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Abstract

This thesis presents the automation of loop computations for the calculation of Next-
to-Leading Order contributions to theoretical predictions for particle colliders. We
start with the general techniques for performing such predictions and how they can be
expressed as perturbative expansions in the coupling constants controlling the strength
of particle interactions. This leads to the discussion of the subtleties arising when
considering higher order corrections, in particular the methods employed for isolating and
canceling the infrared divergences occurring at intermediate steps of the computation. We
then introduce the Passarino-Veltman and Ossola-Papadopolous-Pittau loop reduction
algorithms. The latter is used by the computer code MadLoop that we wrote specifically
for the automation of loop computations. The main part of the thesis focuses on the
description of this program, starting with its original loop diagram generation algorithm
and how it is embedded within the MadGraph5 environment. An initiation to the
usage of the code is given, followed by a discussion of its optimizations where particular
attention is paid to the implementation of the open-loop technique. Great details about
the validation of MadLoop results against those of other codes are given in appendix B for
specific kinematic configurations. We also list in the main text the total rates obtained for
various processes. Quantitative information on the runtime speed and numerical stability
performances are presented for many processes, each representative of a certain class of
complexity. This serves as a comparison benchmark, and shows that realistic studies can
be performed for any 2→ 3 and most 2→ 4 processes in the Standard Model. We finish
by providing two examples of phenomenology study at the Large Hadron Collider using
the tools we developed. The first treats the production of a scalar or pseudo-scalar in
association with a top quark pair while the second addresses the tri-boson production
channel Z W+ W− with MadSpin simulating the subsequent decay to leptons. We
conclude with some insights on MadLoop prospects.

Keywords: QCD, NLO, loop corrections
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Résumé

Cette thèse présente l’automatisation des calculs de diagrammes de Feynman à boucle,
ceci dans le but d’évaluer les contributions sous-dominantes des prédictions théoriques
pour les collisionneurs de particules. Je commence par les techniques générales utilisées
pour effectuer de telles prédictions et comment elles peuvent s’écrire comme une expansion
perturbative avec comme paramètres les constantes de couplages définissant l’intensité des
interactions de particules. Ceci m’amène à discuter des subtilités qui apparaissent dans le
cadre des corrections d’ordre supérieur, en particulier les méthodes employées pour isoler
et annuler les divergences infrarouges qui surviennent aux étapes de calcul intermédiaires.
J’introduis ensuite les algorithmes de réduction de boucle de Passarino-Veltman et Ossola-
Papadopolous-Pittau. Ce dernier est utilisé par le programme informatique MadLoop qui
j’ai créé spécifiquement pour l’automatisation des calculs de boucles. La partie principale
de la thèse se concentre sur la description de cet outil, avec tout d’abord son algorithme
original pour la génération de diagrammes à boucle et comment ce dernier est implémenté
dans l’environnement de MadGraph5. Une initiation à l’utilisation du code est donnée,
suivie d’une discussion de ses optimisations où une attention particulière est portée à
l’implémentation de la technique dite open loop. Les détails précis de la validation de
MadLoop par confrontation aux résultats d’autres codes sont donnés dans l’appendice B
pour des configurations cinématiques prédéfinies. Je liste aussi dans le texte principal les
sections efficaces intégrées obtenues pour un grand panel de processus. Des informations
quantitatives sur les performances en termes de vitesse d’exécution et stabilité numérique
sont présentés pour un grand nombre de processus, chacun représentatif d’une certaine
classe de complexité. Cela sert d’étalon de comparaison et montre que des études réalistes
peuvent être effectuées pour n’importe quel processus 2→ 3 dans le modèle standard (et
la plupart des 2→ 4). Je termine par donner deux exemples d’étude phénoménologique
au Large Hadron Collider qui utilisent les outils développés dans cette thèse. Le premier
traite de la production d’un sclaire ou pseudo-scalaire en association avec une paire de
quarks top, tandis que le second concerne le canal de production tri-bosonique Z W+ W−

avec MadSpin simulant ls désintégration en leptons. Je conclus avec quelques perspectives
d’évolution de MadLoop.

Mots clés : QCD, NLO, corrections de boucle
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1 Introduction

1.1 High energy physics today

Particle physics always had as a driving principle the construction of mathematical models
for explaining and predicting fundamental natural phenomena. Until the middle of the
20th century, guessing or deducing this underlying model was more of a challenge than
confronting its actual predictions to observational data. However, in the last 40 years,
the validity of the Standard Model (SM) of elementary particles has been established in
a vast variety of experiments and to a very high accuracy so that new physics searches
now very often rely on indirect detection through precise comparison of experimental
observations with theoretical predictions.

In high energy physics, there is the possibility of systematically improving the prediction
for most observables by means of perturbative techniques, writing it as an expansion in
the coupling constants of the particle interactions. The computation of contributions of
increasingly higher orders in this expansion is analogous to the accumulation of data in
real experiments such as ATLAS, CMS, LHCb and ALICE at CERN. While the latter
results in the decrease of the statistical error associated with the measurement, the former
implies the reduction of the theoretical uncertainty affecting the prediction. Precise
determinations on both the theoretical and experimental sides have been essential in the
success of physics programmes at particle colliders, and continue playing a very important
role in pinning down potential discrepancies between predictions and observations. It
should be further stressed that some discovery strategies pursued by collider experiments
(a prime example being the single-top analysis of the CDF and D0 collaborations at
FermiLab) make extensive use of theoretical predictions, whose accuracy is crucial to
reduce as much as possible any theoretical bias on evidence of new physics.

The reduction of the uncertainties that affect theoretical predictions is only one of the
consequences of computing higher orders in the perturbative series. In general, one
expects to find corrections that are non-trivial, in the sense that they cannot possibly be
obtained by simply rescaling the Leading-Order (LO) results by a constant. One reason
for this is that processes occurring in hadron collisions have a rich structure where new
partonic channels can open up only at higher orders.

Some processes, referred to as loop-induced, only occur via loops of virtual particles so
that the computation of the LO contributions to the related observables already has the

1



Chapter 1. Introduction

same complexity as that of the evaluation of the Next-to-Leading Order (NLO) terms
in processes with tree diagrams contributing at LO. For these loop-induced processes,
the technology developed in this thesis is simply unavoidable for providing any exact
LO prediction at all. A very relevant example in the SM is the Higgs boson production
through gluon fusion1 which is by far its main production channel at the Large Hadron
Collider (LHC).

In 2005, the creation of the Les Houches priority list [8] further emphasized that computing
higher order contributions to the perturbative series of theoretical predictions is desirable
for most processes and studies. Unfortunately few analysis include them because they are
computationally extremely cumbersome and very often impossible to carry out by hand.
There is therefore a clear need for an automated, flexible and user-friendly framework to
tackle them. The work presented in this thesis aimed at the development of such a tool
and its use for high precision phenomenology at collider experiments.

1.1.1 Theoretical predictions at hadron colliders

The LHC collides proton beams at a center of mass energy of 8 TeV (eventually at 14
TeV) and with luminosities two orders of magnitude larger than those of the second
largest collider ever built, namely Tevatron. Its main goal is to explore potential new
physics beyond the electroweak scale. However, most of what governs the proton collisions
at these high energies is hard Quantum ChromoDynamics (QCD), i.e processes driven
by stong interactions occurring at large energy scales. Processes in QCD therefore
constitute the dominant backgrounds to most new physics searches and it is essential
that they are well modeled and predicted to an accuracy matching the experimental
resolution. Also, because of the large accessible energy at the LHC, multi-jet observables
originating either from pure QCD or from the decay of new massive particles will play a
key role. The theoretical simulation of these processes with large number of final states is
computationally very challenging and automated methods such as that developed in this
thesis are at present the only viable approaches.

A remarkable feature of QCD is the dependence of its coupling parameter αs on the
typical energy of the interaction. This running of the strong coupling is such that QCD
becomes non perturbative at an energy ΛQCD of around 1 GeV, with the consequence that
colored asymptotic states (quarks and gluons) are not directly observable by experiments.
This also implies that perturbative methods on their own can predict scattering of
these unobservable states only. To study realistic hadronic collisions, extra information
needs to be input to model how they are bound together in the colliding protons. The
collinear factorization theorem [57] states that this modelization can be given as Parton
Density Functions (PDF) which enter the generic expression of the cross section for the

1One can however use the approximate Higgs effective theory (the dependance on the virtual quark
masses is then lost) in which tree-diagrams describe this Higgs production channel at LO.

2



1.1. High energy physics today

hadroproduction of a set of final states {F}:

dσpp→{F} =
∑

ab

∫
dx1dx2f

(p)
a (x1, µ)f

(p)
b (x2, µ)dσ̂ab→{F}(µ,M{F}) (1.1.1)

with f (p)
a/b the PDFs, dσ̂ab→{F} the hard cross section and the sums run over all partonic

configurations, i.e. components of the proton. The essence of the factorization theorem is
to state the universality of the PDFs, in the sense that they can be measured for one set
of observables and then inserted in eq. (1.1.1) to predict another process.

Contrary to the PDFs, dσ̂ab→{F} describes the physics at the large energy scale M{F},
where QCD is in a perturbative regime. It can therefore be expressed as an expansion in
a parameter λ. We shall call Born the first order in λ at which the short distance cross
section receives a contribution. Terms of order λBorn+1 and λBorn+2 are referred to as
Next-to-Leading Order (NLO) and Next-to-Next-to-Leading Order (NNLO) respectively.
In general, the expansion is performed in terms of the coupling constant of the relevant
interactions for the process, so that in QCD for example λ1 = αs/2π. However, in specific
cases where two widely separated scales µ andM appear in the computation, the logarithm
of their ratio can be large and compete with the smallness of the coupling constant. In
these situations, λ can be set proportional to these logarithms, λ2 = αs log(Mµ )k with k
typically equal to one or two depending on the target accuracy and observable considered.
The prediction can then be rewritten via an exponential of a serie in λ2 which2 resums
the contribution of all powers of λ2. These resummation techniques are a vast domain by
themselves and we shall not comment further on them as they are outside the scope of
this thesis.

It should be noted that the final state partons in the pp→ {F} process of eq. (1.1.1) are
not yet the observed states in detectors. Similarly to what was presented for the PDF of
initial state partons, it is possible to devise distributions characterizing the probability of
a final state parton to turn into a given hadron. These distributions called fragmentation
functions cannot be computed via perturbative techniques but are universal within a
certain defining class of processes and can be measured at collider experiments.

However, the most common way (especially at hadron colliders) of accounting for the low
energy QCD effects in the propagation of final state partons is the Parton Shower Monte-
Carlo (PSMC) technique. The idea is that each parton in {F} can split into a pair of new
partons according to a probabilistic distribution obtained from an approximate3 QCD
description of the branching. The procedure is iterated, with at each step the resulting
partons carrying less energy than their mother. The algorithm stops when reaching the
non-perturbative regime, around ΛQCD. At this stage the parton multiplicity is much

2The logarithms in the exponent are most often not exactly those of λ2, but a conjugate variable
obtained via some integral transformation.

3Exact in the collinear/soft limit
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Chapter 1. Introduction

greater than the one of the starting configuration {F} and an empirical hadronization
model is used to turn these partons into hadrons which can be compared with those
observed in real experiments. Since the probability of the successive splittings of a parton
is independent of its history, quantum coherence is partially lost (depending on the choice
of the evolution variables, some of it is kept). It turns out however that this pseudo
classical description describes the data very well and hence efficiently models the soft
QCD effects affecting the partons in {F} before their hadronization. This is less of a
surprise when considering that parton showers effectively perform a resummation of large
logarithms originating from the soft/colinear radiation.

The problem addressed by this work is that of automatically computing dσ̂ab→{F} at
NLO accuracy for any process and within general theories. In the next section, we discuss
the state of the art in this domain and describe the computational framework for high
energy physics predictions.

1.1.2 The prediction chain

It is a long and tedious task to provide a theoretical prediction for an observable at collider
experiments when starting from the Lagrangian of the theory of choice, arguably its
highest level of representation. Fig.1.1.1 depicts the various steps to be taken successively
and for each of them the specific tool used for this task in our computational framework.

(a) (b)

Figure 1.1.1: Fig. a) shows the long path from the Lagrangian of a specific model to
theoretical predictions which can directly be compared with experimental data. Fig. b)
shows the specific tools used in our framework for each step of the computation.

First, the operators present in the Lagrangian must be turned into analytical build-

4



1.1. High energy physics today

ing blocks suited for computations using Feynman diagrammatical methods4. These
are called Feynman rules and are deduced from the Lagrangian by the Mathematica

package FeynRules [56] which then outputs them to a general purpose model file [67]
(see sect. 3.4.2). This model can then be loaded into a matrix-element generator like
MadGraph [152, 7] so as to generate a numerical code computing the hard scattering
amplitudes5 corresponding to the user-defined processes. To obtain inclusive quantities
like cross-sections, the output of this code is integrated over the kinematic phase-space of
the final states {F} of the process. The number of dimensions of this integral grows with
the particle multiplicity of the process so that we rely on Monte-Carlo techniques such as
embedded in MadEvent [129] for the integration of LO quantities. When considering
NLO computations, MadFKS [105] (see sect. 1.2) instead is used as it is equipped for
dealing with the singularities occurring in this class of contributions.

In order to generate a set of unweighted events similar to the collision products observed
in real detectors, the parton-level Monte-Carlo must be matched to showering programs
like discussed in sect. 1.1.1. The most common ones are Sherpa [114], the Fortran

versions of Herwig [60] and Pythia6 [150] as well as their C++ successors Herwig++ [13]
and Pythia8 [151]. Eventually, detector simulation takes place to account for their
(in)efficiencies and defects.

1.1.3 Anatomy of a Next-to-Leading Order calculation

This whole procedure is now completely automated for LO predictions and tools such
as those mentioned have enjoyed tremendous success in all high energy experimental
collaborations where they constitute the backbone of their analysis. As mentioned in
the introduction, it is however highly desirable to have the same technology including
the NLO contributions in the perturbative expansion of the prediction. To achieve this,
several of the steps depicted in fig. 1.1.1 must be modified, in particular the matrix
element generator and the Monte-Carlo computational setup. This is because the higher
order amplitude contributions A(1)

loop and A(1)
real shown

6 in fig. 1.1.2 for the example of
e+e− → tt̄ production are much more problematic to compute. They exhibit a non-
trivial cancellation of singularities, typically achieved by a technique called dimensional
regularization.

4These methods are the canonical approach to computations in quantum field theory, see [142] for an
introduction.

5Scattering amplitudes are the main ingredients building dσ̂ab→{F} of Eq. (1.1.1)
6The figure depicts only one representative Feynman diagram for each of the three classes of contribu-

tions.
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ANLO(e+e− → tt̄) = +

∈ A(1)
real

+

∈ A(1)
loop

e−

e+

t

t̄

e−

e+

t

t̄

g

∈ A(0)
born

e−

e+

t

t̄

Figure 1.1.2: The three classes of contributions os an NLO amplitude.

In order to be treated on an equal footing with the other contributions, A(1)
real must be

integrated over the phase-space of its extra parton in the final state. The integrand
becomes divergent when this parton becomes soft and/or collinear to the particle it is
emitted from, thus yielding singularities which need to be systematically treated by the
Monte-Carlo. Several techniques exist to tackle this problem; our framework uses the
FKS [107, 110] method as implemented in MadFKS [105] (see sect. 1.2).

The contribution A(1)
loop features a novel topology corresponding to the pictorial represen-

tation of an integral over an unconstrained loop-momentum `µ. The general form of this
integral is presented in the next chapter in fig. 2.1.1.

The computation of this class of integrals stood for long as the bottleneck of theoretical
predictions including NLO terms but the last 15 years showed great progress in this field,
as summarized for example in review [90]. Even with these new techniques for calculating
the loop integrals, one still needs to be able to automatically generate for any process a nu-
merical code exploiting them to calculate A(1)

loop. The code MadLoop [123, 122] developed
over the course of this thesis achieves this by exploiting the Ossola-Papadopoulos-Pittau
(OPP) [139, 136] loop reduction method (see sect. 2.3) as implemented in CutTools [138].
Other groups have provided similar solutions to the same problem: HELAC-1LOOP [28]
proposes a numerical method also based on the OPP algorithm and with a recursive
approach to the construction of loop amplitudes, GoSam [61] employs a fully analytical ap-
proach and MCFM [46] features a large collection of dedicated handwritten codes brought
together in a common framework. The BlackHat [20] collaboration exploits generalized
unitarity techniques to compute NLO QCD corrections to specific very complicated SM
processes, such as pp→W +4j [22]. MadLoop on the other hand puts a special emphasis
on being very flexible towards the physics models and processes considered.

The matching to PSMC is more subtle at NLO because, in this case, the first soft/collinear
emission off final partons is already accounted for in A(1)

real. The MC@NLO [112] method
is employed to avoid this double counting.

These tools together form the aMC@NLO framework (the prepended ’A’ stands for
automatic) which is the first fully automated event generator for Standard Model processes
at NLO in the strong coupling constant αs. Equipped with this technology, we were
able to study the phenomenology of many high energy processes in a short time and at
NLO accuracy. In particular, the collaboration published on four important processes
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1.2. MadFKS

at the LHC; pp > Htt̄ [103], pp > Zbb̄ [104], four-leptons production [102] and finally
pp > Wjj [101]. This last one came as a response to a published measurement [3] by
the CDF collaboration at Tevatron presenting unexpected excess in the tail of the dijet
invariant mass distribution in pp > Wjj. Applications of the aMC@NLO framework for
NLO phenomenology is the object of chapter 4, with in particular the presentation of
unpublished results on triple vector boson production at the LHC.

The so far published analysis were performed with codes based on MadGraph4, an
old fortran code started in 1992. Its successor MadGraph5 is entirely rewritten in
Python, hence offering a flexible and powerful developing environment. This is why
MadLoop was re-implemented from scratch in this framework and dubbed MadLoop5,
described in sect. 3.4, which is already faster and more comprehensive than MadLoop4
(the old version). As fig. 1.1.3 shows, the whole aMC@NLO framework is now completely
embedded in the version 2.0 of MadGraph5, whose beta version is already publicly
available at amcatnlo.cern.ch or directly at launchpad.net/madgraph5 since November
8th, 2012.

Figure 1.1.3: How aMC@NLO is incorporated into MadGraph5.

1.2 MadFKS

The computation of predictions for high energy physics observables at NLO accuracy
necessitates to improve LO generators to include all three pieces of fig. 1.1.2. It is an
especially difficult task because of the non-trivial cancellation of the divergences intrinsic
to A(1)

loop with those occurring upon the integration of A(1)
real.

1.2.1 Subtraction formalism

To illustrate the possible solutions to this problem, it is simpler to start from the unphysical
simplified model proposed in ref. [86] with all the key properties of QCD. In this one-
dimensional model, a system can radiate a massless particle, called photon in this example,

7
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Chapter 1. Introduction

and with energy x comprised between 0 and 1. After an emission, the energy of the
remaining system is 1−x. In analogy with fig. 1.1.2, the leading contribution corresponds
to the case of no-emission, A(0)

Born, while the contributions to the NLO corrections come
from the single emission of a virtual or real photon, A(1)

loop or A(1)
real respectively.

x = 0 x = 1(B)orn x = 0 x = 1(V )irtual x = 0 x = 1(R)ealx = xe

Figure 1.2.1: The Born, Virtual and Real contribution illustrated for the toy model described in
the text. The dark blob is the system and the wiggly line the massless particle it emits.

The contribution to the differential cross-section dσ
dx of each of the three terms of fig. 1.2.1

can be written

dσB
dx

= Bδ(x)

dσV
dx

= α(
B

2ε
+ V )δ(x)

dσR
dx

= α
R(x)

x

(1.2.1)

for the Born, Virtual and Real terms respectively, with ε the parameter entering dimen-
sional regularization in d = 4− 2ε dimensions. The parameter α is the coupling constant
defining the expansion parameter and controlling the strength of the photon emission. B
and V do not depend on x as they both exhibit the Born kinematic configuration. The
function R(x) has the key property:

lim
x→0

R(x) = B (1.2.2)

The appearance of the same quantity B in eq. (1.2.2) and in dσR of eq. (1.2.1) originates
from the expectation that the residue of the leading singularity of dσR and dσV factorizes
the Born term. This result is assumed in this toy model but it can be derived from the
Lagrangian in the QCD case where the B term turns out not to be exactly the Born but
specific constituents of it altered by color algebra kernels, set to one in the toy model for
simplicity. The prediction of an observable O to NLO accuracy amounts to computing
the following integral

〈O〉 = lim
ε→0+

∫ 1

0
dxx−2εO(x)

[
dσB
dx

+
dσV
dx

+
dσR
dx

]
(1.2.3)

The folding over parton distribution functions presented in eq. (1.1.1) is omitted here as it
plays no role at this stage of the discussion and has no meaning in the context of the toy
model considered. In a realistic model, the Born phase-space (corresponding to x = 0 here)
is denoted dφn with n the number of particles in the process definition. Because dφn is

8



1.2. MadFKS

common to the three integrands of eq. (1.2.3) and does not bring in divergences7, it greatly
simplifies the expression to have it zero-dimensional like in this toy-model. The one-
dimensional integration variable x is the only one affected by dimensional regularization
bringing the x−2ε term and is associated to the phase-space of the emitted photon. It
symbolically corresponds to dφn+1

dφn
in the physical case.

The function O(x) defines the observable as a function of x (and φn if it were not zero-
dimensional) and typically includes a set of Heaviside Θ functions defining histogram
bins. In order to have the cancellation of infrared divergences, the analogue of eq. (1.2.2)
must also hold for the function O(x)

lim
x→0
O(x) = O(0) (1.2.4)

This continuity constraint is referred to as the infrared safety condition of an observable.
In the context of QCD, this condition translates into the fact that the observable O must
remain invariant if the kinematic configuration at which it is evaluated is modified by the
addition of an exactly soft and/or collinear parton.

The computation of the integral of eq. (1.2.3) must be performed numerically because of
its high dimensionality and complexity of the functions O(x) and R(x) in realistic models.
The presence of the regulator ε necessitates to employ a semi-numerical method which
first isolates the pole in ε arising from the integration of dσR so as to analytically cancel
it against the intrinsic one of dσV . The remaining piece of the integral is then ε-finite
and conventional numerical integration techniques can be employed.

We present here the two classes of methods that have been proposed to perform this
isolation. The slicing method introduces a small parameter δ into the integral of dσR as
follows

〈O〉R =

∫ δ

0
dxx−2εO(x)

dσR
dx

+

∫ 1

δ
dxx−2εO(x)

dσR
dx

(1.2.5)

This achieves the separation between the divergent and finite region in the most direct
way. In the first term of the r.h.s of eq. (1.2.5), one can expand O(x) and R(x) in a
Taylor series around x = 0 (the Born kinematic configuration) and only keep the first
term. This approximation is best for small values of δ and the higher order contributions
left out are denoted ∆(δ). Thanks to this splitting, or slicing, of the integration domain,
the second term on the r.h.s is now finite and the regulator ε can be set to zero in this
part. Substituting dσR with its expression in eq. (1.2.1) and the limits of eq. (1.2.2) and

7As long as the observable O is finite for any Born kinematic configuration.
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Chapter 1. Introduction

eq. (1.2.4), one obtains

〈O〉R = αBO(0)

∫ δ

0
dx
x−2ε

x
+ ∆(δ) +

∫ 1

δ
dxO(x)

dσR
dx

= αBO(0)

(
− 1

2ε
+ log(δ)

)
+ ∆(δ, ε) + α

∫ 1

δ
dx
O(x)R(x)

x

(1.2.6)

When this expression for 〈O〉R is plugged into eq. (1.2.3), the cancellation of the pole in
ε is explicit and all remnants are finite

〈O〉slice = BO(0) + α
[
(B log(δ) + V )O(0) +

∫ 1
δ dx

O(x)R(x)
x

]
+ ∆(δ) (1.2.7)

where the limit ε→ 0 has already been taken. The smaller the parameter δ, the smaller the
missing terms ∆(δ) and the better the approximation of the slicing method. Unfortunately,
for smaller values of δ, the computation features a cancellation between two increasingly
larger numbers: the integral

∫ 1
δ dx

O(x)R(x)
x and the quantity BO(0) log(δ). At some point,

the accuracy of the numerical integration reaches the magnitude of this large number
cancellation and their difference (i.e. the final result) becomes numerically unstable.
There is therefore a trade-off between small δ values minimizing the impact of the slicing
approximation and larger ones insuring numerical stability. The optimal choice for setting
δ is then process and observable dependent so that it is in principle necessary to always
assess that physical results are invariant upon a continuous change of δ over a suitable
range of small values. This test should be performed for each observable O but in practice,
only a finite set of sufficiently inclusive ones are considered.

The approach of the subtraction method is similar except for the crucial difference that it
implies no approximation. In this case, the real contribution is decomposed as follows:

〈O〉R = αBO(0)

∫ 1

0
dx

Θ(ξ − x)

x1+2ε
+ α

∫ 1

0
dx
O(x)R(x)−BO(0)Θ(ξ − x)

x1+2ε
(1.2.8)

with ξ an arbitrary parameter in the range 0 < ξ ≤ 1. The second term on the r.h.s
of this equation is finite thanks to the limiting behavior8 of R(x) and O(x) imposed
by eq. (1.2.2) and eq. (1.2.4) so that the regulator ε can directly be set to zero in the
integrand. The subtraction method provides this final expression for the NLO prediction

〈O〉subtr = BO(0) + α
[
(B log(ξ) + V )O(0) +

∫ 1
0 dx

O(x)R(x)−BO(0)Θ(ξ−x)
x

]
(1.2.9)

Despite being very similar to eq. (1.2.9), it differs by the fact that the new parameter ξ
introduced does not need to be small as the subtraction method involve no approximation.
In turn, this implies that there is no need for a check on the invariance of the physics
result with respect to ξ. Moreover, the subtraction prescription handles the cancellation of

8Because the integral is logarithmically divergent, the subtraction term renders it finite irrespectively
of the pace at which R(x) and O(x) converge towards their finite limit at x = 0.
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1.2. MadFKS

the divergences occurring at the intermediate steps of the computation by exploiting only
the limiting behavior of the observable O and of the integrand of the real contribution
R(x). In particular, no further information on the matrix element and the process in
general is necessary, making this formalism well suited for automation. It is therefore the
method of choice in aMC@NLO.

1.2.2 Infrared collinear divergences in QCD

It is interesting to see how the divergence of the integrand dσR
dx really occurs in the QCD

case. It turns out that the only Feynman diagrams sourcing divergences of the matrix
element for the real-emission processes are those for which a massless parton is emitted
from an external leg of the underlying Born process. The case of the emission of a gluon
from a quark can be depicted very generally as in fig. 1.2.2.

ka

kb

kc

dσ(0)(ka)

Figure 1.2.2: Formal representation of a final state quark leg emitting a gluon. This is one of
the possible contributions to the real emission part of cross-section denoted dσ(1,R).

The case of a gluon emission by a gluon and of a quark splitting into two gluons is
completely analogous. The gray blob indicates the underlying Born diagram whose square
builds the LO contribution denoted by dσ(0,B). To compute this diagram in a way that
the collinearity of the emitted parton is made explicit, one typically parametrizes the
momenta kb and kc as follows:

kb = zka + kT + βbn̂, kc = (1− z)ka − kT + βcn̂ (1.2.10)

where ka and n̂ are two non collinear massless four-momenta orthogonal to kT . The
coefficients βb and βc are determined by the onshell conditions9 k2

c = 0 and k2
b = 0

βb = − k2
T

2zn̂ · ka
, βc = − k2

T

2(1− z)n̂ · ka
(1.2.11)

This diagram leads to a divergence in the in the matrix element squared only when
interfered against itself and an explicit computation of its contribution shows that the

9The energy-momentum conservation violation of ka = kb + kc vanishes when approaching the soft
and/or collinear region of the emission.
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Chapter 1. Introduction

divergent contribution factorizes the underlying Born expression and can be written

dσ(1,R) =
αs
2π

∫
dk2

T

∫ 1

0
dzCF

1 + z2

1− z
1

k2
T

dσ(0)(ka) +R (1.2.12)

with the color factor CF = 4/3. The second term on the r.h.s of eq. (1.2.12) is a finite
remnant whose integrand corresponds to R(x)−B

x in the toy model. The first term is the
divergent piece and needs to be regularized consistently with the scheme used for the
computation of the virtual contribution dσ(0,V ). This insures not only the explicit single
pole cancellation but also the respective consistency of the finite remainders R and V
which drive the physics result. The conventional choice of dimensional regularization
modifies the integration measure of eq. (1.2.12) by a factor k−2ε

T (1−z)−2ε. The expression
of the multiplicative term 1+z2

1−z is characteristic of a class of functions called the Altarelli-
Parisi splitting kernels. The study of soft emissions proceeds analogously except that it
necessitates a different parametrization of the kinematics and that also the interference
of diagrams featuring a soft emission from different final state partons are divergent. The
counterpart of the Altarelli-Parisi kernel in this case is called the Eikonal kernel.

This development shows that the divergences occurring in QCD are more complex than
the simple 1/x integrand of the toy model. Indeed, eq. (1.2.12) features a divergence at
both z = 1 and k2

T = 0 which corresponds to an emission of a collinear and soft parton10

respectively. The case of the emitted parton being both soft and collinear is responsible
for the double pole 1/ε2 in dimension regularization whose residue is the same as the
one of the virtual contribution, with opposite sign. Notice that all these divergences
are of infrared origin. The cancellation of the divergences of UV origin, present in the
loop contribution only, is not discussed here and is typically handled by the Lagrangian
renormalization through the addition of suitably defined set of counterterms (see ref. [142]
for a general introduction on that topic). The treatment of collinear singularities in
the real emission of initial state partons is similar to what is presented above, to the
minor difference that it involves the folding of the partonic cross-section over the parton
distributions function. Exploiting the factorization theorem, this allows to move a non-
perturbative left-over contribution into the PDF definition at the cost of introducing the
factorization scale µf . The universality of the PDF along with the collinear factorization
theorem of eq. (1.1.1) saves the predictivity of perturbative computations in QCD.

1.2.3 MadFKS strategy: divide and conquer

The situation of eq. (1.2.12) treats the emission of a parton from one particular external
leg denoted a but the complete treatment of realistic QCD processes is more complicated
since one must consider all possible real emission configurations. For each of them, the
subtraction formalism applies, with a specific kinematic parametrization and underlying

10This divergence of soft origin is however incomplete as it arises from collinear parametrization of the
emission.
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1.2. MadFKS

Born configuration dσ(0)(ka). It is therefore necessary to isolate each of these real emission
configurations and correctly define, for each of them, the corresponding local subtraction
counterterm.

Several solutions for achieving this separation exist, and aMC@NLO chooses the FKS
universal subtraction formalism [110, 107] as implemented in the Monte-Carlo Integrator
(MCI) MadFKS [105]. In this formalism, the singularities are isolated through the
following manipulation of the real-emission integrand dσR

dσR =
∑

ij

dσ
(R)
ij , dσ

(R)
ij = SijdσR (1.2.13)

where the definition of the function S is based on the identification of the parton pairs
(i, j) that can give collinear and soft singularities

a)
∑

ij

Sij = 1

b) lim
~ki|| ~kj
Sij = 1

c)
∑

j

lim
k0
i→0
Sij = 1

d) Sij → 0 ∀ other singularities not corresponding to b) and c).

(1.2.14)

The constraint a) insures a correct normalization for the rewriting of eq. (1.2.13) while
c) and d) make sure that the limiting cases of collinearity of the parton pair (i, j) and
of soft parton i are unaffected by the phase-space splitting function S. The power of
the FKS formalism lies in its ability to handle soft divergences through the definition of
phase-space regions solely based on the identification of the collinear divergences. This
makes the FKS method very effective at limiting the total number of counterterms, which
scales at most as n2, with n the number of strongly-interacting particles that enter the
process. Furthermore, the method renders it particularly easy to further reduce the
subtractions to perform by efficiently exploiting the symmetries of the matrix elements in
the case of identical final-state particles:

O(dσ
(R)
ij ) = O(dσ

(R)
kl ) if I(i) = I(k) and I(j) = I(l) (1.2.15)

where O is any observable and the operator I(x) is the identity (flavored quark or gluon)
of parton x. This means for example that n-gluon processes have exactly three subtraction
terms, independently of n.

In the FKS formalism one introduces three arbitrary parameters11 that control the
subtractions, and of which any physical observable is independent by construction. While

11ξcut, δI , and δO, the analogue of ξ in the toy model, for soft, initial-state collinear, and final-state
collinear singularities respectively
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the explicit numerical verification of this property is not necessary (contrary to the case
of the slicing method), it still provides a powerful check of the implementation of the
subtraction method.

To compute the quantity 〈O〉subtr of eq. (1.2.9), traditional LO Monte-Carlo approaches
can be employed as such for the Born contribution BO(0) as well as for the virtual plus
integrated counterterm αO(0)(B log(ξ) + V ). The numerical integration of the last term,
performed independently of the others, is a bit different and can be superficially described
by the following recipe:

1. Pick at random 0 ≤ x ≤ 1. This correspond to a given real emission configuration.

2. Compute wEV = αR(x)
x , the event weight.

3. Compute wCT = −αBx , the counter-event weight.

4. Fill the histograms of the analysis by adding the event weight wEV to the bin
specified by the observable evaluated at the real-emission kinematic, O(x). The
counter-event weight wCT is added to the bin corresponding to the Born kinematic,
given by O(0).

5. Iterate N times steps 1 to 4, with N depending on the accuracy sought for and
normalize by 1/N .

The details of the real-emission kinematic configuration (schematically embodied by x in
the above) as well as the associated weight wEV is referred to as an event because it is at
this stage independent of the definition of the observable O. The name event comes from
the analogy with a complete description of one specific outcome of a high energy particle
collision.

There are additional subtleties in the context of the integration of the real-emission
contribution dσR related to the fact that two events (one being the counter-event) are
output for one single random pick of a real kinematic configuration. These contribute to
the observable O(k) evaluated at the two different kinematic configurations k = 0 and
k = x, possibly giving rise to the so-called misbinning effects. This happens when the
real emission kinematic configuration is very close to the underlying Born one (i.e. x
very small in the toy model) so that both wEV and wCT are large and almost equal up
to a sign. Most of the time O(x) and O(0) turn out to be the same bin and the two
contribution cancel each other, but occasionally they may fall in two contiguous bins and
the final histogram presents a kink. The smaller the bin size, the more likely misbinning
is to occur but this effect is not problematic for reasonable common binning choices. It is
fundamentally related to the fact that QCD does not have infinite resolution power.

Also, the conventional hit-or-miss unweighting procedure fails because wEV and wCT
are not bounded from above and diverge for x → 0 (corresponding to a soft and/or
collinear emission). The matching of the FKS fixed-order predictions to parton shower
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Monte-Carlo tools comes to the rescue with the introduction of yet another set of local
counterterms called MC-counterterms which capture the O(αs) contribution of the PSMC.
The MC-counterterms therefore depend on the characteristics of the PSMC considered
but they can be written in terms of process independent kernels so that the automation of
NLO computation is preserved. Loosely speaking, the first role of the MC-counterterms
is to prevent the double counting of the first real emission originating from the parton
shower and from the matrix element. Secondly, they insure that the one-loop contribution
does not account for what is already covered by the parton shower via the Sudakov
definition. Thanks to these properties, the MC-counterterms weights wMC damp the
growth of wEV and wCT when approaching the diverging regions, hence rendering the
unweighting procedure meaningful. Even then, it is clear that since wEV − wMC or
wMC − wCT can turn negative, it is possible that a fraction of the unweighted events
has a negative unit weight. This poses no problem since one is guaranteed never to have
negative differential cross-sections, provided that large enough statistics is considered.
Also, the unweighted parton level events are not physical until they are processed by the
PSMC which restores what is taken out by the MC-counterterms.

In light of the above, it is clear why MadFKS provides two running modes:

• Fixed order analysis — This running mode corresponds to the kind of analysis
performed by MCFM for example, and inherits its name from the fact that no
PSMC is considered. No unweighting procedure is carried out and the analysis is
performed on-the-fly since writing out the weighted events to the disk is memory
consuming and rather inconvenient12. This is the analysis mode of choice for
computing inclusive cross-sections (and the related K-factor) or for performing
shower-independent studies.

