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Abstract

Singular spectrum analysis is a natural generalization of principal component methods for time series

data. In this paper we propose an imputation method to be used with singular spectrum-based tech-

niques which is based on a weighted combination of the forecasts and hindcasts yield by the recurrent

forecast method. Despite its ease of implementation, the obtained results suggest an overall good fit of

our method, being able to yield a similar adjustment ability in comparison with the alternative method,

according to some measures of predictive performance.
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1 Introduction

Principal component analysis is one of the main tools in multivariate data analysis. The original context

under which these methods were developed, makes it however inappropriate for the analysis of time

series, but an increasingly popular technique—known as singular spectrum analysis—is often considered

as the natural extension of principal component methods for dependent data. The core idea of singular

spectrum analysis lies in the decomposition of the series of interest into several building blocks that can be

classified as trends, oscillatory, or noise components; some algorithms based on such decomposition have

been proposed to conduct out-of-sample forecasts, and the recurrent forecast algorithm is one of the most

used in applications (Golyandina et al., 2001, §2). Singular spectrum-based techniques find their original

motivation in the classical Karhunen–Loève decomposition (Loève, 1978) and other classical results on

the orthogonal representation of continuous stochastic processes. Even though there is some lack of

consensus over the literature, a broad share of the roots of these spectral methods is generally attributed

to the works of Basilevsky and Hum (1979) and of Broomhead and King (1986). Known applications

include meteorology (Paegle et al., 2000), climatology (Allen and Smith, 1996), geophysics (Kondrashov

and Ghil, 2006), forecasting (Hassani et al., 2009), econometrics (de Carvalho et al., 2012), among many

others.

In this paper we propose a missing value imputation method to be used with singular spectrum-based

techniques. Our method is based on a suitable convex linear combination of forecasts and hindcasts

yielded by the recurrent forecast algorithm—hence replacing the problem of imputation by one of fore-

casting. We apply our method to a classical data set, depicted in Figure 1, which contains information

on the total volume of passengers in a group of international airline firms (Brown, 1963; Box et al., 2008).

These data were also considered by Golyandina and Osipov (2007), allowing us to perform direct com-

parisons with the procedure proposed in the said paper, and to assess the performance of our method in

comparison with the competing one. The obtained results suggest an overall good fit of our method and

that even though conceptually simple, it is able to fit with an accuracy similar to the alternative method,

according to some measures of predictive performance. The scope of application of our method goes be-

yond the domain of singular spectrum-based techniques—by reducing in general a time series imputation

problem into one of a forecast nature—, but since our main interest is on such spectral methods we do

not address such extensions here. It should be pointed out, however, that with the due modifications

our procedure can be used in conjunction with alternative forecast algorithms, to handle missing data

problems in time series analysis.
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Figure 1: Monthly traffic of passengers in a group of several international airline firms (Brown, 1963; Box et al., 2008).

This paper is organized as follows. In the next section we give an overview of the modus operandi

of singular spectrum-based techniques. In §3 we introduce our recurrent imputation method (RIM) and

give an illustration in §4. The paper closes in §5 where some final remarks are given.

2 An overview of singular spectrum-based techniques

2.1 Prefatory decomposition theory

To lay groundwork on singular spectrum-based techniques, here we set forth some preliminary results

on the orthogonal representation of stochastic processes. These results provide the theoretical underpin-

ning which underlies the basic motivation behind these spectral methods. One of the most well-known

orthogonal representations of a stochastic process is the Karhunen–Loève decomposition (Loève, 1978),

which is stated in Lemma 1 below. Roughly speaking this decomposition guarantees that any random

variable which is continuous in quadratic mean can be represented as a linear combination of orthogonal

functions. A corresponding result for the autocovariance function—the so-called Mercer’s theorem—also

holds and states that under some regularity conditions, the autocovariance g(r, s) can be written as

g(r, s) =

∞∑
i=1

√
λiωi(r)ωi(s), (1)

where ωi(r) denotes the orthonormalized eigenfunctions of the autocovariance function g(r, s), and the

λi denote the corresponding eigenvalues; a proof of this classical result can be found for instance in
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Hochstadt (1989, p. 90). The decomposition accomplished by Mercer’s theorem can then be employed to

offer an orthogonal representation of the stochastic process itself, rather than the autocovariance function.

