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Abstract

A new method for H-infinity gain-scheduled controller design by convex optimization is proposed that uses only frequency-
domain data. The method is based on loop shaping in the Nyquist diagram with constraints on the weighted infinity-norm
of closed-loop transfer functions. This method is applied to a benchmark for adaptive rejection of multiple narrow-band
disturbances. First, it is shown that a robust controller can be designed for the rejection of a sinusoidal disturbance with
known frequency. The disturbance model is fixed in the controller, based on the internal model principle, and the other
controller parameters are computed by convex optimization to meet the constraints on the infinity-norm of sensitivity
functions. It is shown next that a gain scheduled-controller can be computed for a finite set of disturbance frequencies
by convex optimization. An adaptation algorithm is used to estimate the disturbance frequency which adjusts the
parameters of the internal model in the controller. The simulation and experimental results show the good performance
of the proposed control system.

Keywords: Gain-scheduled control, robust control, H∞ control, Adaptive disturbance rejection, active suspension
system

1. Introduction

In control engineering problems, disturbance rejection
is an extremely important task. Some disturbances have
periodic character and can even be expressed as combina-
tion of few sinusoidal signals. Typical examples of systems
with periodic disturbances are hard disks [10], optical disk
drives [1], helicopter rotor blades [17] and active noise con-
trol systems [19].

In the case that the disturbance frequency is known,
certain approaches, such as internal model control and
repetitive control techniques can be applied. If unknown
frequency can be measured directly or indirectly, which
happens e.g. in some active noise control applications,
adaptive feedforward control can be used for the rejec-
tion of disturbance. In [14], it was shown that the stan-
dard adaptive feedforward control algorithm is equivalent
to the internal model control law. Survey on methods in
both cases of known and unknown disturbance frequency
can be found in [2].

Since it is not always possible to measure the distur-
bance frequency with a transducer, the parameter estima-
tion methods are often used to estimate the parameters
of the disturbance model. Therefore, almost all unknown
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disturbance rejection algorithms generally lead to a direct
or indirect adaptive implementation, which can be referred
to as “adaptive regulation”. The reason is that the con-
troller parameters are adapted with respect to variations
of parameters of the disturbance model. In [8], two ap-
proaches are compared on an active suspension system.
The first approach is a direct adaptive control scheme
with Q-parameterization of the controller, where the dis-
turbance is rejected by adjusting the parameters of the Q
polynomial. The second approach is an indirect adaptive
control because the disturbance model is estimated first
and then, based on the internal model principle, new con-
troller is calculated to reject the disturbance.

A linear parameter-varying (LPV) controller design
method is described in [7] for rejection of sinusoidal dis-
turbances. In this approach, an LPV controller is designed
with H∞ performance based on the method proposed in
[5] and [16], using a single quadratic Lyapunov function
for all values of measured frequency. Discrete-time state-
space state-feedback and full-order output feedback LPV
controller design methods are described in [20] and [18],
guaranteeing closed-loop stability for infinitely fast varia-
tions of disturbance frequencies using a single Lyapunov
matrix over the whole scheduling parameter space. A new
method for fixed-order LPV controller design with appli-
cation to disturbance rejection of an active suspension sys-
tem is proposed in [21].

In this paper, a fixed-order H∞ gain-scheduled con-
troller design method based only on the frequency-domain
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data is proposed. In this method, computation of the con-
troller parameters and their interpolation are performed
by one convex optimization. Moreover, a solution to a
challenging benchmark problem [9] for rejection of time-
varying narrow-band disturbances is provided. The results
are computed using a new public-domain toolbox for ro-
bust controller design in the frequency domain which is
available in [11].

The advantages of the proposed method with respect
to the LPV controller design methods are:

• There is no need for a parametric model of the plant
and the frequency response can be used directly for
controller design. As a result, the approach can be
used for discrete- continuous-time systems with pure
time delay.

• The controller order is fixed that allows less compu-
tation effort in real-time applications.

• Since the stability and performance are guaranteed
for frozen scheduling parameters, the method has
less conservatism with respect to LPV controllers
based on quadratic stability.

The last item can be considered as a drawback as well,
because the stability and performance are not guaranteed
for fast variations of the scheduling parameters. The other
drawbacks are the limitation of the controller structure to
linearly parameterized controllers and the dependence of
the final solution on the choice of the desired open-loop
transfer function Ld. Some propositions to overcome these
drawbacks are given in [12].

The proposed method, like the other adaptive methods
used in the benchmark, guarantees the stability and per-
formance only for frozen and slowly time-varying schedul-
ing parameters. However, in practice, as it is shown for
the benchmark problem, the designed controllers stabilize
the system even for rather fast variations.