• Event generation — MadFKS needs the PSMC-specific MC-counterterms to function
as an unweighted event generator. The user is compelled to pass the generated
events to the chosen PSMC and to perform the analysis at the hadronic level only.
Except for this, the unweighted events generated can be used exactly as for a LO
run13 after the parton shower. In particular, the rest of the detector simulation and
analysis goes through unchanged.

The above shows how fixed order analysis and event generation runs complement each
other. In the public code aMC@NLO5, both are available; see sect. 3.4.1 for more details.

12Depending on the needs, this is however a possibility which has been exploited by other groups, such
as the BlackHat collaboration.

13The presence of events with negative unit weights is never an issue (except maybe technical).
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2 Loop computation techniques

Before proceeding, it is worth stressing that the very idea of automating virtual corrections
would have been unthinkable without the introduction of procedures for the computations
of loop tensor integrals that are alternative to the traditional ones based on analytic
techniques. Although the latter, by a clever use of tensor-reduction methods [141, 70, 35],
have helped obtain remarkable results (see e.g. refs. [79, 74] for some recent ones), they
do not constitute an effective starting point for automation, the main drawbacks being
the need of heavy symbolic manipulations, and that of special treatments of unstable
decompositions (in particular, the analytic approach obliges one to guess a priori where
numerical instabilities could occur, before taking actions such as Taylor-expanding small
Gram determinants). With some degree of arbitrariness, one can classify the modern
procedures for loop evaluations into two classes, that we call Generalized Unitarity
(GU) [25, 91, 92] and Integrand Reduction (IR) [137, 68, 131]. Both have obtained very
significant results: so far, GU- and IR-based efforts have focused primarily on studies of
large-multiplicity final states [106, 22] and of massive final states [29, 31] respectively. As
shown in sect. 2.3, Integrand Reduction is a procedure independent of the identities of
the particles entering in the process (i.e. if they are fermions or bosons, or if they are
massless or massive). It is thus perfectly suited to our goal of performing computations
in the most flexible way, which is the reason why it has first been adopted in MadLoop.

2.1 Notation

I shall first describe here the framework embedding the different loop reduction approaches
and setup the notation. Let us consider a UV-unrenormalized, n-point one-loop amplitude
A(n,1)

U . We have:

A(n,1)
U =

∑

α

Cα , (2.1.1)

where the sum runs over all Feynman diagrams relevant toA(n,1)
U , and Cα is the contribution

of a given Feynman diagram after loop integration. The loop evaluation procedure can be
viewed as a linear operator, and therefore in what follows we shall consider only a given
Cα – hence, the index α will be dropped in order to simplify the notation. The quantity C
is in general a tensor in the Lorentz and color spaces formed by the group indices carried
by the external legs. What follows is however independent of these dependences of C,
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which will therefore be understood and omitted; this is equivalent to fixing the external
Lorentz and color indices in C, and manipulate the resulting scalar quantity. It simplifies
the present discussion to consider all external momenta as outgoing:

0 = k1 + k2 + · · · kn . (2.1.2)

We consider a diagram with m propagators in the loop; the value of m does not need to
be specified here, and it suffices to say that it satisfies the constraint 1 ≤ m ≤ n. It is
not restrictive to assume that the external momenta are in the same order as in fig. 2.1.1
(since such a configuration can always be obtained through a relabeling). We denote
the loop momentum in d = 4 − 2ε dimensions by ¯̀, and decompose it into the sum of
a 4-dimensional and of a (−2ε)-dimensional components, which we denote by ` and ˜̀

respectively. Hence:

¯̀= `+ ˜̀ with `· ˜̀= 0 . (2.1.3)

!

! + p1

! + p2 ! + p3

! + pm−2! + pm−1

k1

kn

kn−1

kn−2

k7

k4

k2

∫
dd!

(2π)d
N (!)

D0D1D2D3···Dm−2Dm−1
≡

k3

k6k5

D0

D1

D2 D3

Dm−1Dm

Figure 2.1.1: A generic m − point loop diagram, with n external momenta ki. The internal
momenta are denoted pi =

∑Mi

j=1 kj , the denominators Di = (`− pi)2 −m2
i and the regularized

dimension d = 4− 2ε. The numerator N (`) depends on the spin of the loop particles as well as
the vertices structures. It is worth noting that in Feynman gauge, N (`) is a polynomial in `µ.

We introduce the partial sums that enter the propagators that form the loop:

pi =

Mi∑

j=1

kj , 1 ≤ i ≤ m ; p0 = pm . (2.1.4)

The values of the integersMi depend on the particular diagram considered (e.g. in fig. 2.1.1
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we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (2.1.5)

where the last equality follows from eq. (2.1.2).

The denominators of the loop propagators in d and four dimensions is denoted by D̄ and
D respectively. Hence:

D̄i = (¯̀+ pi)
2 −m2

i = Di + ˜̀2 ≡ (`+ pi)
2 −m2

i + ˜̀2 , 0 ≤ i ≤ m− 1 , (2.1.6)

which follows from eq. (2.1.3), and from the fact that the (−2ε)-dimensional parts of the
external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted.
Note that mi is the mass of the particle flowing in the ith propagator, and therefore in
general p2

i 6= m2
i . With these definition, we can write a concise generic expression for any

loop diagram as

C =

∫
dd ¯̀C̄(¯̀) , C̄(¯̀) =

N̄(¯̀)∏m−1
i=0 D̄i

, (2.1.7)

which follows from fig. 2.1.1 and eq. (2.1.6), and implicitly defines N̄(¯̀). In Feynman
gauge, N̄(¯̀) is generically a polynomial in ¯̀. Moreover, for renormalizable theories, one
can show that the maximal rank rmax of this polynomial is at most equal to twice the
number of loop propagators (i.e. the rank of the denominator). The class of integrals
with N̄(¯̀) = 1 is referred to as scalar integrals as opposed to tensor integrals. This abuse
of language originates from the fact that any integral with N̄(¯̀) of rank r > 1 can easily
be recast in terms of integrals with N̄(¯̀) =

∏r
i=0

¯̀µi which form the tensor integral basis.
A trivial example of this is

N̄(¯̀) =
1

4
Tr[/̀̄(/̀̄+ /p)] = gµν ¯̀

µ
¯̀
ν + pµ ¯̀

µ (2.1.8)

A crucial result, originally stated in [141], is that in the limit d→ 4 any one-loop integral
C can be expressed as a cut-constructible (CC) part, i.e. a linear combination of scalar
boxes, triangles, bubbles, and tadpoles, plus a (non cut-constructible) remainder term R,
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called rational part:

C =

m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
dd ¯̀ 1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
dd ¯̀ 1

D̄i0D̄i1D̄i2

+

m−1∑

0≤i0<i1

b(i0i1)

∫
dd ¯̀ 1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
dd ¯̀ 1

D̄i0

+ R .

(2.1.9)

The essence of most loop evaluation techniques is that of computing C by determining
(in a numerical manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (2.1.10)

and by using the well-known expressions for scalar loop integrals [153, 94, 154]. The same
notation but with capital letters will be used for the scalar integrals corresponding to
each one of these coefficients. For example,

Ci0i1i2 =

∫
dd ¯̀ 1

D̄i0D̄i1D̄i2

(2.1.11)

The functional dependence of these scalar integral is unambiguously specified by the actual
values ij . For example, C269 if a function of (p2, p6,m2,m6,m9), as p9 is automatically
retrieved via p2 and p6 using energy momentum conservation.

We are now equipped to proceed with the description of two of the most important loop
reduction techniques.

2.2 The Passarino-Veltman reduction

Before digging into the details of the OPP procedure used by MadLoop, we wish here to
first present the traditional Passarino-Veltman (PV) reduction technique. This algebraic
procedure for evaluating loop integrals is the grandfather of modern tensor integral
reduction techniques and was first introduced in the avant-garde work of [141]. As we
will see, this method lacks efficiency but provides a very direct approach giving a good
understanding of the challenges of the loop reduction problem.

Rather than attempting a complete description of the method, we will illustrate it here
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2.2. The Passarino-Veltman reduction

when applied to the rank-one triangle tensor integral. Also, the fact that the loop
momentum lives in 4− 2ε dimensions is not crucial here and we will drop the bar notation
for this section. The triangle scalar integral is:

Cµ(p1, p2,m0,m1,m2) =

∫
dd`

`µ

D0D1D2
(2.2.1)

Exploiting Lorentz invariance of Cµ we can write, without loss of generality:

Cµ = pµ1C1 + pµ2C2 (2.2.2)

where C1 and C2 are form factors to be computed. The existence of such Lorentz
decomposition for any tensor integral is at the origin of the universal expression of
eq. (2.1.9). Now contracting eq. (2.2.2) on both sides with pµ1 and pµ2 , one obtains the
following set of equations for the determination of form factors.

∫
dd`

` · p1

D0D1D2
= p2

1C1 + p1 · p2C2

∫
dd`

` · p2

D0D1D2
= p2 · p1C1 + p2

2C2

(2.2.3)

It is easy to rewrite the scalar products ` · p1 and ` · p2 in terms of the denominators
D0,D1 and D2.

` · p1 =
1

2
(α+D1 −D0) , α = m2

1 −m2
0 − p2

1

` · p2 =
1

2
(β +D2 −D0) , β = m2

2 −m2
0 − p2

2

(2.2.4)

When inserting eq. (2.2.4) in eq. (2.2.3) and using the notation introduced in eq. (2.1.11),
one arrives at the following matrix representation of the system of eq. (2.2.3).

1

2

(
αC012 +B02 −B12

βC012 +B01 −B12

)
=

(
p2

1 p1 · p2

p2 · p1 p2
2

)

︸ ︷︷ ︸
G2

(
C1

C2

)
(2.2.5)

The matrix G2 is a particular realization of a more general structure called the Gram
matrix and its inversion solves eq. (2.2.5) for C1 and C2, yielding the expressions for the
coefficients c(i0i1i2), b(i0i1) and a(i0) of the decomposition of eq. (2.1.9). This procedure
can be generalized for tensor integrals of arbitrarily more loop propagators and higher
ranks, each time identifying the form factors of the most general Lorentz decomposition
of the tensor integrals and then computing them using the set of equations built from
the several Lorentz contractions of this decomposition. Notice that the PV algorithm
allows one to cast a rank R n-point tensor integral into a basis of m-point tensor integrals
of rank r < R with m ≤ n, but not directly into the scalar integral basis (2.1.9). This
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reduction procedure must therefore be iterated on all the remaining tensor integrals of
lower rank to eventually arrive at a decomposition involving only scalar integrals. For
example, if we had started this example with a rank-two tensor triangle, the Lorentz
decomposition of eq. (2.2.2) would read

Cµν = gµνC00 +
2∑

i,j=1

pµi p
ν
j (2.2.6)

and the expression of the form factors Cij would involve rank-one tensor triangles and
bubbles which must be further reduced.

Notice that when starting with a n-point tensor integral with n > 4, the decomposition
obtained will also include scalar integrals larger than boxes that the PV algorithm can in
principle not reduce further. However, owing to the dimensionality of space-time and the
use of the ’t Hooft-Veltman scheme which keeps the external momenta in four dimensions,
any n-point scalar integral with n > 4 can be rewritten as a sum of boxes, as shown in
[26]. This is a key result for the existence of the finite basis of eq. (2.1.9).

There are essentially three reasons why this algorithm is not suited for numerical automa-
tion of one-loop computations.

Firstly, inversions of Gram matrices such as G2 in our example arise at each step of the
reduction. Its determinant, the Gram determinant, can vanish for specific kinematical
configurations, referred to as exceptional phase-space points, rendering the algorithm
numerically unstable. In the example above, det[G2] = p2

1p
2
2− (p1 ·p2)2 vanishes for p1||p2.

Such singularities are artificial in the sense that the original loop integral exhibits a smooth
behavior around these points and they are introduced by the reduction mechanism which
picks specific arbitrary reference vectors for the Lorentz contractions (like in eq. (2.2.3)).
Secondly, the iterative nature of the PV reduction ineluctably yields a rapid growth of
the number of terms generated, eventually spoiling its efficiency for tensor integrals of
larger rank and number of external particles. Thirdly, the method necessitates extensive
analytical information about the loop integrand which is not readily available in purely
numerical methods.

The first two points are addressed by modern tensor integral techniques [98, 37, 113, 70]
in various ways and they can now be considered solved for loops of small enough1 ranks
(i.e. typically ≤ 6). An original (partial) solution to the last issue was recently found as
a by-product of the development of the open-loop technique which will be discussed in
sect. 3.4.3.

1We are considering here the isolated problem of the reduction of a given loop Feynman diagram,
within a purely diagrammatical approach. The possibility of increasing the efficiency of tensor integral
reduction exploiting a recursive approach is not discussed.
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2.3 The Ossola-Papadopolous-Pittau reduction

We are now ready for describing the OPP method which belongs to the more modern
class of reduction mechanisms at the integrand level and was first proposed in [137].

The key point of the OPP method is the fact that the determination of the quantities in
eq. (2.1.10) is achieved by working at the integrand level. We start by decomposing the
numerator N̄ of eq. (2.1.7) into the sum of a term sourced by only the four-dimensional
part of the phase-space and an extra piece. Notice that by definition this extra piece
contains all the dependence on ˜̀ and on ε; also there is no dependence on the (−2ε)-
dimensional parts of the external four-vectors ki in the ’t Hooft-Veltman scheme (and the
dependance on the 4-dimensional part is left implicit):

N̄(¯̀) = N(`) + Ñ(`, ˜̀2, ε). (2.3.1)

This decomposition is not straightforward, because N̄(¯̀) is a scalar quantity and the tilde
notation does not refer to the projection of N̄(¯̀) onto any kind of subspace but really
characterizes its functional dependences. More formally, it corresponds to splitting the
Lorentz objects of the numerator function into a four-dimensional component and an
extra term originating from the (−2ε) part of the integration dimension.

¯̀= `+ ˜̀

γ̄µ = γµ + γ̃µ

ḡµν = gµν + g̃µν

(2.3.2)

To illustrate this, we can work it out for the simple numerator below

N̄(¯̀) = Tr(γ̄α/̀̄γ̄α/̀̄) = −8`2︸ ︷︷ ︸
N(`)

+ 8(ε− 1)˜̀2 + 8ε`2︸ ︷︷ ︸
Ñ(`,˜̀,ε)

(2.3.3)

And the term 8(ε`2 − ˜̀2) in Ñ(`, ˜̀, ε), once integrated with the two denominators of a
bubble loop diagram, will yield a finite contribution because of the 1/ε UV pole. This
rational contribution is called R2 and the OPP procedure cannot compute it because only
numerical evaluations of N(`) only are provided in input. Fortunately, the UV nature of
the rational terms guarantees that only loops up to boxes can have an R2 contribution
(see ref. [36] for a formal proof). This crucial point implies that R2 contributions can be
reconstructed via tree-level computations involving a finite set of dedicated counterterm
vertices whose relatively simple Feynman rules can be computed once and for all for any
given renormalizable theory. In the perspective of the OPP algorithm, the problem of
computing the R2 contribution is then considered solved.

Now, when inserting the decomposition of eq. (2.3.1) in the integrand definition of

23



Chapter 2. Loop computation techniques

eq. (2.1.7), one obtains

C̄(¯̀) =
N(`)∏m−1
i=0 D̄i

+
Ñ(`, ˜̀2, ε)∏m−1

i=0 D̄i

, (2.3.4)

The two contributions above are treated rather differently and are defined as separate
quantities

C = Ccc+R1 +R2 , (2.3.5)

Ccc+R1 =

∫
dd ¯̀ N(`)∏m−1

i=0 D̄i

, (2.3.6)

R2 =

∫
dd ¯̀ Ñ(`, ˜̀, ε)∏m−1

i=0 D̄i

. (2.3.7)

Here, R2 contributes only to the rational part R, while Ccc+R1 is the sum of a cut-
constructible and of a rational term (called R1); we discuss how to disentangle the latter
two in what follows. One starts by showing [137] that the numerator function N(`) can
always be cast in the following form:

N(`) =
m−1∑

0≤i0<i1<i2<i3

[
d(i0i1i2i3) + d̂(`; i0i1i2i3)

] m−1∏

i=0
i/∈{i0,i1,i2,i3}

Di

+
m−1∑

0≤i0<i1<i2

[
c(i0i1i2) + ĉ(`; i0i1i2)

] m−1∏

i=0
i/∈{i0,i1,i2}

Di

+
m−1∑

0≤i0<i1

[
b(i0i1) + b̂(`; i0i1)

] m−1∏

i=0
i/∈{i0,i1}

Di

+
m−1∑

0≤i0

[
a(i0) + â(`; i0)

]m−1∏

i=0
i 6=i0

Di

+ P̂ (l)
m−1∏

i=0

Di , (2.3.8)

where the terms proportional to d̂, ĉ, b̂, â and P̂ (called spurious terms) vanish upon
integration. By exploiting the fact that Di = D̄i − ˜̀2 (see eq. (2.1.6)) in eq. (2.3.8), one
obtains the identity:

N(`) = Ncc(`, ˜̀2) +NR1(`, ˜̀2) , (2.3.9)
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where we have defined

Ncc(`, ˜̀2) = N(`)
∣∣∣
Di→D̄i

. (2.3.10)

As the notation suggests, Ncc is identical to eq. (2.3.8), except for the formal replacements
of all Di’s with the corresponding D̄i’s (i.e., the four-dimensional denominators by their
d-dimensional counterparts). Eq. (2.3.9) implicitly defines NR1 . From eq. (2.1.6) we see
that:

NR1(`, 0) = 0 . (2.3.11)

We can now define the cut-constructible and R1 contributions separately:

Ccc+R1 = Ccc +R1 (2.3.12)

Ccc =

∫
dd ¯̀Ncc(`, ˜̀2)∏m−1

i=0 D̄i

, (2.3.13)

R1 =

∫
dd ¯̀NR1(`, ˜̀2)∏m−1

i=0 D̄i

. (2.3.14)

The rational part R introduced in eq. (2.1.9) is the sum of R1 and R2, defined in
eqs. (2.3.14) and (2.3.7) respectively.

The key point is that the coefficients d, c, b, and a which appear in eq. (2.3.8) are the
same as those which appear in eq. (2.1.9), as can be easily seen by inserting eq. (2.3.8)
into eq. (2.3.10), and by using the result so obtained in eq. (2.3.13). This is ultimately
the reason why the OPP procedure is carried out at the integrand level, where the loop
momentum (`, ˜̀) is just an external and fixed quantity. Thus, eq. (2.3.8) is the master
equation used in the OPP method for the determination of the coefficients d, c, b, and
a, which is achieved by solving numerically a system of linear equations. The idea is
that of computing N(`) for suitable values of `, which render the just-mentioned linear
system easy to solve. A pre-condition for this to happen is the fact that the spurious
terms can be determined fully as functions of the external momenta; this has been
proved in ref. [68, 136]. At this point, the easiest way to proceed is that of computing
the cut-constructible and R1 contributions separately. One starts with the former, by
setting ˜̀2 = 0 and using eq. (2.3.11). Then, one determines the two solutions2 `± to the
equations:

Di0(`±) = Di1(`±) = Di2(`±) = Di3(`±) = 0 , (2.3.15)

2There are two (complex) momenta owing to the quadratic nature of the propagators.
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for given i0, i1, i2 and i3. Eq. (2.3.8) then becomes

N(`±) =
[
d(i0i1i2i3) + d̂(`±; i0i1i2i3)

] m−1∏

i=0
i/∈{i0,i1,i2,i3}

Di(`
±) , (2.3.16)

and using the explicit expression of d̂, one can prove [137] that the coefficients of the box
diagrams are simply given by

d(i0i1i2i3) =
1

2

[
N(`+)∏

i 6=i0,i1,i2,i3 Di(`+)
+

N(`−)∏
i 6=i0,i1,i2,i3 Di(`−)

]
. (2.3.17)

We point out that eq. (2.3.15) is nothing but the application of quadruple unitarity
cuts. Once the solutions for the d coefficients are known thanks to eq. (2.3.17), the
corresponding terms in eq. (2.3.8) are moved to the l.h.s. there. The procedure is then
iterated by considering triple, double, and single unitarity cuts in succession, i.e. values
of ` such that three, two, and one denominators vanish respectively. In exactly the same
way one deals with the computation of R1 [140]. The only difference w.r.t. the case of the
cut-constructible part is that the basis of the scalar loop integrals used in the two cases
is not the same (with that relevant to R1 being almost trivial). Alternative methods for
the derivation of R1 are presented in [140].

The procedure described above is implemented in the computer program CutTools [138]
which, being given in input the function N(`), the momenta defined in the partial sums
of eq. (2.1.4) and the masses mi of the corresponding propagators, returns the numerical
values of the cut-constructible part and of R1. Note that by giving to CutTools the
momenta and the masses entering the loop propagators, rather than the numerical values
of the propagators themselves, one is allowed to bypass the problem of introducing
d-dimensional quantities in MadLoop – these are completely dealt with internally by
CutTools. As far as R2 is concerned, this quantity is not returned by CutTools. As
already mentioned, its computation can be performed by considering tree-level Feynman
diagrams which get contributions both from the usual rules of the theory under consider-
ation, and from special R2 vertices with up to four external lines (in any renormalizable
theory), as we discuss in sect. 3.1.2. The Feynman rules of these vertices can be worked
out once and for all from the Lagrangian of the theory (see ref. [87, 88] for the resulting
expressions in the Standard Model). Both the use of CutTools and the calculation of
the R2 contribution for a given one-loop amplitude are controlled by MadLoop, in a way
which is presented in chapter 3.

26



3 MadLoop

In this section, we describe the techniques employed in order to obtain the one-loop
contributions to any generic process. As discussed in the introduction, the automation
of the computation of one-loop amplitudes has been achieved by means of a computer
program called MadLoop, written entirely by the author of the present thesis and
constituting the core of the work presented. The reduction procedure followed by
MadLoop is the Ossola-Papadopolous-Pittau (OPP) technique described in sect. 2.3. We
devote the next section to summarizing MadLoop workflow in more details.

3.1 Organization of the calculation

The input of MadLoop is a 2→ n Standard Model partonic process1

r = (I1, I2, I3, . . . In+2) , (3.1.1)

which can be either user-defined, or generated by a third-party code such as MadFKS;
examples of the two uses are given in appendix B and in sect. 3.3 respectively. The main
output of MadLoop is the finite part2 of the quantity:

V (r) =
∑

colour
spin

2<
{
A(n,0)(r)A(n,1)(r)

?
}
, (3.1.2)

with A(n,0) and A(n,1) being the tree-level and one-loop amplitudes of the process r, after
the latter has been UV-renormalized. Note that A(n,1) is the same quantity as that in
eq. (2.1.1), except for the fact that in this section the amplitude is UV-renormalized, and
that n denotes here the number of particles in the final states only. The bar over the sum
symbol on the r.h.s of eq. (3.1.2) understands the averaging factors relevant to the color
and spin degrees of freedom of initial-state particles. The finite part of V is convention
dependent and, unless otherwise specified, MadLoop works in the ’t Hooft Veltman (HV)
scheme where the particle fields belonging to the loop are treated in D-dimension (unlike
Dimensional Reduction (DR)) and the other fields are 4-dimensional (unlike Conventional

1Here and in what follows, we adopt the notation of ref. [105]: Ii denotes the identity of the ith

particle that enters the process. Furthermore, the momenta of the first two particles in eq. (3.1.1) are
incoming, and all the others are outgoing.

2Up to a standard pre-factor, see eq. (B.0.1).
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Dimensional Regularization (CDR)). See appendix B and ref [149] for further discussion
on scheme choices.

As a byproduct, MadLoop also returns the residues of the double and single infrared
poles. The complete information on A(n,1) is available internally in MadLoop and may
be given as an additional output if so desired – this is useful e.g. for computing the LO
cross section of a loop-induced process, which is proportional to

∣∣A(n,1)
∣∣2 (see app. B.2.7

for an example of such a case).

Schematically, for a given input process r, MadLoop goes through the following steps.

1. Generates the diagrams relevant to A(n,1)(r). There are two classes of them, one
for the cut-constructible plus R1 contribution, and one for the R2 contribution and
UV renormalization.

2. Constructs the two integrands associated with the diagrams determined in item
1. The one relevant to the cut-constructible plus R1 contribution is the linear
combination of eq. (2.1.1) at the integrand level, whose components are in the form
of the term N(`) as defined 3 in eq. (2.3.1).

3. For a given kinematic configuration (user-defined or generated by MadFKS), applies
the OPP reduction to each of the terms, or group of terms4, of the linear combination
determined in item 2. This is achieved by passing to CutTools the function N(`)

and any other inputs it needs (see sect. 2.3). After summing over all diagrams and
helicities, one thus obtains the cut-constructible plus R1 contribution Ccc+R1 .

4. For the same kinematic configuration as in item 3, computes the rational part R2

(which is not returned by CutTools), and includes UV renormalization counterterms
if necessary. These calculations are also carried out at fixed helicities, which are
summed over as the final step. Notice that this step is computationally marginally
time-consuming compared to step 3.

5. Performs sanity checks.

Items 1 and 2 are referred to as the process generation stage and only involve symbolic
manipulations. They construct the computer code for the function N(`) whose numerical
evaluations will be performed in items 3–5. In the case of the computation of a physical

3This, in particular, means that the loop momentum is 4-dimensional and therefore suited for a
numerical evaluation by MadLoop. Also, the the denominators D̄i of the the loop propagators are
not included as they are constructed directly within CutTools, so as to properly account for their
(−2ε)-dimensional component sourcing the R1 contribution.

4As it will be discussed in 3.4, one major optimization brought in the version 5 of MadLoop is
to group together integrand contributions (corresponding to possibly different diagrams and helicity
configurations) sharing the same loop denominators structure and apply the OPP reduction on it only
once.
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cross section (when MadLoop is called by MadFKS or by an analogous event generator),
steps 3 to 5 are iterated, with each iteration using a different kinematic configuration.
The efficiency of the method at run-time is dictated by how long takes the code to perform
these three steps once, i.e. per phase-space point.

The original private version of MadLoop (and of MadFKS [105]) was based on MadGraph

v4 [152]. This implied a few limitations on the possible structure and use of this code
that we dub MadLoop4 [123]. Most of the physics results (including table 3.2 and the
process of sect. 4.1) presented in this thesis have been obtained with this older version.

The newer version of MadGraph (v5 [7]) is mature, and our whole NLO computational
framework has now been ported on it. In particular, MadLoop was completely rewritten in
Python and is now embedded within MadGraph5. The resulting program MadLoop5 is
now publicly distributed at amcatnlo. cern. ch as part of MadGraph5 v2.0, and sect. 3.4
presents its specific features making it more flexible, faster and more user-friendly. As
for MadFKS, the core Fortran files implementing the various counterterms and the
Monte-Carlo integration are recycled from the original version5, but the generation of the
real-emission trees as well as the event-generation is now steered by MadGraph5.

A brief description of the least trivial aspects (common to both MadLoop4 and MadLoop5)
of the procedure 1–5 is given in sect. 3.1.1 and 3.1.2, while sect. 3.1.3 summarizes the
various techniques specifically developed for MadLoop. Some further details can be found
in appendix A. For a discussion on the checks performed by MadLoop, of which those of
item 5 above are only a part, see sect. 3.1.4.

3.1.1 Generation of one-loop amplitudes from tree amplitudes

Given the fact that MadLoop is based on the MadGraph framework, it is clear that the
most economic way of generating one-loop amplitudes is that of exploiting as much as
possible the capabilities of the latter code. These are however limited to constructing
tree-level quantities, and therefore MadLoop must be able to perform some non-trivial
operations on top on those available with MadGraph in order for us to achieve our goal.
We start by observing that any one-loop diagram can be turned into a tree-level diagram
by simply cutting one (and only one) of the propagators entering the loop. It must be
clear that this cut has nothing to do with the cuts performed when computing one-loop
integrals with unitarity methods. Thus, in order to avoid any confusion, we shall call
L-cut this specific type of cut. The tree-level diagram obtained by L-cutting a one-loop
diagram will be called an L-cut diagram. In such a diagram, there will be two particles
(that we consider as being in the final state by definition) which arise from L-cutting the
chosen propagator in the loop: their identities will be denoted by q? and q̄?, and they will

5Not exactly, as some optimizations have been brought in the process. This is however not the focus
of this thesis.
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be called L-cut particles. If we consider one-loop corrections to the process r as defined
in eq. (3.1.1), the L-cut diagrams we obtain with the L-cut operation will be a subset of
those relevant to the process:

rL−cut = (I1, I2, q
?, q̄?, I3, . . . In+2) . (3.1.3)

This discussion suggests to define a procedure which is the inverse of L-cutting. Namely, for
a given 2→ n process such as that in eq. (3.1.1), we consider all possible L-cut processes of
the kind of that in eq. (3.1.3), use MadGraph to construct the corresponding amplitudes,
and sew together the two L-cut particles. In this way, we achieve the construction of
one-loop diagrams without actually having to start from one-loop topologies, contrary to
what is done by FeynArts [117] for example. This idea is also at the basis of the one-loop
computations performed by HELAC-1Loop (see ref. [155]).

This construction of one-loop amplitudes by sewing tree-level ones poses several problems.
Firstly, we have to define a minimal set of L-cut processes so as not to miss any contribu-
tions to the one-loop amplitude we are seeking to construct. Secondly, for a given L-cut
process, when sewing together the L-cut particles we shall obtain one-loop diagrams with
an incorrect multiplicity: one particular diagram may appear more times than prescribed
by perturbation theory. We have therefore to discard the one-loop diagrams in excess after
sewing. We call this operation diagram filtering. Finally, after filtering, the amplitudes
for the L-cut diagrams we are left with are constructed. However, these amplitudes will
not coincide with the corresponding one-loop amplitudes, because of the special roles
played by the L-cut particles. These are associated with external wave functions in L-cut
diagrams, and with an internal propagator in one-loop diagrams (therefore, technically the
sewing operation corresponds to removing the wave functions of the L-cut particles, and
to replacing them with a suitable propagator). MadGraph must therefore be instructed
to treat L-cut particles in a special way – this includes the fact that such particles are
off-shell and carry complex momenta.

It is easy to convince oneself that when computing QCD corrections, the L-cut processes
one needs to consider correspond to the following choices of the L-cut particles:

(q?, q̄?) = (g, g) gluons ,

= (u, ū); (d, d̄); . . . (Q, Q̄) quarks ,

= (η, η̄) ghosts .

(3.1.4)

Here, Q denotes the heaviest flavor one wants to have circulating in the loop (in physical
applications, Q is typically either a bottom or a top quark). In general, one needs to
consider as L-cut particles all particles which can possibly run in the loop according to
the type of loop corrections specified by the user in the process.

Diagram filtering is performed in the following way. We start by observing that any
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Figure 3.1.1: Example of an L-cut diagram that corresponds to a box one-loop diagram.

L-cut diagram can be depicted as in fig. 3.1.1. There, Ti denotes a tree-level structure6.
The particles whose propagators enter in the loop have been denoted by p?j , to make the
distinction clear from those that contribute to the tree-level structures Ti; the notation is
also consistent with that used for the L-cut particles. MadLoop first records the necessary
information on Ti and p?j (such as particle identities and four momenta); this is done for
each L-cut diagram. In this way, each diagram has an unambiguous representation (its
“identity”), internal to MadLoop, that we can for example identify with the string

q? T1 p
?
1 T2 p

?
2 T3 p

?
3 T4 q

? (3.1.5)

for the case of fig. 3.1.1.

At the end of the day, MadLoop will loop over all L-cut diagrams, checking their identities.
If a diagram identity has not been previously found, the diagram is kept, otherwise it is
discarded (i.e., it is filtered out). It must be stressed that two diagram identities must
be considered equivalent if they are identical up to a cyclic permutation, or to mirror
symmetry, or to a cyclic permutation plus mirror symmetry. This is because two L-cut
diagrams that differ by a cyclic permutation correspond to the same one-loop diagram
which was L-cut in two different propagators (see appendix A.6 for more details). For
example, a cyclic permutation equivalent to the identity of eq. (3.1.5) would read:

p?1 T2 p
?
2 T3 p

?
3 T4 q

? T1 p
?
1 . (3.1.6)

Likewise, two L-cut diagrams that differ by mirror symmetry correspond to the same
one-loop diagram with the loop momentum flowing in opposite direction. The identity of
the L-cut diagram obtained by mirror symmetry acting on eq. (3.1.5) reads:

q? T4 p
?
3 T3 p

?
2 T2 p

?
1 T1 q

? . (3.1.7)

6Note that for an n-point one-loop amplitude, 1 ≤ #{Ti} ≤ n, with #{Ti} the number of Ti’s.
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Equivalence under cyclic permutations and mirror symmetry can be used by MadLoop

as a powerful self-consistency check – see sect. 3.1.4.

As we shall explain in appendix A.6, when writing diagram identities MadLoop4 decides
not to distinguish between fermions and antifermions for the particles circulating in the
loop, and hence no overlines appear in eq. (3.1.5) or its analogues (despite the fact that
one of the two L-cut particles has been correctly denoted by q̄? on the l.h.s. of eq. (3.1.4)).
This behavior does not spoil any result in the SM provided that, in such a case, mirror
symmetry is not considered when loops contain only fermions or only ghosts so that only
equivalence under cyclic permutations is checked for in these cases. In general however
(for theories with multi-fermions interactions for example) it is better to have a universal
filtering rule and account for the fermion flow properly, as it is done in MadLoop5.

3.1.2 R2 contribution and UV renormalization

As it was discussed in sect. 2.3, MadLoop, by calling CutTools, computes the cut-
constructible part of, and the R1 contribution to, the one-loop amplitude A(n,1)(r) that
appears in eq. (3.1.2) (item 3 of the list in sect. 3.1). Therefore, in order to obtain the full
V (r) quantity, we still need to include the R2 contribution, and the UV renormalization
(item 4 of the list in sect. 3.1). The key observation here is that, thanks to the fact
that the R2 part can be seen as arising from a set of finite counterterms, its automated
computation proceeds through the same steps as UV renormalization.

In essence, both the R2 and UV-renormalization contributions to V (r) can be cast in the
following form:

∑

colour
spin

2<
{
A(n,0)(r)A(n,X)(r)

?
}
, X = R2 , UV , (3.1.8)

that is, an interference between the Born amplitude, A(n,0)(r), and another tree-level
amplitude, A(n,R2)(r) or A(n,UV)(r). The latter are the amplitudes of the 2→ n process
r, constructed with the standard Feynman rules, plus the rules relevant to either the
R2 or the UV-renormalization contributions, with the condition that the amplitude be
exactly one perturbation order (αS for QCD) higher than the Born-level one. The R2

Feynman rules are obtained by explicit loop calculations, and can be cast in the form
of n-point functions, with 2 ≤ n ≤ 4 (see ref. [88]). As far as UV renormalization is
concerned, the additional rules are simply read off the one-loop UV counterterms of the
theory considered. The consequence of these facts, together with the condition on the
power of αS that must appear in the amplitudes, is that A(n,R2)(r) and A(n,UV)(r) are
constructed using the standard vertices and propagators, plus one and only one R2 or
UV-renormalization n-point function.
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3.1. Organization of the calculation

It is clear, therefore, that in order to compute the quantities in eq. (3.1.8) we can
exploit the ability of MadGraph to construct tree amplitudes, and the functionalities
of MadLoop to calculate interference terms, which is already at play when computing
the cut-constructible and R1 contributions to eq. (3.1.2). Note that the above procedure
to compute eq. (3.1.8) should be applied to truncated one-loop amplitudes. When
generating tree-level diagrams with MadGraph, we also get the contributions due to
two-point functions on external legs, which are discarded. As is known, wave-function
renormalization is commonly carried out through the multiplication of the Z factors,
which is effectively done according to eqs. (A.3.4) and (A.3.5). The R2 contributions to
the Z factors are already included in eqs. (A.3.4) and (A.3.5), and hence their explicit
computations are not necessary in this case.