Decomposition (1) is at the crux of the establishment of the proper orthogonal decomposition theorem;

the proof of this result can be found elsewhere (Loève, 1978, pp. 144–145).

Lemma 1. A random function Y (t) which is continuous in quadratic mean on a closed interval I = [0, t]

admits on I an orthogonal decomposition of the form

Y (t) =

∞∑
i=1

√
λiωi(t)νi, (2)

for some stochastic orthogonal quantities νi, iff λi and ωi(t) respectively denote the eigenvalues and the

orthonormalized eigenfunctions of the autocovariance function g(r, s).

Despite the broadness of this theoretical result, in practice a discrete variant of decomposition (2) is often

preferred to conduct multivariate data analysis. Hence, instead of considering the eigenfunctions one uses

instead the eigenvectors of a discrete version of the autocovariance function g(r, s). Additionally, from a

practical stance, we are often confined to the truncation of a finite number of terms in the decomposition

(2), and the name of this decomposition is at the origin of the alternative naming of principal component

analysis as ‘Karhunen–Loève transformation’, and alike.

2.2 Modus operandi of the method

The crux of the singular spectrum analysis can be dissociated in two phases—decomposition and recon-

struction—, with two steps each.

Embedding: This is the preparatory step of the method. The core concept assigned to this step is given

by the trajectory matrix, i.e., a lagged version of the original series y = ( y1 · · · yn )
T
. Formally, the

trajectory matrix l × k is defined as

Y =



y1 y2 · · · yκ

y2 y3 · · · yκ+1

...
...

. . .
...

yl yl+1 · · · yl+(κ−1)


, (3)

where κ is such that Y includes all the observations in the original time series, i.e., κ = n− l + 1.

To set terminology we refer to each vector yi =
(
yi · · · yl+(i−1)

)T
, i = 1, . . . , κ, as a window; the

window length l, is a parameter to be defined by the user. Observe that Y is a Hankel matrix, where
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the original series y lies in the junction formed by the first column and the last row; it can also be useful

to think of the trajectory matrix as a sequence of κ windows, i.e., Y = ( y1,l · · · yκ,l ). The trajectory

matrix also finds application in the estimation of the lag-covariance matrix Σ of the source series y. In

effect, Broomhead and King (1986) proposed the following estimate

Σ̂BK =
1

l
YTY.

As an alternative, one can also rely the estimate of the lag-covariance matrix using the proposal of

Vautard and Ghil (1989), which is given by

Σ̂V G =

 1

n− |i− j|

n−|i−j|∑
t=1

ytyt−|i−j|


l×l

.

Observe that this estimate yields a Toeplitz matrix, i.e., a diagonal-constant matrix.

Singular Value Decomposition: In the second step we perform a singular value decomposition (SVD)

of the trajectory matrix. Hence, from a eigenanalysis of the matrix YYT we collect the eigenvalues

λ1 ≥ · · · ≥ λd, where d = rank(YYT) and the corresponding left and right singular vectors which we

respectively denote by wi and vi. Thus, we are able to rewrite the trajectory matrix as

Y =

d∑
i=1

√
λiwiv

T

i .

We now turn to the second phase of the method—reconstruction. This includes the steps of grouping

and diagonal averaging.

Grouping: In the grouping step, the selection of the m principal components takes place. Formally, let

I = {1, . . . ,m} and Ic = {m + 1, . . . , d}. The point here is to choose the first m leading eigentriples

associated to the signal and exclude the remaining (d−m) associated to the noise. Stated differently, at

this step we search for a ‘suitable’ selection of the set I, which allows us to disentangle the series Y into

Y =
∑
i∈I

√
λiwiv

T

i + ε,

where ε denotes an error term, and the remainder summands represents the signal. In practice, this is

typically done through readjusted methods for selecting a reasonable number of principal components m.