The paper is organized as follows: Section 2 describes
the gain-scheduled H∞ controller design method that uses
only the frequency response of the model. The method
is applied to the benchmark problem for adaptive distur-
bance rejection of an active suspension system in Section
3. Section 4 presents the simulation and the experimental
results. Finally, Section 5 gives some concluding remarks.

2. Gain-scheduled H∞ controller design

A fixed-orderH∞ controller design method for spectral
models is proposed in [12]. In this section we extend this
method to design of gain-scheduled H∞ controllers.

A classical way to design gain-scheduled controllers in-
cludes two steps:

1. A set of controllers are designed for each operating
point (if the operating points are a continuous func-
tion of a scheduling parameter, a fine grid is used to
obtain a finite set).

2. The controller parameters are interpolated by a poly-
nomial function of the scheduling parameter.

In order to reduce the complexity of the gain-scheduled
controller, a linear or low-order interpolation is normally
used. In this case, the stability and performance are not
necessarily preserved even for the gridded scheduling pa-
rameter. The method that we propose puts these two steps
together and computes a gain-scheduled controller that
satisfies the stability and H∞ performance conditions for
all gridded values of the scheduling parameter using the
convex optimization methods. For the ease of presenta-
tion, a scalar scheduling parameter and one H∞ constraint
on the weighted sensitivity function are considered. The
extension to vector of scheduling parameters and H∞ con-
straints on several sensitivity functions is straightforward.
In the sequel, the class of models, controllers and design
specifications are defined and a convex optimization prob-
lem is proposed that results in a gain-scheduled controller.

2.1. Class of models

The class of causal discrete-time LTI-SISO models
with bounded infinity-norm is considered. It is assumed
that the spectral model of the system as a function of
the scheduling parameter θ, G(e−jω , θ) is available. The
bounded infinity norm condition will be relaxed later on to
consider systems with poles on the unit circle. Since only
the frequency-domain data are used in the design method
the extension to continuous-time systems is straightfor-
ward (see [12]).

2.2. Class of controllers

Linearly parameterized discrete-time gain-scheduled
controllers are considered:

K(z−1, ρ(θ)) = ρT (θ)φ(z−1), (1)

where

φT (z−1) = [φ1(z
−1), φ2(z

−1), . . . , φn(z
−1)] (2)

represents the vector of n stable transfer functions, namely
basis functions vector that may be chosen from a set of gen-
eralized orthonormal basis functions, e.g. Laguerre basis
[15], and

ρT (θ) = [ρ1(θ), ρ2(θ), . . . , ρn(θ)] (3)

represents the vector of controller parameters. The depen-
dence of the controller parameters ρi to θ can be affine or
polynomial, e.g. ρi(θ) = ρi0 + ρi1θ + · · ·+ ρinθ

θnθ .
The main reason to use a linearly parameterized con-

troller is that every point on the Nyquist diagram of the
open-loop transfer function becomes a linear function of
the vector of controller parameters ρ(θ):

L(e−jω, ρ(θ)) = K(e−jω , ρ(θ))G(e−jω , θ) (4)

= ρT (θ)φ(e−jω)G(e−jω , θ), (5)

that helps obtaining a convex parameterization of fixed-
order H∞ controllers.
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2.3. Design specifications

The nominal performance can be defined by (see [4])

‖W1S(ρ(θ))‖∞ < 1 ∀θ, (6)

where S(z−1, ρ(θ)) = [1 + L(z−1, ρ(θ))]−1 is the sensitiv-
ity function and W1 represents the performance weighting
filter. The approach proposed in [12] is based on the lin-
earization of this constraint around a known desired open-
loop transfer function Ld (that may be a function of θ as
well). The main interest of this linearization is that it gives
not only sufficient conditions for the nominal performance
but also some conditions on Ld that guarantee the stabil-
ity of the closed-loop system. The linear constraints are
given by [12]:

|W1(e
−jω)[1 + Ld(e

−jω , θ)]|−
Re{[1 + Ld(e

jω , θ)][1 + L(e−jω, ρ(θ))]} < 0, ∀ω, ∀θ (7)

It is easy to show that the inequality in (6) is met if the
above inequality is satisfied. Knowing that the real value
of a complex number is always less than or equal to its
absolute value, we have:

|W1(e
−jω)[1 + Ld(e

−jω , θ)]|−
|1 + Ld(e

jω, θ)||1 + L(e−jω, ρ(θ))| < 0, ∀ω, ∀θ (8)

which leads to

|W1(e
−jω)| < |1 + L(e−jω, ρ(θ))|, ∀ω, ∀θ (9)

that is equivalent to (6). Moreover, it can be shown that
the number of encirclements of the critical point by L and
Ld is equal. As a result, the closed-loop stability is ensured
if Ld(θ) satisfies the Nyquist criterion for all θ (e.g. it
does not turn around -1 for stable plant models). On the
other hand, if the plant model and/or the controller have
unbounded infinity-norm, i.e. the poles on the unit circle,
these poles should be included in Ld (see [12]).