The procedure outlined above is fully general. Details about its implementation in
MadLoop4 can be found in [123]. The drawback of generating the R2 and UV counterterm
amplitudes independently of the loops (i.e. by exploiting the regular tree-diagram
generation algorithm with specific coupling order constraints) is that nothing insures
that there is the corresponding counterterm amplitude for each of the loop considered.
This becomes especially problematic when user-defined constraints are applied to the
loops which must be considered (such as forbidding particles, requiring specific s-channels,
etc...), because the corresponding selection must also apply to the tree-diagram generation
for the R2 and UV counterterm amplitudes. MadLoop5 therefore offers the possibility
to choose to construct some or all the R2 and UV counterterm directly from the loops
generated; for each loop, MadLoop5 checks in the definitions of the counterterms if
any matches the loop considered. If so, it constructs the corresponding counterterm
tree-amplitude directly from the tree-structures attached to this loop. Unfortunately,
the UV-counterterms are conventionally expressed in terms of the renormalization of the
coupling constant, δαs for QCD, and not of the vertices, δVdd̄g for example. The two are
related by the wavefunction renormalization constants. In our QCD example, we would
have

αs → δαs = δV 2
dd̄gZ

−1
d Z−1

d̄
Z−1
g αs (3.1.9)

This UV-renormalization scheme has the advantage of including the wavefunction renor-
malization constants only on the external particles and not on the internal ones but it
loses the one-to-one correspondence between a UV counterterm and a loop. This is why
MadLoop5 allows one to specify for each counterterm whether it must be accounted for
via its mapping to a specific loop generated or via the traditional tree-diagram generation
method used by MadLoop4. A fully automatic approach allowing for arbitrary loop
selections would necessitate to define counterterms so as to be sourced by one loop
exactly. This is quite simple to obtain in view of the recent development in the automatic
generation of loop model files by FeynRules, see sec. 3.4.2 for more details on that
subject.
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For QCD perturbations, the R2 counterterms considered are those listed in [88]. The UV
counterterms definitions are given in sec. A.3, where their factorization of the full born
cross-section is assumed. This assumption is only present in MadLoop4 and it has been
relaxed in MadLoop5 in order to apply the UV renormalization procedure independantly
for each Born amplitude. These are therefore no longer required to factorize the same
coupling factors, hence opening the way to mixed coupling expansions (e.g. QCD and
electroweak).

Finally, the counterterms feature some Lorentz structures which are not present in the
original model for tree-level computations. In MadLoop4, the new corresponding building
blocks for the amplitudes computation, called HELAS routines, were hardcoded. In
MadLoop5, ALOHA [65] (already used for tree-level computations) can automatically
write out these new routines on the fly from the counterterm vertices information provided
in the model file. This replacement of HELAS with ALOHA removes the last model
dependent ingredient of MadGraph code generation.

3.1.3 Summary of MadLoop features

We list here the features that required substantial writing of computer code, either in
MadLoop proper, or in one of the modules that MadLoop uses.

• The generation of loop diagrams in a way that exploits as much as possible the tree-
level capabilities of MadGraph (through L-cut-diagram construction and subsequent
filtering). Thanks to significantly greater efficiency of the tree-diagram generation
algorithm of MadGraph5, the loop diagram generation time is much faster in
MadLoop5 than it is in MadLoop4.

• The computation of the resulting one-loop amplitude, in a form suited to being given
as input to CutTools. This implies, in particular, the removal of the denominators
of the propagators of loop particles, and the reconstruction of the propagator of the
sewed L-cut particles.

• The numerical code structure that allows MadGraph to compute the interference
only of two different kinds of amplitudes (the L-cut and Born ones), including the
relevant color algebra.

• The possibility of using complex four-momenta (that circulate in the loops).

• The implementation of ghosts.

• The implementation of dedicated structures for the generic R2 and UV counterterms,
and the handling of the corresponding amplitudes.

The second item in particular deserves further attention and we will illustrate here the
related numerical techniques of MadLoop with this gluon bubble:
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Figure 3.1.2: An example of a gluon bubble (cut at g1–g2) where a gluon two-point
interaction is added to restore the missing propagator of the L-cut particle.

The fig. 3.1.2 above shows how MadLoop5 adds back the missing propagator of the L-cut
particles by systematically adding a two-point vertex to one external L-cut particle. The
denominators of the loop propagators are stripped off in the corresponding HELAS-like
subroutines and they support complex momenta. The loop color trace simply necessitates
to add the appropriate color delta to the diagram color string used for color factors
computation. In this case, the color string obtained is :

b

i

j

k

l

a

→ T rijf
arsf sbtT tkl δ

ab

Figure 3.1.3: Closing the loop color trace of a gluon bubble (cut at g1–g2) by simply
adding an SU(3)c delta in the right representation.

The additional subtlety is that the resulting color string for loop diagrams must be
squared against the Born ones only, so that the color basis built for the loop diagrams is
no longer identical to the one built from the Born ones. MadLoop5 readily offers such a
flexibility and no major modification was needed to achieve this. The closing of the loop
Lorentz trace is more involved than the color one and involves the structure δxy with x
and y the indices belonging to the Lorentz representation of the L-cut particles7. In our
example, we have

7x=1, y=1 for spin-0 particles, x=i, y=j for the fermionic indices of spin-1/2 particles, x=µ, y=ν for
spin-1 particles, and finally x=µν, y=ρσ for spin-2 particles.
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Figure 3.1.4: Closing the loop Lorentz trace of a gluon bubble (cut at g1–g2) by using
the polarization vectors Gµ and Gν of the L-cut particles to reconstruct δµν .

The L-cut particles are not physical and their polarization vectors Gµ and Gν must be
chosen such that one recovers the result of the loop Lorentz trace. The relation of fig. 3.1.4
suggests to compute the L-cut tree diagram with Gµ = δµi, Gν = δνi for i = 1, . . . , 4

and sum the four contributions to obtain a numerical evaluation of the Lorentz trace.
The same formalism holds for fermionic L-cut particles while for scalar particles, such
as the SU(3)c ghost, it suffices to consider only one evaluation with φLcut = 1. When
considering particles of higher spin running in the loop, the sum would contain more terms
(i.e. 16 for a rank-2 tensor particle) and even though it is not useful for the Standard
Model, MadLoop5 structure will easily support this in the future.

With these modifications, MadLoop can return numerical evaluations of the quantity
N(`) of eq. (2.3.8) which are used by CutTools to evaluate the loop integral. In general
however, CutTools is a black box to MadLoop so that any future upgrade of the OPP
implementation (with the condition that its inputs be those introduced in sect. 2.3) will
be compatible with the current implementation. Also, MadLoop can easily be linked
with a different implementation of OPP, such as Samurai [131] for example, as well as to
tensor integral reduction tools too, as is shown in sec. 3.4.3.

Likewise, MadLoop can be considered a black box for MadFKS (or any equivalent calling
event generator) – the only cross-talk is in the form dictated by the Binoth-Les Houches
accord [33]8.

3.1.4 Checks

One of the main advantages of the automation of computations as performed by MadLoop

is that the sanity of the results for individual processes (irrespective of their complication)

8This is definitely true in MadLoop4. MadLoop5 is still completely standalone but it does not
support the actual Binoth-Les Houches accord input as it is too restrictive in its actual implementation.
When the upgrade of the format will appear, and that there will be direct interest in linking the code to
another event-generator, this will be straight-forwardly implemented.
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is basically guaranteed to be correct. The key point is that the computer code which
returns the relevant one-loop amplitude is written by (in other words, is an output of)
MadLoop. This code uses a fixed number of pre-defined building blocks, essentially (but
not only) the HELAS routines,9 without the user being involved.

Therefore, the correctness of any one-loop amplitude follows from establishing the cor-
rectness of MadLoop. In turn, this entails two kinds of checks:

a) The building blocks used by MadLoop must be proven correct.

b) The way in which the building blocks are combined must be proven correct.

We point out that this structure of checks is fully analogous to that of MadGraph,
although of course the technical aspects are not identical.

It is easy to realize that the checks of item a) are process-independent, while those of item
b) do depend on the particular one-loop amplitude one wants to compute. In spite of this,
the most straightforward way to carry out the checks of item a) is that of comparing the
results of MadLoop with those available in the literature, for a suitable list of processes.
Since the number of building blocks used by MadLoop is finite, so is such a list. Clearly,
when following this procedure one also performs the checks of item b) for the processes
of the list. However, this does not guarantee that the same checks will be successful for
processes which do not belong to the list (although it is a powerful hint that this is indeed
the case). Hence, in order to carry out fully the program of item b), we have implemented
several self-consistency checks, that MadLoop will perform for any generated process and
for any desired 2→ n kinematic configurations among those chosen by the user or by the
calling program. We shall describe these checks later in this section.

The list of processes that we have used in order to compare MadLoop4 results with their
analogues available in the literature, and in computer codes other than MadLoop, is
reported in appendix B. We stress that this list is actually redundant as far as the goal of
item a) is concerned (i.e. each HELAS loop-related routine is checked at least once, but
typically more than once). For each process, we compare the finite part and the residues of
the infrared poles of the quantity V defined in eq. (3.1.2) with those of other computations.
It should be pointed out that, although in some cases codes other than MadLoop will not
return the residues of the infrared poles, these can in any case be checked against their
analytically-known expressions, which we get from the implementation in MadFKS of
eq. (B.2) of ref. [105]. As can be seen from appendix B, the agreement between MadLoop

and previously-known results is excellent and MadLoop even helped correct bugs in some
other codes dedicated to the computation of the loops of specific processes.

9Hardcoded for the SM in the case of MadLoop4 and generated on the fly by ALOHA in the case
of MadLoop5.
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We now turn to the discussion of the self-consistency checks we have mentioned previously.
Some of them are not applicable to specific processes; the general strategy we have
followed is that of testing each process generated by MadLoop in the largest possible
number of ways. The checks we have set up are listed in what follows.

1. Alternative diagram filtering. L-cut diagrams whose identities differ by cyclic
permutations or mirror symmetry correspond to codes which are not written by
MadLoop in the same way, in spite of the fact that they will eventually give exactly
the same loop-integrated results10. In MadLoop4, an easy way to do this is that of
choosing the L-cut particles in an order different from that of eq. (3.1.4). This is
because L-cut-diagram identities not filtered out when looping over all diagrams will
not be the same as those kept with the “canonical order” of eq. (3.1.4), but rather
their equivalents under cyclic permutations and/or mirror symmetry (for example,
this corresponds to keeping eq. (3.1.5) and discarding eq. (3.1.6), versus keeping
eq. (3.1.6) and discarding eq. (3.1.5)). In MadLoop5, the choice of the L-cutting
rule can be done independently of the order of the L-cut diagrams generation.

2. Crossing – We consider the two processes

r1 = (I1, I2, . . . Ii, . . . In+2) , r2 =
(
I1, Ii, . . . I2, . . . In+2

)
. (3.1.10)

For a given 2→ n kinematic configuration

k1 + k2 −→ k3 + · · ·+ ki + · · ·+ kn+2 (3.1.11)

one checks that the corresponding one-loop amplitudes fulfill the following equation:

A(n,1)(r1; k1, k2, . . . ki, . . . kn+2) = ωA(n,1)(r2; k1,−ki, . . .− k2, . . . kn+2) ,(3.1.12)

with ω a constant that only depends on the identities of the particles that are crossed.
This is non trivial, given that MadLoop constructs A(n,1)(r1) and A(n,1)(r2) in
two different ways (which includes the fact that the HELAS routines used in the
constructions of the two amplitudes may not even be the same). Crossing is a very
powerful method during the debugging phase, since eq. (3.1.12) holds diagram by
diagram.

3. Dependence on the mass of a heavy quark Q – When the one-loop amplitude for a
given process includes diagrams that feature a closed fermion loop, we can study
the dependence of the result on mQ (by default, such a dependence is included
exactly by MadLoop). We typically identify the heavy quark with the top, but this
is not mandatory. In particular, we may check the following two regimes.

10This is what MadGraph usually does, and is not specific to L-cut diagrams. One can see it by
comparing the codes written by MadGraph that correspond to the same physical process at the LO,
but differ e.g. in the ordering of final-state particles in the user-specified process.
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(a) Decoupling limit: mQ → ∞. We compute the amplitude with the full mQ

dependence for increasingly large values of mQ, and compare it to the one we
obtain by excluding altogether the heavy quark from contributing to the loops
(in the case Q = t, this corresponds to a five light flavors amplitude).

(b) Zero-mass limit: mQ → 0. We compute the amplitude with the full mQ

dependence for increasingly small values of mQ, and compare it to the one we
obtain by replacing the heavy quark with an additional massless quark in the
loops.

We stress that the comparisons between these two limits of the amplitude and
the nlf - and (nlf + 1)-light-flavours results are not straightforward, owing to the
possible presence of anomalies and to the UV-renormalization scheme adopted here
respectively. Each process is to be studied as a case on its own, which is what we
do in appendix B.

4. Ward identities – If the process r under study involves at least a massless gauge
vector (gluon or photon in the SM), we check that the corresponding one-loop
amplitude satisfies the gauge-invariance condition:

A(n,1)
µi (r; k1, k2, . . . ki, . . . kn+2) kµii = 0 , (3.1.13)

where A(n,1)
µi is the loop amplitude contracted with the polarization vectors of all

the external particles except for the ith one which is replaced in the equation above
by the four-momentum kµi carried by it. When this check applies to a gluon for
example, it explicitly checks the SU(3) gauge invariance.

5. Infrared pole residues – The form of the double and single infrared poles is analyt-
ically known for any process r (see e.g. eq. (B.2) of ref. [105]). We compare the
residues returned by MadLoop with those computed with the analytic formulae,
implemented in MadFKS. We point out that by checking the single pole result we
also indirectly test the correctness of the UV renormalization procedure.

6. Lorentz invariance. The amplitudes must be Lorentz invariant and this can be
checked by comparing MadLoop output V (r) of eq. (3.1.2) for a kinematic con-
figuration {ki} with the same evaluation for the kinematic configuration {Λµk

µ
i }

where Λµ is a Lorentz boost and/or rotation. These two evaluations will match only
when summed over all helicity configurations because the Lorentz transformation
effectively modifies the chosen reference vector for the helicity projection of external
states. For this reason, the invariance of the loop matrix element under Lorentz
boosts is also sensitive to gauge invariance.

7. Gauge invariance – MadLoop can so far perform computations only in the Feynman
gauge. This limitation comes from the fact that most reduction methods, including
OPP, requires the loop numerator N(`) of the integrand to be a polynomial in ` and,
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equivalently, that the denominators Di be all distinct. However, when performing
computations with only QCD charged particles running in the loop, it is then
possible to switch from Feynman to unitary gauge for the electroweak sector of
the theory, without affecting the loop reduction algorithm mechanisms. This check
necessitates a proper implementation of the electroweak ghosts and, when those
contribute, it is typically more sensitive than the Ward identities applied to the
photon11. Typically, not only the widths of the electroweak unstable particles must
be set to zero (when not working within the complex mass scheme), but also the
Yukawa couplings must be set equal to the pole masses of the corresponding massive
particles.

We stress that all these seven checks are local in phase space, i.e. they are performed for
a given 2→ n kinematic configuration. In principle, they can therefore be carried out for
each kinematic configuration when integrating over the phase space; in practice however,
this would significantly increase the load on CPU. Therefore, MadLoop5 provides an
automatic way of performing some of the checks above on a user-defined process. They
can be run by the user for a couple of PS-points before proceeding with the actual
integration so as to assess the sanity of the loop evaluations. See sect. 3.4.1 for more
information on these automatic checks.

Given the nature of these checks, it is basically impossible for a one-loop amplitude to
pass them for some kinematic configurations, and to fail them for others. An exception
to this is a failure due to some numerical instability occurring during the calculation. For
this reason, the Lorentz rotational invariance and infrared poles cancellation tests are
used by MadLoop, among other methods outlined in sec. 3.4.4, as a numerical stability
check performed at runtime for all phase-space points.

3.2 Limitations of MadLoop

Sect. 3.3 presents a non exhaustive set of results obtained using MadLoop4 for the virtual
contribution. It shows that this first version was already able to cope with a large variety
of process, even though it suffered from mainly four physics limitations, now all lifted in
the MadLoop5 version.

1. A process could not be generated if it contained a four-gluon vertex in its Born tree
diagrams.

2. MadLoop4 could not handle automatically any loop featuring electroweak massive
vector bosons.

11Moreover, it can be applied irrespectively of the final states of the process considered (i.e. also in the
case where no photons are present in the final state).
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3. A process could not be generated if all contributions to the Born amplitude squared
did not factorize the same powers of coupling factors.

4. Finite-width effects, due to intermediate massive unstable (i.e. that can decay)
particles that could also enter in the loops, were not implemented.

The restriction in item 1 is removed in MadLoop5 thanks to the fact that the internal
model representation allows for particles interactions to be written in terms of several
color and Lorentz structures. The four-gluons R2 Feynman rule implementation is then
immediate.

The condition of item 2 is relieved because MadLoop5 can now work in the Feynman
gauge in which the problematic12 longitudinal part kµkν/m2 of the numerator of the
massive vector propagator is absent.

The case of item 3 originated from MadLoop4 assumption that the UV counterterms
factorize the whole Born cross-section. MadLoop5 constructs the quantity A(n,X) of
eq. (3.1.8) by picking the right counterterm contributions individually for each of the
contributing diagrams. The Born diagrams are then no longer required to share any
property. This is important for mixed coupling expansions and in cases where different
Yukawa couplings, each with its specific QCD renormalization, enter in the Born diagrams
(for example in the process pp→ htb̄).

Finally, SM cases relevant to item 4 are those of the top quark and of the massive EW
vector bosons. When considering diagrams which include one or more propagators of one
or more of these particles, there may be configurations of external momenta which end
up putting some of them on their mass shells. This thus results in a divergence, which
can be avoided by giving finite widths to the unstable particles. In the case in which the
relevant particles also enter in the loops, the use of non-zero widths is non trivial, and
consistency dictates the use of a scheme like the complex-mass one [71, 75]. MadLoop5
supports the use of such a scheme and can handle finite-width effects of loop particles in
a gauge invariant way.

The physics model in MadLoop5 is specified by an independent module in the UFO
format [67] (sect. 3.4.2) setting all model properties, including those only relevant to loop
computations such as the UV and R2 counterterms. MadLoop5 is therefore completely
agnostic of the particular physics studied and there is no intrinsic limitation to the
capabilities of MadLoop5. It can for example potentially handle models with higher spin
representations, Majorana fermions, larger SU(3) representations and in general whatever
feature is already supported by MadGraph5. However, as of today, only the UFO model
for QCD perturbative expansion within the SM has been validated and work is ongoing for
the simplest extensions of the SM as well as for computing electroweak corrections. This

12Most reduction procedure, like OPP, need N(`) of eq.( 2.1.7) to be a polynomial in `.
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already allows MadLoop5 to handle QCD-loop contributions to processes of arbitrary
complexity with the sole limitation of its computational load. Sect. 3.4.5 provides a timing
benchmark showing that any processes with up to five color charged particles in the
external states can be both generated with MadLoop5 and integrated13 with aMC@NLO.
Processes with up to six color charged external particles can easily be generated and
evaluated for a couple of phase-space point but the resulting code is in general too slow
for phenomenological applications.

As a general and concluding remark on CPU-driven issues, it is clear that, regardless
of the amount of optimization done on the code, the use made of Feynman diagrams
in the current version introduces a factorially-growing complexity in the calculation.
However, it is easy to realize that the FKS subtraction method is completely independent
of Feynman-diagram techniques, and that to a large extent this is also the case for the
OPP reduction procedure.

3.3 Results from the MadGraph4 original framework

This section presents a sample of the results obtained with MadFKS and MadLoop in
their former implementation exploiting MadGraph4. It is however important to stress
already that this whole list could have been obtained using the aMC@NLO5 framework
as well. It has been checked, for given kinematic configurations, that MadLoop4 and
MadLoop5 return the same results for these processes14.

The great variety of processes displayed in this table and the fact that it can be obtained
automatically, without any ad-hoc procedure, leaves no doubt that NLO QCD corrections
to Standard Model processes of that complexity are now as trivial to calculate as LO
results, and must thus be treated on equal footing with the latter. This fact has two main
implications. Firstly, technicalities are independent of the process, and can be understood
once and for all. Secondly, the range of accessible processes is limited only by CPU-time
considerations.

Given that the goal here is not that of performing any phenomenological studies, we have
considered processes that feature a fair diversity (pure QCD, with EW vector bosons,
with SM Higgs, with massive/massless b quarks, and at different jet multiplicities) in
order to fully test and prove the flexibility of our setup. We therefore limit ourself here
to presenting results for total rates, even though differential distributions can be studied
equally well within this framework (see chapter 4 for examples of such a usage). A few
standard distributions (such as transverse momenta, rapidities, and pair invariant masses)
have been monitored and we reckon that the statistics used to obtain fairly accurate

13The virtual contributions are in all cases the most time consuming part of the integration within the
aMC@NLO framework.

14In appendix A.1, we show that these checks belong to the class of MadLoop5 parrallel tests which
can be automatically run to insure the stability of the code upon development.

42



3.3. Results from the MadGraph4 original framework

Parameter value Parameter value

mZ 91.188 α−1 132.50698
mW 80.419 GF 1.16639·10−5

mb 4.75 CKMij δij

mtop 172.5 ΓZ 2.4414
mH 120 ΓW 2.0476

Γt 0.0
α

(NLO,5)
S (mZ) 0.120179 α

(NLO,4)
S (mZ) 0.114904

α
(LO,5)
S (mZ) 0.139387 α

(LO,4)
S (mZ) 0.133551

Table 3.1: General settings of physical parameters used for the computations of the cross
sections in table 3.2, with dimensionful quantities given in GeV. The upper indices on αS
indicate whether the coupling has been used to obtain an NLO or an LO result, with five
or four light flavors, and the corresponding values are dictated by the choice of PDFs.
Some processes may adopt specific parameter values, different from those reported in this
table; in particular, the b quark can be treated as massless. See the text for details.

results for total rates is also sufficient to get reasonably smooth distributions. This is
consistent with past experience with FKS subtraction, and is ultimately due to the fact
that in this formalism, for any given integration channel, there is always exactly one
kinematic configuration associated with a subtraction counterterm, thereby reducing to a
minimum the probability of mis-binning (see ref. [105]).

Section 3.4.1 explains in details how these results can easily be reproduced from the public
version of aMC@NLO, the only minimal input required by the user being the identity
of the initial and final state particles. Code-writing is only necessary if ones wants to
consider specific observables, cuts or dynamical scales not among the default available
ones. The processes simulated all belong to the class of pp collisions at 7 TeV. Masses,
couplings, and widths are chosen as reported in table 3.1, with some process-specific
exceptions, to be described below. For NLO (LO) results with five light flavors, the PDF
set [130] MSTW2008nlo (MSTW2008lo) was used, while in the case of four light flavors,
MSTW2008nlo_nf4 (MSTW2008lo_nf4) was adopted. Each of these sets is associated
with a different value of αS, which is reported in table 3.1. Jets are defined using the
kT -clustering algorithm [53] (as implemented in FastJet [44]), with p(jet)

T > 25 GeV and
pseudo-cone size ∆R = 0.7. Renormalization and factorization scales are set equal to a
common value,

µ ≡ µR = µF . (3.3.1)

Since we present results for total cross sections, it is appropriate to assign a fixed (i.e. that
does not depend on the kinematics) value to µ, which is process-dependent as reported in
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table 3.2. The results are therefore easily reproducible and can be used as a standard
reference. In table 3.2, by nlf we have denoted the number of quarks whose masses are
equal to zero. Thus nlf is equal to five or to four when the b quark is considered to be
massless or massive, respectively. In all cases, all six quark flavors have been included in
the loops. As discussed in ref. [105], aMC@NLO allows one to integrate all contributions
to the NLO cross section in one single computation, regardless of whether they have
a real-emission or a Born-type kinematics. For the results presented here, however,
a different strategy was adopted and the one-loop contributions have been integrated
separately from the other ones (i.e., the Born and real-emission matrix elements, and the
subtraction counterterms). This is because for a given phase-space point the evaluation of
virtual corrections performed by MadLoop takes much longer than all the other operations
carried out by MadFKS. On the other hand, no phase-space subtraction is done on virtual
corrections, and therefore the numerical computations are inherently more stable than
those relevant to the subtracted real-emission contributions. Hence, it turns out to be
more efficient to integrate the one-loop contributions separately from all the others, using
a reduced statistics (on average, about one-tenth15 of that employed for real corrections).
The integration in MadFKS as implemented in MadGraph5 automatically organizes the
computation in this optimal way. Even so, for processes with the highest multiplicities, the
virtual corrections require more computing time than the rest of the calculation, in order
to attain similar integration uncertainties. This was certainly true when using MadLoop4
but still holds now with MadLoop5, despite the many optimizations implemented (see
sect. 3.4.3). Given that MadLoop5 runtime speed is now competitive (see sect. 3.4.5),
this shows the efficiency of the MadFKS integration. This is actually good news, as it
means that any given runtime speed increase obtained for the virtuals evaluation code,
i.e. MadLoop output, directly translates into the same speedup for the integration of the
whole process.

I finally mention a few technical points relevant to phase-space integration. All contri-
butions to the cross sections are integrated using multi-channel techniques, following
the procedure outlined in ref. [105]. The sums over colors and helicities are performed
explicitly (event though both MadFKS and MadLoop are equipped to carry out helicity
sums with Monte Carlo methods, but this was simply not necessary for the processes
considered here). The virtual contributions are integrated in a direct manner, i.e. no
reweighting by the Born matrix elements has been performed.

15A more precise figure is difficult to give, since the total number of integration points per channel is
determined dynamically, in order for the various channels to contribute to the total rate with similar
absolute accuracies.
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Process µ nlf Cross section (pb)
LO NLO

a.1 pp→ tt̄ mtop 5 123.76± 0.05 162.08± 0.12

a.2 pp→ tj mtop 5 34.78± 0.03 41.03± 0.07

a.3 pp→ tjj mtop 5 11.851± 0.006 13.71± 0.02

a.4 pp→ tb̄j mtop/4 4 31.37± 0.03 32.86± 0.04

a.5 pp→ tb̄jj mtop/4 4 11.91± 0.006 7.299± 0.05

b.1 pp→ (W+ →)e+νe mW 5 5072.5± 2.9 6146.2± 9.8

b.2 pp→ (W+ →)e+νe j mW 5 828.4± 0.8 1065.3± 1.8

b.3 pp→ (W+ →)e+νe jj mW 5 298.8± 0.4 289.7± 0.3

b.4 pp→ (γ∗/Z →)e+e− mZ 5 1007.0± 0.1 1170.0± 2.4

b.5 pp→ (γ∗/Z →)e+e− j mZ 5 156.11± 0.03 203.0± 0.2

b.6 pp→ (γ∗/Z →)e+e− jj mZ 5 54.24± 0.02 54.1± 0.6

c.1 pp→ (W+ →)e+νebb̄ mW + 2mb 4 11.557± 0.005 22.95± 0.07

c.2 pp→ (W+ →)e+νett̄ mW + 2mtop 5 0.009415± 0.000003 0.01159± 0.00001

c.3 pp→ (γ∗/Z →)e+e−bb̄ mZ + 2mb 4 9.459± 0.004 15.31± 0.03

c.4 pp→ (γ∗/Z →)e+e−tt̄ mZ + 2mtop 5 0.0035131± 0.0000004 0.004876± 0.000002

c.5 pp→ γtt̄ 2mtop 5 0.2906± 0.0001 0.4169± 0.0003

d.1 pp→W+W− 2mW 4 29.976± 0.004 43.92± 0.03

d.2 pp→W+W− j 2mW 4 11.613± 0.002 15.174± 0.008

d.3 pp→W+W+ jj 2mW 4 0.07048± 0.00004 0.08241± 0.0004

e.1 pp→HW+ mW +mH 5 0.3428± 0.0003 0.4455± 0.0003

e.2 pp→HW+ j mW +mH 5 0.1223± 0.0001 0.1501± 0.0002

e.3 pp→HZ mZ +mH 5 0.2781± 0.0001 0.3659± 0.0002

e.4 pp→HZ j mZ +mH 5 0.0988± 0.0001 0.1237± 0.0001

e.5 pp→Htt̄ mtop +mH 5 0.08896± 0.00001 0.09869± 0.00003

e.6 pp→Hbb̄ mb +mH 4 0.16510± 0.00009 0.2099± 0.0006

e.7 pp→Hjj mH 5 1.104± 0.002 1.333± 0.002

Table 3.2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained
within the aMC@NLO framework based on the fortran version 4 of MadGraph. The
errors are due to the statistical uncertainty of Monte Carlo integration. See the text for
details.
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Further process-specific comments are given in what follows.

• A cut

me+e− > 30 GeV (3.3.2)

has been applied to processes b.4, b.5, b.6, c.3, and c.4.

• In the case of process c.5, the photon has been isolated with the prescription of
ref. [108], with parameters

δ0 = 0.4 , n = 1 , εγ = 1 , (3.3.3)

and parton-parton or parton-photon distances defined in the 〈η, ϕ〉 plane. The
photon is also required to be hard and central:

p
(γ)
T ≥ 20 GeV ,

∣∣∣η(γ)
∣∣∣ ≤ 2.5 . (3.3.4)

• In the case of processes a.3, a.4, a.5, and e.7, diagrams with EW vector bosons in
the loops have been removed, because MadLoop4 could not perform computations
in the Feynman gauge, nor could it exploit the complex-mass scheme. This removal
is justified by the fact that these contributions are color-suppressed.

• In the case of processes a.3, a.4, and a.5, diagrams with s-channel W ’s have been
removed, in order to avoid tt̄-type resonances. In the narrow width approximation
this is a well-defined procedure, and for consistency we thus set ΓW = 0 for these
processes.

• In the case of processes a.4, a.5, c.1, c.3, and e.6, we do not apply any cuts on b
quarks, which is possible since mb 6= 0 implies the possibility of integrating down
to zero transverse momenta. This is important, firstly because it allows us to test
the robustness of phase-space integration in a very demanding situation (the b
quark being very light), and secondly in view of the matching of these results with
parton shower Monte Carlos, where this gives the possibility of studying b-flavoured
hadrons also at small transverse momenta.

All the results reported in table 3.2 could be computed with MadLoop4 by employing
up to two hundreds machines running simultaneously for two weeks. This running time
does not include that required for actually generating the codes to be run. This latter
operation is not parallelized and one must use one machine per process. This is however
not a limitation as the running time of the generation phase is marginal, even for the
most complicated among the processes considered in table 3.2. Both these timings have
been significantly improved within MadLoop5, see sect. 3.4.5 for the quantitative details.
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The uncertainties reported in table 3.2 are of statistical origin. In a fully-numerical
approach as the one adopted here, another source of uncertainty is that associated
with potential numerical instabilities. MadLoop4 and MadLoop5 procedures to handle
this issue are very different and the latter is discussed in details in sect. 3.4.4. As of
MadLoop4 case and the processes of table 3.2, it is enough to say that unstable kinematic
configurations occurred very rarely (less than a percent) and that the corresponding
uncertainties are completely negligible w.r.t. the statistical errors, being at least two
orders of magnitude smaller.

3.4 The MadLoop5 successor

MadLoop4 was based on the old fortran version 4 of MadGraph and MadEvent which
lacked flexibility and whose designs prohibited the implementation of new functional-
ities within it, let alone advanced NLO features. As a consequence, MadLoop4 and
MadFKS4 were developed as independent plugins, the former in C++ and the latter in
Fortran77, treating MadGraph4 as a blackbox. The whole set of tools, reunited under
the denomination aMC@NLO4, was coordinated by ad-hoc scripts for specific usages of
the code.

The net result is indeed automation of QCD corrections computations for SM processes, as
advocated in [123], but only in the sense that no process-related information or operation
was required from the user but not that anyone could achieve this without prior extensive
knowledge of the code. This last point is not essential from a physics point of view but
definitely crucial for the method and tool to be used by a large fraction of the high energy
physics community.

The version 4 of aMC@NLO had reached its limit and achieved its primary goal: a
feasibility proof. It was then obvious that making the framework user-friendly and
stable upon further development as well as extending its reach (BSM applications, mixed
coupling expansions, etc...) would necessitate a complete re-implementation from scratch.
The modern Python version of MadGraph5 [7] appeared to be a perfect host for such a
work.

This section presents the outcome of this rewriting, getting us yet closer to the ultimate
goal of automated computation at the push-of-a-button of one-loop contributions to
scattering amplitudes within general physics models.

3.4.1 aMC@NLO5 and MadLoop5 usage

MadGraph5 v2.0.0β featuring aMC@NLO with MadLoop5 and MadFKS5 was made
public on November 8th 2012 and can be obtained at the website amcatnlo.cern.ch or
directly at the download section of launchpad.net/madgraph5. The downloaded archive
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has to be decompressed and, in what follows, the path of the resulting folder will be
referred to as ’MGPath’.

As the name suggests, aMC@NLO is completely embedded within MadGraph5 which
means that all its powerful tree-level LO capabilities are accessible at the same time as
the NLO ones. In particular, these are all controlled via an intuitive user-interface which
can be launched by executing the following:

cd MGPath
./bin/mg5

This will start the MG5 interface inviting one to type commands in front of the mg5>
prompt. This works very similarly to a terminal, and one has access to auto-completion,
command history with the up and down arrow keys and the mighty ’help commandName’
functionality. Also, one can simply type in ’tutorial’ followed by the tab completion to
choose among several inline tutorials.

The dependencies of the code are minimal: Python v2.6 or above (but not 3.x) and
the compiler gfortran v4.6 or above. Also, aMC@NLO (not MadLoop5 standalone)
requires FastJet v3.x or above. If the executable named ’fastjet-config’16 is not in
the system environment path, its absolute path must be specified, once only, in the file
’MGPath/input/mg5_configuration.txt’ which is created the first time the user interface
is launched. Finally, if the user wishes to have aMC@NLO steering the showering of
the parton-level events, customized version of the common showering programs (such as
Herwig++ and Pythia6) need to be installed. This can be done automatically by typing
’install MCatNLO-utilities’ in the user-interface.

There are many options controlling the general behavior of MadGraph5. These are not
only the running environment settings above but also the parameters affecting the physics
schemes considered by MadGraph5, such as the gauge choice for example. Before running
anything on the MG5 user interface, it is preferable that the user starts by displaying all
options and their current values with ’display options’. They can then be individually
modified by the user via the ’set’ command:

MG5> set {Option} {Value}
Ex: MG5> set complex_mass_scheme True

Listing 3.1: Syntax of the set command.

The goal of this section is not that of providing an exhaustive manual of aMC@NLO, but
we still wish to list here part of the various commands available, with their syntax and
some of their options. Before this, as a teaser, we give a short example of a quick run of
MadLoop5 for evaluating gg > dd̄g for a random kinematic configuration.

16This executable is created at the time of FastJet installation in the folder ’<FastJetInstall-
Path>/bin/’.
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MG5> generate g g > d d~ g [virt=QCD]
[...]
ML5> output
[...]
ML5> launch −f
Initializing process gg > ddxg.
=========================================================
|| Results for process gg > ddxg
=========================================================
|| Phase-Space point specification (E,px,py,pz)
[...]
|| Born contribution (GeV^-2):
| Born = 4.1971282651714599e-04
|| Virtual contribution normalized with born*alpha_S/(2*pi):
| Finite = -8.2085331293627704e+00
| Single pole = -3.3204822515046402e+01
| Double pole = -1.1666666666666700e+01
=========================================================

Listing 3.2: Example of a simple run of MadLoop5 standalone for the process gg > dd̄g.

This whole run takes less than a minute and the parts in italic are the only user inputs
required after having started the interface. The notation [...] refers to additional
information provided by MadLoop5 and omitted here.

As the example above already suggests, the analysis of a given process necessitates three
consecutive steps: the diagram generation, the write-out of the numerical code to the
disk (i.e. output) and finally its compilation and running for a specific purpose.

Generation of a process

When generating a process, MadLoop5 constructs all Born, loop and counterterm Feynman
diagrams contributing to it and stores an internal representation of these. The general
syntax for the generation of a process is (arguments are denoted with curly brackets):

MG5> generate {Process} {AmpOrders} [ {Mode} {PertOrder} ] {AmpSquaredOrders}
Ex: MG5> generate d d~ > z > u u~ / t b QED=2 QCD=0 [virt=QCD] QED=4 QCD=2

Listing 3.3: Syntax of the generate command.