Diagonal Averaging: The central idea in this step is the reconstruction of the deterministic component

of the series—the signal. A natural way to do this is to transfigure the matrix Y − ε obtained in the
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previous step into an Hankel matrix. The point here is to reverse the process done so far, returning

to a reconstructed variant of the trajectory matrix (3), and thus the signal component of the series.

An optimal way to do this is to average over all the elements of the several antidiagonals. Formally,

consider the linear space Ml,κ formed by the collection of all the l × κ matrices, and let {hl}nl=1 denote

the canonical basis of Rn. Further, consider the matrix X = [xi,j ] ∈ Ml×κ. The diagonal averaging

procedure is hence carried on by the mapping D :Ml×κ → Rn defined as

D(X) =

κ+l∑
w=2

hw−1
∑

(i,j)∈Aw

xi,j
|Aw|

.

Here | · | stands for the cardinal operator, and

Aw = {(i, j) : i+ j = w}, i = 1, . . . , l, j = 1, . . . , κ.

Hence we are now able to write the signal component of the series through the diagonal averaging

procedure described above

ỹ = D

(∑
i∈I

√
λiwiv

T

i

)
.

Here and below, the tildes will be used to denote reconstruction.

3 Recurrent singular spectrum-based procedures

3.1 Recurrent forecast method

We now address the issue of using singular spectrum-based techniques to conduct out-of-sample forecasts.

The method presented below is often referred in the literature as the recurrent forecast algorithm, and

plays an important role in singular spectrum-based forecasting theory and practice; alternative forecast

methods can be found elsewhere (Golyandina et al., 2001, §2). Essentially, the method relies on the

presumption that we are able to write the ith observation yi as a linear combination of the preceding

(l − 1) observations. Put differently, we consider that the following linear recurrent formula holds

yi = a1yi−1 + · · ·+ al−1yi−(l−1), i ≥ l,

for a suitable choice of the coefficients a = ( a1 · · · al−1 )
T
. We are then faced with the question: What

coefficients should we use in this linear recurrent formula? To answer this question, consider the matrix

constituted by the eigenvectors of YYT suitably subdivided as follows
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W =


U1 | U2

−−− | − −−

u1 | u2

 .

The matrix U1 includes the first (l − 1) components of the eigenvectors associated to the signal, and u1

contains the last components of those eigenvectors. The matrices U2 and u2 are analogously defined but

are correspondent to the remainder (d−m) components associated to the noise. Essentially, the question

introduced above concerns a particular case of the problem of the recovery of a vector component in a

subspace. Hence, using Proposition 1 in Golyandina and Osipov (2007), it can be shown that

a =
M [U1 � (u1 ⊗ 1l−1)] 1m

1− ‖u1‖2
, (4)

where ‖ · ‖ denotes the Euclidean norm, � and ⊗ respectively denote the componentwise Hadamard and

the tensor Kronecker products, and

M =



0 0 · · · 0 1

0 0 · · · 1 0

...
...

. . .
...

...

0 1 · · · 0 0

1 0 · · · 0 0


. (5)

The coefficients a are frequently written in the literature in a different notation, but we show in the

appendix that our form of writing the forecast coefficients (4), is tantamount to such representations.

The 1-step-ahead out-of-sample forecast proposed by the method is then given by the following linear

combination of the last (l − 1) reconstructed values of the series

−→y n+1 =

l−1∑
i=1

aiỹn−i,

where the coefficients a are given as in (4). In general we have that for further steps-ahead, the out-of-

sample forecasts are given by 

−→y n+2 = a1
−→y n+1 +

l−1∑
i=2

aiỹn−i

...

−→y n+(l−1) =

l−1∑
i=1

ai
−→y n−i.

for 2, . . . , (l− 1) steps-ahead, respectively. In the latter equations and in the remainder of this paper the

notation ‘−→y ’ is used to denote forecasts.
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3.2 Recurrent imputation method

We now concern ourselves with the problem of imputation of missing values on a determined time series

of interest. Specifically, we propose a method to which we refer as the recurrent imputation method

(RIM), to be applied to a series y = ( y1 · · · yn )
T

with a block of k sequential missing values. Without

loss of generality, consider the following decomposition of the series of interest

y =


y1,m

ym+1,k

ym+k+1,m?