The graphical interpretation of this method is given in
Fig.1. It is well known that the H∞ performance condition
in (6) is satisfied if and only if there is no intersection be-
tween L(e−jω, ρ(θ)) and a circle centered at -1 with radius
|W1(e

jω)| [4]. It is clear that this condition is satisfied if
L(e−jω , ρ(θ)) lies at the side of d that excludes -1 for all
ω and θ, where d is tangent to the circle and orthogonal
to the line connecting -1 to Ld(e

−jω, θ). The conservatism
of the proposed approach depends on the choice of Ld and
discussed in [12]. It is clear that if Ld = L there is no con-
servatism. Therefore, choosing Ld as close as possible to L
will reduce significantly this conservatism. Since L is not
a priori known, an iterative approach can be used to re-
duce the conservatism (at each iteration L of the previous
iteration is used as Ld).

-1
|W1(e

−jω)|

L(e−jω , ρ(θ))
Ld(e

−jω , θ)

d

Re

Im

Figure 1: Linear constraints for robust performance

2.4. Optimization problem

The constraints in (7) should be satisfied for all ω ∈
[0, ωn], where ωn is the Nyquist frequency, and for all
θ ∈ [θmin, θmax]. This leads to an infinite number of con-
straints that is numerically intractable. A practical ap-
proach is to choose finite grids for ω and the scheduling
parameter θ and find a feasible solution for the grid points.
This leads to a large number of linear constraints that can
be handled efficiently by linear programming solvers. By
increasing the number of scheduling parameters, the num-
ber of constraints will increase drastically that increases
the optimization time. In this case a scenario approach can
be used that guarantees the satisfaction of all constraints
with a probability level when they are only satisfied for a
finite number of randomly chosen scheduling parameters
[3]. Some of the effects of gridding in frequency and addi-
tional constraints that can be imposed for ensuring good
behavior between the grid points are described in [6].

3. Active Suspension Benchmark

The objective of the benchmark is to design a con-
troller for the rejection of unknown/time-varying multiple
narrow band disturbances located in a given frequency re-
gion. The proposed controllers will be applied to the active
suspension system of the Control Systems Department in
Grenoble (GIPSA - lab) [9]. The block diagram of the
active suspension system together with the proposed gain
scheduled controller is shown in Fig. 2.

The system is excited by a sinusoidal disturbance v1(t)
generated using a computer-controlled shaker, which can
be represented as a white noise signal, e(t), filtered through
the disturbance model H . The transfer function G1 be-
tween the disturbance input and the residual force in open-
loop, yp(t), is called the primary path. The signal y(t)
is a measured voltage, representing the residual force, af-
fected by the measurement noise. The secondary path is
the transfer function G2 between the output of the con-
troller u(t) and the residual force in open-loop. The control
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Figure 2: Block diagram of the active suspension system

input drives an inertial actuator through a power ampli-
fier. The sampling frequency for both identification and
control is 800Hz, as chosen by the benchmark organisers.

The disturbance consists of one to three sinusoids, lead-
ing to three levels of benchmark depending on the number
of sinusoids. Disturbance frequencies are unknown but lie
in an interval from 50 to 95Hz. The controller should reject
the disturbance as fast as possible. We explain in detail
the control structure and the design method for Level 1.
The extension to the other levels is straightforward.

3.1. Controller design for Level 1

AnH∞ gain-scheduled controller, based on the internal
model principle to reject the disturbances, is considered as
follows:

K(z−1, θ) = [K0(z
−1) + θK1(z

−1)]M(z−1, θ) (10)

where K0 and K1 are FIR filters of order n and

M(z−1, θ) =
1

1 + θz−1 + z−2
(11)

the disturbance model for a sinusoidal disturbance with
frequency f1 = cos−1(−θ/2)/2π. In order to improve
the transient response, the infinity norm of the transfer
function between the disturbance and the output, MG1S,
should be minimized. However, since the primary path
model G1 cannot be used in the benchmark, it is replaced
by a constant gain. On the other hand, in order to increase
the robustness and prevent the activity of the command
input at frequencies where the gain of the secondary path
is low, the infinity norm of the input sensitivity function
‖KS‖∞ should be decreased as well. Another constraint
on the maximum of the modulus of the sensitivity func-
tion ‖S‖∞ < 2 (6dB) is also considered according to the
benchmark requirements (not to amplify the noise at other
frequencies).