The {Process} argument is the only mandatory one and follows the exact same syntax as
for MadGraph5 at Leading Order (see ’help generate’) with the restriction that decay
chains17 are not supported. The initial and final states are separated by the ’>’ symbol

17The concept of decay chains is dangerous when considering loop contributions, because including
corrections to only the core process might lead to gauge dependent results, when considering the top
decay for example. For this reason, the tool of choice for handling decay chains on top of an NLO core
process, is MadSpin [10] (see the ’launch’ command). It performs the decay after aMC@NLO event
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and with a space between particles. The list of active particles in the loaded model can be
consulted at any time with ’display particles’. In the example provided, the process
uū → dd̄ is specified, with the requirement of having a Z-boson in the s-channel and
excluding the top and bottom massive quarks contributions (also for the loops). Notice
that both for LO and NLO processes, only physical restrictions can be specified and,
in particular, there is no possibility for a general user-defined diagram filtering routine.
This is to prevent the average user to ever produce unphysical results when employing
MadGraph5, but of course the expert user can still access such a feature via a trivial
modification of the python source code.

The {AmpOrders} specifies upper bounds on the coupling orders appearing in all the
diagrams Cα of eq. (2.1.1) building the amplitudes, similarly as for the Leading Order
generation. For example, if the process includes QCD corrections and the user specifies
’QCD=3’, all Born amplitudes will be constrained to include at most three powers of gs, so
that the Born matrix element squared is of order α3

s at most, and the loop amplitudes
limited to factorize at most five (3+2) powers of gs so that its interferences with the Born
ones are at most of order α4

s.

The {AmpSquaredOrders} is specific to the NLO18 and sets similar upper bounds but
applying to the coupling orders of the squared amplitudes. This option does not have
sensible applications for pure QCD corrections and really makes sense only in the context
of mixed coupling expansions. For {AmpSquaredOrders} exclusively, negative value can
be used to select what sub-leading terms to keep. For instance, setting ’QCD=-N’, with
N a positive non-zero integer, is equivalent to setting ’QCD=’ BornOrder + 2(N-1)’, with
BornOrder the lowest QCD order (equivalent to the power of the coupling constant gs)
contribution to the squared Born amplitudes. These coupling orders specifications are
optional and, if absent, MadLoop5 considers only the corrections which are numerically
leading based on the coupling orders weights (see sect. 3.4.2 for information on coupling
orders weights). In the example provided, they are equivalent to what MadLoop5
would have employed if they had been omitted. In general, one can type ’display
coupling_order’ to print those defined within the current active physics model.

The {Mode} option selects what NLO type of contribution should be considered and can
take any of the three values ’all=’, ’real=’ and ’virt=’. The first option implies using the
whole aMC@NLO framework to construct both the real emission and loop contributions
in view of their numerical integration with MadFKS. The ’real=’ mode differs only by
the fact that the code for the virtual contributions is not generated (MadLoop5 is not
called) and it is assumed that they will be linked and provided externally by the user.
The ’virt=’ mode corresponds to MadLoop5 standalone mode, and real emission diagrams

generation while retaining most of the spin-correlation and some off-shell effects.
18This restriction is relevant mostly for mixed coupling expansions and is correctly implemented up to

the generation stage only. It will become fully supported only at the time Electro-Weak (EW) loops will
be properly handled.
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are not considered. The subsequent ’output’ and ’launch’ commands apply differently
in this standalone mode and limit themselves to the evaluation of the quantity V (r) of
eq. (3.1.2) for user-defined kinematic configurations.

Notice that the loop-induced processes19 can only be studied in MadLoop5 standalone
mode as they are not yet supported for event generation. Process definitions in standalone
mode must correspond to a single production channel an cannot include multiparticle
labels such as p (proton) or j (jet content). The default value of {Mode} is ’all=’.

The {PertOrder} argument is mandatory for loop processes and specifies what type of
loops must be considered. Loops in MadLoop5 are assigned to certain types corresponding
to the coupling orders of the physics model. The assignation of a loop to a given coupling
order, being ’QCD’ to be definite here, are two:

1. The loop must contain at least one loop QCD vertex20.
2. Each particle running in this loop has to appear as an external state of at least one

QCD vertex of the model.

The more physical description of the second rule is that all loop particles must be charged
under the corresponding group (color SU(3) in this example). This is however not strictly
equivalent, because the coupling orders of an interaction are not directly related to the
quantum numbers of the particles involved. In fact, coupling orders are formally arbitrary
but nonetheless intended to be related with the appearance of certain coupling constants
in the interaction. In the SM, the QCD order corresponds to the power of gs in the
interaction coupling while QED is mapped to the electric charge e and the Yukawas. The
three loops below all belong to the SM process dd̄→ uū but are not of the same type.

d

d̄
g

g

ū

u

(a) Loop of type [QCD]

d

d̄
g

γ/Z

ū

u

(b) Loop of type [QCD,QED]

d

d̄
γ/Z

γ/Z

ū

u

(c) Loop of type [QED]

Figure 3.4.1: Illustration of three different loop types for the process dd̄→ uū.

The loop 3.4.1b, despite being responsible for an αs correction to the Born diagram with
a photon or Z-boson in the s-channel, is not of type [QCD] only. As a consequence,

19Loop-induced processes receive their LO contribution by loop-diagrams because no tree-level diagrams
contributes to the corresponding scattering amplitude. A typical example of loop-induced process is
gg → H when not working in the Higgs effective theory.

20A QCD vertex or interaction is defined as any vertex defined with a coupling constant featuring QCD
in its ’order’ attribute (see appendix A.2.). In the loop UFO model of MadLoop5, this is equivalent to
saying that the analytical expression of the coupling constant includes αs.
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the example of process definition given in listing 3.3 excludes this type of diagrams and
MadLoop5 will warn the user that it did so. For this process, the correct syntax to insure
having MadLoop5 include all αs NLO corrections would be

MG5> generate d d~ > z > u u~ [virt= QCD QED] QCD=-2

Where the ’QCD QED’ type includes all possible contributing loops in the SM while ’QCD=-2’
forces MadLoop5 to cut the matrix element expansion at exactly αBornOrder+1

s . Notice
that the class of loop diagrams defined by a given type is not necessarily a gauge invariant
subset, so that the {PertOrder} option can potentially yield unphysical results. The
reason for this option is therefore purely technical but nonetheless necessary because
loops such as 3.4.1b feature all the difficulties of generic electroweak corrections com-
putations and aMC@NLO cannot handle them as of today. The main obstacle is that
MadFKS5 does not yet include photon real emissions, necessary for canceling the infrared
singularities induced by the photon in the loop.
In future versions, aMC@NLO will support all types of corrections and the {AmpSquare-
dOrders} argument will allow to unambiguously specify what terms must be kept in the
coupling constants expansion.

Output stage

After having generated a process, the ’output’ command writes out to the disk a numerical
code for its analysis. The syntax is simply

ML5> output {ProcFolder}
Example: ML5> output TestProc

with {ProcFolder} an optional argument for specifying the name or path of the output
location. By default, it is placed under ’MGPath’ with a self-explanatory folder name.
Notice that the prompt MG5> switched to ML5> and indicates that the user is now in the
MadLoop5 standalone environment.

The output for a process defined in MadLoop5 standalone mode (i.e. with {Mode}→’virt=’)
is limited to the source code for the evaluation of the quantity V (r) of Eq. (3.1.2) and
no analysis or cross-section integration routines are provided. This mode is suited for
producing libraries for the computation of the virtual contributions to be called within
external Monte-Carlo tools. It can also be used solely for the purpose of cross-checking
one’s private code for the loop computations against MadLoop5 automatically generated
one.

The running of the code is best steered from the user interface directly, but one can also
directly execute the scripts placed in the ’bin’ directory21. For aMC@NLO runs, the

21Placed under the folder {ProcFolder}. The same comment applies to all other directories mentioned
further in this section.
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cross-section computed as well as the plots and event files generated are all stored in
the ’Events’ directory. The fortran source code common to the whole process is placed
both in ’Source’ and directly under ’SubProcesses’. Finally, the code specific to each
production channel is located in the corresponding subdirectories of ’SubProcesses’.

Running the code: launch

Once the code is output, it can be compiled and run directly from the user interface via
the command

ML5> launch {ProcFolder} {Mode} {Options}
Example: ML5> launch TestProc aMC@NLO -p -f

where {ProcFolder} is the optional name/path of a process folder the user wants to run
and which has been previously generated with the ’output’ command. The default value
for this option is the latest process output in the active session. A key remark here is
that one can exit the interface at any time after having output a process and decide to
run it later with the ’launch’ command. This does not need to be done within the same
session because the necessary process information has already been exported to the disk
at the output stage.

The launch command for MadLoop5 standalone processes and aMC@NLO are different.
In the first case, it simply provides a single evaluation of the quantity V (r) of eq. (3.1.2).
We shall first describe such a usage for which an example of output is shown in listing 3.2.
No {Mode} option can be specified in this case and the only available {‘Options‘} is -f for
bypassing the specification of the kinematic configuration (then randomly chosen) and of
the various parameters stored in ’<ProcFolder>/Cards’. The card ’MadLoopParams.dat’
specifies MadLoop5 parameters at runtime and the description of the most relevant ones
can be found in appendix A.5. The model parameters (such as particles masses, widths
and interaction couplings) are set in ’param_card.dat’.

The aMC@NLO runs (for processes generated with ’all=’ or ’real=’) are initiated with
the same ’launch’ command. The {‘Mode‘} option can be omitted (recommended for the
typical user) in which case aMC@NLO will prompt the following to facilitate the user’s
choice.
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Which programs do you want to run?
0 / auto : All for which cards exist.
1 / NLO : Fixed order NLO calculation (no event generation).
2 / aMC@NLO : Event generation (include running the shower).
3 / noshower : Event generation (without running the shower).

+10 / +madspin : Add decays with MadSpin (before the shower).
[0, auto, 1, NLO, 2, aMC@NLO, 12, aMC@NLO+madspin, 3, ... ][60s to answer]
> UserEntry

This prompt will be followed by another one for editing the parameter cards. On top of
the two cards already discussed, aMC@NLO also reads in ’run_card.dat’ specifying a
number of properties of the simulation. In particular, the beam type and energy, PDF set,
renormalization scale and generation level cuts can be set in this card. If the renormaliza-
tion scale is set dynamical, its functional form is by default the sum of transverse masses
of final state particles but this can be modified by directly editing for example the function
’scale_global_reference’ of the source file ’<ProcFolder>/SubProcesses/setscales.f’.
The run card already proposes standard cuts, but user-defined ones can be added directly
in ’<ProcFolder>/SubProcesses/cuts.f’. These optional source code modifications can
be cumbersome and, in future versions, it is possible that MadAnalysis5 [58] takes over
this task if so wished by the user.

aMC@NLO running modes either belong to the class of fixed-order analysis, with {‘Mode‘}
= ’NLO’ or ’LO’22, or event generation, with {‘Mode‘} = ’aMC@NLO’ or ’aMC@LO’.

In fixed-order analysis, no Monte-Carlo counterterm is considered so that unweighted
events cannot be generated at NLO (the raw matrix element weights are not bounded
from above in this case). Instead, the histograms of the analysis are filled on the fly
with the weighted events generated (and not stored in this case). Some default standard
observables are recorded automatically and the resulting histograms are stored in ’<Proc-
Folder>/Events/run_XX/’ in the topdrawer format. Additional user-defined observables
can be coded directly in the source file ’<ProcFolder>/SubProcesses/madfks_plot.f’.
This running mode is equivalent to what programs like MCFM [46] do and as the name
fixed-order suggests, matching to parton showers is not possible in this case. Fixed-order
is therefore the method of choice for shower independent analysis and NLO inclusive
cross-section computations.

For event generations, the Monte-Carlo (MC) counterterm allows for the unweighting
of events at the price that they are not physical23 until showered. Because the MC
counterterms have a functional form depending on the shower program, it is crucial to
specify it before event generation in ′run_card.dat′. This means that a given sample of
parton-level events can only be showered with the shower program it has been designed

22The Leading Order (’LO’) modes are formally equivalent to what MadEvent does. It is however
convenient to have aMC@NLO being able to perform leading order predictions as well so as to make
comparisons easier (all with the same framework and process output).

23In the sense that they are missing the NLO contribution accounted for by the parton shower
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for24. Event generation with aMC@NLO is organized in three steps

• step 0 – The total cross-section for each integration channel25 is computed to
an accuracy matching the parameter ’req_acc’ of the run card. MadFKS being
based on adaptative Monte-Carlo integration, this step also serves to initialize the
integration grids which shall remain fixed from this point on.

• step 1 – Discrete importance sampling is employed to improve the unweighting
efficiency and for each integration channel, the phase space is divided into a
few unweighting cells. For each cell, its contribution to the total cross-section is
computed26 and the maximum weight occurring in it is stored for the unweighting
of step 2.

• step 2 – This step generates a number of events as specified by ’nevents’ in the
run card. Once step 0 and 1 are performed, this step can be run alone several
times (assuming the model and run parameters are left untouched) to generate more
events, provided the ’req_acc’ parameter employed in step 0 and 1 was sufficiently27

high.

The sample of unweighted parton-level events generated after step 2 is stored in
’<ProcFolder>/Events/events.lhe.gz’. Unless the option ’-p’ (for parton-level) has been
specified, aMC@NLO will automatically shower it with the program specified in the run
card.

Due to the number of options and possibilities of the ’launch’ command, an alternative
way is proposed to steer aMC@NLO: the user can start a dedicated running console
directly from the main user interface by adding ’-i’ to {Options} of ’launch’, for instance:

aMC@NLO> launch TestProc -i
[...]
aMC@NLO_run>

Notice that ’_run’ is appended to the prompt to clearly indicate to the user that the
interface environment has changed. It is now bound to the output process ’TestProc’ in
the sense that any command executed here applies to this exported process. Also, the
original set of commands for process generation, output and checks is no longer available28

and replaced by dedicated ones for controlling aMC@NLO runs. Some functionalities are
24This might change in the future as it is possible in principle to reweight an already generated event

sample by the weight of the MC counterterm suited for the shower program chosen by the user.
25As already mentioned, aMC@NLO exploits a multi-channel technique based on the diagrammatical

information of the process. See ref. [105].
26To an accuracy which this time depends on both ’req_acc’ and the relative contribution of the

particular channel to which the cell belongs.
27A rule of thumb is that one wants to perform step 0 and 1 with a relative accuracy of roughly the

square root of the number of events generated.
28You can return to the standard user-interface at any point with the hotkey ’crtl+d’ or the command

’EOF’.
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only available in this run interface, such as showering an already existing parton level
event sample (the ’shower’ command), and the contextual help is more precise, so that
for involved simulations, the use of this run interface is preferred.

Running aMC@NLO on a computer cluster is simply achieved by specifying ’--cluster’
in the {Options}. Several cluster types are supported and the details of the user’s cluster
architecture must be specified in ’MGPath/input/mg5_configuration.txt’.

Finally, MadGraph5 supports scripting and it is possible to write a sequence of com-
mands in a given file, ’mg5.cmd’ for example, and run ’MGPath/bin/mg5 mg5.cmd’ to
automatically execute them all.

Automatic testing of user-defined processes

MadGraph5 already includes extensive testing routines (see appendix A.1) helping the
developers to make sure that the generic behavior of the implemented algorithms is correct
and to insure a stable evolution of the code.

Unfortunately, process-dependent issues might escape those self-consistency tests as they
are not able to cover the infinite set of possible inputs and models. It is therefore up to
the user to investigate the sanity of MadGraph5 output and to this aim the command
’check’ provides a powerful automation of process-specific consistency checks.

MG5> check {Type} {Process}
Ex: MG5> check g g > t t~ g [virt=QCD]

The {Type} argument can be ’crossing’, ’brs’, ’lorentz’ and ’gauge’ for the checks 2,
4, 6 and 7 respectively, of those presented in sect. 3.1.4. If omitted, the default value is
’full’ and these four checks are run sequentially. The {Process} attribute is mandatory
and the process specification follows the same rule as for the ’generate’ command, to the
exception that only tree-level processes or MadLoop5 standalone ones (i.e. with mode
’virt=’) are supported.

For loop processes only, the ’check’ command can also automatically profile the numerical
code generates by MadLoop5 and provide key statistics on it. With {Type}=’timing’,
the command returns timing measurements for the process generation and running in
various scenarios and a memory usage report. With {Type}=’stability nPoints ’, the
command runs the code for nPoints random kinematic configurations and returns the
outcome of the different runtime numerical stability tests (see sect. 3.4.4).

The ’check’ command therefore offers an efficient way for the user to assess the validity
of MadLoop5 code for the virtuals while also providing the necessary information for him
to decide if it is fast and stable enough for its purpose.

56



3.4. The MadLoop5 successor

This concludes the description of the basic usage of aMC@NLO5 and MadLoop5. For
more information, visit the amcatnlo.cern.ch webpage and launchpad.net/madgraph5
where questions and bugs can be reported.

3.4.2 Model independence: the UFO format

Great progress towards complete model independence was achieved when integrating
MadLoop5 within MadGraph5, thanks to the UFO format [67] for specifying the physics
model properties. This format proposes an organization of the model information as
a Python module. The Mathematica package FeynRules automatically generated a
vast variety of BSM model files in the UFO format which can be loaded in MadGraph5
and used for phenomenology studies at tree-level. The general idea of this format is
that of introducing a collection of objects mapping to the concepts that define a high
energy particle physics model, these being Particle, Vertex, Coupling, Parameter,
CouplingOrder and Lorentz. Each of these objects are essentially containers for the
attributes defining them and conceived as general as possible to embody almost all
(B)SM physics. This model module is loaded by Python and translated into an internal
representation specific to the computer code reading in the model. This two steps
mechanism allows one to have a unique model file suited for a variety of physics tools
which will extract from it the pieces of information of their interest. This greatly facilitates
the interface between physics tools and reduces the possibility of inconsistencies in their
inputs.

The nature of loop-computations necessitates from the model builder more information
than required for LO studies. A crucial consequence of this is that a model file for a given
BSM model in the UFO format cannot be used by MadLoop as it stands. The missing
information are the set of UV and R2 counter-terms which cannot be obtained directly
by MadLoop as they require a global analytic understanding of the Lagrangian so that
they must be specified by the model. To this aim, we have extended the UFO format so
as to include this lacking information while retaining the original flexibility.

A counterterm is represented by an instance of a new class ’CTVertex’ inheriting from the
original one, ’Vertex’, for tree-level applications. This new object features an additional
attribute ’loop_particles’ characterizing the identity of the particles entering the loop
this counterterm originates from. The color and Lorentz structure is specified in the
same way as for regular vertices (see ref. [67]). However, the couplings of the ’CTVertex’
are specific to the particle content of the loop sourcing the counterterm (i.e. to each
choice of ’loop_particles’) and their value attribute is given as a dictionary identifying
their expression as a Laurent expansion in the loop regularizing parameter ε setting the
number of dimensions d = 4− 2ε. With this syntax, one can independently specify the
contribution of certain UV-counterterms to both the finite part and the residue of the
single pole of the loop matrix element evaluation.
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To cope with this, the parameters can be instances of either of two very similar classes,
Parameter or CTParameter; the first having its value attribute as string and the second
as a dictionary with helper functions to access it. The Coupling class remains the same,
but the value attribute can now either be a simple string or a dictionary to directly
define the terms of the Laurent expansion. To access this value attribute irrespectively
of its nature, the Coupling class provides a dedicated function to access the nth pole of
the definition of the value independently of its type. In particular, if the coupling value
is a string defining an expression including a CTParameter, this function will recognize
it29 and substitute the corresponding Laurent serie in the coupling value definition. The
example below efficiently illustrates this seemingly complicated behavior:

MyCoup = Coupling(name = ‘MyCoup‘,

value = ‘4.0 ∗ g_s ∗ ∗2 ∗ MyCTParam‘

order = {‘QCD‘ : 2})

MyCTParam = CTParameter(name = ‘MyCTParam‘,

type = ‘real‘,

value = {−1 : ‘A‘, 0 : ‘B‘}
texname = ‘MadRules‘)

In this case, MyCoup.value(-1) would return the single pole contribution ’4.0*g_s**2*A’
and MyCoup.value(0) the finite one ’4.0*g_s**2*B’. The kind of loops supported by the
model are specified via the new attribute perturbative_expansion of the CouplingOrder
class. More details and examples about the UFO format for models allowing loop
computations can be found in appendix A.2.

All the R2 and UV counterterms for QCD corrections have been coded by hand in the
UFO model ’loop_sm’ available with the public distribution of aMC@NLO. This model,
being able to perform both LO and NLO phenomenology, will eventually supersede the
’sm’ model suited for LO only. For now the switch from one model to another is performed
automatically in a transparent manner depending on the user inputs. The FeynRules

authors are actively working so as to be able to automatically produce UFO model suited
for loop computations as easily as the BSM models are generated now for LO studies.
Also within the Standard Model, a UFO model including QED corrections is being set
up.

This shows that the original goal of identifying all sources of model dependance and
isolating them within a flexible model module is now attained for loop computations with
MadLoop5.

29Notice that for more than one loop, it might be convenient to have the coupling value being defined
in terms of more than one CTparameter, which renders cumbersome the substitution of their Laurent
series in the coupling definition. This is why for now the value(n) function handles the presence of at
most one CTparameter in the coupling definition.
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3.4.3 Code optimizations

The flexibility of the MadGraph5 framework permits the implementation of optimizations
structurally very involved. There are two class of optimizations, those affecting the
process generation time and those improving the runtime speed. With MadLoop, the
generation time is faster than for any competitor and typically not a limiting factor, so
that most of the effort was focused on optimizing runtime speed, critical for Monte-Carlo
applications.

Process generation improvements

The MadGraph5 algorithm for tree diagram generation, described in ref. [7], is much
more performant than its MadGraph4 counterpart, essentially because it already exploits
the model vertices definitions when building the tree topologies.

MadLoop5 fully benefits from this improvement and takes even further advantage of it.
Let {q∗i } be the set of identities of particles which have to be considered as L-cut particles
when considering a certain kind of loops. The loop diagram generation algorithm outlined
in 3.1.1 shows that when MadLoop considers the L-cut particle q∗1, it generates all loop
diagrams which can possibly be cut at a loop line of this identity. In other terms, this
means that the only loop diagrams missing are those without q∗1 circulating anywhere in
the loop. It is therefore possible to significantly speed-up the L-cut diagram generation
for the subsequent choices of L-cut particles q∗i by explicitly forbidding any particle q∗j
already considered as a L-cut particle to appear in the loop. For QCD corrections for
example, one starts with the gluon as the L-cut particle and the subsequent runs for the
L-cut quarks are very fast as they only yield the closed fermion loops.

The original tree diagram generation algorithm was also modified so as to discard
wavefunction renormalization diagrams and tadpoles already at the generation stage and
as soon as the loop is formed, possibly even before the whole loop diagram is constructed.

For the rest of the generation steps, MadLoop5 inherits from the existing optimizations
brought by MadGraph5 to tree processes, but further specific optimizations for loop
processes were implemented.

Efficient helicity summation

This is the first simple but crucial optimization of runtime speed. The naive approach for
computing the quantity V (r) of eq. (3.1.2) is to evaluate each loop amplitude individually,
interfere it with the Born amplitudes, and repeat this procedure over all contributing
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helicity configurations30. This amounts to computing V (r) as follows:

V (r) ∝
∑

h=hel

∑

l=loop

2<
(
CT
[ ∫ dDqNl,h

D0D1 · · ·Dn−1

]

︸ ︷︷ ︸
Al,h

∑

b=Born

Cl,bA∗b,h
)

(3.4.1)

where for simplicity all indices carried by the amplitudes are understood and Nl,h is the
numerator of a certain loop diagram l for a given helicity configuration h. When the loop
amplitudes color indices are contracted with those of the Born amplitudes, they yield
the color factor Cl,b which depend on the identity of both the loop and Born diagrams l
and b. The operator CT [...] corresponds to calling CutTools for a given numerator and
denominator configurations so as to obtain a numerical evaluation of the resulting integral.
As explained in sect. 2.3, this operation is time consuming and the implementation of
eq. (3.4.1), corresponding to the MadLoop4 structure, had the great disadvantage that it
necessitated a total of NHelConfigs ×Nloop calls to CutTools for each evaluation of V (r)

for a given phase-space point.

Profiling MadLoop4 showed that half of the evaluation time was spent in CutTools so
that speeding up the code necessarily implied reducing the number of call to CutTools31.
This can in fact easily be achieved by realizing that the interference with the Born
amplitudes can be computed before evaluating the loops with CutTools. Namely, this
corresponds to reordering the computation of eq. (3.4.1) in this way32:

V (r) ∝
∑

l=loop

2<
(
CT
[ ∫

dDq

N ′l,h︷ ︸︸ ︷∑
h=hel

∑
b=BornNl,hCl,bA∗b,h

D0D1 · · ·Dn−1

])
(3.4.2)

This yields exactly the same result but has the great advantage of calling CutTools with
a modified numerator N ′l,h which already accounts for the Born interference and helicity
sum. This formulation only necessitates Nloop calls to CutTools which effectively means
that the time spent in it for one evaluation of V (r) is divided by NHelConfigs (a number
typically larger than one hundred for complicated process). Another great advantage
of this is that because the color factors Cl,b are now part of the numerator N ′l,h, it
is possible to add loops together before calling CutTools. The only constraint being
the loop grouped together must have the same topology, namely the same denominator
configuration D0D1 · · ·Dn−1. Typically, for a given box loop contribution to the process
gg → gg, the cases where gluons, SU(3) ghosts or massless fermions circulate in the loop

30Of course, MadLoop employs an helicity filter to discard helicity configurations which are identically
zero. This helicity filter is setup by registering the numerical importance of each helicity configuration
relative to the their sum.

31The code CutTools being already close from being fully optimized (the independent implementation
of the OPP method in the code Samurai [131] shows similar timings).

32The optimizations discussed here are not an option for loop-induced processes for which one has no
other option but to reduce each loop individually.
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all share the same denominator configuration, so that they are identical from the point of
view of the OPP algorithm and can therefore be processed together. In view of this, the
formulation of eq. (3.4.2) is further refined in MadLoop5 to take the final form:

V (r) ∝
∑

t=topologies

2<
(
CT
[ ∫

dDq

N ′t,h︷ ︸︸ ︷∑
l=loop∈t

∑
h=hel

∑
b=BornNl,hCl,bA∗b,h

D0D1 · · ·Dn−1

])
(3.4.3)

where the number of calls to CutTools is further reduced to being equal to the number
of loop topologies. Unfortunately, this optimization only improves the total evaluation
time by a factor two as it is now completely dominated by the time spent in the several
necessary evaluations of N ′l,h which remained the same throughout these reformulations
of the computation. The open-loop technique discussed in the next subsection is the
modern method of choice for reducing the computational load of these many numerator
evaluations.

Open loop technique

In 2011, S. Pozzorini and his collaborators published in ref. [52] an original method
for greatly speeding up the evaluations of the numerator N ′l,h. The backbone of this
formalism is the fact that the successive evaluations of the numerator N ′l,h(q, {pi})
required by the OPP algorithm only differ by the value of the loop four-momentum q

while the rest of kinematic configuration {pi} remains identical. It is therefore convenient
to cast N ′l,h(q, {pi}) into a polynomial of the loop momentum qµ:

N ′l,h(q, {pi}) =

rmax∑

r=0

C
(r)
µ0µ1···µr({pi})qµ0qµ1 · · · qµr (3.4.4)

with rmax the maximal rank in qµ of the numerator N ′l,h(q, {pi}). The existence of such a
decomposition of the loop numerator is guaranteed by the locality of the Lagrangian and
the form of the massive vector boson propagator in Feynman gauge. The adage "Compute
numerically when you can and analytically where you should" suggests to numerically
evaluate the open loop coefficients C(r)

µ0µ1···µr , because they depend only on the external
kinematic configuration {pi}, and to simply substitute in eq. (3.4.4) the numerical values
of qµ the OPP algorithm requires. The key to the success of this formulation of N ′l,h is
to realize that C(r)

µ0µ1···µr is a fully symmetric tensor of rank r with only
(

3+r
r

)
independent

coefficients. In renormalizable theories, the maximal rank in qµ of an n-point loop is n,
so that the total number of coefficients necessary to express the numerator of any loop of
a 2→ 6 process for example is at most Ncoeff (rmax = 8) =

∑rmax=8
r=0

(
3+r
r

)
= 495 which

remains very manageable given the complexity of such a process. It is now clear that
once the open loop coefficients evaluation are known, subsequent evaluations of the loop
numerator for different values of the loop momentum are basically for free from a CPU
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load point of view. The challenge is therefore to compute the open loop coefficients faster
than several repeated direct evaluations of N ′l,h.

Before detailing the MadLoop5 approach to open loop, It is convenient to rewrite
eq. (3.4.4), and more generally any polynomial P (rmax)(qµ) of maximal rank rmax in qµ,
with the shorthand

P (rmax)(qµ) = C
(rmax)

k̇
qk̇ (3.4.5)

where k runs from 1 toNcoeff (rmax). The dotted index recalls that the Einstein summation
rule is modified to match the expression of eq. (3.4.4). This abusive notation also implies
that one picked a canonical ordering to concatenate into a one-dimensional array the
set of independent coefficients C(r)

µ0µ1···µr . The choice of this ordering is arbitrary, but a
convenient one is given by

C
(r)
µ0···µr , µ0 ≤ · · · ≤ µr → C

(rmax)

k̇
, k̇ = Ncoeff (r − 1) +

r∑

i=0

(µi + i)!

(i+ 1)!(µi − 1)!
(3.4.6)

with Ncoeff (−1) = 0. To make things more explicit, we show below the completely
expanded version of the r.h.s of eq. (3.4.5) with rmax = 2

C
(2)

k̇
qk̇ = C

(2)
0 + C

(2)
1 q0 + C

(2)
2 q1 + C

(2)
3 q2 + C

(4)
1 q3

+ C
(2)
5 q0q0 + C

(2)
6 q0q1 + C

(2)
7 q1q1 + C

(2)
8 q0q2 + C

(2)
9 q1q2

+ C
(2)
10 q

2q2 + C
(2)
11 q

0q3 + C
(2)
12 q

1q3 + C
(2)
13 q

2q3 + C
(2)
14 q

3q3

(3.4.7)

To compute the open-loop coefficients, MadLoop5 adopts a structure very similar to the
one outlined in sect. 3.1.3. In the traditional approach, wavefunctions are denoted w(#)

j

where the integer ’#’ numbers them and the index j lives in the Lorentz representation of
the particle this wavefunction describes. In the open-loop approach, the loop wavefunctions
are promoted to more general objects representing polynomials in qµ and denoted W (#)

i,r,k̇,j
with the additional index i specifying the choice of polarization vector for the first L-cut
particle (Gµ = δµi in fig. 3.1.4) and k̇ labels the coefficients of the polynomial of rank r
according to the convention of eq. (3.4.6).
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W
(1)

i,0,k̇1,j

W
(2)

i,1,k̇2,k

W
(3)

i,1,k̇3,µ

W
(4)

i,2,k̇4,ν

W
(5)

i,3,k̇5,m

δmi

w(1)
ρ

w(2)
n w(3)

σ

w(4)
p

V
(1)
j,1,ṡ1,k

V
(2)
k,0,ṡ2,µ V

(3)
µ,1,ṡ3,ν

V
(4)
ν,1,ṡ4,m

q

p1

Figure 3.4.2: An example of MadLoop5 construction of open loop coefficients. W denotes
the loop wavefunctions and V the vertex polynomials. The figure depicts an L-cut
diagram corresponding to a box loop when the two fermion lines at the top are sewed
back together.

The fig. 3.4.2 shows a complete example of the different numerical objects manipulated
by MadLoop5 to construct the open loop coefficients of a standard box diagram. Notice
that because the wavefunctions w(#) attached to the loop are independent of the loop
momentum qµ, it is irrelevant to know wether they are directly external wavefunctions
or originating from large subtrees. The starting loop wavefunction W (1)

i,0,k̇1,j
correspond

to the "polarization vector" of the first L-cut particle. It is a polynomial of rank 0 as it
does not have any loop momentum dependance yet, so that the loop wavefunction can be
non-zero for k̇1 = 0 only. Then, from fig. 3.1.4, we must set W (1)

i,0,k̇1,j
= δijδk̇10.

The objects V (#)
a,r,ṡ,b are the vertex polynomials of rank r. They correspond to the vertex

plus propagator structures, with the loop momentum unspecified and the incoming and
outgoing loop leg wavefunction indices (a and b respectively) left free. For example, the
explicit expression of V (1)

j,1,ṡ1,k
in fig. 3.4.2 is

V
(1)
j,1,ṡ1,k

qṡ1 = ıgsγ
ρ
jiw

(1)
ρ︸ ︷︷ ︸

vertex

γµik(qµ + p1µ)︸ ︷︷ ︸
propagator

(3.4.8)

where the denominator of the propagator is already removed according to the need of the
OPP algorithm. To be more definite, eq. (3.4.8) can be rewritten as to explicitly give the
expression of the vertex polynomial for each value of ṡ1

V
(1)
j,1,0,k = ıgs(/w

(1)
/p1)jk and V (1)

j,1,ṡ1,k
= ıgs(/w

(1)γ(ṡ1−1))jk for ṡ1 = 1, . . . , 4 (3.4.9)

In renormalizable theories, the rank of the vertex polynomials is maximally equal to
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one as only one power of the loop momentum can arise from either the propagator or
the vertex itself (but not both). The structure of MadLoop5 does not enforce such a
limitation so that loop computations within effectives theories33 is straightforward for
that matter.

The loop wavefunction W (n+1) is obtained from the previous one W (n) and the vertex
polynomial V (n) placed in between via the defining implicit relation

W
(n+1)

i,r1+r2,k̇1,j
qk̇1 = (W

(n)

i,r1,k̇2,m
qk̇2)(V

(n)
m,r2,ṡ,j

qṡ) (3.4.10)

The r.h.s. of eq. (3.4.10) is a multiplication of two polynomials in the loop momentum
and each coefficient of W (n+1) is obtained by summing the corresponding terms in the
expanded product. This implies that a symmetrization of the coefficients is performed
after each loop vertex and this step is crucial in order to limit their proliferation and the
resulting computing time. To illustrate this, eq. (3.4.10) is rewritten here for the case
r1 = r2 = 1 with k̇1 = 9, corresponding to the term in q1q2 which can come either from
k̇2 = 2,ṡ = 3 or k̇2 = 3,ṡ = 2

W
(n+1)
i,2,9,j = W

(n)
i,1,2,mV

(n)
m,1,3,j +W

(n)
i,1,3,mV

(n)
m,1,2,j (3.4.11)

Notice again the implicit summation on the index m which lives in the Lorentz representa-
tion of the loop particle preceding the vertex V (n). The notation of fig. 3.4.2 differentiates
spin 1 indices from the spin 1/2 ones by switching from the greek to the latin alphabet.
In MadLoop5 code however, this difference is irrelevant as they both range over four
integer values. Scalar indices (like for the SU(3)c ghost) can be replaced by a dummy 1

and all related implicit sums simplify to a single term. MadLoop5 structure is flexible
enough to easily accommodate for indices of higher spin representations (such as spin-2
indices ranging over 16 integer values) so that it can in principle handle loops involving
particles of higher spin.

MadLoop5 iterates the use of eq. (3.4.10) to progressively compute all loop wavefunctions
until it reaches the one of the second L-cut leg which includes the last vertex and the
L-cut propagator. The open loop coefficients Ck̇ of an n-point loop diagram are then in
general simply obtained by "closing" the Lorentz trace

Ck̇ = W
(n+1)

i,r,k̇,i
(3.4.12)

In the example of fig. 3.4.2, this translates into

Ck̇ = W
(5)

i,3,k̇,m
δmi =

4∑

i=1

W
(5)

i,3,k̇,i
(3.4.13)

with the sum made explicit for clarity.
33In this context, a relevant case is the Higgs effective theory
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In addition to providing practically instantaneous evaluations of the numerator N ′l,h, the
open-loop technique offers, as byproducts, the following advantages.

• The operations performed on Nl,h to define Nt,h in eq. (3.4.3) can be applied to
the open-loop coefficients directly. In essence, this means that the loop amplitudes
can be multiplied against the Born ones, summed over helicities and even added
together (if they share the same denominator structure) before calling the OPP
program to reduce them.