 , (6)

where m? = n−m− k, and

yi,l =
(
yi · · · yl+(i−1)

)T
denotes the window of length l starting on the ith observation. The decomposition given in (6) breaks

the series into several pieces of interest, namely: the first block of m observations, given by y1,m; the

block of k missing observations, denoted by ym+1,k; the second block of m? observations, stockpiled in

ym+k+1,m? . Observe further that this structure is sufficiently rich to include the case wherein the missing

data do not occur in a sequential block. This observation is consequential for obvious generalizations of

the method described below.

The estimation object of interest below is the block of k missing values, ym+1,k, and thus our interest

is in obtaining a series

ŷ =


y1,m

ŷm+1,k

ym+k+1,m?

 . (7)

For such purpose, we propose a method based in a suitable weighted average of the forecasts and hindcasts

of the recurrent forecast method; these are formally defined as

−→ym+1,k =
(
−→y m+1 · · · −→y m+k

)T

, ←−ym+1,k =
(
←−y m+1 · · · ←−y m+k

)T

, (8)

respectively. In the expressions comprised in (8), and in the remainder of this paper, “←−y ” will be used to

denote hindcasts. Put differently, “←−y ” will be used to represent the forecasts of a new series in reverse

order, i.e., a reordered series wherein the temporal axis is reversed. Thus, for instance, the second block

of the series in reverse order is given by yT

m+k+1,m?M, with M defined according to (5); an illustration of

the linkage between the second block of the series in direct and inverse order is presented in Figure 2. To
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be precise, the matrix M to which we refer in this section consists of a variant of the matrix introduced

in (5) with size m? ×m?.

As mentioned above, the recurrent imputation method intends to establish an equilibrium between the

forecasts and hindcasts achieved by the recurrent forecast algorithm. Specifically, our method employs

the following estimate for the block of k missing values

ŷm+1,k = θ �−→ym+1,k + (1k − θ)←−ym+1,k, (9)

where � denotes the componentwise Hadamard product and

θ = ( θ1 · · · θk )T,

denotes a set of weights to assign to the forecasts yielded by the recurrent forecast algorithm.

To shed some light on the mechanics of our method, suppose that we have a series of length 20,

with a block of 3 sequential missing values, starting at the 8th observation. For the sake of illustration,

suppose that we consider a weighting scheme such that θ1 = 3/4, θ2 = 1/2 and θ3 = 1/4. The first step

towards the implementation of the recurrent imputation method passes through the application of the

recurrent forecast algorithm for yielding 3 values, based on the first 7 observations. Moreover, to obtain

the hindcasts, one should place the last 10 observations in inverse order and forecast over that series.

Finally, the execution of our method is complete after computing a convex linear combination of the

forecasts previously obtained according to (9). Thus, and according with the weighting scheme defined

above, for the first imputed value, the forecast would contribute with 75%, being the remainder due to

the hindcast. The remaining imputed values would be computed though a similar procedure.

In what concerns practical implementation of the method, the parameter θ can be calibrated using the

first block, y1,m, and the second block, ym+k+1,n−m−k, as training sets with the objective of optimizing

some criteria of interest, say minimization of the mean squared error, or by placing a prior structure over

θ. Alternatively, one can also define an a priori structure for θ. Note further that we can also obtain an

alternative representation for the RIM, by introducing (9) in (7) and performing the due simplifications,

i.e.

ŷ =


y1,m

θ
(−→ym+1,k −←−ym+1,k

)
+←−ym+1,k

ym+k+1,m?