A gain-scheduled controller is designed using the fol-
lowing steps:

1. Because of very high resonance modes in the sec-
ondary path model, a very fine frequency grid with
a resolution of 0.5 rad/s (5027 frequency points) is
considered.

2. The interval of the disturbance frequencies is divided
to 46 points (a resolution of 1Hz), which corresponds
to 46 points in the interval [−1.8478 , −1.4686] for
the scheduling parameter θ.

3. The following optimization problem is solved:

min γ

γ−1
[|M(e−jωk , θi)|+ |K(e−jωk , ρ(θi))|

]

× [1 + Ld(e
−jωk , θi)]|−

Re{[1 + Ld(e
jωk , θi)][1 + L(e−jωk , ρ(θi))]} < 0,

0.5|[1 + Ld(e
−jωk , θi)]|−

Re{[1 + Ld(e
jωk , θi)][1 + L(e−jωk , ρ(θi))]} < 0,

for k = 1, . . . , 5027, i = 1, . . . , 46

(12)

where the first constraint is the convexification of
‖|MS|+ |KS|‖∞ < γ and the second constraint that
of ‖S‖∞ < 2. This is a convex optimization problem
for fixed γ and can be solved by an iterative bisection
algorithm.

Remarks:

• The controller order (the order of the FIR models
for K0 and K1 in (10)) is chosen equal to 10 (the
controller order is increased gradually to obtain ac-
ceptable results). Note that it is much less than the
order of the plant model, which is equal to 26.

• The desired open-loop transfer functions are chosen
as Ld(θi) = Kini(θi)G2, where Kini(θi) are stabi-
lizing controllers computed by pole placement tech-
nique.

• The Frequency-Domain Robust Control Toolbox [11]
is used for solving this problem. For the convenience,
the internal model is considered as a part of the plant
model, i.e. G(θ) =M(θ)G2, and after the controller
design it is returned to the controller.

• After 7 iterations for the bisection algorithm γmin =
1.68 is obtained. The total computation time is
about 11 minutes on a personal computer (16GB of
DDR3 RAM memory at 1600MHz and processor In-
tel Core i7 running at 3.4GHz).

The parameters of the final designed gain-scheduled
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Figure 3: Magnitude plot of the output sensitivity functions for dis-
turbance frequencies from 50Hz to 95Hz

controller in (10) are given by:

K0(z
−1) = 3.669− 2.311z−1 − 0.7776z−2

+0.7171z−3 + 3.424z−4 − 5.402z−5

+5.077z−6 − 5.143z−7 + 4.637z−8

−2.01z−9 + 0.5125z−10

K1(z
−1) = 2.241− 1.293z−1 − 0.7633z−2

+0.4309z−3 + 2.673z−4 − 3.921z−5

+3.117z−6 − 2.638z−7 + 2.476z−8

−1.15z−9 + 0.3444z−10

This gain-scheduled controller gives very good transient
performance and satisfies the constraint on the maximum
modulus of the sensitivity function for all values of the
scheduling parameter. Figure 3 and Fig. 4 show the mag-
nitude of the output sensitivity functions S and the input
sensitivity functions KS, respectively, for 46 gridded val-
ues of the disturbance frequencies. One can observe very
good attenuation at the disturbance frequencies and the
satisfaction of the modulus margin of at least 6dB for all
disturbances.

3.2. Controller design for Level 2

In this level of the benchmark, two sinusoidal distur-
bances should be rejected. The structure of the gain sched-
uled controller is given by (z−1 is omitted):

K(θ1, θ2) = (K0 + θ1K1 + θ2K2)M(θ1, θ2) (13)

where K0,K1 and K2 are 8th order FIR filters and

M(θ1, θ2) =
1

1 + θ1z−1 + θ2z−2 + θ1z−3 + z−4
(14)

By considering a hard constraint on the magnitude of the
sensitivity function ‖(1 + KG2)

−1‖∞ < 2.24 (7dB) the
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Figure 4: Magnitude plot of the input sensitivity functions for dis-
turbance frequencies from 50Hz to 95Hz

optimization becomes infeasible. Therefore, the following
constraint is considered for optimization:

|M(1+KG2)
−1|+ |(1+KG2)

−1| < γ ∀ω, ∀θ1, ∀θ2 (15)

where γ is minimized. The first term on the left hand
side represents the approximation of the disturbance path
impulse response (ignoring the unknown transfer function
G1). By minimizing its ∞-norm, we indirectly reduce the
transient time (with a tradeoff between fast response and
robustness guarantee, coming from the second term).

