

Pscaps = -(Pe-Pgrid_rbs)

Yes (traction mode) No (regenerative mode)

Pe > Pgrid_rbs

Pscaps  = 0
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Pcrowbar  =  0

vsc  > Vrbs_max

Pscaps =  0

Yes

Pscaps =  -Pe

No

Pcrowbar =  Pe Pcrowbar  =  0Pcrowbar = 0

Figure 3.20: Rule based control strategy for the elevation system with energy storing
capacity.

threshold and the power required by the application in order to achieve the grid power
smoothing goal (Pscaps). In regenerative mode, the energy is stored in the supercapac-
itors tank as long as the ESS is not fully charged, i.e., the voltage (vsc) must be lower
than the maximum voltage threshold (Vrbs_max). If not, the power is dissipated in the
braking resistor (Pcrowbar). Note that the ESS sign criteria is: positive for charging and
negative for discharging processes.

It should also be pointed out that when a mission is completed and the supercapacitor
voltage is lower than the nominal voltage (Vrbs_nom), the Scaps are charged up to their
nominal voltage in order to assure the grid power smoothing in the following mission.

3.3.4 Power Management Strategy of the Improved Elevation System

In the introduction chapter, the hierarchical control composed by three levels has
been presented (MPEMS), figure 1.14. The energy management level has been devel-
oped and implemented in the previous section (DP and RBS). Therefore, the power
management level (PMS) must be defined in order to transmit the energy management
level commands to the power electronics level.

For the considered case study and in order to define the power management level, the
missing terms of the EMS and MCS, (kd) and (vbus_ref ), have to be defined. Following,
the power management level is presented.

Distribution factor (kd)

The distribution factor defines the current through the energy storage system and
the braking resistor. The DP based EMS, as well as the rule based EMS, implements
the same criteria. When the (icouple_simp_ref ) term is negative because the elevator is
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working in regenerative mode or some power is being consumed from the grid, the value
is (kd = 1) while supercapacitors are not fully charged, otherwise, (kd = 0). In contrast,
when the term (icouple_simp_ref ) is positive, the value of the distribution factor is always
(kd = 1) because the resistor cannot provide power to the application. The analytical
expression is stated in (3.48).

kd =


0 if (icouple_simp_ref < 0) and vsc = vsc_max

1 if (icouple_simp_ref < 0) and vsc < vsc_max

1 if icouple_simp_ref ≥ 0
(3.48)

Dc-link voltage reference (vbus_ref)

The dc-link voltage defines how much power is absorbed from the grid. This is
because the dc-link is connected to the grid through a non-controllable three-phase
rectifier. If the dc-link voltage (vbus) is lower than the average output voltage of the
rectifier, the power is absorbed from the grid. In contrast, if this level is higher, no power
is absorbed. It is an indirect way to control the power consumption from the grid. For
this reason, the EMS block is responsible for controlling the voltage in order to carry
out the grid power smoothing objective. Note that between the grid and dc-link there
is an equivalent series inductor that limits the current due to the direct connection.

In our case, it will be assumed that the dc-link voltage reference (vbus_ref ) is pro-
portional (kgrid) to the grid power demand (Pgrid), implementing an open loop control.
The power management layer has been simplified because this thesis is mainly focused
on the energy management level. The analytical expression is stated in (3.49).

vbus_ref = Pgrid · kgrid (3.49)

3.3.5 Control Strategies Simulation Tests

Once the energy management strategies have been developed, and implemented and
the power management level has been defined, these strategies are going to be tested in
simulation. For that purpose, they are firstly tested on a single mission in order to verify
their correct implementation. Then, both control strategies, the DP based and the RBS
based control strategies, are tested on a random sequence of missions for obtaining the
first conclusions before their experimental validation in a full-scale elevator. It should be
pointed out that cabin and counterweight friction losses have been introduced in order
to represent a real elevator.
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Term Value Term Value

Mf 0.5kg/m mpass 78.75kg
mc 1083.5kg Xmax_travel 18m
me 800kg g 9.81m/s2

Table 3.7: Summary of simulation parameters for the electromechanical conversion
system power profile.

One Mission Simulation Tests

Two consecutive missions from a random sequence have been extracted in order to
analyze them in simulation. The objective is to check the correct implementation of the
control strategies. They are tested with the simulation parameters summarized in table
3.7.

These missions are the second one and the third one from a total sequence of 80
missions. This sequence of missions will be explained in the next section. For the
moment, the required information, displacement and number of passengers, is presented
in figure 3.24.

Regarding to the non-optimized RBS control strategy, the power profiles are pre-
sented in figure 3.21. The top figure shows the electromechanical conversion system
power requirements (Pe). The middle figure shows grid power consumption (Pgrid).
Finally, the last figure shows the energy storage system power profile (Pscaps).

In the first mission, the elevator is operating in traction mode, from (t = 5s) to
(t = t1). The grid power threshold has been set to three and a half kilowatts (3.50), and
as it can be seen, this power limit is never exceeded. In consequence, the supercapacitors
must provide the difference between the elevator power requirements and the defined grid
power limit, when that limit is exceeded. Note that the ESS sign criteria is: positive for
charging and negative for discharging processes.

Pgrid_rbs = 3.5kW (3.50)

Regarding the second mission and from (t = 45s) to (t = t2), the elevator is working
on traction mode, and then, it begins to operate on regenerative mode due to the low
number of passengers. The grid power threshold is not exceeded, therefore, the energy
storage system is not discharged. In contrast, when the power is recovered from (t = 60s)
to (t = t2), that power is stored in the supercapacitors tank, as it can be appreciated in
the bottom figure. It should be noted that it has been supposed that the supercapacitors
tank is fully charged. Otherwise, that energy would have been dissipated in the braking
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Figure 3.21: Power profiles of two consecutive missions with a RBS strategy: (a) elec-
tromechanical conversion system, (b) grid and (c) energy storage system.

resistor in order to protect the system, avoiding the supercapacitors and the dc-link
capacitor overloading.

In relation to the DP strategy, it defines the amount of energy that must be in-
troduced in the ESS in each mission (uk). But, it does not define how to consume this
energy. In our case, this energy is consumed in a constant grid power level (Pgrid_dp) dur-
ing a fixed period of time (tdp) aimed at reaching the maximum grid power smoothing,
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Figure 3.22: Power and energy profiles of the Dynamic Programming based control
strategy: (a) grid power and (b) grid energy.

expressed in equation (3.51).

Pgrid_dp = uk

tdp
(3.51)

Figure 3.22 presents the power and energy profiles of the DP based control strategy
for these two missions. At the top, the grid power reference is applied during a fixed
period of time in two consecutive missions, being in both cases (tdp = 30s). This power
reference is defined by equation (3.51). If these two power profiles are integrated, the
DP control strategy references (uk) are obtained.

These values are expressed in (3.52) and (3.53). For the first mission, the optimized
control strategy defines (u1 = 0kJ), and for the second one, the value is (u2 = 45kJ).