• The loop wavefunctions no longer depend on the loop momentum and they can
therefore be recycled across the computations of different loop diagrams. For
example, after having computed the box diagram of fig. 3.4.2, the computation of
the triangle loop obtained by moving the branching point of w(3)

σ to the line w(4)
p can

directly start from W
(3)

i,1,k̇3,µ
which is the identical in both diagrams, hence saving

significant amount of computational time. It is clear that the possibilities of loop
wavefunction recycling depend on the choice of loop cut placements. MadLoop5
implements the algorithm proposed in ref. [52] to optimize34 this choice and this
significantly improved the number of recycled loop wavefunctions.

• Once the open-loop coefficients are known, MadLoop5 can be linked with tensor
integral reduction tools to reduce each tensor loop appearing instead of using the
OPP method to reduce the original physical loop at once. This option, not yet
available, is very promising as an alternative to quadruple precision for stability
detection and curing methods.

MadLoop5 uses the open-loop technology by default, but it can be turned off via the option
’loop_optimized_output’ of the interface in which case the structure of the resulting
code is completely different. Despite being slower, the non optimized output mode
provides a powerful self-consistency check and is still useful for loop-induced processes35

and debugging purposes.

3.4.4 Robustness against numerical instabilities

Once a process has been generated and the checks described in sect. 3.1.4 have been
performed, the process is deemed correct by MadLoop, and phase-space integration can
be carried out. While doing so, kinematic configurations may be encountered that render
it particularly difficult to execute the necessary numerical manipulations. Numerical
instabilities are typically related either to inaccuracies in the solution of the system of
linear equations built by CutTools (which determines the quantities in eq. (2.1.10)),

34The algorithm does not guarantee the choice to be maximally optimal and there is still room for
improvement.

35In principle the open-loop technology can be applied to loop-induced processes as well, but not in the
actual implementation of MadLoop5 because the optimization of eq. (3.4.2) is not possible in this case.
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or to the occasional occurrence of almost linearly-dependent subsets of external four
momenta. The latter case is also problematic in naive implementations of tensor integral
reduction algorithms because some Gram matrices, such as G2 in eq. (2.2.5), can become
singular.

MadLoop5 strategy for handling numerical instabilities is very different than that of
MadLoop4 (see [123]). The stability diagnostics of individual loop diagrams and based
on CutTools internal stability checks are given up in favor of inclusive checks. For each
kinematic configuration given in input to MadLoop5, the code first produces a numerical
evaluation of the quantity V (r) of eq. (3.1.2) using double precision arithmetics. The
finite part of this first evaluation is denoted EDP1 . Then, MadLoop5 performs several
new independent evaluations EDPi ,1 < i < ntest + 1 of the same quantity but with some
modifications in the computational setup. Each of these subsequent evaluations is referred
to as a stability test in what follows. Finally, MadLoop5 computes an estimation of the
relative inaccuracy χDP of the double precision result and decides that the kinematic
configuration is unstable if

(ntest + 1)(max{EDPi } −min{EDPi })
|∑ntest

i=1 EDPi |
= χDP > ε (3.4.14)

with ε a user-defined threshold setting the maximal relative inaccuracy of the result. The
quantity χDP directly translates into the estimated number of accurate digits κDP via
the relation

κDP = − log10(χDP ) (3.4.15)

There are two kinds of stability tests available in MadLoop5:

1. Direction test — Re-computing the loops with a different loop cut placement
modifies the order of the propagators given in input to the OPP algorithm and
it reshuffles the iterative solution for the scalar integral coefficients of eq. (2.3.8),
yielding a very different result in case of numerically unstable reduction. Arbitrary
loop cut modifications can be difficult to implement, except for the simplest one
which consist in keeping the loop cut placement identical and reading the loop
in the opposite direction. Effectively this corresponds to specifying to the OPP
algorithm the denominators D0D1 . . . Dn in the reversed order and to flip the sign
of the loop momentum at which the integrand numerator N (`) is evaluated36.
MadLoop5 implements this specific change of loop cut configuration as a stability
test. When used together with the open-loop technology, this test has the great
advantage of doubling only the time spent in CutTools as the open-loop coefficients
computed for the first evaluation EDP1 can be recycled for this test and need not

36In the terminology of sect. 3.1.1, this is the equivalent of a mirror operation on the L-cut diagram
identity.
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be recomputed.

2. Lorentz test — The quantity V (r) is normally Lorentz invariant and re-computing
the loops with the input kinematic configuration Lorentz-transformed should yield
identical results. MadLoop5 considers a particular Lorentz rotation for this test. In
principle, Lorentz boosts could be used too but only for helicity summed evaluations
because they modify the reference vectors for helicity projection. Also, it is clear
that if a given kinematic configuration is stable, so is its Lorentz rotated equivalent.
This is not necessarily the case for the Lorentz boost transformation. The drawback
of this test is that it doubles MadLoop5 computation time.

In practice, MadLoop5 default runtime parameters set ntest to 2, hence performing
one test of each of the two kinds above. When these stability tests fail, the kinematic
configuration is classified as an Unstable Phase-Space point (UPS) and MadLoop attempts
a stability recovery procedure. In MadLoop4, this procedure was unsatisfactory because
it failed quite often and implied slight modifications to the input kinematic configuration.
The recovery method in MadLoop5 is more direct and simply consists in re-performing the
whole computation with quadruple precision arithmetics which is unfortunately hundred
times slower. In order to systematically cure all UPS, it was observed to be important
to upgrade the numerical precision of both the internal algebra of CutTools and of the
computation of the numerator N (`). This implies that all quantities previously defined
with 17 significant digits must be redefined in a format with 34 digits. This extension
must be performed with care for the input kinematic configuration as it is crucial in this
case that energy-momentum conservation and onshell relations be respected to quadruple
precision accuracy (see appendix A.4). The same stability tests are performed on the
quadruple precision results. These multiple evaluations are in this case denoted EQPi and
they are compared as in eq. (3.4.14) to decide if the quadruple precision computation is
stable enough. If it is not, the kinematic configuration is called an Exceptional Phase-
Space point (EPS) and MadLoop5 does not proceed with further rescuing attempts.
Fortunately, this situation never occurs in practice as no EPS has ever been registered
to this day, even for the most complicated processes37. Finally, the different parameters
controlling the detection and handling of numerical instabilities can all be set in the
MadLoop param card (see app. A.5).

It is worth stressing here that irrespectively of how MadLoop5 treats the input phase-
space point (i.e. wether it is considered stable or unstable and computed in double or
quadruple precision), MadFKS5 always checks the cancellation of the residues of the
single pole of the loop matrix element with that of the real-emission contributions38.
In the event that MadLoop5 shall leave some unstable double precision computations
undetected, this additional check would reveal this by recording a significant number of

37The smallest relative accuracy ever observed on quadruple precision evaluation is ε = 10−9.
38This single pole residue is computed by MadFKS directly from its analytic expression given in

eq. (B.2) of ref. [105]).

67



Chapter 3. MadLoop

kinematic configurations featuring imprecise single pole cancellation. This behavior has
never been observed to this day, hence further assessing the sensitivity of the direction
and Lorentz stability tests.

The fraction of UPS configurations is an important figure because their computation in
quadruple precision is a factor 100 slower than for stable configurations. This means that
a Monte-Carlo integration is already twice slower if as little as 1% of the phase-space
points considered are unstable. Sec. 3.4.1 already mentioned the MadLoop5 command
’check stability’ which performs the direction and Lorentz stability test for a large
number of random kinematic configurations39. We present here the stability results
obtained via this command for four processes evaluated at 10’000 random kinematic
configurations. The processes are

• gg → tt̄+ ng with n=0,1,2 — These processes can be used as standard candles as
they feature almost all of the most interesting loop topologies with massive and
massless internal lines. Monitoring each n from 0 to 2 shows how the fraction of
unstable points scales when pentagons and hexagons start contributing.

• gg → e+νeµ
−ν̄µbb̄ — This is the signature of the full leptonic decays of a top-quark

pair, but it also includes all other singly-resonant diagrams. For this process, the
complex mass scheme is turned on so that it is sensitive to possible numerical
instabilities related to the use of complex arguments for the scalar loop master
integrals. Also, some loops of this process involve two mass scales which is a
complication not present in the precedent class of processes.

The following statistics are given on the quantities EDPi computed for each of the 10’000
kinematic configurations (the quadruple precision ealuations EQPi are computed only for
the UPS, defined by a relative accuracy threshold ε set to 0.1 for these runs.)

• β(∆) — This is the most important figure; it specifies the fraction of points for
which the estimated inaccuracy χDP is larger than ∆. The user can thus infer from
the plot of β(∆) what is the fraction of UPS he would obtain at runtime from
setting their defining threshold ε to a different value than the default 10−3.

• − log10(med{χ}) — The median for the set of computed inaccuracies χDP and χQP .
The logarithm in base 10 is there in order to directly translate the result into the
estimated number of correct digits.

• Direction test Power P = log10(med{η}) — With the quantity η defined as

η =
χdir.test
χLor.test

(3.4.16)

39Except for a cut of Pt > 50GeV and ∆Rij > 0.5 applied to massless final state particles (if any in the
process chosen by the user for the stability check) in order to screen possible soft/collinear divergences.
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with χT defined like in eq. (3.4.14) but with only the evaluations Ei belonging to
the test T. It is positive if the instability resolving power of the direction test is
greater than the Lorentz one and negative otherwise.

• Stability tests Consistency C = log10(med{τ}) — With the quantity τ defined as

τ =
χDP

|〈EDPi 〉 − 〈E
QP
i 〉|

(3.4.17)

Notice that τ can be computed only when quadruple precision computations have
been performed. Ideally one would like to design stability tests on double precision
results which produce an estimation of the inaccuracy as close as possible to the
discrepancy with respect to the exact result (assumed to be the quadruple precision
one here); this is the case if C is close to zero. If C is positive, the stability tests
underestimate the accuracy of the double precision result (very unlikely) and they
overestimate it otherwise.

The plot of fig. 3.4.3a shows a clear change of stability regime as the process multiplicity
increases. This is reflected by the progressive breakdown of numerical precision from a
median of 13 correct digits for the 2→ 2 case down to 7 digits for the 2→ 4 topologies.
For all processes, the equivalent statistical measure − log10(med{χQP }) for quadruple
precision evaluations shows that 17 digits at least are numerically stable40 so that no EPS
was ever registered during these stability checks. For the last two complicated processes,
the fraction of UPS is O(1%) , so not a showstopper even if it is already enough to double
the integration time. The power P of the direction stability test is very similar to the
common Lorentz one and this suggests that for Monte-Carlo applications, one can afford
to rely only on the direction stability test which only marginally increase the computation
time. This can easily be done so by editing the value of the parameter ’NRotations_DP’
in the MadLoop parameter card. The figure of consistency C shows that the stability
tests employed tend to overestimate the real accuracy of the result in double precision by
about one digit. This gives some confidence in the stability test efficiency, but the real
figure of failure F (ε) is, for a given UPS defining threshold ε, the fraction of kinematic
configurations for which χDP < ε but | < EDPi > − < EQPi > | > ε. The recorded results
of C however lead to anticipate41 very small values for F (10−3). Further analysis can
confirm this if need be.

Process multiplicities higher than six are not presented here and the trend observed
bodes ill for their numerical stability. The origin of numerical instabilities in the OPP
reduction algorithm is not always well understood and a systematic cure is not yet
possible in this context. The situation is better for tensor integral reduction algorithms

40The precise number cannot be established because the stability tests are performed on double
precision arithmetics, even for the evaluations originating from computations in quadruple precision.

41There are nonetheless some configurations with C as negative as -8.
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Process β(10−3) − log10(med{χDP }) P C

gg → tt̄ 0% 12.7 -0.2 -0.6
gg → tt̄ g 0% 9.0 -0.1 -0.9
gg → tt̄ g g 1.25% 7.5 0.0 -1.1
gg → e+νeµ

−ν̄µbb̄ 1.11% 6.1 0.2 -1.7

(b)

Figure 3.4.3: Statistics on the stability tests performed by MadLoop for characteristic
processes, using 10’000 random kinematic configurations with Pt > 50GeV and ∆Rij > 0.5
cuts on massless final state particles. For all these processes and the points considered,
MadLoop5 evaluations using quadruple precision arithmetics provided at least 9 stable
digits.

where the numerically unstable regions can be identified and the reduction procedure
accordingly stabilized around these points42. The computer codes for tensor integral
reduction PJFry++ [98, 99] and COLLIER [70] successfully43 implement such solutions.
MadLoop5 will be able to benefit from these codes upon completion of its interface to
these tools.

42In the example of sec. 2.2, one sees that the procedure fails around kinematic configurations of
linearly dependent momenta which render the Gram matrix G2 singular. Around these configurations ,
it is possible to stabilize the numerical solution by means of Taylor expansions of Gram determinants
which lift the artificial singularity introduced by the reduction procedure [69].

43The loop reduction in ref. [52] is performed with the computer code COLLIER and it shows a plot
similar to fig. 3.4.3 but featuring a better scaling of the numerical accuracy.
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As sect. 3.4.5 shows, processes of this larger multiplicity are already too slow in double
precision for Monte-Carlo applications, so that their numerical instabilities is not the
limiting factor. As of running MadLoop5 output for these more involved processes on
only a couple of kinematic configurations to use as a cross-check of an independent faster
code, this is still possible thanks to quadruple precision whose speed is not an issue in
this case.

3.4.5 Performance benchmarks

Sect. 3.2 shows that all old intrinsic limitations of MadLoop4 are relaxed in MadLoop5,
sect. 3.4.2 presents the UFO format paving the way ahead of the most imaginative model
builders and sect. 3.4.4 assessed that numerical instabilities are nothing to worry about
until heptagons are considered. It is then clear that the sole limitation of MadLoop5 is
its computational load and this section presents in details the repartition and amount of
computing time for characteristic high energy physics processes. These processes are not
chosen for their scientific relevance but in order to illustrate a class of complexity so that
any process of the reader’s interest can find its counterpart in table 3.4.4b.

Fig. 3.4.4a shows the pace at which the evaluation time for a given helicity configuration
(polarized case) increases with the number of contributing Feynman diagrams. This
seemingly linear behavior is in part due to the loop wavefunction recycling made possible
by the open loop technology and which compensates for the fact that the loops of higher
multiplicity processes are of higher rank and hence take longer to evaluate. For the n-gluon
amplitude case, the open loop coefficients of the closed massless quark loops are each
computed independently. The optimization consisting of computing such contribution
once and multiplying it by the number of massless flavors considered in the model is quite
trivial to implement as an ad-hoc fix and its effect is emulated here by forbidding the
down, charm and strange flavors in the process definition. The same could have been
done for gg → tt̄gg and it would have reduced the time tunpol from 16.9 seconds to 11.4
seconds.

The number of independent helicity configurations explicitly computed by MadLoop5 is
indicated in the second column of table 3.4.4b. With the first kinematic configurations
given in input to MadLoop5, it sets up numerically a filter which discards the helicity con-
figurations which are identically zero and attempts to put together helicity configurations
whose contributions are consistently identical.

When not using the open loop technology, MadLoop5 must recompute all the loop
wavefunctions building the numerator N (q) for each new value of qµ: this is typically
much slower, by up to a factor 8 for the process gg → tt̄gg.

MadLoop5 computation time with open loops splits into the time tCT spent within
CutTools to work out the numerical solutions to OPP constitutive equations and the
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time tcoeff spent for the computation of the open loop coefficients. Thanks to eq. (3.4.2),
tCT is independent of the number Nhel.conf of helicity configuration computed while tcoeff
is exactly linear in it. This means that for complicated enough processes with many
helicity configurations, the computing time is dominated by tcoeff .

The processes chosen for this benchmark are identical to those of ref. [52] but we refrain
the reader from directly comparing the timing tunpol of the two codes, because the total
number of helicity configurations computed are not the same as in ref. [52] since they
assume the top-quark and W-boson to decay to massless particles so that only one
helicity of these final state unstable particle is considered. When correcting for this and
considering the most complicated 2→ 4 processes, MadLoop5 is at most 3 times slower
than the program OpenLoops interfaced with OPP reduction tools. The reasons for
this difference in speed are not yet understood.

The generation time and size of numerical code output for these processes is very moderate
in regard of their complexity and therefore not the limiting factor. The RAM usage at
runtime is O(100Mb) for the 2→ 4 processes which is no obstacle for modern clusters.
The real limitation for Monte-Carlo applications lies in tunpol which is typically 2ms for
2→ 2, 50ms for 2→ 3 and 2s for 2→ 4 processes. It is difficult to translate these timings
directly into an estimation of the related computing time for phenomenology studies as
this depends on many factors. Most importantly, the number of integration channels
must remain under control and ideally be smaller than the number of cluster cores at
disposal. Also, the nominal time tunpol must be increased by tCT to account for the
direction stability test and the result yet multiplied by (1+100 ·β(ε)) for the time spent in
the re-computation of UPS points in quadruple precision. With MadFKS and its current
computational organization of the integration, it is challenging44 to study any process at
NLO for which the virtuals evaluation time for one phase-space point exceeds a couple of
seconds. This table shows that aMC@NLO5 is for now limited, when using MadLoop5
for loop computations, to the study of 2→ 4 processes at most, simply because of CPU
power. In the future and if proven necessary, the integration structure can easily be
made fully parallel so as to be able to exploit arbitrarily large computing resources, hence
opening the way to the study of NLO corrections to even more complicated processes. A
more detailed list of all the processes already attempted with the current architecture
and validated by the aMC@NLO collaboration can be consulted at amcatnlo.cern.ch.

44Even with clusters of arbitrarily large size because at this stage step 0 and 1 of the computation
(see 3.4.1) are not fully parallelized, so that one is still forced to run the slowest integration channel of
virtual origin on a single node.
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Process Ndiags Nhel.conf tunpol [ms] tpol [ms] tgen [s] Csize [Mb]

gg → gg / dcs 123 3/16 10.3 (62%) 5.9 (38%) 18.2 0.7
gg → tt̄ 45 6/16 5.4 (66%) 2.5 (25%) 12.8 0.6
uū→ tt̄ 14 3/16 0.72 (42%) 0.52 (20%) 9.1 0.4
ud̄→W+g 11 6/24 1.51 (52%) 0.87 (16%) 13.9 0.4
uū→W+W− 6 10/36 1.0 (69%) 0.4 (21%) 12.4 0.5

gg → ggg / dcs 1373 20/32 940 (93%) 110 (44%) 208 4.0
gg → tt̄g 556 32/32 381 (92%) 41 (29%) 62 1.5
uū→ tt̄g 128 16/32 28 (78%) 7.4 (18%) 18.3 0.7
ud̄→W+gg 144 12/48 37 (69%) 13 (17%) 24.3 0.8
uū→W+W−g 98 36/72 82 (91%) 9.3 (24%) 35.3 0.8

gg → gggg / dcs 17900 50/64 51500 (96%) 2020 (65%) 38300 231.0
gg → tt̄gg 7356 64/64 16900 (97%) 826 (35%) 12300 25.5
uū→ tt̄gg 1530 32/64 1010 (88%) 142 (22%) 180 3.1
ud̄→W+ggg 1827 24/96 1300 (84%) 260 (20%) 254 4.0
uū→W+W−gg 1108 72/144 2820 (95%) 166 (25%) 204 2.3

(b)

Figure 3.4.4: Benchmark of MadLoop timing performances, using open-loop technology
and the OPP loop reduction algorithm, for characteristic processes on an Apple laptop
of the macbook pro series, single core usage of an i7, 2.8 GHz CPU with the gfortran
v4.6.2 compiler, and optimizations turned off. Similar timings have been obtained with
different compilers and compiler options. The percentage in parenthesis correspond to
the fraction of time spent in the computation of the open-loop coefficients. The quantity
Csize indicates the size of the source code, including the helicity and color factors data.
The notation ’/ dcs’ indicates that the corresponding massless quark contributions have
been removed to emulate the fact that one could very easily group them together for any
serious application of that process.
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4 LHC phenomenology with aMC@NLO

The high level automation achieved with aMC@NLO allows one to quickly produce NLO
predictions matched to parton showers for the processes relevant to experimental analysis
or prospective theoretical work. The long list of NLO cross-sections for the processes of
table 3.2 could not have been obtained in such a short time via ad-hoc computations by
hand and it thereby attests the efficiency and flexibility of the framework. aMC@NLO can
however do much more and produce fully differential analysis for all kind of observables
and the four publications [104, 103, 102, 101] provide examples of such an application.
In the first section of this chapter, I wish to recap the results obtained in [103] for the
production of a scalar or pseudo-scalar in association with a top pair obtained using the
aMC@NLO4 framework. In the second section, I present an unpublished calculation to
NLO in QCD of triple vector boson production at the LHC using aMC@NLO5 which,
among other things, illustrates the use of MadSpin for simulating the vector boson decays.

4.1 aMC@NLO4 applied to p p → H/A t t̄

A new bosonic resonance has recently been observed at the LHC [2, 55] and is highly
expected to be the long-sought Higgs boson, the scalar remnant(s) of the Englert-Brout-
Higgs mechanism [96, 121, 120] in the standard model. At the end of 2011, both the
ATLAS [1] and CMS [54] experiments at the LHC have recorded some excess of events in
four-leptons analysis consistent with the decay of a Higgs boson of about 125 GeV into
weak vector bosons. A corresponding excess1 was also seen in the two-photons analysis,
receiving contribution from the Higgs boson via its loop-induced decay2. Finally, some
evidence is also seen at the Tevatron [4] in the bb̄ Higgs decay channel, although the
analysis suffers from large uncertainties and features a poor mass resolution. It is by now
clear that these excesses are not experimental flukes but all consistent with the SM Higgs.

The days of the Higgs discovery now give way to the era of more precise measurements for
the determination of its properties and couplings. A coordinated theoretical/experimental
effort in the last years has led to a number of remarkable achievements in the accuracy
and usefulness of the available theoretical predictions, and in the role these play in current
analysis techniques [77, 78]. The parity of this new resonance is a crucial one to determine

1Although marginally larger than expected.
2This observation rules out the possibility of a vector-like Higgs boson, since an onshell spin-1 particle

cannot decay into two massless spin-1 bosons as proved by the Landau-Yang theorem [157, 126].
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and several strategies have been proposed already (see ref. [133] for a list of references on
that topic). We wish in this section to relate the main results of our publication [103]
showing an alternative way to probe the parity of a scalar Higgs-like particle. This is
Higgs production mode in association with a top quark pair, which is directly sensitive to
the top Yukawa coupling, so that its study can potentially also provide constraints on its
value.

Given the branching ratios of a Standard Model Higgs with mass around 125 GeV, its
study at the LHC is very promising since many decay modes are accessible. Its dominant
decay mode, into a bb̄ pair, is challenging to observe, being completely overwhelmed by
the irreducible QCD background. A possible solution is that of considering the Higgs
in association with other easier-to-tag particles3. An interesting case is that of a top-
antitop pair, since the large Yukawa coupling ttH, and the presence of top quarks, can be
exploited to extract the signal from its QCD multi-jet backgrounds. Unfortunately, this
production mechanism is also plagued by large backgrounds that involve a tt̄ pair, and
hampered by its rather small rates, and thus turns out to be difficult to single out. Several
search strategies have been proposed, based on different decay modes: from bb̄ which
leads to the largest number of expected events, to the more rare but potentially cleaner
ττ [18], WW (∗) [128] and γγ [42] final states. All of them are in fact very challenging,
and dedicated efforts need be made. For example, recently it has been argued that in the
kinematical regions where the Higgs is at quite high transverse momentum, the bb̄ pair
would be merged into one “fat” jet, whose typical structure could help in discriminating
it from QCD backgrounds [43, 144] (boosted Higgs scenario).

It is then clear that accurate and flexible simulations, for both signals and backgrounds,
can give a significant contribution to the success of any given analysis. Predictions
accurate to NLO in QCD and at the parton level for tt̄H hadroproduction have been
known for some time [15, 16, 63, 62, 80], and recently confirmed by other groups [8, 123].
As for the most relevant background processes to the Higgs decay mode into bb̄, NLO
calculations for tt̄bb̄ [41, 29] and tt̄jj [30] are available in the literature. In this section,
we extend the results for the signal to computing the associated production tt̄A of a
pseudo-scalar Higgs boson.

The work presented in this section has been performed in the aMC@NLO4 framework. All
its calculational aspects, including the matching to shower with the MC@NLOmethod,
are therefore fully automated. This is even more true now that such an analysis can also
be performed with aMC@NLO5 and our results were, at the time of their publications,
the first example of NLO computations matched to showers in which all ingredients of
the calculation were automated, and integrated in a unique software framework. For the
sake of this specific application, a dedicated comparison with the results of ref. [78] has
been performed for the total tt̄H cross section, and an agreement at the permil level was

3This is indeed the strategy pursued by the CDF and D0 collaboration at the Tevatron where the
Higgs production was studied in association with an electroweak vector boson.
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found.

4.1.1 Results

We present selected results for total cross sections and distributions relevant to tt̄H/tt̄A
production at the LHC in three scenarios:

I. Scalar H, with mH = 120 GeV;

II. Pseudoscalar A, with mA = 120 GeV;

III. Pseudoscalar A, with mA = 40 GeV;

where the Yukawa coupling to the top is always assumed SM-like, yt/
√

2 = mt/v.

The three scenarios above allow one to compare the effects due the different parity
of the Higgs couplings on total rates as well as on differential distributions. In this
respect and even in light of the recent LHC findings, it is interesting to consider the
situation in which the Higgs boson is light and pseudoscalar, as is predicted in several
beyond-the-standard-model theories (see e.g. Refs. [76, 66, 95]).

The main purpose of this section is that of studying the impact of QCD NLO corrections
at both the parton level and after shower and hadronization. For the numerical analysis we

choose µF = µR =
(
mt
Tm

t̄
Tm

H/A
T

) 1
3 , where mT =

√
m2 + p2

T and mpole
t = mMS

t = 172.5

GeV. We have used LO and NLO MSTW2008 parton distribution functions for the
corresponding cross sections. The parton shower in aMC@NLO has been performed with
FortranHerwig, version 6.520.

Cross section (fb)

Scenario 7 TeV 14 TeV

LO NLO K-factor LO NLO K-factor

I 104.5 103.4 0.99 642 708 1.10

II 27.6 31.9 1.16 244 289 1.18

III 69.6 77.3 1.11 516 599 1.16

Table 4.1: Total cross sections for tt̄H and tt̄A production at the LHC (
√
s = 7, 14 TeV),

to LO and NLO accuracy. The integration uncertainty is always well below 1%. Scale
choices and parameters are given in the text.

The predicted production rates at the LHC running at
√
s = 7 and 14 TeV are given in

Table 4.1 where, for ease of reading, we also show the fully inclusive K-factor. As far
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as differential distributions are concerned, we restrict ourselves to the 7 TeV LHC, and
begin by studying a few fully-inclusive ones (see figs. 4.1.1, 4.1.3, 4.1.2a and 4.1.2c). We
then consider a “boosted” case, i.e. apply a hard cut on the transverse momentum of
the Higgs (see figs. 4.1.2b and 4.1.2d). Finally, in figs. 4.1.4a to 4.1.4f we present our
aMC@NLO predictions for correlations constructed with final-state B hadrons, which
may or may not arise from the decays of the Higgs and/or of the tops (see a discussion
on this point later).

Figure 4.1.1: Higgs transverse momentum distributions in tt̄H/tt̄A events at the LHC
(
√
s=7 TeV), with aMC@NLO in the three scenarios described in the text: Scalar (blue)

and pseudoscalar (magenta) Higgs with mH/A = 120 GeV and pseudoscalar (green) with
mA = 40 GeV. In the lower panels, the ratios of aMC@NLO over LO (dashed), NLO
(solid), and aMC@LO (crosses) are shown for each scenario.

We first note a very interesting feature of fig. 4.1.1: the pT distributions corresponding to
the three different scenarios, while significantly different at small transverse momenta,
become quite close to each other at higher values. This is expected from the known
pattern of the Higgs radiation off top quarks at high pT in both the scalar and the
pseudoscalar cases [64, 81, 15]. This difference is not affected by NLO corrections, and
could therefore be exploited to identify the parity of the coupling at low pT . On the other
hand, the independence of the parity and masses of the pT distributions at high values
implies that the boosted analyses can equally well be used for pseudoscalar states.
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(a) (b)

(c) (d)

Figure 4.1.2: Transverse momentum and invariant mass distributions of the top quarks
in tt̄H/tt̄A events at the LHC (

√
s=7 TeV). The color scheme as described in caption of

fig. 4.1.1 has been used. Figures 4.1.2b and 4.1.2d include only events selected with a cut
on the Higgs transverse momentum p

H/A
T > 200 GeV.

In general, we find that differences between LO and aMC@LO4, and between NLO and
aMC@NLO, are quite small for observables involving single-inclusive distributions, see
figs. 4.1.1, 4.1.2a and 4.1.2c. The same remark applies to the comparison between LO
and NLO, and between aMC@LO and aMC@NLO. However, if the cut pH/AT > 200 GeV
is imposed (boosted Higgs analysis), differences between LO and NLO (with or without
showers) are more significant, and cannot be approximated by a constant K-factor.

4We call aMC@LO the analogue of aMC@NLO, in which the short-distance cross sections are
computed at the LO rather than at the NLO. Its results are therefore equivalent to those one would
obtain by using,e.g. MadGraph/MadEvent [6, 7] interfaced to showers.
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Figure 4.1.3: Transverse momentum of the tt̄H or tt̄A system. The same color scheme as
in fig. 4.1.1 has been used. Solid histograms are aMC@NLO, dashed ones are NLO.

As is obvious, the impact of the shower is clearly visible in the three-particle pT (tt̄H/tt̄A)

distribution of fig. 4.1.3. This observable is infrared-sensitive at the pure-NLO level for
pT → 0, where it diverges logarithmically. On the other hand, the predictions obtained
after interfacing with shower do display the usual Sudakov suppression in the small-pT
region. At large transverse momenta the aMC@NLO and NLO predictions coincide in
shape and absolute normalization, as prescribed by the MC@NLO formalism.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1.4: Distributions of the invariant mass and ∆RBB separation of the B-hadron
pairs defined as a) (red) and b) (blue) in the text for the three scenarios considered. The
results obtained by imposing pH/AT > 200 GeV (magenta and cyan, respectively) are also
displayed. Solid histograms are aMC@NLO, dashed ones are aMC@LO.
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In our Monte Carlo simulations, we have included the t→ e+νb, t̄→ e−ν̄b̄, and H → bb̄

decays at LO with their branching ratios set to one5. After showering, the b quarks
emerging from the decays of the primary particles will result into b-flavored hadrons.
As prescribed by the MC@NLO formalism, the showering and hadronization steps are
performed by the event generator the NLO computation is matched to, i.e. Herwig in
this work. The parameters that control hadron formation through cluster decays are set
to their default values in Herwig [60]. Additional b-flavored hadrons may be produced as
a consequence of g → bb̄ branchings in the shower phase. For example, for scalar Higgs
production at 7 TeV, about 2.7% and 0.5% of events have six and eight lowest-lying B
hadrons respectively. In our analysis, we have searched the final state for all lowest-lying
B hadrons, and defined two pairs out of them. a) The pair with the largest and next-to-
largest transverse momenta; b) the pair with the largest and next-to-largest transverse
momenta among those B hadrons whose parent parton was one of the b quarks emerging
from the decay of the Higgs (there are about 0.2% of events with four or six B hadrons
connected with the Higgs). The definition of b) relies on MC truth (and in all cases
we assume 100% tagging efficiency), but this is sufficient to study the basic features of
final-state B hadrons.

In figs. 4.1.4a to 4.1.4f we plot the pair invariant mass (mBB) and the η − ϕ distance
(∆RBB) correlations between the B-hadron pairs defined as explained above. The effects
of the NLO corrections to tt̄H/tt̄A are, in general, moderate. A cut of 200 GeV on the
pT of the Higgs is seen to help discriminate the B hadrons arising from the Higgs from
those coming either from top decays, or from the shower. The shapes of the distributions
are similar between scenarios I and II while, due to the lower Higgs mass, the mBB and
∆RBB histograms peak at lower values in the case of a pseudoscalar A with mA = 40

GeV [118].

5We have neglected production angular correlations [111], as these are expected to have a minor
impact for the kind of processes and observables we consider here. In case one would like to recover most
of these effects, MadSpin can be used to decay the events produced at parton level by aMC@NLO.
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4.2 aMC@NLO5 applied to p p → Z W+ W−

Triple vector boson production and their subsequent decays is an interesting process as it
represents the most important background to an experimental analysis that requires many
leptons. Such signatures are very clean and shared by many BSM processes, particularly
the ones of Supersymmetry.

On top of this, it is also sensitive to the electroweak quartic couplings whose values
could be further constrained at the LHC [116, 89]. This is of great importance since the
only direct precise measurements of these couplings now come from the Large Electron
Positron collider (LEP) [5] as the hadronic environment of Tevatron, combined with its
comparatively low beam energy, proved to be challenging for such a measure [116, 89].

As expected from the computation of the QCD corrections to diboson production6, these
lead to a large enhancement of total rates also in the case of triple vector boson production.
In this latter case, K-factors as large as 2 have been computed by several groups for
various combinations of final state electroweak vector bosons [9, 127, 119, 45, 38]. In this
work, we choose to study the pp→ ZW+W− production which features the largest total
rate and at variance with the work of ref. [119] which considers the decay of the vector
bosons to leptons of three different families, we study the decay channels W+ → µ+νµ,
W− → µ−ν̄µ and Z → e+e−. We use MadSpin to implement these decays so as to retain
most of the spin-correlation7 and off-shell effects. This computation has been entirely
performed within the now publicly available aMC@NLO5 framework (see sect. 3.4.1) and
it stands as the first NLO computation of a triboson process matched to a parton shower.
For the results presented in this section, the Higgs contribution was not considered but
the same analysis including it as well as the vector boson decays at the matrix element
level is readily possible8 with aMC@NLO5.

4.2.1 Results at the LHC, 8 TeV

The goal of this study is to provide a full-fledged example of aMC@NLO5 use. In this
spirit and because parton showers are anyway not supposed to have a major impact for
this process, we only present the results matched to the parton shower Herwig, version
6.520.

As aforementioned, the vector boson decays can be simulated either via MadSpin (MS)

6Known for a long time, see [135] for a list of references to the pioneer works on that process. Also, a
study of four leptons production at the LHC has been performed in ref. [102] with aMC@NLO4.

7This is especially true in this particular application because there are no non-factorizable contributions
typical of loops involving the decay products so that all spin-correlations effects are retained, were it not
for the singly and doubly resonant diagrams missing for lepton production.

8At the time of the writing of this thesis, a minor issue regarding how MadFKS handles competing
resonances prevented us from doing so. This problem is now fixed and does not stand as an obstacle
anymore. One can now even perform the computation within the complex mass scheme [71, 75].
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or via a “flatly” distributed decay implemented by Herwig. In order to investigate the
magnitude of the off-shell and spin-correlation effects, the plots show the distributions
obtained in both cases. However, notice that in none of these approaches one includes all
the singly and doubly resonant diagrams.

We remind to the reader that the Higgs contribution is not accounted for and that the
mass effects of the massive quarks in the loop are computed exactly and with zero width.
The characteristic Born topologies contributing to this process are then the following

Figure 4.2.1: The four different Born topologies contributing to pp→ ZW+W− without
the Higgs contribution. The intermediate virtual vector bosons can be Z, W± or the
photon γ.

We use the LO and NLO MSTW2008 parton distribution functions with their correspond-
ing values of αs(MZ). The center of mass energy is set to 8 TeV. The value of the other
parameters used are:

Parameter value Parameter value

α−1 132.507 GF 1.16639·10-5

mW 80.419 ΓW 2.0476

mZ 91.188 ΓZ 2.441404

mt 173.0 mb 4.7

nlf 4 µR = µF
∑

V={W+,W−,Z}
mT (V )

Table 4.2: Parameters used for this analysis with dimensionful quantities given in GeV
and the transverse mass defined as mT (V ) =

√
m2
V + pT (V )2.

