A reconfigurable, tendon-based haptic interface for research into human-environment interactions

Human reaction to external stimuli can be investigated in a comprehensive way by using a versatile virtual-reality setup involving multiple display technologies. It is apparent that versatility remains a main challenge when human reactions are examined through the use of haptic interfaces as the interfaces must be able to cope with the entire range of diverse movements and forces/torques a human subject produces. To address the versatility challenge, we have developed a large-scale reconfigurable tendon-based haptic interface which can be adapted to a large variety of task dynamics and is integrated into a Cave Automatic Virtual Environment (CAVE). To prove the versatility of the haptic interface, two tasks, incorporating once the force and once the velocity extrema of a human subject's extremities, were implemented: a simulator with 3-DOF highly dynamic force feedback and a 3-DOF setup optimized to perform dynamic movements. In addition, a 6-DOF platform capable of lifting a human subject off the ground was realized. For these three applications, a position controller was implemented, adapted to each task, and tested. In the controller tests with highly different, task-specific trajectories, the three robot configurations fulfilled the demands on the application-specific accuracy which illustrates and confirms the versatility of the developed haptic interface.

Published in:
Robotica, 31, 441-453
New York, Cambridge University Press

 Record created 2013-05-13, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)