Pgrid_dp = u1
tdp

= 0 · 103J

30s = 0kW (3.52)
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Figure 3.23: Power profiles of two consecutive missions with a DP based control strategy:
(a) electromechanical conversion system, (b) grid and (c) energy storage system.

and

Pgrid_dp = u2
tdp

= 45 · 103J

30s = 1.5kW (3.53)

The power profiles presented in figure 3.23 are those corresponding to the DP strat-
egy. The electromechanical conversion system power requirements, the grid power con-
sumption and the energy storage system power profile are presented from the top to the
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bottom, respectively. Note that the top figure is the same as in the rule based control
strategy simulation test.

Regarding the first mission, the grid power threshold is equal to zero, from (t = 5s)
to (t = 35s). In consequence, the control strategy fixed period is (tdp = 30s). As in the
case of RBS strategy, when the electromechanical conversion system power level (Pe)
exceeds the energy manager reference (Pgrid_dp), the ESS provides that power difference
(Pscaps). In this case, the energy storage system is responsible for providing all the power
required by the electromechanical conversion system, because no power is consumed from
the grid.

In the second mission, the grid power is steadily consumed, from (t = 45s) to (t =
75s), applying the energy management strategy in the same period of 30 seconds and
being larger than the mission period. In this mission, the ESS must be capable of
absorbing the power provided by the elevator in regenerative mode, and also, the power
consumed from the grid. As it can be seen, this optimized control strategy prepares
the state of charge of Scaps for the following missions in order to assure the grid power
smoothing. As in the RBS strategy, it has been supposed that the supercapacitors have
not been fully charged, avoiding any energy losses in the braking resistor.

After these simulations tests, it can be concluded that both control strategies have
been correctly implemented. Both control strategies, RBS and DP, reduce the short-term
power peaks and energy losses in the braking resistor. In addition the DP strategy pre-
pares the SOC of the ESS for upcoming missions in order to achieve these two objectives
in a sequence of missions.

In the following section simulations tests are carried out for a random sequence of
missions in order to compare both strategies in more realistic conditions.

Sequence of Missions Simulation Tests

The simulations tests of these two control strategies, RBS and DP, have been carried
out in a random sequence of missions. In this case the selected sequence of missions
represent the behavior of a residential elevation system of five floors elevator shaft and
a maximum of eight passengers capacity (Orona M34 - 1 m/s, 5 floors, 8 passengers)
in a one day traffic profile. There are 90 different combinations of missions (5 upwards
missions, 5 downwards missions and from 0 to 8 passengers) which can also be repeated.
Each mission has its probability of occurrence for a one day traffic profile. This infor-
mation has been provided by the elevators company Orona. This random sequence of
mission is illustrated in figure 3.24. Note that the sequence has been developed applying
a random function of MATLAB R©.

Figure 3.24 shows the cabin position or floor at the beginning of the mission and the
bottom figure shows the number of passengers in each mission. Note that the elevator
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Figure 3.24: Random sequence of 80 missions: (a) cabin starting position and (b)
number of passengers.

mission ending floor is represented as the cabin starting position in the following mission.
For this purpose, the top figure presents 81 missions in order to contemplate the ending
floor of the 80th mission, avoiding a redundant figure for the cabin finishing position in
each mission.

In order to develop this sequence, the next three considerations have been taken into
account:
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• A total of 80 missions is representative of a one day traffic profile. It is more than
a 10% of the missions of a day.

• The missions from or to the second floor have been neglected. That floor is inac-
cessible in the full-scale elevator where the experimental validation of these control
strategies will be carried out.

• The missions of seven and eight passengers have been neglected due to their low
probability of occurrence compared to the rest of missions, and also because, they
generate logistic problems to emulate these loads in the experimental validation.

Once the random sequence of missions has been defined and the control strategies
have been developed and implemented, the simulations tests have been carried out. In
the following lines, the optimization objectives are presented and analyzed, and then,
other parameters are also presented and analyzed in order to get a global vision and to
know the boundaries of these energy management strategies.

Regarding the first objective, the grid power smoothing, figure 3.25 shows the grid
power profiles corresponding to the defined sequence of missions. The top figure cor-
responds to an elevator without energy storing capacity (Classic). The middle figure
corresponds to an improved elevator with a RBS strategy. The last figure corresponds
to an improved elevator with a DP strategy.

As it can be verified, the maximum grid power level has been significantly reduced
in the case of both strategies. For a non-improved elevation system the maximum power
level consumed from the grid is 7.4kW . The rule based strategy has been developed
and implemented for a maximum level of 3.5kW . In conclusion, the maximum value has
been reduced by 53%. Nevertheless the DP strategy is able to reduce even more this
level, down to 1.5kW , i.e. an 80% of reduction. Therefore, it can be concluded that
both control strategies are able to reduce the maximum power level consumed from the
grid, but, the DP based strategy achieves a higher level of grid power smoothing.

Concerning the second objective, braking resistor energy losses reduction, figure 3.26
presents the results of simulation tests. The non-improved elevator (Classic) dissipates
up to (188.7kJ) in the braking resistor. In contrast, the improved elevator can partially
reuse this generated energy while the elevator is operating in traction mode. The rule
based strategy (RBS) is able to reduce these energy losses by 84% only (30.1kJ). In
the same way, when a DP based control strategy is implemented, these energy losses are
also reduced by 77% (43.6kJ). It can be concluded that both control strategies are able
to reduce significantly the energy losses in the braking resistor. However in this case,
the RBS strategy achieves slightly better results.

It is confirmed that both optimization objectives have been reached in the simulation
tests, grid power smoothing and braking resistor energy losses reduction. Nevertheless,

86



3.3. Energy Management Strategy Implementation

1 10 20 30 40 50 60 70 80
0

2

4

6

8

 k

P
g
r
id

[k
W

]

(a)

1 10 20 30 40 50 60 70 80
0

2

4

6

8

 k

P
g
r
id

[k
W

]

(b)

1 10 20 30 40 50 60 70 80
0

2

4

6

8

 k

P
g
r
id

[k
W

]

(c)

Figure 3.25: Grid power profiles: (a) elevator without energy storing capacity (Classic),
(b) improved elevator and rule based control strategy (RBS) and (c) improved elevator
and Dynamic Programming based control strategy (DP).

it is also interesting to check the behavior of the rest of non optimized parameters.
The objective now is to make a comparison between the developed and implemented
energy management strategies taking into account all the optimization objectives from
the considered system and to get a global vision of them (table 3.4).

Figure 3.27 presents grid energy profiles. The simulation results show a grid energy
consumption reduction. The non-improved elevator consumes (1119kJ) (Classic) and
the improved elevator reduces the consumption down to (940kJ) and (951kJ), for the
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Figure 3.26: Braking resistor energy losses profiles of a non-improved elevator (Classic)
and an improved elevator with a rule based control strategy (RBS) and a Dynamic
Programming based control strategy (DP).
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Figure 3.27: Grid energy profiles of a non-improved elevator (Classic) and an improved
elevator with a rule based control strategy (RBS) and a Dynamic Programming based
control strategy (DP).