We adopt a fixed width scheme for the electroweak bosons. Notice that the default UFO
standard model loaded by aMC@NLO5 for this analysis uses an electroweak input scheme
with mW and the Weinberg angle θw as internal parameters.
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We start by presenting in table 4.3 the total rates

LO NLO K-factor

35.33
+1.48(4.2%)
−1.41(4.0%) 59.91

+3.41(5.7%)
−2.82(4.7%) 1.7

Table 4.3: Total cross sections in femtobarns for ZW+W− production at the LHC
(
√
s = 8 TeV), to LO and NLO accuracy. The integration uncertainty is always well below

1% and the variation in upper and lower indices correspond to the maximum deviations
obtained by independently multiplying the renormalization and factorization scale by a
factor 2 and 0.5.

The K-factor of 1.7 obtained together with the relatively large scale uncertainty, even at
NLO, is consistent with the findings of ref. [119]. It is worth stressing here that the µR
and µF scale variations were not obtained by iterating the whole computation but much
more efficiently through the reweighting techniques presented in ref. [102].

We now turn to the results obtained for various observables selected for their sensitivity to
either NLO corrections or spin-correlation and offshell effects. In all the plots presented
in this section, the distributions have been normalized to the NLO cross-section including
the branching ratios of the decays W+ → µ+νµ, W− → µ−ν̄µ and Z → e+e−.

(a) (b)

Figure 4.2.2: Transverse momentum and invariant mass distributions of the whole system
in ZW+W− decayed events at the LHC (

√
s=8 TeV). The red curves correspond to the

vector boson “flatly” decayed by Herwig and the black one by MadSpin (MS). The dashed
and solid curves are the LO and NLO predictions respectively. All curves are normalized
to the one of aMC@NLO+MS.

Fig. 4.2.2a displays the same Sudakov suppression as observed in fig. 4.1.3 for the case of
Htt̄ production and results from the matching to the parton shower. At large values of
the system pT , the NLO distribution is larger than the LO one because the NLO matrix
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element yields a first emission typically harder than the one from the parton shower of
the LO sample.

The reconstruction of off-shell effects by MadSpin is best observed with the invariant
mass of the two electrons emerging9 the Z-boson. For convenience, we also give here the
same distribution for the W+ decay products.

(a) (b)

Figure 4.2.3: Invariant mass distributions of the decay products of the Z and W+ bosons.

When decayed with Herwig, the invariant mass of the Z and W+ decay products fills a
single bin placed at the corresponding pole masses and this is no surprise since the parton
shower does not alter the parton level kinematics where the vector boson are produced
exactly on-shell. This is unlike MadSpin which thereby reproduces the Breit-Wigner
shape characteristic of unstable particle propagators. One must however keep in mind
that this is still an approximation which breaks down when far offshell because of the
presence of some singly and doubly resonant diagrams not taken into account here (as
well as the virtual photon decay to leptons).

We now turn to the investigation of the spin-correlation effects by considering the angular
correlations between the decay products. We stress that we verified that LO results
including all the contributions to the bosonic decays at matrix element level agree very
well with MadSpin predictions at LO. The angle between the directions of flight of leptons
l1 and l2 measured in the laboratory frame is denoted by θ(l1, l2) while φ(l1, l2) is the
same angle but with the direction of flights defined in the rest frame of the vector boson
they decayed from.

9The electroweak shower is turned off by default in Herwig so that the only electrons present at the
hadron level are the two already present at parton level.
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We show here distributions for φ and θ of the two lepton pairs (µ−, e+) and (µ−, µ+)

(a) (b)

(c) (d)

Figure 4.2.4: Distributions of the angles θ(l1, l2) and φ(l1, l2) as defined in the text.

The bowl shape of the θ distributions is driven by the kinematic boosts of the decaying
vector bosons and this washes out any spin-correlation effects. The φ distributions are
engineered not to be sensitive to this and we obtain in this case a flat curve for the sample
decayed by Herwig. This is expected since the PSMC gives no preference to a particular
direction of flight in the rest frame of the mother particle. We see a significant departure
from a flat distribution only in the case of the correlation between the decay products of
the W ’s, and it turns out that the Z decay products seem not to be spin-correlated with
any of the other leptons. It is interesting to notice the small tilt of the φ(µ+µ−) slope
when including NLO corrections. We should also mention here that a small MadSpin

impact can be observed in the θ(e+, e−) distribution (not shown here) which is solely
induced by the MadSpin change of the Z kinematic (off-shell effect).

Another observable readily measurable at collider experiments and prone to be sensitive
to spin-correlation effects is the pseudorapidity η of given leptons. We present here the
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results for the charged leptons:

(a) (b)

(c) (d)

Figure 4.2.5: Pseudorapidity distributions of charged leptons.

Once again the Z decay products do not feature any striking change in the sample decayed
by MadSpin w.r.t. the one decayed by Herwig, confirming the presumption that they
are only mildly or not at all affected by spin-correlation effects. This is unlike the µ+

case where the tail at large pseudo rapidity is almost twice larger in the MadSpin sample.
Interestingly, this is not observed in the case of µ−. We hypothesize that this originates
from the different U(1) charge Y of left-handed leptons and anti-leptons because the
antineutrino ν̄µ pseudorapidity (see fig. 4.2.6) exhibits the same behavior as µ+ (the same
holds true for νµ and µ−, although the former is not shown here). We also notice that
with a cut of 20 GeV on the pT of the mother of the lepton considered, the MadSpin

sample (unlike the Herwig one) has even more forward antileptons and central leptons..
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Figure 4.2.6: Pseudorapidity of ν̄µ. Figure 4.2.7: Comparison of the W+ (red)
and W− (black) pseudorapidities.

The small difference in the shape of the µ+ and ν̄µ pseudorapidities comes from the
asymmetry between W+ and W− induced by the PDF. Indeed, in the first and second
topology of fig. 4.2.1, the W+ is always emitted by the parton and W− by the corre-
sponding anti-parton, leading to differences in W pseudorapidities since the valence u
and d quarks are distributed at larger Bjorken x’s at a pp collider. This turns out to be
of sizable effect, as shown in the fig. 4.2.7.

We conclude here by stressing once again that a computation including all contributions
to the process pp→ e+e−µ+νµµ

−ν̄µ is definitely possible within aMC@NLO5. For the
present work, a total of one million events has been generated at both LO and NLO,
necessitating only 2.5 and 15 hours of running time respectively and on a cluster with more
nodes than the 104 integration channels. The slowest channels are those of the virtual
contribution, whose evaluation time for a single phase-space point is tML = O(40ms).
The runtime speed of MadLoop5 is therefore the limiting factor in this case, on which
the total running time depends linearly10. The function ’check timing’ of MadLoop5
standalone (see sect. 3.4.1) indicates that tML increases11 to O(210ms) (O(53ms)) for
the process pp → e+e−µ+νµµ

−ν̄µ (pp → τ+τ−µ+νµe
−ν̄e). One can therefore expect a

million events to be generated in about three (less than one) days in this case.

10This is of course true only when comparing processes of similar convergence rate upon integration,
otherwise the total number of phase-space point evaluations necessary to achieve a given numerical
accuracy can vary significantly.

11This is a very moderate increase in evaluation time, given the growth of the number of loop diagrams
from 55 for pp→ ZW+W− to 987 (381) for the decayed case to three (two) different fermion families.
This partly results from the optimizations described in sect. 3.4.3 and also from the fact that the number
of contributing helicity configurations drops from 54 to 8 when considering the decays to massless leptons.
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5 Conclusion

5.1 Prospects

What was presented so far shows that the MadLoop5 project within aMC@NLO lived up
to its expectations. There are however still limitations to be lifted and several interesting
optimizations to consider. We list here the main directions in which the work of this
thesis will be pursued.

5.1.1 Computation of electro-weak corrections

The expansion parameter α/2π in Quantum Electro Dynamics (QED) is roughly1 hundred
times smaller than the QCD one, αS/2π. QED corrections are therefore generally smaller
than QCD ones but have nonetheless been shown to significantly affect and differential
distributions of some processes (see the work of ref. [79, 72] for example). Moreover,
what really matters is their size relative to the experimental precision which we know
is going to increase to unprecedented levels thanks to the LHC. Also, ref. [32] shows an
example of a process for which the contribution of the photon component of the proton2

is very relevant. In what follows, we employ QED to refer to the complete electroweak
SU(2)xU(1) sector, hence considering the effect of loops involving all four bosons W±, Z
and γ.

Computations of higher orders in QCD should naturally be accompanied by the cor-
responding lower order correction in QED. For example, hadroproduction of dijet has
already been partially computed at NNLO accuracy in QCD [147] because it features
a very large total rate with a characteristic signature and it is therefore experimentally
well measured, so that a precise theoretical prediction is necessary. At this order in QCD,
NLO QED corrections are naively expected to contribute equally as much and they were
shown to significantly contribute at large jet transverse energies [79, 134].

On a longer term perspective, lepton linear colliders like proposed in the CLIC [125] or
ILC [39] projects aim at doing precision measurements for which theoretical predictions
including QED corrections will be crucial.

1The exact ratio depends on the renormalization scale used for the running of these coupling constants.
2Which must be considered in the context of computations of QED corrections.
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For these reasons, QED computations with MadLoop5 within aMC@NLO5 have a wide
range of applications but also imply heavy modifications in all steps of the calculation.
There are mainly three technical difficulties to overcome:

• The MadLoop5 algorithm can already generate electroweak loops in Feynman gauge
and write out the corresponding numerical code for their computation. We are
however still lacking a validated UFO model file containing the necessary information
for treating such loops, typically their UV and R2 counterterms. The elaboration of
such a model is already underway and the first results are promising with already
many 2→ 2 processes cross-checked against dedicated codes.

• The infrared divergences due to the photon3 and color-charged parton emissions
factorize different underlying born contributions with different QCD and QED
coupling factors. The Monte-Carlo integration in MadFKS must be reorganized so
as to correctly handle these contributions of different mixed coupling structures.
In turn, this also means that MadLoop5 output must be restructured in order to
be able to provide one-loop matrix element evaluations factorizing definite QCD
and QED couplings. This implies that loop amplitudes are no longer necessarily
multiplied by all born contributions. For example, in the process dd̄→ uū discussed
in sect. 3.4.1, the loop of fig. 3.4.1b should not be multiplied by the photon s-channel
Born (but only the gluon s-channel one) in order to get the leading QED correction
and only this one.

• Also, when considering the matching of NLO QED parton level predictions to a
PSMC, the corresponding shower-dependent MC counterterms must be properly
derived. These are not trivial tasks as PSMC electroweak showers are not well
established yet.

This non-exhaustive list shows that this pioneer project involves the whole aMC@NLO

collaboration. Upon completion of these tasks, we should be able to use our framework to
systematically quantify the impact of QED corrections which were very often overlooked
so far solely because of their computational complexity.

5.1.2 BSM model support

Non trivial extensions of the Standard Model are very complicated because of their
large number of fields and couplings, or the complexity of the color, Lorentz and other
group structures they may involve. The MadGraph5 framework has always put special
emphasis on its flexibility and the UFO format (see sect. 3.4.2) it uses to input the model
information is general enough to deal with almost any BSM model.

3Their corresponding subtraction counterterm are trivial to derive from the existing ones for QCD;
essentially only color factors differ.
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Even then, the implementation by hand of these UFO model file (see sect. 3.4.2) is very
long and error prone, especially when also including the necessary information for loop
computations. Fortunately, the Mathematica package FeynRules, already mentioned in
the introduction, solves this by automatically computing the Feynman rules as well as the
R2 and UV counterterms directly from the Lagrangian given in input and then outputting
those to a UFO module. For LO computations, this tool is now mature, extensively
used and well tested. For the computation of loop contributions, FeynRules authors
recently managed to upgrade the code so as to produce UFO models including the extra
information described in appendix A.2 and the significant work of validating FeynRules

output for loop models is in progress. The prospects are great as ultimately all already
existing LO model files generated by FeynRules will be in principle available for one-loop
computations as well. In certain cases however (typically effective theories) it might be
necessary that the user provides, along with the Lagrangian, the UV renormalization
conditions. Of course, when taking these new UFO loop models in input, MadLoop5
must still be able to process their elementary objects and treat them correctly in the
context of a NLO computation. In many cases, this is beyond MadLoop5 capabilities
which is for now tailored to the Standard Model event though its structure was conceived
from the beginning to be general enough so as to eventually handle all BSM novelties.

Within a theory beyond the standard model, it is possible to distinguish three kinds of
loop corrections: those of pure QCD origin with only QCD states running in the loop4,
the pure BSM ones and finally the most general mixed case. We shall first focus on the
computation of the pure QCD corrections, which are most relevant, and move on with the
general case depending on its importance and the technical difficulties encountered. The
interest of being able to tackle loops for any BSM model greatly depends on potential new
discoveries at particle colliders, but it is worth mentioning here three direct applications
and, for each, what are the necessary modifications in MadLoop5.

• Supersymmetric models
This popular extension of the SM features an additional symmetry linking each
fermion of the theory with a bosonic partner and vice-versa. It is appealing because
it addresses the so-called hierarchy problem, features gauge coupling unification and
provides a natural Dark Matter (DM) candidate as the Lightest Supersymmetric
Particle (LSP). The phenomenology of this class of models has been thoroughly
studied in the last thirty years and there exist some basic 2→ 2 computations at
NLO in QCD hardcoded in the program PROSPINO [143, 17].

Latest LHC data further excluded the phase-space of parameters available for
the simplest incarnation of supersymmetric theories [14] but precise theoretical
prediction for inclusive quantities might become relevant in direct discovery scenarios.
In the context of indirect detection/exclusion with future precision measurement,

4Notice however that the loop can still include BSM vertices if the QCD states interact with the BSM
ones.
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it is important to asses the impact on SM observables of supersymmetric states
running in the loop.

As far as MadLoop5 is concerned, the presence of Majorana particles is the greatest
difficulty. Even if the present version of MadGraph5 handles them at LO, their
proper treatment in the context of loop computations is still not properly addressed,
as it has never been tested.

• Extra-dimensional models
This class of models considers the four space-time dimensions as embedded in a
larger structure with N additional dimensions called the bulk. The compactification
of the bulk dimensions and the dynamic of the particles in these characterize the
model and provide a natural explanation for the hierarchy of particle masses in the
SM. The Randall-Sundrum [145] model is arguably the most famous realization
of such models, with only one additional dimension and the corresponding metric
wrapped by an exponential factor. In such a theory, gravity naturally appears
weaker on the four-dimensional brane as its bosonic force carrier, the graviton, is
the only mode propagating in the bulk hence diluting its coupling strength.

The treatment of the gravitons necessitates MadLoop5 to support spin 2 (and spin
3/2 for supersymmetric model) particles. This is achieved by MadGraph5 at LO
but the generalization at NLO is not automatic.

• Effective theories
A well-known class of effective theories come from extensions of the SM with a
strongly coupled hidden sector which is integrated out. Depending on the details of
the hidden sector, the resulting models differ, but most go by the name of Composite
Higgs [59] or Technicolor [100] theories. Perturbative expansion in effective theories
is not straightforward as they are generally not renormalizable. It is however still
possible to make sense of the corrections by adding, order by order in the expansion,
sets of higher dimensional counter-terms which are set either empirically or by
matching them to the underlying theory (when known).

One-loop computations in the Higgs effective theory5 could give predictions for
Higgs production with partial two-loop (which is NLO in this case) contributions.

The challenge for MadLoop5 with these models is to handle operators of dimension
higher than four. The loops in which these are present can have an integrand
numerator of rank higher than the one of the denominator. The OPP procedure is
more involved in these cases and as for the TIR techniques, they quickly reach their
rank limitation and their numerical stability is unknown in this regime. Finally,
multifermion interactions can also potentially be problematic.

5Where the Higgs production through gluon fusion via fermion loops is integrated out and yields the
effective 3- and 4-point interaction ggH and ggHH.
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5.1.3 Interface to tensor integral reduction codes

One of the major optimization brought to MadLoop5 is the open-loop technique discussed
in sect. 3.4.3, and which was shown in sect. 3.4.5 to significantly decrease the running
time of the code generated. We recall here that the core idea of the method is to cast the
numerator N (`µ) into a polynomial in the loop momentum, as presented in eq. (3.4.4).
As a byproduct of the method, the basis of this decomposition turns out to be well suited
for the use of algebraic reduction techniques specific to tensor integrals, defined precisely
as any loop integral with a numerator qµ0qµ1 · · · qµr . In a preliminary study, the computer
code PJFry++ has been successfully linked against MadLoop5 for the trivial process
e+e− → dd̄.

These Tensor Integral Reduction (TIR) techniques are complementary to the OPP one
because for loop numerators of sufficiently small rank in lµ (typically ≤6), they are faster
and more stable6. TIR techniques applicability for higher ranks is at present limited
by the occurrence of very large algebraic expressions and OPP reduction is therefore
preferred in this case.

Being able to exploit both of the two reduction methods allows for more reliable consistency
and stability checks. In particular, TIR may solve certain of the instability issues
mentioned in sect. 3.4.4 and hopefully avoid the inefficient use of quadruple precision.

Finally, by slightly modifying the architecture of the output code, it is possible to
independently decide which reduction method to use for each loop, hence maximizing
the efficiency of each method by limiting it to its range of best applicability. Such
improvements would be of great help to study processes of similar complexity as pp→ tt̄jj

for which we showed in table 3.4.3 that the channel gg > tt̄gg presents already more than
a percent of unstable PS points (when requiring an accuracy of at least three digits) when
solely relying on the OPP reduction method.

5.1.4 Further code optimizations

The different optimizations presented in sect. 3.4.3 significantly improved MadLoop5
output runtime speed, but the integration time of the virtual contribution remains the
limiting factor for almost all processes in aMC@NLO5, thanks to the very efficient FKS
formalism adopted for the real subtractions terms (see sect. 1.2.3). It therefore remains
essential to further optimize the code output by MadLoop5. We shall then list here a
couple of pending improvements, although none of them is expected to be very significant.

• The open loop coefficients of identical loops such as the pure massless quark ones in
multi-gluon amplitudes are computed individually instead of being grouped together.

6This is true in TIR only when properly identifying the instability sources, which are vanishing Gram
determinants, and modifying the reduction procedure around these points (as discussed in sect. 3.4.4).
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This simple optimization will be implemented at some point, but preliminary studies7

showed that its impact is moderate.

• The recycling of already computed wavefunctions across different diagrams plays a
big role in the success of the MadGraph approach to tree diagrams computations.
This is now also very efficient in the open-loop paradigm since loop wavefunctions
can be recycled as well. It is then possible to implement this recycling also across
helicity configurations, when the external particles of given subtrees share the same
helicity configuration. This necessitates a consequent change in the structure of the
output code and the gain is unclear and very process-dependent.

• Table 3.4.4b shows that the largest fraction of the computation time is spent in the
determination of the open-loop coefficients8. To improve on this, one could have
ALOHA generating optimized subroutines (similar to the HELAS ones) to obtain
these coefficients at once (i.e. not in the progressive way described in sect. 3.4.3).
Alternatively, the analytic dependance on the wavefunctions attached to the loop
could be retained, similarly to what is done for the loop momentum. Unfortunately,
both these alternatives become inefficient or inapplicable for large n-point loops
(typically, with n ≥ 3) which are precisely the most time consuming ones.

In addition to these propositions, a popular technique for going around the slowness
of one-loop computations is to first generate events according to the Born distribution
and then reweight them with the virtual matrix-element. Also, it is possible to organize
the NLO computation within MadFKS as an expansion in the inverse of the number of
SU(3)c colors Nc [109] so as to retain only the leading and possibly subleading terms.
These very often constitute the largest fraction of the virtual contribution (much larger
than naively expected from the fact that Nc = 3) as shown in ref. [21, 85] for specific
complicated processes. These alternative solutions to a direct speed-up of full-fledged
loop computations are currently investigated by the aMC@NLO collaboration as they
could allow us to reach a whole new class of process complexity.

7This optimization can be emulated simply by timing the evaluation of given processes while allowing
for only one massless quark flavor to contribute.

8At least for the case of unpolarized phase-space points.
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5.2 Closing remarks

The discovery at the LHC of the Higgs boson, or what looks very much like it, is a turning
point in high energy physics. Not only is it the last missing piece of the Standard Model
puzzle, but also the most speculative one as no scalar fundamental particle had ever been
observed before. This confirms the impressive undisputed ability of the Standard Model
at describing the microscopic structure of matter. This also comes with some sort of
disappointment, in the sense that this finding does not provide any lead toward answers to
the remaining open questions in particle physics, in particular a more natural explanation
for the origin of electroweak symmetry breaking. It now becomes clear that the LHC
will not provide sudden new unambiguous evidence for any beyond the Standard Model
theory, at least with the current beam energy of 4 TeV. The quest to the observation
of new physics then relies on precise measurements of Standard Model observables and
their comparison with at least equally precise theoretical predictions. We presented in
this thesis the details of the computer code MadLoop that we elaborated, along with
aMC@NLO, specifically for answering this need of precision. When developing this
framework, special emphasis was put on being easy to use, automatic, reliable and flexible
with respect to the observables, processes and physics models considered. These are key
requirements to satisfy in order to have experimental collaborations include aMC@NLO

in their analysis tools and thereby benefit from accurate NLO predictions.

We first summarized the various ingredients contributing to the computation of theoretical
predictions, from the Lagrangian of a theory down to fully simulated events. We gave a
brief outline of the FKS formalism, employed to isolate the soft and collinear divergences
appearing in the real emission matrix element, and showed how the resulting poles cancel
against those of the virtual contribution. The original Passarino-Veltman technique
for one-loop computations is then illustrated, followed by the description of the more
modern OPP loop reduction numerical technique which is used by MadLoop via its
implementation in CutTools. The strength of the OPP reduction algorithm is its
agnosticism of the analytic details of the loop integrand numerator, making it well suited
for fully automatic and flexible loop computations. One drawback of the method is the
necessity of implementing extra Feynman rules and tree-diagram contributions for the
computation of a rational term R2 missing in the finite part of the loops as computed by
CutTools. We showed that by extending the existing UFO format for loop models, we
could specify these R2 counterterms along with the UV ones and without harming the
flexibility and automatism offered by the OPP approach.

In the second part, we presented the details of MadLoop5, completely embedded in
the Python program MadGraph5. In particular, a novel algorithm was proposed for
the efficient generation of loop diagrams from their tree equivalent obtained by a single
cut. These L-cut diagrams and their computation can be generated usingMadGraph5
tree-level capabilities, hence recycling the well-rounded MadGraph tree-level technology
for the computation of loop integrand numerators. This technique proved to be extremely

97



Chapter 5. Conclusion

efficient and achieved unprecedented process generation and output speed, given the
flexibility of the tool. An introduction to the usage of MadLoop5 and aMC@NLO5 follows
and, although being far from exhaustive, it should efficiently guide the user through
his first steps in the framework. Many optimizations were considered to speed the code
output by MadLoop5 but, despite bringing significant improvement, the integration of
the virtual contribution remains the limiting factor in aMC@NLO5. The most important
improvement brought to MadLoop5 is the implementation of the recently proposed open
loop technique in which loop integrand numerators are parametrized so as to keep the
loop momentum dependance explicit. The many evaluations of this numerator required by
the OPP reduction procedure are then practically at zero cost timewise. As a byproduct
of the method, the possibility is given of linking MadLoop5 with tensor integral reduction
algorithms to be used in conjunction with CutTools for a maximal speed and numerical
stability.

Numerical stability is known to often be problematic in loop computations and we
presented the MadLoop5 strategy to handle them. The detection of numerically unstable
phase-space points is performed by making use of Lorentz and loop flow reversal invariance;
it was shown to be a method sufficiently sensitive. The cure to these instabilities is a
complete re-computation using quadruple precision arithmetics which, despite being a
factor hundred slower, proved to always be stable so far. The capabilities of MadLoop5
are concisely summarized in the two tables 3.4.4b and 3.4.3 revealing the performances of
the code in terms of speed and stability. These numbers can be used as a reference to
compare MadLoop5 against other one-loop matrix element generators. The conclusion
drawn from these timings is that the phenomenology of all 2 → 3 SM processes are
accessible as well as most 2→ 4 ones, depending on the number of external color-charged
states. The list of results for the processes of table 3.2, obtained with the older version
MadLoop4, exemplifies the variety of processes at reach.

We finished by showing an example of the study including NLO QCD correction of
the phenomenology of two processes at the LHC. The first one is pp→ (H/A)tt̄ whose
experimental study at the LHC could possibly help measuring the parity of the Higgs
boson. The second one is pp→ ZW+W− → e+e−µ+νµµ

−ν̄µ which draws interest in part
because of its sensitivity to the SM quartic gauge couplings. Its NLO QCD computation
and analysis was entirely performed within aMC@NLO5 and in a fully automatic way.
The very recent tool MadSpin was used for the decay of the vector bosons and we showed
how it efficiently reconstructed offshell and spin-correlation effects.

We are looking forward to seeing the now public aMC@NLO enterprise help both theo-
retical and experimental physicists to access NLO predictions whenever needed.
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A.1 MadGraph5 testing suite

To insure the stability of the development of the code and to guarantee the reliability
of the published versions, MadGraph5 features a powerful and well organized testing
suite. This is especially more necessary as Python is an interpreted language, so that
even syntax error can in principle slip through. Many tests specific to MadLoop5 and
aMC@NLO5 in general have been included and we outline here how they are organized,
classified and executed.

All the source codes related to the tests are placed in the directory ’MG_root/tests’ and
they can be run via the executable ’test_manager.py -p X’ where ’X’ is one of the three
following capital letters designating a certain class of tests:

• ’U’ for Unit tests — These are simple and fast self-consistency tests which aim at
executing all constituting functions or groups of functions of MadGraph5 and make
sure that their output is consistent with what is expected from the predefined input
coded in the test. These are the quickest tests to run and should assess that the
basic mechanics of MadGraph5 are not corrupted.

• ’A’ for Acceptance tests — These are more high level tests which probe the behavior
of MadGraph5 as a whole, by comparing the output of some predefined user input
(typically a command in the MadGraph5 user interface) and make sure that the
code does not crash and that the output is characteristic of what is expected by
the user. These tests are typically longer to run and therefore considered only in
case of potentially dangerous modifications to the code.

• ’P’ for Parallel tests — These are the checks of the highest level and they do not
test directly MadGraph5 but rather its output, the numerical code for matrix
element computations. It verifies that it successfully compiles and returns the
correct numbers upon execution for predefined kinematic configurations. This is of
vital importance for the stability of the MadLoop5 code and such parallel tests are
implemented for more than thirty loop processes. The reference numbers are taken
either from MadLoop4 or previous versions of MadLoop5 which themselves were
validated by comparisons such as presented in appendix B. These kind of tests are
the longest to run and we have divided them into two groups, those whose name
start with ’short_’ can be run altogether in about an hour while executing the
whole set takes a day or so.
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A.2 UFO format for loop models

In this section, more detailed information is given on the new features to the UFO format
providing the necessary additional information for loop computations. For each of the
objects defined by the UFO format, we will discuss the meaning and values of the new
attributes.

A.2.1 CouplingOrder

• expansion_order : This attribute gives a constraint on the maximum value that
can be taken by this coupling order for the squared matrix element. By default,
this attribute is set to ’-1’, meaning that no constraint is applied.

Example: In the Higgs effective theory, one does not want to have a HIG-type
coupling appearing more than once in a squared matrix element. This corresponds
to setting expansion_order=1.

• perturbative_expansion : This limits how many loops containing this coupling
order can be present in a diagram generated from this UFO model. This attribute
is ’0’ for coupling orders whose corresponding1 loops are forbidden and ’1’ for those
for which at most one loop of that kind is allowed. The default value is ’0’, suited
for all tree-level models.

Example: Typically for the loop_sm UFO model, supporting only 1-loop QCD
corrections, this parameter has this attribute set to 1 for QCD and 0 for QED.

• hierarchy : This information is necessary in order to set which are the numerically
leading contributing diagrams when the user does not specify any coupling order.
Each coupling defined in the model is assigned an approximative numerical strength
represented by an integer. The strongest coupling is by default assigned the integer 1
and every other coupling is given an integer corresponding to how many orders of the
strongest coupling are required to match the strength of this one. In principle, this
is equivalent to blog10(

gcoup
gstrongest

)c, but this ratio can take different values at different
energies and coupling orders are not necessarily in one-to-one correspondence with a
given parameter. It is then very convenient to have an arbitrary numerical hierarchy
among the coupling orders to let the model builder guide the selection rules at
the diagram generation stage when no user-constraint is enforced. By default, the
hierarchy of all coupling orders is set to ’1’.

Example: In the SM, the UFO model would naturally set the hierarchy of the
coupling order QCD to 1 and QED to 2.

1See the description of {Process} in sect. 3.4.1 to understand how a coupling order is associated to a
kind of loops.
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A.2.2 Particle

• loop_particles : This attribute defines the particle running in the loops sourcing
the UV wavefunction renormalization. For a given loop, its particle content is
described by an unordered list with each particle contributing appearing only once
and with particle and anti-particles undifferentiated2. If several loops give the same
contribution, their respective particle content can be put together in one list. All
these particle content definitions are listed in this attribute.

Example: In the SM, the loop_particles defined for the R2 vertex of the gluon
bubble counterterm is [[[u],[d],[s]],[[c]],[[b]],[[t]],[[G]]], meaning that
massless fermion loops each give the same contribution, while the one from the
massive quarks and gluon are different. Notice that the ghost does not appear
here because its contribution is included in the value of the coupling associated to
the [[G]] counterterm. It is possible to specify a triply nested empty list for the
loop_particles to include the full counterterm (i.e. summing together all loops
contributing to it) in one single coupling. However, this simplification prevents the
loop matrix element generator loading this model to select out particles as their
appearance in counterterm contributions can no longer be disentangled.

• counterterm : This attribute sets this particle wavefunction renormalization coun-
terterm δZ whose contributions are assumed to be of the form Z(ε) =

∏Norder
i=1 αnii ,

with Norder the number of coupling orders defined in the model. It is represented
by a dictionary with an entry for each such a contribution. Entries keys are tuples
of the form ’(ni, ..., nNorder ,m)’ with m indicating that this contribution originates
from the loop with particle content loop_particles[m]. The values mapped to
these keys are the Laurent expansion of Z(ε) given as a dictionary.
Example: In the SM, the ’counterterm’ attribute to the gluon particle is
{(1,0,0):CTParam.GWcft_UV_c.value,(1,0,2):CTParam.G_UVb.value,
(1,0,3):CTParam.G_UVt.value}

A.2.3 CTVertex

This class has the same information as the ’Vertex’ class except for the following differences:

• loop_particles: Exactly as for the Particle class.

• couplings: Same as for the original Vertex class except that here the keys of the
dictionary have an additional entry to specify which loop content this counterterm
coupling corresponds to.

• type: Strings such as ’UV’ and ’R2’ identifying the theoretical origin of the
counterterm.

2By convention, the particle is put in the list.
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As an example, we present below the gluon-gluon-Z-photon R2 counterterm from the SM
UFO model supporting QCD-type loops.

V_GGZA = CTVertex(name = ‘V_GGZA‘,

particles = [P.G, P.G, P.Z, P.A],

color = [‘Tr(1, 2)‘],

lorentz = [L.R2_GGVV],

loop_particles = [[[P.u], [P.c], [P.t]], [[P.d], [P.s], [P.b]]],

couplings = {(0, 0, 0) : C.R2_GGZAup, (0, 0, 1) : C.R2_GGZAdown},
type = ‘R2‘)

A.3 UV renormalization counterterms

In MadLoop, UV renormalization is for now performed using a scheme which subtracts
the massless modes according to MS, and the massive ones at zero momentum (see
e.g. ref. [16]). For QCD corrections, all UV counterterms except that relevant to mass
renormalization give a contribution to eq. (3.1.8) which is proportional to the Born
amplitude squared. CA, CF and TF denote the usual color factors. Nc is the number
of colors, and nlf and nhf are the numbers of light and heavy flavors respectively that
circulate in the loops (a quark is by definition heavy if it has a non-zero mass). The
common prefactor Nε is defined as follows:

Nε =
1

16π2
(4π)εΓ(1 + ε) . (A.3.1)

If the Born cross section is of order αbS, the contribution to eq. (3.1.8) due to strong-
coupling renormalization reads:

V UV
αS

= b
∣∣∣A(n,0)

∣∣∣
2
g2
SNε


 4

3ε
TFnlf −

11

3ε
CA +

4

3ε
TF

∑

{nhf}

(
µ2
R

m2
hf

)ε
 , (A.3.2)

where the sum in the third term on the r.h.s. runs over all heavy flavors that circulate in
the loops. The contribution due to the renormalization of the Yukawa couplings reads:

V UV
yuk = −

∣∣∣A(n,0)
∣∣∣
2
g2
SNε2CF


3

ε
nyuk,l +

(
4 +

3

ε

) ∑

{nyuk,h}

(
µ2
R

m2
yuk,h

)ε
 , (A.3.3)

with nyuk,l and nyuk,h the number of Yukawa vertices with massless and massive particles
respectively. Color singlets and massless color triplets do not require any wave-function
renormalization. The gluon wave function is renormalized only if there are massive color
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triplets fermions running in the loop. Denoting by ng the number of external gluons at
Born level, the contribution to eq. (3.1.8) due to gluon wave-function renormalization
reads:

V UV
gwf

= −ng
∣∣∣A(n,0)

∣∣∣
2
g2
SNεTF

4

3ε

∑

{nhf}

(
µ2
R

m2
hf

)ε
. (A.3.4)

The wave-function renormalization of the external massive quarks (denoted exthf ) gives
the following contribution:

V UV
exthf = −

∣∣∣A(n,0)
∣∣∣
2
g2
SNεCF

(
4 +

3

ε

) ∑

{exthf}

(
µ2
R

m2
exthf

)ε
. (A.3.5)

Finally, for carrying out mass renormalization for a quark line with momentum k, mass
m, and colour indices i and j, one uses the mass insertion given by the following equation:

GUVδm
ij (k) =

iδik
/k −m(−iδm)

iδkj
/k −m , (A.3.6)

with

δm = g2
SCFNε

(
µ2
R

m2

)ε(
4 +

3

ε

)
m. (A.3.7)

A.4 Restoring precision on input kinematic configurations

Most Monte-Carlo phase-space generators employ techniques involving many successive
Lorentz boosts. The precision of the kinematic configurations obtained this way is
sometimes deteriorated so that energy-momentum conservation as well as onshell relations
are poorly satisfied. Also, when MadLoop5 switches to quadruple precision arithmetics,
the precision of the phase-space point given in input must be upgraded.

To remedy to these situations, the following transformation is considered:

p1 =( E1, 0, 0, p1z) p1 =( E1 + SE , 0, 0, p1z + Sz)

p2 =( E2, 0, 0, p2z) −→ p2 = −p1 +
∑next

i=2 pi

pi>2 =( Ei, pix, piy, piz ) pi>2 =( Ei, pix, piy, piz + Si )

(A.4.1)

where it is assumed that the masses m1 and m2 of the two initial states are zero while
the masses mi>2 of the final states are left arbitrary. The shifts Si, SE and Sz restoring
p2
i = m2

i should be such that they are zero if the original kinematic configuration already
satisfied energy-momentum conservation and onshell constraints. This guarantees that
the phase space point deformation introduced is minimal.
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The analytical expressions of these shifts are given in terms of Et =
∑next

i=2 Ei, pt(x,y) =∑next
i=2 pi(x,y), ptz =

∑next
i=2 (piz + Si) and p2

t = E2
t − p2

tx − p2
ty − p2

tz

Si =
piz
|piz|

√
m2
i − E2

i + p2
x + p2

y − piz

SE = −ptz|p
2
t | − Etp2

t

2(E2
t − p2

tz)
− E1

Sz = −Et|p
2
t | − ptzp2

t

2(E2
t − p2

tz)
− p1z

(A.4.2)

A more general solution for decay kinematic configurations and massive initial states can
in principle also be obtained, but one must be careful to make sure that the solutions
for the shifts are always real and minimize the deformation on the original phase-space
point. Notice that this transformation is performed on the input kinematic configuration
in double precision only if the option ’ImprovePSPoint’ is turned on in the MadLoop

parameter card.

A.5 MadLoop runtime parameters

The file ’<ProcFolder>/Cards/MadLoopParams.dat’ contains the runtime parameters
dictating MadLoop5 behavior. We describe here the most important ones.