Since we have two scheduling parameters a resolution of
1Hz for each sinusoidal disturbances leads to 462/2 = 1058
grid points. This increases by a factor of 23 the number of
constraints with respect to that of Level 1. Moreover the
resolution of the frequency grid is improved from 0.5 rad/s
to 0.2 rad/s which increases the number of constraints.
The number of variables is also increased from 22 (the co-
efficients of two FIR of order 10) to 27 (the coefficients
of three FIR of order 8). In order to obtain a faster op-
timization problem, the scenario approach is used. From
the set of 1058 frequency pairs, 50 samples are chosen ran-
domly and the constraints are considered just for these
frequencies. The stability of the closed-loop system how-
ever, is verified a posteriori for all 1058 frequency pairs,
which makes the probability of stability constraint viola-
tion (between the grid points) very low. The computed
controller, however, destabilized the real system for dis-
turbance frequency pair (50-70)Hz. The main reason is
the modeling error for the secondary path model around
50Hz. Therefore, a new model for the secondary path pro-
vided by the benchmark organizers with smaller model-
ing error around 50Hz is used for the controller design.
A new controller is designed using the scenario approach
and achieves γmin = 10.62 after 11 iterations with a total
computation time of about 15 minutes.
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Figure 5: Magnitude of the output sensitivity functions for known
disturbance frequencies in F

The controller parameters are:

K0(z
−1) = −4.835 + 43.93z−1 − 98.74z−2 + 96.2z−3

−0.3158z−4−100.8z−5+117.5z−6−64.79z−7+16.35z−8

K1(z
−1) = −24.02 + 122.4z−1 − 226.7z−2 + 204.9z−3

−52.21z−4−71.05z−5+80.54z−6−36.53z−7+8.671z−8

K2(z
−1) = −16.05 + 77.44z−1 − 139.6z−2 + 124.7z−3

−37.19z−4−28.47z−5+31.64z−6−11.83z−7+2.561z−8

Figure 5 and Fig. 6 show the magnitude of the output and
input sensitivity functions for known disturbance frequen-
cies taken from the following set:

F = {(50, 70), (55, 75), (60, 80), (65, 85), (70, 90), (75, 95)}

The attenuation of at least 40 dB is obtained for all fre-
quencies but the maximum of the output sensitivity func-
tion is greater than 7 dB in some frequencies.

3.3. Controller design for Level 3

Although very good results can be obtained for lin-
ear controller design for every triplet disturbance frequen-
cies, a simple gain-scheduled controller that satisfies all
constraints could not by obtained by the proposed ap-
proach. In fact the optimization problem becomes infea-
sible for affine dependence of the controller parameters to
the scheduling ones and with relaxing the constraints the
resulting stabilizing controller does not lead to good per-
formance even for known disturbance frequencies.

It is important to emphasize that there is no theoret-
ical limitation for having three or even more disturbance
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Figure 6: Magnitude of the input sensitivity functions for known
disturbance frequencies in F

frequencies. However, increasing the number of frequen-
cies increases the complexity of the optimization problem
such that a feasible solution could not be find in the first
trials. This problem could be fixed by designing better
initial controllers for each fixed frequency and use these
controllers for computing Ld, as well by the better choice
of the basis functions. However, because of the deadline
for the benchmark, the authors decided just to participate
in the first and the second level.

3.4. Estimator design

The scheduling parameter θ used in the internal model
of disturbance in (11) is estimated using a parameter adap-
tation algorithm. To estimate the parameters of the dis-
turbance model, we need to measure the disturbance sig-
nal p(t) (see Fig. 2). If we model p(t) as the output of an
ARMA model with white noise as input, we have:

Dp(q
−1)p(t) = Np(q

−1)e(t), (16)

where e(t) is a zero mean white noise with unknown vari-
ance. Estimation of the parameters of Np and Dp could
be performed by the standard Recursive Extended Least
Squares method [13], if p(t) was measured. Since p(t) is
not available, it is estimated using the measured signal y(t)
and the known model of the secondary path. From Fig. 2,
we have:

p(t) = y(t)− q−dB(q−1)

A(q−1)
u(t)− v2(t), (17)

where
q−dB(q−1)