RBS and the DP strategies, respectively. The reduction is (179kJ) and (168kJ), i.e.,
16% and 15%, respectively. It should be pointed out that the reduction of energy
consumption has been higher than the recovered energy. This is due to the fact that
the energy storage system starts the simulation test fully charged, and 80 missions later,
the state of charge is lower. Therefore, this reduction is a combination between the
recovered energy and the stored energy from the scaps.

Regarding to the energy storage systems, there are five terms to be taken into ac-
count. First, the amount of energy exchanged between the ESS and the system (figure
3.28). This value represents the energy that has been transferred and consumed from
the ESS, reflecting, the use of the energy storage system. It can be remarked that the
DP strategy (2030kJ) uses six times more the Scaps than the RBS strategy (338kJ).
There are two possible lectures for this intensive use. On the one hand, the installed
ESS has been optimized. On the other hand, the ESS is employed very intensively, and
in consequence, it could be prematurely degraded according to its typical lifetime which
could be an important drawback in some applications.

88



3.3. Energy Management Strategy Implementation

1 10 20 30 40 50 60 70 80
0

600

1200

1800

2400

 

E
s
c
a
p
s
[k
J
]

 

 

k

RBS
DP

Figure 3.28: Energy storage system energy profiles for an improved elevator with a rule
based control strategy (RBS) and a Dynamic Programming based control strategy (DP).

Figure 3.29 shows the supercapacitors tank power profiles. Power profiles are higher
for the DP based strategy (7.27kW ) than for the RBS strategy based on rules (3.9kW ),
almost two times higher. These values are partially related to the grid power smoothing
level. Therefore, the DP based EMS requires relatively high power levels for the energy
storage systems, the supercapacitors and the converter. In addition, system losses would
be higher for higher power levels.
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Figure 3.29: Energy storage system power profiles: (a) rule based control strategy
(RBS) and (b) Dynamic Programming based control strategy (DP).
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Figure 3.30: Energy storage system current profiles: (a) rule based control strategy
(RBS) and (b) Dynamic Programming based control strategy (DP).

As it can be seen in figure 3.30, energy storage system current levels are also higher,
requesting a higher current capability to the supercapacitors and to the converter. When
a DP control strategy is implemented, the maximum current is more than twice (48A)
with respect to the RBS control strategy (20.95A). This value is obtained from the
ESS power and voltage profiles. An important characteristic of the Scaps is their wide
voltage operation range. Therefore, taking as reference the power profile, the current is
inversely related to the voltage level.

Figure 3.31 shows the evolution of supercapacitors state of charge over 80 missions,
from the energy point of view. Once more, the DP based EMS operates in a wider range
than the RBS strategy.

The depth of discharge (DOD) is evaluated taking as reference the state in which the
Scaps are fully charged. Therefore, the DOD is equal to 58% for the DP strategy and
40% for the RBS strategy. It should be pointed out that some peaks appear due to the
equivalent series resistor of the Scaps, and also, because the ESS voltage is measured
in the terminals. When the current is flowing throught the ESS, the output voltage is
equivalent to the supercapacitor voltage and the equivalent series resistor voltage, which
dissapears for zero-current values. Therefore, these peaks can be neglected.
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Figure 3.31: Energy storage system state of charge profiles: (a) rule based control
strategy (RBS) and (b) Dynamic Programming based control strategy (DP).

Finally, the evolution of cycles-per-mission (cpm) is presented in figure 3.32. It is a
ratio which relates the number of ESS cycles used in each mission, instead of representing
the absolute value of the consumed cycles. This factor is useful to evaluate the lifetime
of different ESS for the same application. Regarding this value, the factor for the DP
control strategy (2.71) is higher than for the RBS (1.23), more than twice. It means
that in the DP case the ESS will have be replaced 50% sooner than in the RBS case.
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Figure 3.32: Energy storage system lifecycles profiles for an improved elevator with a
rule based control strategy (RBS) and a DP based control strategy (DP).

91



Chapter 3. Elevator with Energy Storing Capacity

50 200
Ecrowbar [kJ]

4

8Pgrid [kW]

900

1200Egrid [kJ]

 

 

Classic

RBS

DP

(a)

3
Nscaps (cpm)

46 Ecrowbar [kJ]

3.6
Pgrid [kW]

1000
Egrid [kJ]

2100
Escaps [kJ]

0

8Pscaps [kW]

50 Iscaps max [A]

60DODscaps [%]

 

 RBS

DP

(b)

Figure 3.33: Comparison charts of simulations test results: (a) reduced comparison
between a non-improved (Classic) and an improved elevator (RBS and DP) and (b)
rule based (RBS) and Dynamic Programming based (DP) control strategies comparison
chart.

In order to summarize all the simulations tests results, two comparison charts are
presented in figure 3.33. On the left, the comparison is carried out between the three
terms that can be compared between a non-improved elevator and an improved elevator.
On the right, the two developed and implemented control strategies are compared, taking
as reference all potential optimization objectives, presented in table 3.4. Note that in
both figures, the objective is to get the lowest value as possible in each axis.

Regarding the first comparison, the maximum grid power peak (Pgrid), the en-
ergy consumed from the grid (Egrid) and the energy dissipated in the braking resistor
(Ecrowbar) are represented. As it can be seen, the improved elevation system with both
control strategies is able to reduce the energy consumption from the grid, using the
non-dissipated energy in the braking resistor. Besides, the control strategy based on DP
reaches a higher level of grid power smoothing.

In the second comparison, it can be appreciated that the terms referred to the ESS
(Escaps, Pscaps, Iscaps_max, DODscaps, Nscaps), are higher for the DP than for the RBS.
These values can be interpreted as a better usage of the ESS, but also, as a higher
degradation of the ESS. It depends on the safe operating area and the ESS lifetime
estimation.

It can be concluded that the defined optimization objectives have been achieved com-
pared to a non-improved elevation system: grid power smoothing and braking resistor
energy losses reduction. In addition, the optimized control strategy based on Dynamic
Programming reaches better grid power smoothing results. Nevertheless it must be also
taken into account that the operating requirements of the energy storage system are
higher compared to a non-optimized control strategy.
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3.4 Conclusions

In this chapter, the proposed implementation methodology for an optimized DP
strategy for energy storing capacity applications has been applied and tested in sim-
ulation. The considered case study consists of an improved elevation system with a
supercapacitor based energy storage system. First, an introduction to these vertical
transport system has been presented in order to know the application more deeply.