• CTModeRun – It is the most important parameters and controls what is MadLoop5
strategy for detecting and curing numerical instabilities. Sect. 3.4.4 explains the
various strategies at play and the trade-off between runtime speed and numerical
stability. The default ’-1’ mode is the safe behavior while ’1’ provides the fastest
possible evaluation speed without any intrinsic control over numerical stability. The
latter can be justified if a stability analysis has been performed beforehand (see the
’check stability’ command).

• MLStabThres – It is only relevant with ’CTModeRun=-1’ and sets the target numerical
accuracy via the parameter ε of eq. (3.4.14). It translates into−blog10(MLStabThres)c
correct digits. The default value insures 3 correct digits which is enough for practical
Monte-Carlo applications, but it can be increased for checks and comparisons on
specific kinematic configurations.

• ImprovePSPoint – By default, MadLoop5 performs a minimal transformation on
the kinematic configuration given in input to insure exact3 energy-momentum
conservation and onshellness of external four-momenta. This transformation leaves
the original configuration unmodified if it already satisfies these constraints.

3Exact up to double precision (17 digits) for standard computations and up to quadruple precision
(34 digits) when a stability recovery is necessary.
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• DoubleCheckHelicityFilter – For the first few times MadLoop5 is called, it detects
what are the helicity configurations whose contributions are identically vanishing by
evaluating them all and comparing their contributions relative to their sum. This is
referred to as the initialization stage and upon its successful completion, MadLoop5
creates a filter file ’HelFilter.dat’ in the running directory to store the result of
this initialization so that it can be skipped in future runs. The shortcomings of
this method is that the helicity filter might depend on some model parameters
(a fermion mass changed from zero to a finite value for example) and the use of
the outdated filter would yield the wrong result. To this effect, this option allows
MadLoop to double check the helicity filter consistency upon its first call and to
update it if found inconsistent.

A.6 Example of filtering of loop diagrams

This appendix illustrates a simple example of the procedure implemented in MadLoop

for the generation of one-loop diagrams through L-cut diagrams. Let us consider QCD
with one light flavor, identified with the u quark to be definite, and consider the process

e+e− −→ uū . (A.6.1)

As discussed in sect. 3.1.1, the associated L-cut processes are (ghost do not contribute):

e+e− −→ g?g?uū , (A.6.2)

e+e− −→ u?ū?uū , (A.6.3)

The L-cut diagrams are shown in fig. A.6.1, and the corresponding diagram identities are
reported in tables A.1 and A.2. These diagram identities are constructed in the following
way. Firstly, the L-cut particles q? and q̄? (with (q?, q̄?) = (g?, g?) and (q?, q̄?) = (u?, ū?)

for eqs. (A.6.2) and (A.6.3) respectively) are assigned momenta equal to ` and −`
respectively. This implies that the loop momentum flows from particles q̄? to particle
q?. Secondly, for any given L-cut diagram, one starts from particle q? and, by following
the loop flow backwards, writes down either the identity of a loop particle, or a symbol
T associated unambiguously with a tree structure attached to the loop. The diagram
identity is completed when particle q̄? is encountered. Finally, as described in sect. 3.1.1,
diagrams are filtered out according to the properties of their identities under cyclic
permutation and mirror symmetry. It is not difficult to see that this procedure allows one
to associate symmetry factors with loop diagrams as customary in QCD – they are all
equal to one, except for the case of a gluon bubble, where such factor is equal to one-half.
This renders it trivial to take them into account in MadLoop.
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Diagram # ID Topology Action

g.1 g?T1u
?T2u

?T3g
? triangle keep

g.2 g?T1u
?T4g

? bubble discard
g.3 g?T3u

?T2u
?T1g

? triangle discard (≡ g.1)

g.4 g?T4u
?T1g

? bubble discard
g.5 g?T3u

?T5g
? bubble discard

g.6 g?T5u
?T3g

? bubble discard
g.7 g?T6g

? tadpole discard
g.8 g?T7g

? tadpole discard

Table A.1: Identities of L-cut diagrams for the process in eq. (A.6.2).

Diagram # ID Topology Action

q.1 u?T3g
?T1u

?T2u
? triangle discard (≡ g.1)

q.2 u?T4g
?T1u

? bubble discard
q.3 u?T2u

?T3g
?T1u

? triangle discard (≡ g.1)

q.4 u?T3g
?T5u

? bubble discard
q.5 u?T8u

?T2u
? bubble keep

q.6 u?T2u
?T8u

? bubble discard (≡ q.5)

q.7 u?T6u
? tadpole discard

q.8 u?T7u
? tadpole discard

Table A.2: Identities of L-cut diagrams for the process in eq. (A.6.3).

Tree Particle content

T1 u

T2 γe+e−

T3 ū

T4 u(γe+e−)ū

T5 ū(γe+e−)u

T6 gu
[
u(γe+e−)ū

]

T7 gū
[
ū(γe+e−)u

]

T8 guū

Table A.3: Tree structures used in tables A.1 and A.2. The brackets indicate sub-trees,
and are inserted here for the sole purpose of simplifying the reading of the diagrams.
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(a) Diagrams with g? L-cut particle (b) Diagrams with q? L-cut particle

Figure A.6.1: L-cut diagrams of the processes in eqs. (A.6.2) and (A.6.3).

By following the general rules outlined above, the reader can work out the diagram
identities reported in table A.1 (table A.2) using the diagrams depicted in the left (right)
panel of fig. A.6.1. By doing so, one is naturally led to introduce the tree structures
reported in table A.3. When filtering, MadLoop begins from diagram #1 of the process in
eq. (A.6.2), moving on eventually to diagrams associated with the process in eq. (A.6.3).
Notice that the choice of a specifc L-cut diagram, among those equivalent, to be used for
the actual computation is irrelevant. However, as discussed in sect. 3.4.3, in the context of
the open loop computational technique there is an optimal choice because of the possibility
of recycling loop wavefunctions. A diagram is kept or filtered out as indicated in the last
columns of tables A.1 and A.2. All bubbles on external lines and tadpoles4 are discarded
by definition. Diagram g.3 is identical to diagram g.1 up to mirror symmetry, while
diagrams q.1 and q.3 are identical to diagram g.1 up to cyclic permutations. Diagram q.6
is identical to diagram q.5 up to a cyclic permutation. Diagram q.5 represents a closed
fermion bubble on an internal line; it must be taken into account, but its contribution is

4When considering QED corrections, this will be relaxed as there is a contribution such as for example
a Z-boson tadpole attached to a W-boson line.
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equal to zero, being proportional to the trace of a single Gell-Mann matrix. We are thus
left out with one triangle loop diagram (arising from sewing diagram g.1) that contributes
to the one-loop corrections to eq. (A.6.1). This is of course the well-known result.

Details of the MadLoop5 loop diagram tagging algorithm are better illustrated when
considering more complicated L-cut diagrams such as the two below.

1

4
2

3
5

6

7

89

Figure A.6.2: Tagging involving a com-
plicated tree structure attached to a
gluon bubble cut at the level of parti-
cles 8 and 9.

Figure A.6.3: Tagging of a quark triangle
loop, cut at the level of the quarks 5
and 6, with an amplitude-type vertex
opposite to the L-cut location.

When tagging the L-cut diagram of fig. A.6.2, MadLoop starts with gluon number 8 and
finds the first loop vertex. It identifies the next loop line and all the other legs of this
vertex are considered to be bridge legs leading to a tree structure attached to the loop.
In this case, there is only one such structure and MadLoop launches an iterative function
to characterize it. This function will call itself successively on each of the vertices of
the structure, starting from the one closest to the loop and walking up the tree until it
reaches the external legs. In doing so, it builds a unique unambiguous tag, referred to as
canonical, which can be used to compare structures among each others throughout the
different L-cut diagrams. This canonical tag is the analogue of each of the Ti’s definitions
of table A.3. In the case of this first complicated structure, the canonical tag constructed
is:

(((2,3,4,5,6,7),33),((2,3,5,6,7),44),((5,6,7),33),((6,7),33))

with 33 the three-gluon vertex ID and 44 the four-gluon vertex one. As one sees, the
structures shows the parent legs and the vertices ID starting from bridge leg and going
outwards. The order for vertices of the same depth level is fixed by the reconstruction
procedure. This structure identification is iterated with the next loop vertex5 until the
second L-cut leg (number 9) is reached. This procedures builds the loop ID, identifying
its topology, like those shown on tables A.2 and A.1. The final ID of the L-cut diagram

5in the case of fig. A.6.2, that would be the vertex with the trivial structure made of the lone external
leg number 1.
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of fig. A.6.2 is then

[[21, [111, ], 33], [21, [222, ], 33]]

with 21 the PDG of the gluon, 111 the ID of the first complicated structure and 222 the
one of the lone leg number 1. Notice that the structure ID is in a list since there are
several structures attached to the same loop vertex if it connects more than three legs.

The second example of L-cut diagram of fig. A.6.2 shows the importance of the vertices
reconstruction. MadLoop5 tree diagram generator does not build them in an order suited
for loop computations. In this example, the diagram construction is as follows:

• The polarization vectors of legs 4 and 6 are merged into the d̄ wavefunction.
• The polarization vectors of legs 1 and 5 are merged into the d wavefunction.
• Wavefunctions d and d̄ are merged into the intermediate gluon wavefunction.
• The intermediate gluon wavefunction forms the c-number amplitude with the

polarization vectors of legs 2 and 3.

The order of this diagram construction is not optimal for loop computations because one
would like to first compute all external tree-structures (which are independent of the loop
momentum) and then only progressively compute all loop wavefunctions from leg 5 to
6. The reconstruction of the L-cut diagram vertices in this optimal order is performed
automatically during the tagging procedure. Assuming 111, 222 and 333 are the ID’s of
the structures with the group of leg numbers (1), (2,3) and (4) respectively, then one
would naively expect the loop ID to be (1 is the PDG of the down-type quark, -1 the one
of the anti-down and 2 is the ID of the dd̄g vertex)

[[1,[111,],2],[1,[222,],2],[-1,[333,],2]]

But thanks to vertices reconstruction, what is obtained instead is

[[1,[111,],2],[1,[222,],2],[1,[333,],2]]

This guarantees the unicity of the loop ID (up to cyclic/mirror permutations) for this
triangle fermion loop while still keeping track of the fermion flow. For example, the ID of
the same loop as above but with opposite fermion flow would read

[[-1,[111,],2],[-1,[222,],2],[-1,[333,],2]]

which is different and therefore both fermion flows are kept for this loop, as it should be.
In the case of bubbles, one of them would be discarded because the mirror operation on
loop ID’s flips the fermion flow.
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B Comparisons with existing results

In this appendix, we present the comparisons between MadLoop results, and those
obtained either with public computer codes, or by implementing ourselves analytical
results published in the literature. As discussed in sect. 3.1.4, these comparisons are an
essential part of the validation of MadLoop, and allow us to check all the building blocks
used by the code to construct the one-loop amplitudes relevant to arbitrary processes.

We compute the quantity1 defined in eq. (3.1.2), which can be re-expressed as follows:

V (r) =
(4π)ε

Γ(1− ε)

(
µ2
F

Q2

)ε
F
(c−2

ε2
+
c−1

ε
+ c0

)
. (B.0.1)

We shall also denote by

a0 =
∑

colour
spin

∣∣∣A(n,0)
∣∣∣
2

(B.0.2)

the Born matrix element squared, summed/averaged over spin and color degrees of
freedom. The constant F in eq. (B.0.1) may clearly be absorbed into the coefficients ci;
we have introduced it in order to facilitate the comparison between MadLoop results
and those of other codes. In the following, and where not explicitly indicated otherwise,
its value has been set equal to one. The expression in eq. (B.0.1) understands that
we may treat as independent the Ellis-Sexton scale Q, the factorization scale µF , and
the renormalization scale µR (which is the argument of αS, contained implicitly in ci).
As explained in ref. [105] (see in particular appendices B and C there), this is most
conveniently done by computing the one-loop contribution by setting all scales equal
to the Ellis-Sexton scale there, and by introducing in the short-distance cross section a
compensating contribution, proportional to the Born amplitude squared and depending
linearly on logµF/Q and on logµF/µR. This contribution is included in MadFKS (i.e.
integrated along with the Born matrix element) and consistently with this choice only
the Ellis-Sexton scale Q enters the computations performed by MadLoop. It should be
remarked that most of the codes used in this appendix as benchmarks for the validation

1Except in one case, when we shall consider the square of a non-divergent one-loop amplitude – see
sect. B.2.7.
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of MadLoop are forced in any case to set

µ ≡ Q = µF = µR , (B.0.3)

and hence the compensating factor in MadFKS is equal to zero. In a few cases, the
condition of eq. (B.0.3) could be relaxed and thus allowed to test the full scale dependence
of the virtual computations.

All the comparisons presented here are local, i.e. performed at fixed 2 → n kinematic
configurations. I typically show the results for one such configuration, although as a
safety measure a few more of them have been checked. No attempt was made to choose
the same set of input parameters for different processes, since priority was given to using
the reference codes with their defaults, in order to limit as much as possible external
operations on them. This consideration is particularly important when it comes to
choosing the kinematic configuration(s) used for the comparisons. When using a public
code which embeds the one-loop amplitudes in a cross-section integrator, the code is run
and minimally modified so as to record the kinematic configurations considered and their
corresponding one-loop results. A few of them are then picked at random, and given
as input to MadLoop. This procedure guarantees that the public code is not modified
except for a few trivial output statements.

As discussed in sect. 3.1.4, it is not always possible to compare the results for c−2 and
c−1 with some public codes. However, we these coefficients are always compared to their
known analytic forms2, and in doing so the agreement found is at the level of the 12th digit
or better for all processes. The corresponding comparisons with public codes are often
worse than this, being at the level of single-precision computations of real-number algebra.
The reason for this is indeed a single-precision to double-precision conversion done by
the computer, since some of the parameters in the input cards of MadLoop are in single
precision (whereas all computations are performed in double precision). These differences
are obviously completely irrelevant in cross section calculations, and are mentioned here
for the sake of completeness.

In the context of the computation of a cross section, the infrared divergences of V (r)

cancel those present in the subtracted real-emission contribution. Since the latter is
computed using Conventional Dimensional Regularization (CDR), this is the scheme of
choice for V (r) as well. On the other hand, other schemes are more suitable to one-loop
computations. The ’t Hooft-Veltman scheme is used by CutTools: the finite part c0

computed in such a scheme is identical to that computed in CDR. The residues c−2

and c−1 in the ’t Hooft-Veltman scheme can be obtained from those in CDR by setting
the number of space-time dimensions equal to four there (in CDR one has d = 4− 2ε).

2This is done when single poles do not contain UV contributions, namely if UV renormalization is
performed. Although this is done by default, there are cases in which the reference computations do not
include UV renormalization – see sects. B.1.5, B.1.6, and B.3.2. In these situations, the comparisons
with analytical results for pole residues are not carried out.
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Another popular infrared scheme is Dimensional Reduction (DR). The difference between
the finite parts c0 computed in CDR and DR is proportional to the Born, and can thus
be easily accounted for. The relevant formulae can be found in eqs. (B.3) and (B.4) of
ref. [105]. For more detailed discussions on infrared schemes, see e.g. ref. [124]. In this
appendix, either the ’t Hooft-Veltman or the DR scheme is used for the finite parts, while
pole residues are always given in the ’t Hooft-Veltman scheme.

When considering closed fermion loops with one EW vector boson leg there is possibly
an anomalous contribution. By default, the complete quark families are included in
the loops, thereby avoiding this problem. This appendix presents cases in which the
anomaly cancellation may not be immediately evident (this occurs in connection with the
decoupling limit – see sect. 3.1.4). The relevant processes are discussed in some details.

Unless otherwise indicated, all dimensionful quantities appearing in this appendix are
given in GeV.

Finally, most of these checks were originally performed with MadLoop4 but can be
reproduced easily with the public version of MadLoop5 by simply following the sequence
of three commands shown on the listing 3.2. The testing suite of MadGraph5 involves
parallel tests (see appendix A.1) automatically verifying the consistency of MadLoop5
results with those of MadLoop4 for all the type of processes presented in this chapter as
well as more complicated ones. These automated tests insure that the checks made here
with MadLoop4 also hold for MadLoop5 and will remain so upon further development of
the code.

B.1 QCD processes

All processes considered in this section are pure-QCD ones, i.e. EW-boson exchanges are
excluded from computations.

B.1.1 The process uū→ dd̄

The following set of parameters is used:

Parameter value Parameter value

αS 0.13 nlf 2

µ 91.188

Notice that nlf = 2 implies that massive quark are excluded and only two generations of
massless fermions run in the loop.
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The kinematic configuration considered is:

pu =( 102.6289752320661 , 0 , 0 , 102.6289752320661 )

pū =( 102.6289752320661 , 0 , 0 , -102.6289752320661 )

pd =( 102.6289752320661 , -85.98802977488269 , -12.11018104528534 , 54.70017191625945 )

pd̄ =( 102.6289752320661 , 85.98802977488269 , 12.11018104528534 , -54.70017191625945 )

The finite part is given in the ’t Hooft-Veltman scheme. MadLoop results are compared
with those of the code of ref. [107], which implements the formulae given in ref. [93]. We
obtain what follows:

uū→ dd̄ MadLoop Ref. [107]

a0 0.76152708418254678E+000 0.76152695293848227E+000

c−2 -0.08403255449056724E+000 -0.08403254000812221E+000

c−1 -0.10222774402685941E+000 -0.10222772640859645E+000

c0 -0.44023547006851060E-001 -0.44023539433227843E-001

Since the code of ref. [107] allows one to set the mass scales entering the process inde-
pendently from each other, we have also found excellent agreement with MadLoop plus
the compensating contribution computed by MadFKS for µR 6= µF 6= Q; we refrain from
reporting the results of these tests here.

B.1.2 The process dg → dg

The same parameters as in sect. B.1.1 are chosen. The kinematic configuration considered
is:

pd =( 220.9501779577791 , 0 , 0 , 220.9501779577791 )

pg =( 220.9501779577791 , 0 , 0 , -220.9501779577791 )

pd =( 220.9501779577791 , 119.9098300357375 , 183.0492135511419 , -30.55485589367430 )

pg =( 220.9501779577791 , -119.9098300357375 , -183.0492135511419 , 30.55485589367430 )

The comparison between MadLoop and the code of ref. [107] reads as follows:

dg → dg MadLoop Ref. [107]

a0 13.032125409659082E+000 13.032125409659088E+000

c−2 -2.3368499538132292E+000 -2.3368499538132284E+000

c−1 2.1147910298734116E+000 2.1147910298729693E+000

c0 -1.8580245435782883E+000 -1.8580245414019134E+000

114



B.1. QCD processes

For the present process, the crossing checks as discussed in sect. 3.1.4 were performed, by
comparing it to the gg → dd̄ and dd̄→ gg processes, and perfect agreement was found.

B.1.3 The processes dd̄→ tt̄ and gg → tt̄

We compare the MadLoop results for top-pair production with those of MCFM [46]. The
following input parameters are used:

Parameter value Parameter value

αS 0.13 nlf 5

mtop 172.5 µ 91.188

Note that the top quark is considered a stable particle, and hence its width is set to zero.
The phase-space point used for this check is:

p1 =( 63.71791270829688 , 0 , 0 , 63.717912708296879 )

p2 =( 814.2396220727112 , 0 , 0 , -814.2396220727112 )

pt =( 663.0455079348429 , -54.65940267927511 , 25.31239299113409 , -637.3733035297141 )

pt̄ =( 214.9120268461650 , 54.65940267927511 , -25.31239299113409 , -113.14840583470011 )

with p1 and p2 the momenta of the initial-state partons coming from the left (g or d)
and from the right (g or d̄) respectively. The finite part is given in the DR scheme. We
obtain what follows:

dd̄→ tt̄ MadLoop MCFM

a0 1.1446316446116180E+000 1.1446316446116067E+000

c−2 -6.3153578543239441E-002 –

c−1 9.4367389242209110E-002 –

c0 -0.3252731490962368E+000 -0.3252731490962548E+000

gg → tt̄

a0 1.3065171790431791E+000 1.3065171790431644E+000

c−2 -0.1621921604777766E+000 –

c−1 0.1441104689442122E+000 –

c0 -2.1116148093780568E-002 -2.1116148095016787E-002

The residues of the double and single poles have been checked against those returned by
MadFKS, and perfect agreement was found. This is not entirely trivial, because of the
role played by UV renormalization, and in particular by the insertion of the UV mass
counterterm on the virtual top-quark line that appears in the gg channel. This term in
particular was not probed in the case of dijet production.
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B.1.4 The process ug → tt̄u

The process pp→ tt̄+1j has been first computed by Dittmaier, Uwer and Weinzierl [82, 83].
Recently the results of this calculation have been verified by HELAC-1Loop [30] and by
Melnikov and Schultze [132]. Here the ug → tt̄u channel is considered, and MadLoop

results compared with those of ref. [83]. The parameters employed are:

Parameter value Parameter value

αS 0.1075205492734706 nlf 5

mtop 174.0 µ 174.0

F Γ(1− ε) Γ(1 + ε) g6
S a0

where the value of F has been chosen in order to follow the conventions of the appendix
of ref. [83]. The kinematic configuration adopted is:

pu = ( 500 , 0 , 0 , 500 )

pg = ( 500 , 0 , 0 , -500 )

pt = ( 458.5331753852783 , 207.0255169909440 , 0 , 370.2932732896167 )

pt̄ = ( 206.6000026080000 , -10.65693677252589 , 42.52372780926147 , -102.3998210421085 )

pu = ( 334.8668220067217 , -196.3685802184181 , -42.52372780926147 , -267.8934522475083 )

We obtain:

ug → tt̄u MadLoop Ref. [83]

a0 1.607845322071586E-005 1.607845322071585E-005

c−2 -9.697041910469525E-002 -9.69704191047088E-002

c−1 -5.643095699401332E-003 -5.6430956994203E-003

c0 4.003849386476366E-001 4.003849386477017E-001

B.1.5 The process uū→ bb̄bb̄ with massless b

This six-quark amplitude is one of the results presented in ref. [155] by A. van Hameren
et al.3. The results by MadLoop are thus a check of the implementation of the Cut-

Tools software in a framework different from that of HELAC-1Loop [30]. The following
parameters are used:

3The authors of ref. [155] have compared their results against those obtained by T. Binoth et al. in
ref. [34].
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Parameter value Parameter value

gS 1 nlf 5

mtop 174.0 mb 0

µ 500.0 F 1
/

(64π2)

where the value of mtop reminds one that massive top quarks enter the loops. The
kinematic configuration considered is:

pu =( 250 , 0 , 0 , 250 )

pū =( 250 , 0 , 0 , -250 )

pb =( 147.5321146846735 , 24.97040523056789 , -18.43157602837212 , 144.2306511496888 )

pb̄ =( 108.7035966213640 , 103.2557390255471 , -0.5484684659584054 , 33.97680766420219 )

pb =( 194.0630765341365 , -79.89596300367462 , 7.485866671764871 , -176.6948628845280 )

pb̄ =( 49.70121215982584 , -48.33018125244035 , 11.49417782256567 , -1.512595929362970 )

The finite part is given in the ’t Hooft-Veltman scheme (with d = 4 here, so that it is
formally equivalent to CDR). For consistency with ref. [155], no UV counterterms are
included4, both for their contribution to the finite part and the single pole residue.

uū→ bb̄bb̄ MadLoop Ref. [155]

a0 5.75329342809431E-009 5.753293428094391E-009

c−2 -9.205269484950836E-008 -9.205269484951069E-008

c−1 -2.404679886707934E-007 -2.404679886692200E-007

c0 -2.553568662825831E-007 -2.553568662778129E-007

Different crossings of this process have been considered, moving either a b or a b̄ quark to
the initial state, and MadLoop’s evaluations were fully consistent.

B.1.6 The process uū→ tt̄bb̄ with massless b

This process has been first computed by Bredenstein et al. in ref. [40]. Here, we compare
MadLoop with the result of A. van Hameren et al. [155], similarly to what was done in
sect. B.1.5. The following set of parameters is used:

Parameter value Parameter value

gS 1 nlf 5

mtop 174.0 mb 0

F 1
/

(16π2) µ 500.0

4I thus set εIR = εUV , and shall do the same in sects. B.1.6 and B.3.2.
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The top width and the mass of the b quark are set equal to zero. The kinematic
configuration considered is:

pu =( 250 , 0 , 0 , 250 )

pū =( 250 , 0 , 0 , -250 )

pt =( 190.1845561691092 , 12.99421901255723 , -9.591511769543683 , 75.05543670827210 )

pt̄ =( 182.9642163285034 , 53.73271578143694 , -0.2854146459513714 , 17.68101382654795 )

pb =( 100.9874727883170 , -41.57664370692741 , 3.895531135098977 , -91.94931862397770 )

pb̄ =( 25.86375471407044 , -25.15029108706678 , 5.981395280396083 , -0.7871319108423604 )

The finite part is given in the ’t Hooft-Veltman scheme. For consistency with ref. [155],
no UV counterterms are included except the one relevant to top-mass renormalization.
The comparison yields:

uū→ tt̄bb̄ MadLoop Ref. [155]

a0 2.201164677187738E-008 2.201164677187727E-008

c−2 -2.347908989000171E-007 -2.347908989000179E-007

c−1 -2.082520105664531E-007 -2.082520105681483E-007

c0 3.909384299566400E-007 3.909384299635230E-007

B.2 Processes with a single vector boson

B.2.1 The process ud̄→ e−ν̄e

It is a matter of trivial algebra to show that for this process one has:

c0 =
αS
2π
CF
(
− log2(µ2/s)− 3 log(µ2/s) + π2 − 8

)
a0 , (B.2.1)

where s is the parton center-of-mass energy squared. For this simple case, it suffices thus
to compute the ratio c0/a0, which only depends on s, µ and αS. These parameters are
chosen as follows:

Parameter value Parameter value

αS 0.118 µ 91.1876
√
s 200

Giving:

ud̄→ e−ν̄e MadLoop Analytic result

c0/a0 0.10303097397333823 0.10303099058268723
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B.2.2 The processes ud̄→ νee
+g and ug → νee

+d

These two processes contribute to the NLO corrections to W + 1 jet. MadLoop results
are compared with those from the implementation of the process in MCFM [46]. The
following input parameters are used:

Parameter value Parameter value

αS 0.118 nlf 5

mZ 91.1876 µ 91.1876

mW 80.44 α−1 132.6844139

sin2 θW 1−m2
W /m

2
Z ΓW 2.1054

The kinematic configuration is:

pu = ( 214.56992446426548 , 0 , 0 , 214.56992446426548 )

pd̄,g = ( 76.595570417607490 , 0 , 0 , -76.595570417607490 )

pνe = ( 186.05703769425895 , -25.245095379680929 , 11.566386894022147 , 183.97316415458937 )

pt̄ = ( 34.360975783073229 , 23.891509313117499 , 15.166967889135465 , 19.489369526901015 )

pg,d = ( 70.747481404540792 , 1.3535860665634296 , -26.733354783157612 , -65.488179634832392 )

The finite part is given in the DR scheme.

ud̄→ νee
+g MadLoop MCFM

a0 0.93604465169278606 0.93604465172998652

c−2 -9.96153744476348524E-002 –

c−1 -0.17006206699872445 –

c0 0.18788412330548998 0.18788412331301654

ug → νee
+d

a0 0.25449996399907276 0.25449996400918706

c−2 -2.70842947126827029E-002 –

c−1 -4.43691342449630960E-002 –

c0 4.58106840475423702E-002 4.58106840493787554E-002

The residues of the double and single poles have been checked against those returned by
MadFKS, and perfect agreement has been found.
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B.2.3 The processes dd̄(→ γ∗/Z)→ e−e+g and dg(→ γ∗/Z)→ e−e+d

These two processes contribute to the NLO corrections to Z + 1 jet. We compare the
MadLoop results with the implementation of MCFM [46]. The amplitudes in MCFM
do not include closed fermion loops attached to the vector boson, which simplifies the
calculation slightly. This means that in MadLoop these contributions have been removed
as well. Editing the UserFilter function in the loop_diagram_generation.py file of
MadLoop5 (or in the Diagram.cpp file of MadLoop4) makes it straightforward to remove
the triangle loop diagrams attached to the EW vector boson. There is, however, one
subtlety: in MadLoop4, the UserFilter does not affect the R2 contributions which is
non zero when considering five massless quark flavors. It must therefore be removed by
hand in MadLoop4 while this is automatically taken care of in MadLoop5. The following
input parameters are used:

Parameter value Parameter value

αS 0.118 nlf 5

mZ 91.1876 µ 91.1876

mW 80.44 α−1 132.6844139

sin2 θW 1−m2
W /m

2
Z ΓZ 2.4952

The kinematic configuration is:

pd = ( 219.81636757818666 , 0 , 0 , 219.81636757818666 )

pd̄,g = ( 78.514049708950481 , 0 , 0 , -78.514049708950481 )

pe− = ( 190.91987238779512 , -28.468337054964493 , 10.154026810698143 , 188.51219376322723 )

pe+ = ( 36.663063494801236 , 27.114750988401063 , 16.579327972459467 , 18.278303740841352 )

pg,d = ( 70.747481404540792 , 1.3535860665634296 , -26.733354783157612 , -65.488179634832392 )
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B.2. Processes with a single vector boson

The finite part is given in the DR scheme.

dd̄(→ γ∗/Z)→ e−e+g MadLoop MCFM

a0 6.76069763764682863E-002 6.76069763035082871E-002

c−2 -7.19484295416346949E-003 –

c−1 -1.21173922992901528E-002 –

c0 1.40892172309674130E-002 1.40892172165083020E-002

dg(→ γ∗/Z)→ e−e+d

a0 1.71059868986021858E-002 1.71059868803008740E-002

c−2 -1.82044658566124528E-003 –

c−1 -2.91385295414951957E-003 –

c0 3.17029216184223396E-003 3.17029215866125201E-003

In order to further test the internal consistency of MadLoop, the calculation has been
redone while including the contributions of the closed fermion loops, that had been
neglected in the comparison with MCFM. In doing so, mtop-dependence studies introduced
in sect. 3.1.4 could be performed. To be definite, let us consider only the process
dd̄(→ γ∗/Z)→ e−e+g. In fig. B.2.1, the results for the finite part c0 as a function of mtop

are presented, for the kinematic configuration given above. The five-flavor calculation
(which is independent ofmtop, and from which the contribution of closed fermion loops was
removed) is compared with the six-flavor calculation that retains the full mtop dependence
(and where closed fermion loops are included). In the decoupling limit (mtop → ∞)
the six-flavor result does not agree with the five-flavour one. This difference is due to
the non-anomalous part of the b-quark triangle diagrams, which contributes only to the
six-flavor result, having been excluded by hand from the five-flavor one. Indeed in the
decoupling limit the third fermion family effectively includes only the non-anomalous
contributions of the b quark, the anomalous part being cancelled by the top quark ones
also in this decoupling limit, because it is mass independent.

The opposite limit for mtop → 0 is equal to the five-flavor result even though we are using
a renormalization scheme in which we subtract the top quark loop at zero momentum.
This means that the heavy-flavor contributions to the UV counterterms relevant to strong
coupling and gluon wave function renormalization diverge, but for this particular process
there are an equal number of powers of αS as of external gluons, so that these divergences
cancel (see eqs. (A.3.2) and (A.3.4)). Furthermore, due to the fact that the mass difference
between the top quark and the bottom quark goes to zero, the contribution of triangle
diagrams is exactly zero at mtop = 0, and hence the six-flavor result coincides with the
five-flavor one.
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MadLoop (6 flavors, including closed fermion loops)
MadLoop (5 flavors, excluding closed fermion loops)

Top mass

dd (-> Z) -> e-e+ g

Figure B.2.1: The finite part c0 for dd̄(→ γ∗/Z)→ e−e+g and the kinematic configuration
reported in the text, as a function of mtop, with five and six flavors circulating in the loop.
In the five-flavor case all contributions due to closed fermion loops have been excluded.
See the text for details.

B.2.4 The processes dc(→ W−)→ e−ν̄euc and dg(→ W−)→ e−ν̄eug

The virtual corrections to these processes can be inferred from those relevant to e+e− → 4

partons that have been first calculated by Bern, Dixon and Kosower (BDK) [27]. Here
we compare the MadLoop results against the implementation of the crossings of the
BDK amplitudes in MCFM [46]. The BDK amplitudes and their implementations in
MCFM assume five massless quark flavors, plus the top quark which is taken to be
massive. However, only terms up to 1/m2

top have been kept, with higher inverse powers of
mtop being neglected. The MadLoop implementation also features five massless quarks
plus a massive top quark, but the dependence on mtop is retained in full. Therefore, we
only expect agreement with MCFM for large top-quark masses. The following input
parameters are used:

Parameter value Parameter value

αS 0.118 nlf 5

mZ 91.1876 µ 91.1876

mW 80.44 α−1 132.6844139

sin2 θW 1−m2
W /m

2
Z ΓW 2.1054

and a diagonal CKM matrix.
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B.2. Processes with a single vector boson

The kinematic configuration is:

pd = ( 77.882588584131682 , 0 , 0 , 77.882588584131682 )

pc,g = ( 324.00529231091792 , 0 , 0 , -324.00529231091792 )

pe− = ( 41.228205880918381 , -10.045117616293838 , 17.003544184693592 , -36.190330993144983 )

pν̄e = ( 169.31980614449293 , -82.680596722191993 , -81.515421497409065 , -123.24103105934591 )

pu = ( 142.62173792637984 , 51.789721902948564 , 71.086870231086095 , -112.27395831226823 )

pc,g = ( 48.718130943258451 , 40.935992435537273 , -6.5749929183706302 , 25.582616637972905 )

The results are presented here in the form of two plots where the finite part c0 (in the
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dc (-> W-) -> e-v uc

(a)
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MCFM v5.8 (BDK amplitudes)

Top mass

dg (-> W-) -> e-v ug
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Figure B.2.2: The finite part c0 for (a) dc(→ W−) → e−ν̄euc and (b) dg(→ W−) →
e−ν̄eug, as a function of mtop. MadLoop (boxes) and MCFM (diamonds) results are
shown.
DR scheme) is shown as a function of mtop.

For the process uc(→W−)→ e−ν̄euc, fig. B.2.2(a), we find a relatively large dependence
on the top quark mass in MadLoop, while the MCFM result is a constant (as explained
in ref. [27]). However, from the plot it is clear that the two results converge to the same
number in the limit mtop →∞. For mtop ≈ 1.7 TeV, the relative difference between Mad-

Loop and MCFM is smaller than 10−5. For yet larger top masses numerical instabilities
in MadLoop4 render it impossible to reach such level of precision. These instabilities
are due to large cancellations between the R2 and the cut-constructible-plus-R1 contribu-
tions. Performing this analysis again with MadLoop5 would solve this problem by using
quadruple precision numerics (see sect. 3.4.4).

For the process dg(→W−)→ e−ν̄eug, fig. B.2.2(b), the situation is similar. At mtop =

600 GeV, the relative difference between MadLoop and MCFM is of the order of 10−7.
For larger masses, MadLoop4 displays the same numerical instabilities as those mentioned
above.
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I conclude this section by pointing out that the results presented here do not allow one
to assess the impact of terms of order 1/m4

top and higher on observable cross sections.
In fact, although for the physical value of the top mass these terms seem generally to
have a small effect (O(1%)), they do depend on the partonic channel and the kinematic
configuration chosen. A firm conclusion can thus be reached only through a comparison
at the level of integrated cross sections.

B.2.5 The process ug(→ Z/γ∗)→ e−e+ug

The virtual corrections to this process can be inferred from those relevant to e+e− → 4

partons that have been first calculated by Bern, Dixon and Kosower (BDK) [27]. Here
the MadLoop results are compared against the implementation of the crossings of the
BDK amplitudes in MCFM [48], where they contribute to the pp → Z/γ? + 2j cross
section. We start by restricting ourselves to testing the pure vector coupling, and hence
the Z-boson exchange contributions is switched off in both MadLoop and MCFM. The
same remark on the mtop-dependence of the BDK amplitudes presented in in sect. B.2.4
applies here as well.