A(q−1)
is the parametric model of the sec-

ondary path G2. Since v2(t) is a zero mean noise signal,
unbiased estimate of p(t) is given as

p̄(t) = y(t)+ [A(q−1)−1][y(t)− p̄(t)]−B(q−1)u(t−d)
6



For the asymptotical rejection of sinusoidal disturbance,
there is no need to identify the whole model of the dis-
turbance path, i.e. HG1 as shown in Figure 2. The in-
formation needed is just the frequency of the disturbance.
So, by setting Dp(q

−1, θ) = 1 − θq−1 + q−2 (for Level 1)
and Np(q

−1) = 1 + c1q
−1 + c2q

−2, a simple parameter
estimation algorithm can be developed. Let us define :

z(t+ 1) = p̄(t+ 1) + p̄(t− 1) (18)

ψT (t) = [−p̄(t), ε(t), ε(t− 1)]T (19)

ΘT (t) = [θ, c1, c2]
T (20)

where ε(t) = z(t)− ẑ(t) is the a posteriori prediction error.
Now, the following recursive adaptation algorithm can be
used to estimate the the scheduling parameter θ:

ε◦(t+ 1) = z(t+ 1)− Θ̂(t)ψ(t)

ε(t+ 1) =
ε◦(t+ 1)

1 + ψT
f (t)F (t)ψf (t)

Θ̂(t+ 1) = Θ̂(t) + F (t)ψf (t)ε(t+ 1) (21)

F (t+ 1) =
1

λ1(t)


F (t)−

F (t)ψT
f (t)ψf (t)F (t)

λ1(t)

λ2(t)
+ ψT

f (t)F (t)ψf (t)




where ψf (t) =
1

Np(q−1)ψ(t), ε
◦(t) is the a priori prediction

error and λ1(t) and λ2(t) define the variation profile of the
adaptation gain F (t). Filtered observation vector ψf (t)
is used to ensure the stability and convergence properties
of the adaptation algorithm ([13]). The other condition
for the convergence, namely the richness of excitation, is
satisfied as long as disturbance is not zero. A constant
trace algorithm [13] is used for the adaptation gain.

The same recursive adaptation algorithm is used for
Level 2 of the benchmark with the difference that the order
of the disturbance model and consequently the number of
the scheduling parameters is increased (θ is replaced by a
vector [θ1 , θ2]).

4. Simulation and experimental results

The simulation results are presented for three differ-
ent tests of each benchmark level: simple step test, step
changes in frequencies test and chirp test, according to the
benchmark requirements.

4.1. simple step test

The simulation and experimental results for Level 1 are
given in Table 1 and Table 2, respectively. The first column
gives the global attenuation in dB. It is the ratio of the
energy of the disturbance in open-loop to that in closed-
loop computed in steady state (last three seconds of the
experiment). The second column shows the attenuation at
the disturbance frequency. The maximum amplification
of the disturbance at other frequencies is computed and
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Figure 9: Power spectral density for the real-time simple step test
with disturbance frequency of 75Hz (Level 1)
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Figure 10: Power spectral density for the real-time simple step test
with disturbance frequencies of 60 and 80Hz (Level 2)

shown in the third column together with the frequency at
which it occurs. The two-norm of the transient response
of the residual force is given in the forth column and the
two norm at the steady state (last three seconds) in the
fifth column. The peak value of the transient response is
given in the 6-th column, and a Benchmark Satisfaction
Index (BSI) for the transient duration in the 7-th column
(100% means that the transient duration is less than 2
sec. and 0% corresponds to more than 4 sec). The results
show more or less good coherence between the simulation
and experimental results. Certain discrepancy between the
simulation and experimental results for the disturbance
frequency of 50Hz probably comes from the modeling error
of the secondary-path model, around this frequency, used
in the simulator of the benchmark.

The simulation results for simple step test of Level 2
are given in Table 3 and the experimental results in Table

7



0 5 10 15 20 25 30

−0.05

0

0.05

R
es

id
ua

l F
or

ce
 [

V
]

Simple Step Test

 

 

Maximum value = 0.018578

Open Loop
Closed Loop

0 5 10 15 20 25 30

−0.05

0

0.05

R
es

id
ua

l F
or

ce
 [

V
]

Step Frequency Changes Test

Maximum value = 0.020664

0 5 10 15 20 25 30

−0.05

0

0.05

Time [sec]

R
es

id
ua

l F
or

ce
 [

V
]