Once the case study has been defined and before the energy management strat-
egy implementation, the system modeling has been carried out. Firstly, the Energetic
Macroscopic Representation of the system has been obtained by defining the interac-
tion between the power sources (grid, electromechanical conversion system and energy
storage system) and the dissipator (braking resistor). Afterwards, this model has been
inverted for obtaining the Maximal Control Scheme which defines the inner and outer
control loops required by the application, as well as the framework and the required
information for the EMS. Then, the electromechanical conversion system has been ana-
lyzed and modeled, defining the requirements that must be satisfied by the power source
and the energy storage system on a single mission. In our case, the optimized EMS is
responsible for controlling the system along several missions, and as this system has a
stochastic behavior, the Generalized Energy and Statistical Description has been used.
This representation has been developed for a one day traffic profile.

Finally, the proposed methodology has been applied in the improved elevation sys-
tem. But firstly, the optimization objectives have been analyzed and two objectives
have been defined for a multi-objective optimization, grid power smoothing, and the
braking resistor energy losses reduction. In order to validate the proposed methodology
for an optimized control strategy, a non-optimized Rule Based Strategy has also been
developed and implemented. Finally, the simulations tests have been carried out and
clarifying results have been obtained, firstly in a single mission, and then, in a random
sequence of 80 missions.
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Chapter 4. Implementation and Experimental Validation

Summary
In this chapter, the experimental validation of the developed control strategies is

presented. Three experimental tests have been carried out in a full-scale elevator with
energy storage, including a non-improved elevation scenario and two improved elevation
system scenarios. For that purpose, the test bench is presented and described. Then,
the experimental validation with one single mission is presented in order to check the
correct implementation. Finally, the experimental validation with a random sequence of
missions is carried out and the experimental results are presented and analyzed.

4.1 Introduction to the Implementation and Experimental
Validation

In this chapter the experimental results obtained in three different scenarios are com-
pared based on a random sequence of missions. In the first test, the energy storage sys-
tem is disabled in order to define the power and energy requirements of a non-improved
elevator (Classic). Then in the second test, a rule based control strategy defining new
functionalities and improvements is implemented in an improved elevator (RBS). Fi-
nally, an optimized control strategy based on Dynamic Programming is tested for the
same improved elevator(DP).

Concerning the sequence of missions, it should be noted that the experimental vali-
dation has been carried out with the same random sequence of missions defined in the
simulation tests, presented in figure 3.24. It consists of 80 missions where the maximum
displacement of the elevator car is five floors and the maximum number of passengers is
six.

This chapter is divided in four parts. In the first section, the full-scale elevator
with energy storing capability (using supercapacitors) is presented and described in
detail. Then, the control strategies are validated along one mission in order to check the
correct implementation of the control strategies. After that, the experimental results
are presented for a random sequence of missions, validating the optimized Dynamic
Programming based control strategy and demonstrating its superior features compared
to a non-improved elevator, and also, compared to a non-optimized control strategy.
Finally, the conclusions of this chapter are presented.

4.2 Test Bench Description

The experimental tests have been carried out in a full-scale elevation system with
energy storing capability provided by Orona. The system is composed of a real resi-
dential type elevator and an energy storage system prototype based on supercapacitors.
Following, the test bench is presented and described.
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(a)

5. IMPLEMENTATION AND EXPERIMENTAL VALIDATION 

Initially the proposed DP based EMS has been implemented and tested in simulation, using a 

basic elevator model and the GESD description presented in Figure 2. The cost function 

parameters implemented on the EMS are c = 1, h = 55 and p =5. Simulations show that it is 

possible to design the DP algorithm for a limited number of mission sequences instead of the 

whole set of missions, in order to improve computational cost without degrading the quality of 

the results. Therefore a seven mission sliding window has been implemented. Figure 4 shows the 

power peak reduction from the grid for a particular mission. Note that even if the elevator power 

is zero after the mission (between t =20s and t =35s), some power is being absorbed from the 

grid in order to charge the ESS. Figure 5 shows that braking losses can be reduced by 95% (from 

30kJ to 1.5kJ); comparing an elevator without ESS and the improved elevator with a DP based 

EMS during the same random sequence of 80 missions. 

 

Figure 4: Power profiles in a mission 

(simulation). 

 

Figure 5: Braking resistor losses  

(simulation). 

The energy management algorithm has been also implemented and validated experimentally in a 

real test tower: 18m, 8 passengers = 630kg (emulated by different loads) and 20Wh ESS [3], 

(Figure 6
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Figure 4.1: Full-scale elevator test tower: (a) test tower building and (b) elevation
system’s main components.

4.2.1 Test Tower

In this section, all the elements of the system are presented in order to introduce the
real application of this case study, describing all its different components and defining
their parameters. The facility containing the full-scale elevator with energy storing
capability and its main components are shown in figure 4.1.

The system can be divided in four main blocks: the electromechanical conversion
system, the mechanical system, the elevator controller and the energy storage system
based on supercapacitors. Figure 4.2 shows the block diagram of the whole system,
showing the interconnection between blocks. The red blocks show the components in-
stalled in any residential elevator. While, the blue blocks shows the ESS which provides
the energy storing capacity to the elevator.

According to the vertical traveling of the cabin and the counterweight, the elevator
shaft is presented in figure 4.2. As it can be seen, there are 5 floors with a height of 5.2m
for the zero floor and 3.2m for the rest of the floors, being the full travel of 18m long.
Note that there are doors in all the floors except in the second one, being impossible to
complete any mission to this floor or from it. In consequence, the random sequence of
missions was slightly modified.

4.2.2 Electromechanical Conversion System

The electromechanical conversion system is based on a Permanent Magnet Syn-
chronous Machine (PMSM) developed by Orona. It is a machine especially designed
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Figure 4.2: Improved elevation system’s block diagram: (a) elevation system and (b)
elevator shaft.

for vertical transportation applications with a maximum number of passengers of eight
(M34-8pax). Orona’s PMSM machine is shown in figure 4.3.

Figure 4.3: Orona’s machine (M34-8pax).
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(a) (b)

Figure 4.4: Elevator’s mechanical system: (a) the cabin and the trolleys with loads used
to emulate the mass of passengers and (b) the counterweight.

4.2.3 Mechanical System

The mechanical system is mainly composed by the cabin (with its loads) and the
counterweight. Other elements as cables and pulleys have been neglected due to their
much less influence on the system’s operation.

The main characteristics of these elements are presented in table 4.1. Note that
the maximum capacity of the cabin is eight passengers and the random sequence of
missions only considers a maximum load of six passengers. In order to emulate the mass
corresponding to the passengers, six individual trolleys have been used (each with a load
of 78.75kg), combining them according to the passenger requirements defined on the
sequence of missions.

The cabin, the trolleys with the loads, and the counterweight are shown in figure
4.4.

Parameter Value Term

Cabin mass 800kg me

One passenger mass 78.75kg mpass

Maximum number of passengers 8 Np

Counterweight level Medium mc

Table 4.1: Summary of the mechanical system’s characteristics.
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(a) (b)

Figure 4.5: Energy storage system: (a) supercapacitors tank and (b) reversible dc-dc
converter.