 .
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4 A case study on international airline traffic

To illustrate the mechanics of the proposed method we analyze an international airline traffic series

presented by Brown (1963) and Box et al. (2008). This series includes a total of 144 observations on

the monthly number of passengers (in thousands) in a group of several international airline companies

(January 1949–December 1960). One of the main reasons for the choice of this series is due to the

possibility of direct comparisons with the results from a method recently proposed by Golyandina and

Osipov (2007). Following the process presented by those authors we removed 12 values from the time

series beginning in the 68th month (August 1954–July 1955). Hence, and according with the notation

presented above we use y1,m = y1,67 to denote the series composed by the first 67 observations (January

1949, to July 1954) and ym+k+1,m? = y80,65 to denote the second block of observations (August 1955–

December 1960; 65 observations). In addition, to give a proper meaning to the notation introduced above,

in Figure 2 we depict the second block of the series in direct and reverse order (i.e., y80,65 and yT
80,65M,

respectively).
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Figure 2: An illustration of the contrast between the second block of the series in direct (y80,65, solid line) and reverse

(yT
80,65M, dashed line) order.

The window lengths considered were of 32 and 33 for y1,67 and yT
80,65M, respectively. Details regarding

the choice of these parameters are enclosed in Rodrigues and de Carvalho (2008) and Hassani et al. (2009).

Below we base our analysis on the linear weighting scheme given by
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θi =
k + 1− i
k + 1

, i = 1, . . . , k,

or alternatively in the vector notation of §3.2 it is given by

θ =
(

k
k+1 · · · 1

k+1

)T

. (10)

As anticipated above other weight schemes could have been considered, even though this scheme seems

a natural one for data which are equally spaced in time. It can be verified however in Tables 1 and 2

that even with this simple weighting scheme we achieved forecast errors comparable with the ones yield

with the method proposed by Golyandina and Osipov (2007), but with our method yielding a lower

root mean squared error; this suggests that for these data the RIM would be particularly convenient

for a decision-maker with a quadratic loss function. The good performance of our imputation method

can be also noticed in Figure 3 where it is visible a clear proximity between the original series and

the imputed values. We have also tried other methods, such as an interpolated Kalman filter-based

imputation method (Zeileis and Grothendieck, 2005) and an imputation method based on the bootstrap

(Davison and Hinkley, 1997), but the obtained RMSE were much larger than the ones presented in Table

1. In the latter case the problem may be due to a normality assumption on which the bootstrap-based

imputation model relies—and which may fail to hold for these data; see eq. (1) in Honaker et al. (2011).

A fair comparison with these methods would however require an exhaustive simulation study.
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Table 1: An illustration of the recurrent imputation method.

Month Hindcasts Forecasts Weights Imputed Values Original Series

68 323.99 285.74 0.9231 288.68 293

69 303.22 244.40 0.8462 253.45 259

70 274.63 207.26 0.7692 222.81 229

71 254.26 189.38 0.6923 209.34 203

72 286.02 185.40 0.6154 224.10 229

73 291.03 186.41 0.5385 234.69 242

74 281.88 191.88 0.4615 240.34 233

75 309.72 207.88 0.3846 270.55 267

76 297.90 221.03 0.3077 274.25 269

77 290.70 224.84 0.2308 275.50 270

78 332.16 247.90 0.1538 319.20 315

79 361.05 283.38 0.0769 355.07 364

Table 2: Comparison between the RIM and the method proposed by Golyandina and Osipov (2007). Here RMSE and

MAE respectively denote the root mean square error and the mean absolute error.

Forecast Ability Measure

Method RMSE MAE

Golyandina and Osipov (2007) 6.050 5.280

RIM 5.966 5.782

Naturally, the accuracy of any imputation method tends to deteriorate as k increases, but it is impor-

tant to assess numerically the rate at which this takes place. In Figure 4 we report the evolution of the

RMSE and the MAE of the RIM over different values of k. If we compare the cases k = 12 and k = 24,

we notice that the RMSE and MAE become roughly five times larger, although the number of missing

values only doubles. This is not surprising as k = 24 represents already approximately 17% of missing

data.