Chirp Test

Maximum value = 0.025549

75 Hz

60 Hz 70 Hz 60 Hz 50 Hz 60 Hz

50 Hz
95 Hz

50 Hz

Figure 7: Experimental time-domain responses for different Level 1 tests

Table 1: Simple step test (Simulation) - Level 1

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)
50 30.0539 22.1214 9.6674@ 53.12 13.4803 6.0275 19.2347 100.00
55 33.0839 39.1389 5.7785@ 114.06 11.2054 4.2825 21.5834 100.00
60 32.9298 40.6649 5.2791@78.12 9.1452 4.3614 21.5092 100.00
65 33.1775 39.2777 5.4087@73.43 7.9451 4.3065 19.5405 100.00
70 33.5947 47.4173 4.6449@51.56 7.9827 4.1534 22.6636 100.00
75 34.2959 42.8627 3.6597@ 50.00 8.1354 3.9172 22.5296 100.00
80 34.8302 45.3628 3.8744@50.00 8.0156 3.6393 21.3056 100.00
85 34.5090 43.2440 4.0071@50.00 8.6001 3.6477 23.4386 100.00
90 32.3077 39.3682 4.4651@50.00 12.5930 3.8676 25.5074 100.00
95 23.9978 23.8150 4.9679@50.00 15.5999 4.4858 29.8633 100.00
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Figure 8: Experimental time-domain responses for different Level 2 tests

Table 2: Simple step test (Experimental results) - Level 1

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)
50 32.1963 26.0390 13.19@117.19 28.7275 9.8031 22.2959 83.88
55 32.9624 41.5091 11.66@125.00 13.7586 5.6248 18.5939 100.00
60 33.7955 41.3196 11.59@70.31 9.9979 5.1623 17.3711 97.99
65 32.5293 45.4435 9.54@134.37 9.8304 5.0178 19.3765 100.00
70 30.0156 42.6926 11.41@134.37 9.3400 5.5506 20.6127 95.06
75 30.9359 43.1902 9.74@137.50 7.7819 4.4682 15.7354 100.00
80 29.6325 44.9083 9.43@137.50 8.5284 5.0297 21.8171 100.00
85 28.3826 38.3824 7.63@118.75 8.0995 5.7268 20.5997 100.00
90 28.2388 37.0264 10.02@135.94 8.8059 5.0778 23.0987 100.00
95 28.8061 37.0992 7.36@114.06 8.5047 4.6892 22.2701 100.00
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4. For Level 1 tests, apart from the disturbance at 50Hz,
disturbances at other frequencies are rejected. The global
attenuation of more than 30 dB is met in simulation for
all frequencies. However, in real experiments the perfor-
mance for the disturbance frequency pair (50-70)Hz is not
good. The main reason is that the estimated parameters in
the adaptation algorithm do not converge to the true val-
ues (a linear controller with known disturbance frequencies
performs very well in simulation as well as in real exper-
iments). For the other disturbance frequencies the tran-
sient behaviour in simulation and experimental results are
close and satisfy more or less the specifications.This effect
can be reduced by adding a small damping to the internal
model of the disturbance. This way, a small error in the
scheduling parameters will have less effect in the perfor-
mance, but with the cost of having less attenuation for the
exact parameter estimates.

Although the maximum amplification of disturbance
in simulation is close to that of linear controller, higher
values are obtained in real experiments. This probably
comes from the modeling error around 129-137 Hz.

The real-time response from the simple step test with
disturbance frequency of 75Hz is shown in the first plot
of Fig. 7. Similarly, in Fig. 8 the first plot presents the
simple step test response for Level 2 with disturbance fre-
quencies of 60 and 80Hz. Figure 9 illustrates the compar-
ison between the open-loop (dashed) and the closed-loop
power spectral density for the real-time simple step test
with single disturbance frequency of 75Hz. Strong attenu-
ation (around 45dB) at 75Hz and low (or no) amplification
at other frequencies can be observed. Similar conclusion
can be drawn from Fig. 10 for the simple step test of Level
2 with disturbance frequencies of 60 and 80Hz.

4.2. Step changes in frequencies test

For Level 1 of the benchmark, three sequences of step
changes in the frequency of the disturbance are considered.
These sequences are defined as follows:

Sequence 1 : 60 → 70 → 60 → 50 → 60
Sequence 2 : 75 → 85 → 75 → 65 → 75
Sequence 3 : 85 → 95 → 85 → 75 → 85

Similarly, for Level 2, two sequences of the step changes
in the disturbance frequencies are defined (see the first col-
umn of Table 5). The transient performance in simulation
for Level 1 and Level 2 are given in Table 5 and the exper-
imental results in Table 6. It can be observed that good
performance is obtained for all disturbance frequency pairs
except for (50-70) in the real experiment.