Parameter Value

Rated power 2kW
Maximum power 5kW @ 10s
Energy capacity (operational mode) 16Wh

Table 4.2: Summary of the energy storage system’s specifications.

4.2.4 Elevator Controller

The objective of the elevator controller is to power and to control the electromechan-
ical conversion system in order to carry out the cabin displacement. The cabin is moved
using the acceleration, speed and position profiles previously shown in figure 3.10. Note
that the duration of those profiles are directly related to the cabin displacement, needing
more time for longer distances.

4.2.5 Energy Storage System

The energy storing capability is provided by an energy storage system based on
supercapacitors, shown in figure 4.5. A reversible dc-dc converter is also included in
order to control the charge and discharge of the Scaps, according to the defined en-
ergy management strategies. This equipment is a full-scale demonstrator and its main
characteristics are presented in table 4.2.

Regarding to the control strategies implementation, they have been implemented in
the energy storage system’s control unit. The objective of this energy storage system
is to provide energy storing capacity to any conventional elevation system. For that
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Figure 4.6: Implementation of control strategies for the experimental validation: (a)
supercapacitors tank division by the RBS control strategy, (b) lookup table of the DP
control strategy, (c) RBS based control strategy implementation and (d) DP based
control strategy implementation.

reason, the energy management strategies, the RBS and the DP, must be implemented
in the control unit of this system. They have been developed and implemented in C
programming language in the DSP and the FPGA of the control unit. Figure 4.6 shows
both control strategies and their implementation block diagrams. For the DP based
EMS, two additional block have been introduced. The “SOC” block defines the state of
charge of Scaps (xk) from their voltage (vsc) and the “E/P” block converts the energy
reference of the DP control strategy (uk) into the power reference for the ESS (Pscaps).
It should be pointed out that the DP based EMS has been developed offline.

4.3 Validation of the Operation Along One Mission

In this section, the results of the experimental tests are presented, comparing a DP
based EMS (test 3) with a RBS (test 2) and with an elevator without energy storing
capacity (test 1). More specifically, a validation along a mission is presented for each
of the analyzed configurations, in order to check their correct operation taking as a
reference the expected idealized power profiles presented in the previous chapter. The
behavior of the analyzed EMS is evaluated along two consecutive missions.

Note that due to the characteristics of the DP, its operation during a particular
mission depends not only on the inputs of that mission but also on the inputs of previous
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Parameter Fist Mission Second Mission

Mission number 2/80 3/80
Initial floor 4 0
Final floor 0 5
Passengers 1 2

Table 4.3: Summary of the main characteristics of the selected single missions for the
control strategies implementation validation.

and future expected missions. Therefore, to test properly this behavior it is necessary
to check it in the middle of a sequence and to carry out all the previous missions. For
instance here missions 2 and 3 out of 80 have been selected (see table 4.3).

From the point of view of energy, the important fact is the moving direction of the
heaviest element (the cabin or the counterweight depending on the number of passen-
gers). As a result, the system will be in traction mode if the heaviest element is going
up and inversely, it will be in regenerative mode when it goes down. In the case of the
first mission, the counterweight is the heaviest element, and it goes up, and therefore
it can be considered as a traction mission. On the contrary, the second mission is a
regenerative mission, as the heaviest elements is the counterweight and it is going down.

4.3.1 Test 1 - Elevator Without ESS

Figure 4.7 shows all the experimental power profiles corresponding to an elevator
without energy storage. As it is shown, the electromechanical conversion system (Pe) is
powered by the grid (Pgrid) in traction mode and the recovered power is dissipated in
the braking resistor (Pcrowbar) in regenerative mode.

As it can be seen, there are some variations compared to the simulation tests pre-
sented in figure 3.22. Regarding to the first mission, from (t = 0s) to (t = 40s), the
power peak is lower. It means that the cabin cannot be accelerated as required by the
acceleration profile. Besides, the first flat zone of the power profile is also lower. There-
fore, the cabin displacement has been slower and more time has been required in order
to complete the mission. For that reason, the mission has been completed later than in
the simulation test. In addition, this flat zone presents some ripple due to the variations
of friction losses between the cabin and counterweight with the guide rails. The second
flat zone is due to the approximation process to the final floor at a lower speed.

On the contrary, the second mission, from (t = 40s) to (t = 80s), is similar to the
simulation test. Firstly, the power is consumed from the grid in order to accelerate the
cabin. And finally, some power is recovered and dissipated in the braking resistor while
the cabin is being stopped. The maximum values of the power peaks are different in
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Figure 4.7: Experimental power profiles of a non-improved elevation system for two
consecutive missions : (a) power profile of the electromechanical conversion system, (b)
power consumed from the grid and (c) power dissipated in the braking resistor.

traction and regenerative mode and they are related to the cabin acceleration profiles.

4.3.2 Test 2 - Elevator With ESS and a Rule Based EMS

Figure 4.8 shows all experimental the power profiles corresponding to this case study.
As it can be seen in traction mode, the power absorbed from the grid (Pgrid) is limited
to 3.5kW , as the energy storage system (Pscaps) supplies part of the power absorbed by
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Figure 4.8: Experimental power profiles of the improved elevation system with a RBS
strategy for two consecutive missions: (a) power profile of the electromechanical conver-
sion system, (b) power consumed from grid and (c) power profile of the ESS.

the electromechanical system (Pe). In regenerative mode, the energy is stored in the
supercapacitors tank, avoiding energy losses in the braking resistor (Pcrowbar). During
the first mission, the maximum grid power has been slightly exceeded. In the execution
of that mission, the supercapacitors have been partially discharged, therefore additional
power has been absorbed from the grid in (t = 27s). In this control strategy when
a mission is completed, the energy storage system must be above a voltage threshold,
otherwise, it is charged from the end until reaching this voltage level (Vrbs_nom).
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Figure 4.9: Experimental power profiles of the improved elevation system with a DP
strategy for two consecutive missions: (a) power profile of the electromechanical conver-
sion system, (b) power consumed from the grid and (c) power profile of the ESS.

4.3.3 Test 3 - Elevator With ESS and DP Based EMS

Figure 4.9 shows the experimental power profiles corresponding to the DP case study.
It must be noted that the DP does not take into account the elevator working mode
(traction or regenerative mode) in order to decide the amount of energy to be introduced
into the system from the grid (uk) at each mission (k), (as shown in figure 3.18).

As it can be seen, the power absorbed from the grid (Pgrid) is constant during both
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missions, transferring the two flat zones of the first mission to the ESS power profile
which is not constant in this case. The energy amount absorbed from the grid during
the first mission is different compared to the simulation test. This is because in the
previous mission, the supercapacitors tank has finished at a different state of charge,
and in consequence, the control strategy has changed for the same mission.