Following the suggestion of a reviewer, we also conduced numerical experiments to assess if the

accuracy of the imputed values can be affected by the location of the missing data in the time series. We

started with a block of 12 missing values, located just 12 observations from the end of the series, so that

we used 120 observations to forecast and 12 to hindcast, i.e., (m, k,m?) = (120, 12, 12). With this setup

we obtained a RMSE of 48.37 and a MAE of 38.75. We then considered rolling back the block of missing
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Figure 3: Comparison between the original series and the values yield by the proposed imputation method. The solid,

dashed, and dashed-dotted lines respectively correspond to the original series, the hindcasts, and the forecasts; the solid

gray line corresponds to the imputed values using the RIM.
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Figure 4: The solid and dashed line respectively represent the RMSE and the MAE. The k missing values were created

through the expansion of the temporal window of August 1954–July 1955 by one month back and one month forward, at

the same time.

values semester by semester (i.e. m?= 18, 24, 30, 36, and 42); the values for the RMSE dropped to the

interval [15, 23], when using between 18 and 24 observations for hindcast, and to the interval [12, 18],

when using between 24 and 42 observations for hindcast. These results clearly suggest that when the

block of missing values is too close to the boundary of the observation period, the linear weighting in (10)
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becomes less appropriate. Motivated by these experiments we have designed a new weighting scheme

which relies on the same principles as the one in (10), while at the same time giving more importance to

the forecasts or the hindcasts, depending on whether more data are available on the first or the second

block; hence, we now consider the weighting scheme

θ̃i =
(k + 1− i)m

(k + 1− i)m+ im?
, i = 1, . . . , k,

or in vector notation

θ̃ =
(

km
km+m? · · · m

m+km?

)T

. (11)

In the particular case where both blocks have the same number of observations (m = m?), we recover

the same weighting scheme as in (10).

When we consider the case with a block of missing values (k = 12) located just 12 observations from

the end of the series, our weighting scheme reduces the RMSE from 48.37 to 14.16, and reduces the MAE

from 38.75 to 12.49. Further numerical experiments suggest that when m 6= m?, there are gains in using

the scheme in (11), instead of the one in (10), but that these tend to be smaller, as m approaches m?.

5 Discussion

This paper proposes a method for the imputation of missing values to be used with singular spectrum-

based techniques. The method is based on a weighted combination of the forecasts and hindcasts yield

by the the recurrent forecast method, and thus a forecast problem is used to displace one of imputation.

In a competition where we used the same data that was used in the literature to illustrate a competing

method, our numerical experiments suggest that our method as a comparable performance to the alter-

native one, even if a simple linear weighting scheme is used. A main advantage here is the possibility of

obtaining comparable results to the ones in Golyandina and Osipov (2007) with a much lighter algebraic

implementation—simply by reducing a problem of imputation to one of forecasting. The scope of applica-

tion of our method goes beyond singular spectrum-based techniques, and with the due adaptations it can

be used in conjunction with a wealth of alternative forecast methods to handle missing data problems in

time series analysis. The predictive ability of such generalizations and the quantification of possible gains

of using more intricate, possibly adaptive, weighting schemes remains to be explored in further research.
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Appendix

In this appendix we show that our form of writing the forecast coefficients (4) is tantamount to the other representations

often used in the literature.

Proposition 1. Let Y denote the trajectory matrix. Further, let Pi denote the ith eigenvector of YYT, in the sense that

the corresponding eigenvalues are such that λ1 ≥ · · · ≥ λd, with d = rank(YYT). The following equality holds

[U1 � (u1 ⊗ 1l−1)]1m =

m∑
i=1

P∇i πi,

where πi denotes the last component the eigenvector Pi, and P∇i represents the remainder (l − 1) components.

Proof. Just observe that that u1 = ( π1 · · · πm ), and thus

U1 � (u1 ⊗ 1l−1)1m =




U1,1 · · · U1,m

...
. . .

...

Ul−1,1 · · · Ul−1,m

�
{(

π1 · · · πm

)
⊗ 1l−1

}
1m

=




U1,1 · · · U1,m

...
. . .

...

Ul−1,1 · · · Ul−1,m

�


π1 · · · πm

...
...

...

π1 · · · πm


1m

=


U1,1π1 · · · U1,mπm

...
. . .

...

Ul−1,1u1 · · · Ul−1,mπm

1m

=


∑m

i=1 U1,iπi

...∑m
i=1 Ul−1,iπi

 .

To achieve the final result just note that Pi =
(
U1,i · · · Ul−1,i πi

)T
, and hence P∇i =

(
U1,i · · · U1,l−1

)T
.
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