The second plot of Fig. 7 and 8 present the real-time
response for the first disturbance frequency sequence of the
step changes in frequencies test for Level 1 and for Level
2, respectively.

4.3. Chirp test

For Level 1 of the benchmark a chirp signal that starts
from 50Hz and goes to 95Hz and returns to 50Hz with a

Table 5: Step changes in frequencies test (Simulation)

L
e
v
e
l
1

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
60→70 7.9407 20.7565
70→60 8.3077 16.5109
60→50 10.2125 13.4903
50→60 7.3136 15.6196

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
75→85 7.2684 13.9343
85→75 8.7004 17.0025
75→65 7.6486 17.0491
65→75 7.8875 15.2766

SEQUENCE - 3
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
85→95 8.3668 20.2567
95→85 9.5780 18.5376
85→75 7.3373 17.1218
75→85 8.0514 17.4093

L
e
v
e
l
2

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[55-75] → [60-80] 10.0628 22.8093
[60-80] → [55-75] 16.3247 21.5839
[55-75] → [50-70] 20.0613 18.7106
[50-70] → [55-75] 10.0798 17.8500

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[70-90] → [75-95] 11.5762 18.1048
[75-95] → [70-90] 13.9285 22.5232
[70-90] → [65-85] 12.0298 23.1736
[65-85] → [70-90] 10.8733 20.8162
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Table 3: Simple step test (Simulation) - Level 2

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)
50-70 35.5110 27.42 - 23.00 11.28@114.06 87.6744 6.4925 61.5624 100.00
55-75 38.6182 33.68 - 33.59 9.59@114.06 67.8341 4.6086 59.1878 100.00
60-80 39.8107 41.80 - 37.09 6.84@114.06 53.7933 3.9936 53.7369 100.00
65-85 39.9478 49.57 - 43.77 6.37@50.00 64.8855 3.8930 68.9495 100.00
70-90 38.4478 54.70 - 47.07 9.09@50.00 80.7946 4.2437 76.4654 100.00
75-95 35.1036 48.74 - 36.81 11.17@50.00 95.3054 4.7593 72.0523 100.00

Table 4: Simple step test (Experimental results) - Level 2

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)
50-70 24.6660 20.58 - 17.49 18.06@131.25 144.4955 34.0463 50.7286 100.00
55-75 36.9297 34.20 - 30.54 18.88@129.69 174.1515 6.4665 86.2932 100.00
60-80 39.9376 44.32 - 37.43 18.00@134.37 64.0941 4.0669 55.8595 100.00
65-85 32.5931 37.85 - 32.34 14.65@ 135.94 47.4775 8.2762 54.6568 100.00
70-90 36.3403 55.54 - 47.05 14.41@ 137.50 52.3746 4.7614 63.1648 100.00
75-95 33.7952 43.26 - 36.27 13.07@ 137.50 116.2289 5.7348 86.3334 50.78

variation rate of 10 Hz/sec is applied as the disturbance
signal. For Level 2 the disturbance frequencies change
from (50-70)Hz to (75-95)Hz with a variation rate of 5
Hz/sec and return to (50-70)Hz. The maximum value and
the two-norm of the disturbance response in simulation
and in the real-time experiment are given in Table 7. The
experimental results of the chirp disturbance responses for
Level 1 and Level 2 are given in Fig. 7 and 8, respectively.

5. Conclusions

A new method for fixed-order gain-scheduled H∞ con-
troller design is proposed and applied to the active sus-
pension benchmark. It is shown that one or two unknown
sinusoidal disturbances can be rejected using the gain-
scheduled controller and an adaptation algorithm that esti-
mates the internal model of the disturbance. The proposed
gain-scheduled controller design method is able to satisfy
all frequency-domain constraints. However, the results are
slightly deteriorated in simulation and real experiments.
The main reasons are the followings:

• During the convergence of the scheduling parameter,
the whole system becomes nonlinear and the desired
performance is not achieved.

• Even at the steady state, there is always an estima-
tion error in the scheduling parameter.

• The modeling error in the secondary-path model is
not considered in the design.

Although the proposed method could consider the model-
ing error in the design, it has not been taken to account
for some reasons. First, it was supposed that the provided
model for the benchmark is very close to the real system

and modeling error can be neglected. Second, considering
the unmodelled dynamics makes the optimization method
more complicated (number of constraints increases) and,
finally, robust controllers lead generally to conservative so-
lutions to the detriment of performance.
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