Note that in the second mission the grid supplies power even in regenerative mode in
order to optimize the overall objectives defined for the optimization. Finally, the energy
losses in the braking resistor (Pcrowbar) are zero also with this EMS, as the ESS is able
to store all the regenerative and grid power defined by the EMS.

4.4 Global Validation

In this section the experimental results with a random sequence of 80 missions are
presented (figure 3.24).

The chapter is divided in three parts: in the first and second parts, the fulfillment
of the defined optimization objectives is evaluated (grid power reduction and braking
resistor energy losses reduction), while in the third part other system features (such as
global system efficiency) are analyzed.

4.4.1 EMS Objective 1: Grid Power Smoothing

Figure 4.10 shows the complete grid power (Pgrid) profile for the three considered
systems (each bar corresponds to a mission). While the rule based strategy (RBS)
reduces power peaks to a certain pre-established limit (3.5kW ), the DP based EMS
reduces power peaks even more, below 2kW (DP).

It must be noted that the SOC of the Scaps is correctly controlled, and consequently
the stored energy can be used to successfully reduce the grid power absorption during
all the missions. A summary grid power smoothing values are presented in table 4.4 and
the main conclusions are:

• Grid power peaks can be reduced introducing an ESS and implementing an opti-
mized control strategy (as much as a 64% power reduction).

• The Dynamic Programming control strategy achieves a better power smoothing
than the rule based one.

• The ESS must be charged before the power peaks in order to guarantee that the
system is under control (SOC successfully controlled).
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Figure 4.10: Experimental grid power profiles for a random sequence of 80 missions:
(a) elevator without energy storing capacity (Classic), (b) improved elevator and rule
based control strategy (RBS) and (c) improved elevator and Dynamic Programming
based control strategy (DP).

Parameter Classic RBS DP

Maximum power 5.5kW 3.73kW 1.96kW
Smoothing level 0kW/0% 1.77kW/32% 3.54kW/64%

Table 4.4: Grid power smoothing experimental results.
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Figure 4.11: Experimental braking resistor energy losses profiles of a non-improved
elevator (Classic) and an improved elevator with a rule based control strategy (RBS)
and a Dynamic Programming based control strategy (DP).

4.4.2 EMS Objective 2: Braking Resistor Energy Losses Minimization

The accumulated energy losses in the braking resistor (Ecrowbar) are shown in figure
4.11 while the instantaneous power profiles (Pcrowbar) are presented in figure 4.12.

The experimental results demonstrate that the energy losses in the braking resistor
can be significantly reduced by using an ESS. Furthermore, the optimized control strat-
egy based on Dynamic Programming (DP) improves slightly the results compared to a
rule based one (RBS), achieving both algorithms a very similar behavior.

It can be observed that energy losses cannot be completely eliminated along the
sequence of missions. This phenomena occurs when the ESS is fully charged and the
electromechanical conversion unit is regenerating electric power. As it can be seen in
figure 4.13 (a zoom of figure 4.12 during the mission 37) and 4.14 and taking as a
reference the regenerative power profile of the conventional system (Classic), the rule
based control strategy (RBS) decides to store this energy in the Scaps until they are
fully charged, and then, the rest of the energy is dissipated in the braking resistor. This
strategy is not able to predict this situation in this case and it does not prepare correctly
the SOC of the Scaps for the upcoming regenerative mission.

In contrast, in this particular case the optimized DP strategy (DP) starts this mission
with a lower SOC, and therefore, it is able to store all the energy regenerated from the
electromechanical conversion system and additionally some more energy from the grid
(defined by the control strategy in order to improve the system efficiency and prepare
the SOC of Scaps for upcoming missions).

The total amount of energy dissipated in the braking resistor in experimental tests
is presented in table 4.5. Regarding the objective of energy losses minimization in the
braking resistor, the main conclusions are:
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Figure 4.12: Experimental braking resistor’s power profiles for a sequence of 80 missions:
(a) elevator without energy storing capacity (Classic), (b) improved elevator and rule
based control strategy (RBS) and (c) improved elevator and Dynamic Programming
based control strategy (DP).

Parameter Classic RBS DP

Energy losses 228.54kJ 43.48kJ 36.76kJ
Reduction level 0kJ/0% 185.06kJ/81% 191.78kJ/84%

Table 4.5: Total braking resistor energy losses minimization experimental results.
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Figure 4.13: Experimental Braking resistor’s power profile along one mission in re-
generative mode: (a) elevator without energy storing capacity (Classic), (b) improved
elevator and rule based control strategy (RBS) and (c) improved elevator and Dynamic
Programming based strategy (DP).

• The energy losses in the braking resistor can be reduced by introducing an ESS
and implementing an optimized control strategy.

• The DP control strategy achieves slightly better results than the RBS one.

• The braking resistor cannot be removed from the system because the ESS does
not guarantee a complete regeneration in all possible cases.
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Figure 4.14: Experimental energy storage system’s SOC profile along one mission the
same figure as in 4.13: (a) rule based control strategy (RBS) and (b) DP based control
strategy (DP).

4.4.3 Experimental Results Analysis of Additional Parameters

Although the main objectives of the optimization are correctly achieved by the ana-
lyzed EMS strategies, it is important to analyze additional system parameters in order
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Figure 4.15: Experimental grid energy profiles of a non-improved elevator (Classic)
and an improved elevator with a rule based control strategy (RBS) and a Dynamic
Programming based control strategy (DP).
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Figure 4.16: Experimental energy storage system’s energy profiles of an improved el-
evator with a rule based control strategy (RBS) and a Dynamic Programming based
control strategy (DP).
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Figure 4.17: Experimental energy storage system power profiles: (a) rule based control
strategy (RBS) and (b) Dynamic Programming based control strategy (DP).

to have a more accurate vision of each of the proposed EMS strategies.

The whole system efficiency is estimated by using the accumulated energy consumed
from the grid and taking as a reference the elevator without energy storing capability
(Classic) (1237kJ). As it is shown in figure 4.15, the efficiency is slightly improved by
the rule based control strategy (RBS) (1182kJ). In contrast, the Dynamic Programming
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Figure 4.18: Experimental energy storage system current profiles: (a) rule based control
strategy (RBS) and (b) Dynamic Programming based control strategy (DP).

strategy (DP) does not improve the global system efficiency (1249kJ). This is due to the
fact of the limited efficiency of the mechanical system and the higher cycles-per-mission
ratio of the DP strategy. As a result, there are more energy exchanges between the
Scaps and the electromechanical conversion system, and in consequence, more energy
losses in the mechanical system. Consequently, it can be concluded that it is not possible
to improve the whole system efficiency using a DP based strategy when the grid power
smoothing is carried out.

The amount of energy exchanged between the energy storage system and the applica-
tion is shown in figure 4.16. This value represents the energy that has been transferred
to and from the ESS, reflecting the use of the energy storage system. As it can be
seen, the DP strategy (2048kJ) uses four times more the Scaps than the RBS strategy
(508kJ), confirming the results obtained in simulation (figure 3.28).