For the present comparison we use the same input parameters as in sects. B.2.3 and B.2.4,
and choose the following kinematic configuration:

pu = ( 79.343740010234328 , 0 , 0 , 79.343740010234328 )

pg = ( 330.04970916921303 , 0 , 0 , -330.04970916921303 )

pe− = ( 44.502332440251230 , -9.0128674723142481 , 20.893959782906148 , -38.244846151337029 )

pe+ = ( 173.55124786955787 , -83.712846866171589 , -85.405837095621621 , -125.76978133334636 )

pu = ( 142.62173792637984 , 51.789721902948564 , 71.086870231086095 , -112.27395831226823 )

pg = ( 48.718130943258451 , 40.935992435537273 , -6.5749929183706302 , 25.582616637972905 )

The results are presented in fig. B.2.3 as a function of mtop.
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Figure B.2.3: Contributions to the finite part c0 for ug(→ γ∗)→ e−e+ug, as a function
of mtop; MadLoop (boxes) and MCFM (diamonds) results are shown. Panel (a) is the
contribution without closed fermion loops attached to the photon, and panel (b) shows
only the contribution from those loops. The sum of the two is equal to c0.

Figure B.2.3(b) shows the contribution to the finite part c0 due only to the closed fermion
loops attached to the photon (up to the interference with the Born, this contribution
is called Av6;4 in ref. [27]). Figure B.2.3(a) shows all the other contributions to c0. The
MadLoop and MCFM results in fig. B.2.3(a) are seen to be in excellent agreement for
large top quark masses (at mtop = 500 GeV there is a relative difference of order 10−7).

The situation of fig. B.2.3(b) is different, since the MadLoop and MCFM results are in
clear disagreement. The contribution to c0 considered here is due to six box diagrams,
whose sum is gauge invariant. Moreover, it is a finite contribution, so it does not require
UV counterterms (nor terms to switch from the ’t Hooft-Veltman scheme to the DR
scheme). For mtop → ∞, the ratio between MadLoop and MCFM is not an overall
constant, but depends on the kinematic configuration chosen. Also, in such a decoupling
limit, MadLoop result agrees with the one obtained by running MadLoop with five
massless flavors only. Furthermore, in the limit mtop → 0, MadLoop result coincides
with that obtained by running MadLoop with six massless flavours. These tests clearly
suggested that the box contribution was wrongly implemented in MCFM.

The analogue of the comparison shown in fig. B.2.3(b) was also carried out by considering
the axial (for a Z exchange) rather than the vector coupling. The same pattern as for the
vector coupling was observed, namely a disagreement with MCFM5. In order to confirm
that there is no problem with the computation of these box diagrams in MadLoop, they
have checked them against a different implementation of the BDK amplitudes – see
sect. B.2.6.

5Triggered by the present results, John Campbell has reconsidered the implementation of BDK
amplitudes in MCFM, and found a mistake in the vector part. To the best of my knowledge, the
disagreement on the axial part persists to this day.
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B.2.6 Closed fermion loops contributing to e+e− → dd̄gg

As anticipated in sect. B.2.5, MadLoop results for the BDK box and triangle diagrams [27]
(with the latter contributing only to the axial part) are compared with that of their
implementation in the program MENLO PARC [148, 85]. This is done so by considering
the process e+e− → dd̄gg. I remind the reader that the BDK amplitudes retain the
top-mass dependence in the loops only up to terms of order 1/m2

top.

The same input parameters as in sect. B.2.3 are used, to the exception of µ = mZ = 91.187

and αS = 0.118. Furthermore, we the coupling constants of the photon to the fermions
(both quarks and leptons) is set equal to one. The Z boson couplings to fermions is
purely axial, with magnitude 1 for leptons and up-type quarks, and −1 for down-type
quarks. The result are presented in the ’t Hooft-Veltman scheme and the chosen kinematic
configuration is:

pe+ = ( 45.5935 , 0 , 0 , 45.5935 )

pe− = ( 45.5935 , 0 , 0 , -45.5935 )

pd̄ = ( 30.844322198071779 , -19.016873847975504 , 2.6503380947327226 , 24.139312933309792 )

pd = ( 11.409429861138499 , -1.5750381678441148 , -9.8113210223060605 , 5.6064538099701196 )

pg = ( 21.321201379655506 , 12.486676226087143 , -12.407109827066350 , -12.030800922457644 )

pg = ( 27.612046561134214 , 8.1052357897324754 , 19.568092754639686 , -17.714965820822268 )

The intermediate (off-shell) photon case is considered first. In such a way only the
vectorial couplings are tested and six boxes are relevant in MadLoop, which correspond
to the Av6;4 term of ref. [27]. In the program MENLO PARC, Av6;4 can be easily computed
by setting the color part parameter equal to vect. As can be seen from fig. B.2.3(b),
this term is independent of the top mass. Thus, the comparison with MadLoop prediction
can be performed by either considering the decoupling limit or directly excluding the
top-quark contribution to the loops; the latter option is adopted here6. An excellent
agreement was found.

e+e− → γ∗ → q̄qgg
MadLoop Refs. [148, 85]

(closed fermion loops)

c0 -4.50041164255807986E-007 -4.5004116164533885E-007

We next consider the case of a purely-axial intermediate Z boson. This corresponds to the
Aax6;4 and Aax6;5 terms of ref. [27], which can be obtained from MENLO PARC by setting
the parameter color part equal to axal. The results are presented in fig. B.2.4 as a
function of the top mass, for the same kinematic configuration as was used above.

6The decoupling limit was also computed and found consistent with the results presented here.
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e+e- (-> Z) -> d~dgg,  Z boson with axial couplings set to one (no vector couplings)

Figure B.2.4: Pure-axial contributions to the finite part c0 for e+e− → dd̄gg, as a function
of mtop; MadLoop (boxes) and MENLO PARK (diamonds) results are shown.

As in the case of the purely vector couplings, we find excellent agreement between the
two results. In particular, for large mtop the relative difference between MadLoop and
MENLO PARK is of the order of 10−4. When mtop = O(1 TeV), numerical instabilities
in MadLoop4 spoil the accuracy of the comparison; as in previous cases, these instabilities
are due to large cancellations between the cut-constructible-plus-R1 and R2 contributions.
It would be interesting redo the same analysis using quadruple precision within MadLoop5
to see how close one can get to MENLO PARK result and up to which top mass scale
the result is numerically stable in this case.

For mtop → 0, the BDK amplitudes diverge (due to the fact that terms are kept only up
to 1/m2

top), while MadLoop reproduces the correct result. This is equal to zero, since in
this limit the bottom and top quark loop contributions exactly cancel each other.

It was checked explicitly that MadLoop is self-consistent (and consistent with the results
given in sect. B.2.5) by crossing the antiquark and one of the gluons to the initial state,
and the e+e− pair to the final state.

B.2.7 The gg → Zg one-loop amplitude squared

As a final check on the computations of closed fermion loop diagrams with one external
EW boson leg, we consider the process gg → Zg, whose amplitude was first computed by
Van der Bij and Glover in ref. [115]7. At variance with the cases discussed in sect. B.2.5
and B.2.6, this process does not have a Born-level contribution. So we shall not compute
here the quantity V defined in eq. (3.1.2), but rather the one-loop amplitude squared

7The results also agree with an independent calculation by F. Tramontano.
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(
∣∣A(n,1)

∣∣2), summed/averaged over spins and colors8. This implies that for the present
case we had to hack the MadLoop4 code, in order for it to compute the square of an
amplitude rather than the interference of two amplitudes. In MadLoop5, this is done
automatically at the ’generate’ stage. If MadLoop5 is unable to generate any Born level
contribution, it assumes this process is purely loop-induced and that the user wants as
an output a code for a matrix element given as the square of the loop amplitudes9.

As far as the computation of ref. [115] is concerned, the helicity amplitudes presented in
appendix B of that paper are typed10 in Mathematica, which is then used to perform all
subsequent analytical and numerical manipulations, and to obtain the results denoted by
“Ref. [115]” in what follows. I stress that the results of ref. [115] are given for only one
quark flavor circulating in the loop. The following input parameters are used:

Parameter value Parameter value

αS 0.1176 α−1 128.0

MZ 91.188 mtop 80.0

sin2 θW 0.23122 µ 91.188

The width of the top mass is set to zero, because MadLoop4 did not support the complex
mass scheme. The same study with MadLoop5 would allow to assess the impact of
off-shell effects of loop fermions, at least locally here. The chosen kinematic configuration
is such that the Mandelstam variables are t = u = −3

2M
2
Z , as defined in ref. [115]. This

can be obtained using e.g. the following four-momenta:

p1 =( 91.188 , 0 , 0 , 91.188 )

p2 =( 91.188 , 0 , 0 , -91.188 )

pZ =( 113.985 , -48.35973987212917 , -48.35973987212917 , 0 )

pgf =( 68.391 , 48.35973987212917 , 48.35973987212917 , 0 )

Note that
√
s = 2MZ , and hence we have adopted a value of mtop that is not effectively

close to the decoupling limit – this is useful lest we have to deal with very small amplitude
values. In any case, the dependence on mtop has been studied as well, as can be seen
in fig. B.2.5. The axial and the vector coupling lead to amplitudes separately gauge
independent, which do not interfere (simply because of the symmetry and antisymmetry
of their respective color factors); they can thus be studied independently. The vector

8We also point out that in the present case the Z is on-shell, while the intermediate vector bosons
were off-shell in the cases discussed in sect. B.2.5 and B.2.6.

9It is necessary for these loop amplitudes to be finite, otherwise their single poles can have a finite
contribution when crossed with their terms of order ε (not computable within the MadLoop framework).
In this case, MadLoop5 checks that this holds and warns the user if not so.

10This pain-stacking work was realized by myself during the four months of my master project at the
Université Catholique de Louvain. MadLoop need for a cross-check of these kind of loops provided
a good occasion to recycle this work and put it to use. My master thesis can therefore provide more
information on this Mathematica implementation if needed.
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B.2. Processes with a single vector boson

coupling is considered first, for which only the top quark is kept running in the loop,
since the corresponding amplitude is not anomalous. The resulting Feynman diagrams
are then six (finite) massive fermion-loop boxes. The comparison of this implementation
with MadLoop4 yields:

gg → Zg vector MadLoop Ref. [115]

c0 1.41346852305044352E-006 1.4134685231123695E-006

The mtop dependence of this result is also studied, and the resulting comparison between
MadLoop and ref. [115] is presented in fig. B.2.5. The thresholds at mtop/mZ = 0.5 and
mtop/mZ = 1 can be easily understood in terms of the optical theorem.
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MadLoop
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gg -> Zg (vector contributions only)
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Figure B.2.5: Square of the one-loop amplitude for gg → Zg (vectorial coupling only), as
a function of mtop/mZ , with only the top quark circulating in the loop.

When one considers the axial couplings of the Z boson, there is an anomalous contri-
bution independent of the mass of the fermion that circulates in the loop. The most
straightforward way to circumvent the problem of the anomaly is that of considering
both the top and the bottom quarks as loop particles. The computation of ref. [115] is
performed assuming non-zero quark masses, so that the mb must be finite and in this case
kept fixed and equal to 20 GeV. On the MadLoop side, the bottom-mass dependence was
studied, and no peculiar numerical behaviors was found. The specific value mb = 20 GeV
was chosen for these results in order to be able to probe both regions mtop � mb and
mtop � mb (see fig. B.2.6). Specifically setting mtop = 80 GeV yields:

gg → Zg axial MadLoop Ref. [115]

c0 1.17192023257760489E-004 1.1719202325756625E-004
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Analogously to what was done in fig. B.2.5, the fig. B.2.6 presents the results for the axial
part as a function of mtop. In the decoupling limit mtop →∞, only the non-anomalous11

part of the contribution due to the bottom quark is left. As is expected, the contributions
due to top and bottom quarks exactly cancel each other when mtop = mb. We have also
checked that this is the case for various value of mb (including the large-mass limit).
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Figure B.2.6: Square of the one-loop amplitude for gg → Zg (axial coupling only), as a
function of mtop/mb, with the top and bottom quarks circulating in the loop.

I conclude this section by mentioning that all possible gluon crossings of the process
considered in this section were checked. As for all other cases in which gluons appear,
gauge independence (eq. (3.1.13)) is verified to hold.

B.2.8 The process ug → tb̄d (four-flavor t-chan. single-top production)

The t-channel single-top process in the four-flavor scheme is an interesting case from the
point of view of NLO computations [50, 51]. Even though it is a 2→ 3 process at the
Born level, the color-singlet exchange of the W -boson in the t channel “disconnects” NLO
corrections to the light and heavy quark lines, essentially removing all pentagon diagrams.
The complexity here arises then from the fact that both the top and the bottom quarks
have to be treated as massive.

In order to generate this process with MadLoop, a minimal amount of manual work is
required. This is due to the fact that selecting such a topology is in general not a gauge
invariant procedure and it is therefore not desirable to let the user specify one. Therefore,
when entering ug → tb̄d as an input to MadLoop also the s-channel contributions are
obtained, and in this case they are eventually set equal to zero by hand ( with the
UserFilter function).

11Once again, we remind the reader that the anomalous part is mass-independent.
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The following input parameters are used,with a diagonal CKM matrix:

Parameter value Parameter value

αS 0.118 nlf 4

mZ 91.188 µ 91.188

mW 80.419 α−1 132.506980

mtop 174.3 mb 4.5

sin2 θW 1−m2
W /m

2
Z ΓW 2.0476

Once again, due to the lack of support for the complex mass scheme in MadLoop4, the
top width is set to zero. A complete analysis of this process with MadLoop5, including all
contributions and off-shell top quark effects is undergoing. The kinematic configuration
is:

pu = ( 250 , 0 , 0 , 250 )

pg = ( 250 , 0 , 0 , -250 )

pt = ( 458.5331753852783 , 29.17335589243201 , 159.7715722928748 , -91.96084974966891 )

pb̄ = ( 177.5248259329844 , -66.11648748945143 , -111.8173550700313 , 120.9144450003231 )

pd = ( 67.10225480257022 , 36.94313159701945 , -47.95421722284348 , -28.95359525065417 )

and the results are presented in the ’t Hooft-Veltman scheme. The results obtained by
MadLoop with the virtual corrections computed in ref. [50] and implemented in MCFM.
Excellent agreement was found:

ug → tb̄d
MadLoop Ref. [50]

(t-channel)

a0 7.79629086614075984E-007 7.79629086614075031E-007

c−2 -8.29693789210587181E-008 -8.29693789210586651E-008

c−1 2.15034348206562335E-007 2.15034348206885610E-007

c0 2.31517097632403642E-007 2.31517097628348630E-007
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B.2.9 The process ud̄(→ W+)→ νee
+bb̄ with massive b

This process has been computed very recently12 by Badger, Campbell and Ellis and
implemented in MCFM [12]. The following input parameters:

Parameter value Parameter value

αS 0.118298 nlf 4

sin2 θW 0.223 µ mW + 2mb

mW 80.44 GF 1.16639·10-5 GeV−2

mtop 172.6 mb 4.62

Vud = Vcs 0.974 Vus = Vcd 0.227

and the kinematic configuration:

pu = ( 105.1910162427912 , 0 , 0 , 105.1910162427912 )

pd̄ = ( 1315.106152715695 , 0 , 0 , -1315.106152715695 )

pνe = ( 552.4486825382789 , 159.0272780479767 , 133.6457759793429 , -511.9069038778545 )

pe+ = ( 148.3926012456811 , 43.98296570595704 , -5.568920346765623 , -141.6151473478021 )

pb = ( 348.0072091647683 , 68.78221202106434 , 5.036723885587666 , -341.0737632135319 )

pb̄ = ( 371.4486760097574 , -271.7924557749981 , -133.1135795181650 , -215.3193220337149 )

The finite part is given in the DR scheme. The b quark mass is set equal to zero in
closed fermion loops as well as for αS renormalization (while the exact top-quark-mass
dependence is kept everywhere). The results are:

ud̄(→W+)→ νee
+bb̄ MadLoop MCFM [12]

a0 1.79478780194792655E-007 1.794787732024681E-007

c−2 -9.01109441027896061E-009 –

c−1 8.46671286067843610E-008 –

c0 1.54008876289213431E-007 1.540098268053898E-007

The residues of the double and single poles have been checked against those returned by
MadFKS, and perfect agreement has been found.

12The older computation by Cordero, Reina and Wackeroth in ref. [97] does not include spin correlations,
i.e. the W is produced unpolarized and on-shell.
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B.3 Processes with two vector bosons

B.3.1 The process dd̄→ W+W− → νee
+e−ν̄e

This process, that contributes to the NLO corrections to fully-decayedW+W− production
(i.e, all spin correlations are included), has been implemented in MCFM [47], using the
virtual amplitudes calculated in ref. [84]. The computation of ref. [84] includes the
singly-resonant contributions where an off-shell photon or Z boson “decays” into a pair of
W bosons. However, it does not include diagrams in which the off-shell photon or Z boson
“decays” to leptons and one of the leptons radiates a W boson. This latter contribution
is however kinematically highly suppressed w.r.t. the others, and its neglect is a very
good approximation for most physics applications. Such a contribution is included in
the MadLoop result, but in order not to consider it and be consistent with ref. [84], the
couplings of photons and Z bosons to leptons are simply set equal to zero equal to zero.
The following input parameters are used:

Parameter value Parameter value

αS 0.118 nlf 5

mZ 91.1876 µ 91.1876

mW 80.44 α−1 132.6844139

sin2 θW 1−m2
W /m

2
Z ΓW 2.1054

and kinematic configuration:

pd = ( 39.534683750772302 , 0 , 0 , 39.534683750772302 )

pd̄ = ( 546.24075297747743 , 0 , 0 , -546.24075297747743 )

pνe = ( 188.27600670927578 , 3.8276243346653374 , -38.361733789650529 , -184.28668257634874 )

pe+ = ( 295.10612392593191 , 49.617890129404948 , 30.642119343108476 , -289.28662236587513 )

pe− = ( 41.828055877825669 , -7.1022701637404531 , -30.841911801229820 , -27.348135100677510 )

pν̄e = ( 60.565250215216373 , -46.343244300329829 , 38.561526247771873 , -5.7846291838037445 )

The finite part is given in the DR scheme:

dd̄→ νee
+e−ν̄e MadLoop MCFM [84, 47]

a0 1.11000204402873114E-004 1.11000204410578607E-004

c−2 -5.55897408896383675E-006 –

c−1 -4.67335122692354957E-006 –

c0 2.24254527912372296E-005 2.24254527928672022E-005

The residues of the double and single poles have been checked against those returned by
MadFKS, and perfect agreement has been found.
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B.3.2 The processes uū→ W+W−bb̄ and gg → W+W−bb̄ with massless b

W -boson pair plus b-quark pair production is among the different result presented in
ref. [155] by A. van Hameren et al.. The comparisons performed in this section constitute
therefore a check of the implementation of the CutTools software in a framework different
from that of HELAC-1Loop [30] (see sect. B.1.5 and B.1.6 for a similar comparison). The
following set of input parameters is used:

Parameter value Parameter value

gS 1 nlf 5

mtop 174.0 mW 80.419

Γtop 0 mb 0

mZ 91.188 ΓZ 2.44140351

GF 1.1663910e-05 sin2 θW 1− m2
W

m2
Z

α
√

2GFm
2
W sin2 θW /π µ 500.0

The CKM matrix is diagonal and the Higgs channel (i.e., diagrams that contain the
“decay” H →W+W−) is not included13. The chosen kinematic configuration is:

p1 =( 250 , 0 , 0 , 250 )

p2 =( 250 , 0 , 0 , -250 )

pW+ =( 154.8819879118765 , 22.40377113462118 , -16.53704884550758 , 129.4056091248114 )

pW− =( 126.4095336206695 , 92.64238702192333 , -0.4920930146078141 , 30.48443210132545 )

pb =( 174.1159068988160 , -71.68369328357026 , 6.716416578342183 , -158.5329205583824 )

pb̄ =( 44.59257156863792 , -43.36246487297426 , 10.31272528177322 , -1.357120667754454 )

with p1 and p2 the momenta of the initial-state partons coming from the left (u or g)
and from the right (ū or g) respectively. The finite part is given in the ’t Hooft-Veltman
scheme. For consistency with ref. [155], no UV counterterms are included except the one
relevant to top-mass renormalization.

13MadLoop can easily compute this contribution, but it is very small and anyhow not included in
the computation performed by Van Hameren et al..
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The results are:

uū→W+W−bb̄ MadLoop Ref. [155]

a0 2.338047209268890E-008 2.338047130649064E-008

c−2 -2.493920703542680E-007 -2.493916939359002E-007

c−1 -4.885901939046758E-007 -4.885901774740355E-007

c0 -2.775800623041098E-007 -2.775787767591390E-007

gg →W+W−bb̄

a0 1.549795815702494E-008 1.549794572435312E-008

c−2 -2.686312747217639E-007 -2.686310592221201E-007

c−1 -6.078687041491385E-007 -6.078682316434646E-007

c0 -5.519004042667462E-007 -5.519004727276688E-007

The Z-boson decay width is not specified in ref. [155], and this is most likely the reason for
which we find a relative difference of O(10−6) between MadLoop and ref. [155]14. Since
the agreement is however already quite satisfactory, we have refrained from investigating
this point further.

As a final remark it should be noted that due to possible intermediate top quarks,
which can go on-shell, the top width should be taken into account. To do this in a
gauge-independent and consistent way, one must work within a scheme such as e.g. the
complex-mass one to carry a full phase-space integration of the process. This option is
available in MadLoop5 so that phenomenology associated to this process can be studied
in the most recent framework15.

14We point out, in fact, that the two results for the residue of the double pole can be made to coincide
by multiplying the MadLoop results by σBornAVH/σBornMadLoop.

15Using the complex-mass scheme, the phase-space integration for the process pp→W+W−bb̄ at the
NLO has already been performed by two groups [73, 31].
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B.4 Processes with a single Higgs boson

B.4.1 The process bg → Hb

The process of SM Higgs boson production in association with a bottom quark was
computed by Campbell et al. in ref. [49]. The corresponding computer code is publicly
available in the MCFM package. In our comparison, the following input parameters are
used:

Parameter value Parameter value

αS 0.118 mH 120

v 246.2185 GeV µ 91.188

mb 0 mb(µ) 2.937956

with mb(µ) being used for the calculation of the Yukawa coupling only. The chosen
kinematic configuration is:

pb = ( 250 , 0 , 0 , 250 )

pg = ( 250 , 0 , 0 , -250 )

pH = ( 264.4 , -83.84841332241601 , -86.85350630148753 , -202.3197272300720 )

pb = ( 235.6 , 83.84841332241599 , 86.85350630148751 , 202.3197272300720 )

The finite part is given in the ’t Hooft-Veltman scheme:

bg → Hb MadLoop Ref. [49]

a0 3.11285493284766746E-007 3.11285493372811162E-007

c−2 -3.31275018959845830E-008 -3.31275018959846227E-008

c−1 6.99063829676915201E-008 6.99063829676930686E-008

c0 -1.41076086675311370E-007 -1.4107608671538634E-007
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B.4.2 The process gb→ H−t

Charged-Higgs boson production in association with a top quark was first calculated in
ref. [158]. Recently, the computation has been redone in two independent ways in the
context of the implementation of this process in the MC@NLO framework [112, 156] for
a generic 2HDM model. The latter result is used for the comparisons and the following
input parameters are adopted:

Parameter value Parameter value

αS 0.10751760258646566 mb 0

mtop 174.3 µ 174.3

mH 120 a -0.0170580225049951247

b 0

with a and b the coefficients entering the Htb vertex, according to the conventions of
ref. [156]:

GH−tb = iVtb (a− bγ5) , (B.4.1)

with a diagonal CKM matrix. The R2 SM vertices are sufficient for the computation of
this process. The following kinematic configuration is chosen:

pg = ( 200 , 0 , 0 , 200 )

pb = ( 200 , 0 , 0 , -200 )

pH− = ( 180.0243875 , -120.4281794945461 , -1.755237425897029 , 59.18405883308687 )

pt = ( 219.9756125 , 120.4281794945461 , 1.755237425897029 , -59.18405883308687 )

The finite part is given in the ’t Hooft-Veltman scheme:

gb→ H−t MadLoop Ref. [156]

a0 1.10048820395828282E-005 1.10048820395828078E-005

c−2 -8.16032006344512711E-007 –

c−1 2.77298585886145253E-007 –

c0 5.32062254695102591E-007 5.32062219706480764E-007

The residues of the double and single poles have been checked against those returned by
MadFKS, and perfect agreement has been found.
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B.4.3 The processes uū→ tt̄H and gg → tt̄H

Two groups have calculated these two subprocesses that contribute to tt̄H hadroproduction
at the NLO in QCD – see refs. [146, 63] and refs. [15, 16]. However, their codes are not
publicly available. MadLoop results are therefore compared with those obtained with the
HELAC-1Loop code [155]. The following input parameters are used:

Parameter value Parameter value

αS 0.1076395107858145 mH 130

mtop 172.6 µ 172.6

v 246.21835258713082

with the running mass of the top entering the Yukawa coupling set equal to the pole mass.
The chosen kinematic configuration is:

pu,g = ( 250 , 0 , 0 , 250 )

pū,g = ( 250 , 0 , 0 , -250 )

pt = ( 181.47665951104506 , 20.889486679044587 , -50.105625289561424 , 14.002628607367491 )

pt̄ = ( 182.16751255202476 , -36.023358488530903 , 22.118891298530357 , -40.091332234320859 )

pH = ( 136.35582793693018 , 15.133871809486299 , 27.986733991031045 , 26.088703626953386 )

The finite part is given in the ’t Hooft-Veltman scheme:

uū→ tt̄H MadLoop Ref. [155]

a0 4.07927424576157583E-005 4.07927080724888850E-005

c−2 -1.86356048126662262E-006 -1.86355892362235005E-006

c−1 -1.14634232495081623E-006 -1.14634136678800731E-006

c0 -1.06894889909139909E-005 -1.06894800561762434E-005

gg → tt̄H

a0 1.13589882608476193E-005 1.13589786860990613E-005

c−2 -1.16756954296913433E-006 -1.16756856706412638E-006

c−1 5.81128096324302437E-007 5.81127610592268124E-007

c0 1.75265433284702459E-006 1.75265286791477312E-006

It is likely that the agreement between the two codes could be further improved, since
they are known differences beyond single-precision accuracy between the input parameters
used in the two codes.
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B.5 Checks of MadLoop5

B.5.1 The process gg → ng, n=2,3,4

Because of the absence of the 4-gluon R2 counterterm in MadLoop4 (see sect. 3.2), this
class of processes can only be generated by MadLoop5. Even with the help of the UFO
formalism (see sect. 3.4.2), the implementation of the complicated Feynman rules of
this counterterm is cumbersome and necessitates a careful crosscheck. The literature on
loop corrections to pure gluon scattering amplitudes is abundant, but only a few present
numerical results for the quantity V(r) of eq. (B.0.1), with massless quarks in the loop,
full color and summed over all helicity configurations. The public code NGluon [11]
computes exactly this quantity, and is used here to cross-check MadLoop5 amplitudes up
to six-gluons. The complexity of this process is at the edge of what can be handled by the
current version of the code. NGluon does not include the contributions of the massive
quarks running in the loop and these were correspondingly removed from MadLoop5
output. Such topologies were already verified when comparing the processes of sect. B.2
and they do not yield R2 contributions, so that their MadLoop computation can be
trusted.

The kinematic configurations considered are given here for the each of the n = 2, 3, 4 case.

pg1 and pg1 for all n

pg1 = ( 50 , 0 , 0 , 50 )

pg2 = ( 50 , 0 , 0 , -50 )

pgi>2 for n = 2

pg3 = ( 50 , 43.328718243523372 , 12.317414119409190 , 21.700310707092285 )

pg4 = ( 50 , -43.328718243523372 , -12.317414119409190 , -21.700310707092285 )

pgi>2 for n = 3

pg3 = ( 49.359470019669386 , 22.397003141303164 , 10.521565504548473 , -42.708643039138961 )

pg4 = ( 49.601785815191898 , -21.610638977601023 , -10.830210473092767 , 43.313092479577988 )

pg5 = ( 1.0387441651387164 , -0.78636416370214065 , 0.30864496854429404 , -0.60444944043902757 )

pgi>2 for n = 4

pg3 = ( 48.160156867258136 , 21.980718944580564 , -42.444508313840180 , 5.8917245484340103 )

pg4 = ( 37.372855246144170 , -11.415344131821260 , 35.339097064523461 , -41.914730424433162 )

pg5 = ( 3.3911791874168823 , -2.4299107687218199 , 0.71451072871390430 , 2.2550175954461832 )

pg6 = ( 11.075808699180811 , -8.1354640440374835 , 6.3909005206028147 , -3.9552691014368773 )

Notice that that the 4-momenta of the first and second initial state gluon are identical
for the three cases and take an overall minus sign when taken as an input of NGluon

because it considers the 0→ (n+ 2) g kinematical topology and not 2→ n g.
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The input parameters employed are:

Parameter value Parameter value

αS 0.118 nlf 2

µ 700.0

NGluon numerical results were translated into the CDR scheme to match those directly
output by MadLoop5 and presented below. An agreement better than 10 digits was
found when running MadLoop5 in double precision for all processes below. In order to
show the highest degree of agreement achieved, we choose to provide here the result of
computations obtained with quadruple precision numerics16, except for the Born.

gg → gg MadLoop5 NGluon

a0 60.85321142865562 60.85321142865557

c−2 -13.71408659307165 -13.71408659307164

c−1 -85.23414764837082 -85.23414764837081

c0 -193.7284710880142 -193.7284710880142

gg → ggg MadLoop5 NGluon

a0 8.450374528544618e+03 8.450374528544615e+03

c−2 -2.380506412636426e+03 -2.380506412636425e+03

c−1 -2.013780422559013e+04 -2.013780422559014e+04

c0 -7.316183959337519e+04 -7.316183959337522e+04

gg → gggg MadLoop5 NGluon

a0 5.990436333957672 5.990436333957688

c−2 -2.025037644327821 -2.025037644327822

c−1 -16.14156372683876 -16.14156372683874

c0 -50.64655894143655 -50.64655894143647

16This also implies that at least 15 digits of the MadLoop results presented in this section are
numerically stable.
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B.5.2 The channels of the process pp→ 4j

The BlackHat [19] collaboration presented in ref. [24] their computation of the NLO
QCD correction to four jets productions at hadron colliders. They also provide benchmark
results for the four contributing channels with 0, 1 and 2 and 3 massless quark pairs
respectively. I report these results here with their MadLoop5 counterpart. The input
parameters are:

Parameter value Parameter value

αS 0.118 nlf 5

µ 600.0

In the context of the computation of ref. [24], nlf = 5 means that the top contribution
(via a closed quark loop) is not considered and the b-quark is treated massless. To mimic
this in MadLoop5, the massless b-quark variant (or restriction) of the UFO ’loop_sm’
model was loaded and the top-quark forbidden in the process definition with the ’/ t’
syntax. The kinematic configuration is chosen according to eq.(9.1)-(9.2) of ref. [23] but
with µ = 600 GeV and it remains the same for all four channels:

pg,d = ( 300 , -212.13203435596426 , -106.06601717798213 , -183.71173070873836 )

pg,d̄ = ( 300 , 212.13203435596426 , 106.06601717798213 , 183.71173070873836 )

pg,u = ( 200.00000000000000 , 200.000000000000000 , 0 , 0 )

pg,ū = ( 85.714285714285714 , -31.578947368421053 , 79.685060448070799 , 0 )

pg,s = ( 100.00000000000000 , -18.421052631578947 , 46.482951928041299 , 86.602540378443865 )

pg,s̄ = ( 214.28571428571429 , -150.00000000000000 , -126.16801237611210 , -86.602540378443865 )

The results are given in MadLoop5 default regularization scheme, namely the t’Hoft
Veltman scheme whose finite part is identical to CDR in exactly four-dimensional space-
time. This also the scheme of choice for the BlackHat benchmark results. The BlackHat

results displayed here are identical to the ones presented in ref. [24]17, up to a normalization
factor (108σBorn

αs
2πC), with 108 correcting for the scale-up of µ and the integer C

accounting for the factor averaging over initial state colors and helicities as well as the
final state symmetry factor, both included in MadLoop18.

Ref. [24] only specifies 10 digits and even though MadLoop5 double precision evaluations
already matches them (bar the 6g channel for which only 6 digits are correct in double
precision), the results below were obtained using quadruple precision, except for the
Born.

17Available at http://arxiv.org/src/1112.3940v2/anc/sample-point.pdf as a supplementary file
of publication [24].

18More specifically, C = 82 · 22 · 4! for gg → gggg, C = 32 · 22 · 4! for dd̄ → gggg, C = 32 · 22 · 2! for
dd̄→ uūgg and C = 32 · 22 · 1 for dd̄→ uūss̄.
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gg → gggg MadLoop5 Ref. [24]

a0 8.100481343065544e-04 8.100481342e-04

c−2 -2.738328018594504e-04 -2.738328018e-04

c−1 -9.910444501919850e-04 -9.910444501e-04

c0 -4.887971230607458e-04 -4.887971230e-04

dd̄→ gggg MadLoop5 Ref. [24]

a0 2.502547591440412e-06 2.502547591e-06

c−2 -6.893121062821290e-07 -6.893121064e-07

c−1 -2.738345818034983e-06 -2.738345818e-06

c0 -2.065956953556197e-06 -2.065956954e-06

dd̄→ uūgg MadLoop5 Ref. [24]

a0 1.909142107951222e-06 1.909142108e-06

c−2 -4.063479356746059e-07 -4.063479356e-07

c−1 -1.721706412156829e-06 -1.721706412e-06

c0 -1.339089403523334e-06 -1.339089403e-06

dd̄→ uūss̄ MadLoop5 Ref. [24]

a0 1.021144983744993e-08 1.021144984e-08

c−2 -1.534191365570245e-09 -1.534191366e-09

c−1 -5.050905851972616e-09 -5.050905853e-09

c0 -1.289542438842943e-10 -1.289542439e-10

Finally, all the self-consistency checks implemented via the ’check’ command of MadLoop5
(see sect. 3.4.1) were ran on these processes. This concludes the comparisons aiming at
assessing the correctness of the implementation of the complicated 4-gluon R2 vertex
Feynman rule.

B.5.3 Pushing MadLoop to the edge: a result for dd̄→ tt̄tt̄bb̄

This process has no phenomenological relevance to this day but it shows that MadLoop

can be pushed to very complicated cases. This process has two mass scales, the top
and bottom quark masses, more than 14’000 loop diagrams, 128 contributing helicity
configurations and up to 8-points loops19. There is no corresponding computation in the
literature to validate this process but the result presented here is reliable thanks to the

19Notice that the 8-points loops have numerators of rank 4 in `µ at most, so that the numerical stability
featured by this process is not so surprising.
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independent checks of the elementary bricks building it (see sect. 3.1.4). The runtime
speed of the numerical code output by MadLoop5 for this process is too slow for direct
integration (36s per computation, summed over helicity and color configurations) but it
exemplifies the usage of MadLoop5 as a tool to validate other numerical codes, faster
but produced via semi-automated method and therefore less reliable. In this perspective,
the great speed of MadLoop5 process generation (about one hour for this process) is of
remarkable importance.

The input parameters used for this evaluation are

Parameter value Parameter value

αS 0.118 nlf 4

µ 1000.0 mb 4.7

mt 173.0 Γt 0

The chosen kinematic configuration is

pd = ( 500 , 0 , 0 , 500 )

pd̄ = ( 500 , 0 , 0 , -500 )

pt = ( 179.99988408336151 , -4.7783934612000483 , 21.017539776621486 , -44.792725388076938 )

pt̄ = ( 202.60071046988355 , -33.626859979113320 , -99.883156322279248 , -3.2614803304350191 )

pt = ( 179.57569046075946 , -38.305077469683603 , -28.997924768382379 , 3.2046846377240308 )

pt̄ = ( 281.21273582865592 , 110.53120577118455 , 169.72848217342479 , -90.148198440739293 )

pb = ( 31.866524753009699 , -18.093776102514568 , -4.6075475331015605 , 25.392344750267995 )

pb̄ = ( 124.74445440432983 , -15.727098758673009 , -57.257393326283115 , 109.60537477125921 )

MadLoop5 evaluation was checked to be numerically stable. However, the results below
were those obtained by using quadruple precision algebra so as to maximize the number
of correct digits.

dd̄→ tt̄tt̄bb̄ MadLoop5

a0 1.4590401276370345E-015

c−2 -7.3069831789274155E-017

c−1 1.0212112329618302E-016

c0 6.8060995481163271E-015
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