Another important parameter of the ESS is its power profile, presented in Figure
4.17. Power levels are higher for the DP based strategy (4.91kW ) than for the control
strategies based on rules (3.11kW ).
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Figure 4.19: Experimental energy storage system’s state of charge profiles: (a) rule
based control strategy (RBS) and (b) Dynamic Programming based control strategy
(DP).

The energy storage system’s current profiles have also been obtained and presented in
figure 4.18. The DP based control strategies requires a higher current capability (26.48A)
compared to the rule based control strategy (16.25A). Note that the current profiles are
obtained from the ESS voltage profiles, and in the case of the DP the supercapacitors
based energy storage system works in a wider operation range, increasing consequently
the ESS current levels.

From point of view the ESS state of charge, the Scaps are discharged more deeply
with the DP based control strategy (DP) compared to the rule based one (RBS), taking
further advantage of the energy storage system (figure 4.19). This is due to the fact that
the DP injects a higher power than the rule based strategy in order to achieve a higher
grid power smoothing.

The depth of discharge is evaluated taking as reference an imaginary axis correspond-
ing to a state of full charge of the Scaps. Therefore, the DOD is equal to 60% for the
DP strategy and 45% for the RBS strategy. It should be pointed out that same peaks
as the ones found in simulation appear also here, confirming the simulation results.
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Figure 4.20: Experimental energy storage system’s cycles profiles of an improved eleva-
tor with a rule based control strategy (RBS) and a DP based control strategy (DP).

Finally, the evolution of cycles is presented in figure 4.20. This factor is useful
to evaluate the lifetime of different ESS for the same application. Regarding to this
value, the factor for the DP control strategy (16.7) is much higher than for the RBS
(3.76), almost five times higher. A higher number of charging and discharging cycles
are required by the DP, because it smooths the grid power and it prepares the ESS for
upcoming missions. Therefore, the DP presents a higher cycles-per-mission ratio (cpm).

In order to summarize the experimental results, two comparison charts are presented
in figure 4.21, the same ones as in the simulation tests. Concerning the first comparison,
the maximum grid power peak (Pgrid), the energy consumed from the grid (Egrid) and
the energy losses in the braking resistor (Ecrowbar) are represented during the random
sequence of 80 mission. As predicted by the simulations, the energy losses in the braking
resistor have been reduced implementing both control strategies. Besides, the EMS based
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Figure 4.21: Comparison charts of experimental validation: (a) reduced comparison
between a non-improved (Classic) and an improved elevator (RBS and DP) and (b)
rule based (RBS) and Dynamic Programming based (DP) control strategies comparison
chart.
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on DP reaches a higher level of grid power smoothing (almost twice compared to the
RBS control strategy). It should be pointed out that the energy consumption from the
grid is similar in the three experimental tests due to the low mechanical efficiency.

In the second comparison, it can be appreciated how the values achieved with the
DP based control strategy which are related to the ESS (Escaps, Pscaps, Iscaps_max,
DODscaps, Nscaps), are higher than the ones obtained with the rules based control strat-
egy. These values can be interpreted as a better usage of the ESS, but also, as a higher
degradation of the ESS. Regarding these additional parameters analysis, the conclusions
are:

• The energy storage system is used in a wider operation range by the DP based
control strategy in order to achieve better results compared to a non-optimized
EMS based on rules.

• The energy losses reduction in the braking resistor is not directly related to the
reduction of the energy consumption from the grid.

• The whole system efficiency is directly related to the cycles-per-mission ratio,
achieving a higher efficiency for a lower cpm value.

4.5 Conclusions

In this chapter the experimental validation of control strategies for an improved
elevation system have been carried out in a full-scale residential type elevator and an
energy storage system prototype based on supercapacitors. The passengers have been
emulated with trolleys and the control strategies have been implemented in the DSP
and FPGA based control unit of the energy storage system. Three experimental tests
have been completed in a random sequence of 80 missions.

First, the control strategies have been validated along one mission in order to check
the correct implementation and operation taking as a reference the simulated power
profiles. Afterwards, the global validation of the control strategies have been presented
in order to evaluate the real application of these EMS.

It has been demonstrated that, both energy management strategies, rule based and
Dynamic Programming based EMS, are capable of reducing the grid power peaks, by
32% and 64%, compared to a non-improved elevator, respectively. Moreover, the braking
resistor energy losses are also reduced, by 81% and 84%, respectively. Therefore, the
objectives have been achieved and the optimized control strategy based on DP reaches
a superior behavior compared to a non-improved elevator, and also, compared to a
non-optimized EMS based on rules.
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If other operational parameters are considered, it can be concluded that the Dy-
namic Programming based control strategy works in a wider operation range of the ESS
to reach a higher grid power smoothing level. In contrast, the system efficiency can-
not be increased because it is directly related to the cycle-per-mission ratio, which is
higher for the DP as the grid power smoothing level is also increased. Therefore, the
braking resistor energy losses reduction cannot be translated into a system efficiency
improvement.
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Chapter 5. Conclusions

5.1 Summary

The use of energy storage systems is being extended to new applications, both sta-
tionary and mobile. They can be used in applications where an isolated power source
is required, or also, in applications in which a system behavior improvement is desired.
There are many different energy storing technologies such as the mechanical, electrical
and electrochemical technologies.

When an energy storage system is introduced in any application, two main issues
must be solved. On the one hand, the energy storage system must be rated in order
to satisfy the application requirements. On the other hand, the energy storage system
must be managed as the amount of energy to be charged and discharged, as well as
the appropriate instants must be decided. In addition, these two issues are strongly
coupled. In this thesis, it has been proposed a solution, to address the management
problem first, and then the ESS rating. This is the reason why this thesis is focused on
energy management strategies for applications with energy storing capacity.

In this context, a new implementation methodology has been proposed for the devel-
opment and implementation of these kinds of optimized control strategies. This method-
ology is able to solve the management problem of deterministic and stochastic applica-
tions with energy storing capacity, getting a control strategy based on Dynamic Pro-
gramming. It should be pointed out that the cost function evaluated by the optimization
technique is based on the stock management theory. In addition, a new representation
of stochastic applications has also been proposed, relating the energy requirements of
an application and their probabilities of occurrence.

This methodology has been applied to an improved elevation system with a super-
capacitors based energy storage system aimed at reducing grid power peaks and the
braking resistor energy losses. Furthermore, a non-optimized but conventional control
strategy based on rules has also been implemented in order to make a comparison. These
control strategies have been tested in simulation and experimentally validated in a full-
scale elevation system. In addition, these two configurations have also been compared
to a non-improved elevator. As it has been demonstrated, both control strategies are
able to reduce the braking resistor energy losses, but in addition, the Dynamic Program-
ming based control strategy presents a superior behavior in relation to the grid power
smoothing.
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5.2 Contributions

The main contributions of this thesis are:

Demonstration of the Potential of the Dynamic Programming Principle in
Energy Management Applications

The applications with energy storing capacity can be represented as a general block
diagram composed of three elements (the power source, the energy storage system and
the application). In these systems, an energy management strategy is requested in order
to control the power source and the energy storage system for satisfying the application
requirements.

In this context, the Dynamic Programming principle presents several advantages.
The global optimization of the energy management strategy can be carried out, obtain-
ing optimal large decisions policies, while the computational cost is reduced. It can be
developed for deterministic as well as for stochastic systems, depending on the applica-
tion. In addition, this energy management strategy can also be implemented online or
offline.

Adaptation and Implementation of the Cost Function Based on the Stock
Management Theory to Energy Storage Applications

The optimization techniques require a cost function in order to quantify the opti-
mization results. This thesis is focused on the Dynamic Programming techniques which
request a cost function in order to optimize use of the energy storage system used as a
decoupling element between the power source and the application.

The stock management theory defines a cost function which is able to evaluate the
profits of a warehouse from the economic point of view. Due to the similarity between
a warehouse and an energy storage system, the cost function has been adapted and
implemented to energy storage applications from an energy point of view. In addition,
this cost function has also been formulated for stochastic applications, introducing the
statistical terms into the expression.

Proposal of an Implementation Methodology for DP Based EMS in Appli-
cations with Energy Storing Capacity

The implementation of this kind of DP control strategies has not been sufficiently
explained in the literature. For that reason, it has been proposed and developed a
new methodology for implementing energy management strategies based on Dynamic
Programming in applications with energy storing capacity (deterministic or stochastic)
with multiple degrees of freedom. This methodology is divided in five steps, enabling a
systematical development and implementation of the DP method in these applications.
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These five steps can be divided in two groups. The first three steps consist of adapting
the energy management problem to the Dynamic Programming principle. And then, the
last two steps carry out the analytical resolution of the problem obtaining the optimized
control strategy. This methodology is entirely valid both for deterministic and stochastic
applications, where the graphical representation is one-dimensional for the first ones and
multi-dimensional for the second ones.

Proposal and Introduction of a New Multi-Dimensional Representation of
Cost Maps for Stochastic Systems

Deterministic problems are represented in one dimensional cost maps, where all
possible decisions, their associated costs and the evolution of the system are entirely
represented. In the case of stochastic applications, this representation is not enough
due to the uncertainty in the evolution of the system. For that reason in this thesis,
it has been proposed and introduced a new multi-dimensional representation of cost
maps in order to solve this drawback, representing in each map one possible decision
and representing all possible evolutions of the system and their associated costs.

Proposal of a New Representation of Stochastic Systems in Energy Manage-
ment Applications - GESD

A new kind of representation for stochastic applications called GESD (Generalized
Energy and Statistical Description) has been introduced, where the energy requirements
are related to the probability of occurrence. Two parameters are taken into account for
the representation. On the one hand, all possible values of energy requirements of the
system (wk) are considered. On the other hand, the probabilities of occurrence for each
energy requirement (Pwk) are defined.

wk vs. Pwk

As the behavior of a stochastic system cannot be specified exactly, this representation
can be used to model their behavior. Besides, this information is required for DP
based EMS in order to solve the optimization problem. In addition, if the behavior
of the system is modified, the representation can be updated online in the control unit
(monitoring the system energy consumption), and in consequence, the optimized control
strategy can be reevaluated online, improving the energy manager and incorporating a
self learning ability.

Implementation and Experimental Validation of the Energy Manager Based
on DP in an Improved Full-Scale Elevator with Supercapacitors

It has been developed, implemented, tested in simulation and validated experimen-
tally an optimized energy management strategy based on DP in an improved elevator
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with supercapacitors based energy storage system. The correlation between the simula-
tion tests and the experimental results has validated the modeling of the elevator with
energy storing capacity (EMR and MCS, electromechanical analysis and GESD). In ad-
dition, the implementation of the DP based EMS in a control unit has demonstrated
the interest of DP based EMS for real industry applications.

5.3 Future Work

The work presented in this thesis provides different possibilities for further work
which are proposed as follows:

• Optimal rating of the ESS. At the beginning of this thesis, it has been presented the
dilemma of an energy storage system. The need to rate and manage an ESS, and
the couple between these actions. In this thesis, it has been addressed that problem
opening that close loop and solving the management problem first. Therefore, it
would be very interesting to solve the rating problem too once the optimal EMS
has been obtained. The objective is to close that loop and to reach an integral
solution for these kinds of applications, i.e., the optimal rating and management
of an energy storage system.

• Online implementation of the DP energy management strategy. The objective is
to carry out the industrial implementation of these optimized control strategies
for different elevation systems where the EMS will be evaluated in each elevator,
achieving a customization of these control strategies.

• Addition of a self learning ability to the DP control strategy. For that, it is pro-
posed to develop an online monitoring and updating of the Generalized Energy
and Statistical Description (GESD) of the application, in this case the electrome-
chanical conversion system energy requirements of elevators and their occurrence
in a period of time. Once the new representation is obtained and the EMS is
reevaluated online, the optimized control strategy is adapted to new requirements
of the application, incorporating the self learning ability.

• Extension to a complete building scenario. Nowadays, new scenarios are emerg-
ing such as nanogrids for sustainable buildings composed by programmable power
sources, renewables and energy storage systems in order to satisfy the building
power and energy requirements. Therefore, it is proposed to apply this imple-
mentation methodology in new potential scenarios where an energy management
strategy is clearly needed and DP techniques could be well-suited.
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Appendix A. Dynamic Programming Mathematical Developments

A.1 Principle of Optimality

Theorem (Principle of Optimality). Let π∗ = {µ∗0, µ∗1, . . . , µ∗N−1} be an optimal policy
for the basic problem, and assume then when using π∗, a given state xi occurs at time
i with positive probability. Consider the subproblem whereby we are at xi at time i and
wish to minimize the “cost-to-go” form i to time N .

E

{
gN (xN ) +

N−1∑
k=i

gk(xk, µk(xk), wk)
}

(A.1)

Then the truncated policy {µ∗i , µ∗i+1, . . . , µ
∗
N−I} is optimal for this subproblem.

A.2 Dynamic Programming Algorithm

Theorem (Dynamic Programming Algorithm). For every initial state X0, the optimal
cost J∗(x0) of the basic problem is equal to J0(x0), given by the last step of the following
algorithm, which proceeds backward in time from period N − 1 to period 0:

JN (xN = gN (xN ), (A.2)

and for k = 0, 1, . . . , N − 1

Jk(xk) = min
uk∈Uk(xk)wk

E {gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))} (A.3)

where the expectation is taken with respect to the probability distribution of wk, which
depends on Xk and uk. Furthermore, if u∗k = µ∗k(xk) minimizes the right side of equation
(A.3) for each Xk and k, the policy π∗ = {µ∗0, . . . , µ∗N−1} is optimal.
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