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Abstract
The goal of this document is to provide a general method for the computational approach to

the topology and geometry of compact Riemann surfaces. The approach is inspired by the

paradigms of object oriented programming.

Our methods allow us in particular to model, for numerical and computational purposes, a

compact Riemann surface given by Fenchel-Nielsen parameters with respect to an arbitrary

underlying graph, this in a uniform and robust manner.

With this programming model established we proceed by proposing an algorithm that pro-

duces explicit compact fundamental domains of compact Riemann surfaces as well as genera-

tors of the corresponding Fuchsian groups. In particular, we shall explain how one may obtain

convex geodesic canonical fundamental polygons.

In a second part we explain in what manner simple closed geodesics are represented in our

model. This will lead us to an algorithm that enumerates all these geodesics up to a given

prescribed length.

Finally, we shall briefly overview a number of possible applications of our method, such as

finding the systoles of a Riemann surface, or drawing its Birman-Series set in a fundamental

domain.

Keywords Riemann surface, Fenchel-Nielsen parameters, enumeration algorithms, simple

closed geodesic, fundamental domain, Fuchsian group, Möbius transformation, algorithmic

hyperbolic geometry.
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Résumé
Le but de ce document est d’apporter une manière de décrire la structure topologique et

géometrique des surfaces de Riemann en s’inspirant des paradigmes de la programmation

orientée objet.

Ceci nous permet notamment de modéliser une surface de Riemann compacte donnée à

partir de n’importe quel type de graphe de Fenchel-Nielsen d’une manière uniforme et fiable.

Partant de cela, nous proposons ensuite un algorithme permettant d’obtenir explicitement des

domaines fondamentaux pour les surfaces, ainsi que des générateurs des groupes Fuchsiens

associés. Nous expliquons en particulier de quelle manière on peut obtenir un domaine

fondamental convexe et canonique.

Ensuite, nous décrivons de quelle manière il est possible de représenter les géodésiques fermées

simples d’une surface. Puis nous proposons un algorithme permettant de les énumérer.

Finalement, nous introduisons brièvement quelques exemples d’application possibles à ces

algorithmes, comme par exemple, de trouver l’ensemble des systoles d’une surface, ou de

dessiner l’ensemble de Birman-Series dans un domaine fondamental de la surface.

Mots Clés Surface de Riemann, paramètres de Fenchel-Nielsen, algorithme d’énuméra-

tion, géodésique fermée simple, domaine fondamental, groupe Fuchsien, transformation de

Möbius, géométrie hyperbolique algorithmique.
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Introduction

This document aims to serve as a handbook that explains the working manner of a new

program library that we developed during this thesis. In addition, we shall give mathematical

proofs that what we propose indeed works.

Our first goal in the research for the thesis was to use the Object Oriented Programming

paradigms in order to be able to produce uniform programming models of compact hyper-

bolic Riemann surfaces given by Fenchel-Nielsen parameters based on an arbitrary Fenchel-

Nielsen graph. Then, we present in considerable detail new algorithms designed to initially

obtain (non-canonical) fundamental domains for a given surface. We also explain how to

transform, algorithmically, any (non-canonical) fundamental domain into a new one that is

both canonical and convex.

In a second part we turn our interest towards the simple closed geodesics of a compact Riemann

surface. We firstly describe a way to represent these curves in a manner that enables us to

enumerate them. We also explain how the geometric properties of the simple closed geodesics

(like their length) can be deduced from their model.

We then present an efficient enumeration algorithm for the simple closed geodesics that yields

all these geodesics up to a prescribed length. From this general enumeration process we can

deduce some examples of algorithms that help solving geometric problems such as finding all

the systoles of a surface, or finding a Bers decomposition of it.

This document is organized as follows.

It consists of two Parts. The first one, Geometry of Riemann surfaces is meant to be an introduc-

tion to the mathematics that are involved in this thesis and contains nothing about algorithms

or programming. Here we also prove a new geometric inequality.

Chapters 1 and 2 recapitulate some basic notions about the Riemann surfaces, such as their

definition.

This can be useful to help a reader who is not familiar to the subject to understand the context

of what we are trying to do.

Chapter 3 contains informations and formulas about hyperbolic geometry. The Subsections

1



Contents

3.1,3.2 and 3.3 contain some known material and formulas that are used within our algorithms

and they are reproduced within this document for the comfort of the reader. The Subsection

3.4 contain some original results that are used to justify the algorithms exposed in the last

chapters of this thesis.

The second part of this document, "Computational approach", puts the emphasis on the

computations and algorithms.

It contains four chapters.

Chapter 4 details how, starting from some Fenchel-Nielsen graph, we can produce a detailed

model of the corresponding surface in terms of classes.

Chapter 5 details the algorithms used to construct some convex canonical fundamental

domains of a given surface, as well as the (canonical) generators of the corresponding Fuchsian

group.

Chapter 6 explains how to model and how to enumerate the simple closed geodesics on a

surface.

And, finally, Chapter 7 serves as a kind of conclusion in the sense that we describe without

entering details some other examples of algorithms that our library implements.

2



Part IGeometry of Riemann Surfaces
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In this part, we recapitulate, the useful basic mathematical knowledge about Riemann surfaces

and hyperbolic geometry, that we use in this document.

It will help to clarify the notations we choose, as well as it will help the reader to get familiar

with this subject even if it is not his own field.

In Chapter 1, we provide the accurate definition of a riemann surface.

Then, in Chapter 2, we provide the very important uniformization theorem that shows that

every riemann surface can be categorized in one of the 3 types:

Parabolic surfaces Parabolic surfaces posses a metric of constant Gauss curvature +1.

Elliptic surfaces Elliptic surfaces posses a metric of constant Gauss curvature 0.

Hyperbolic surfaces Hyperbolic surfaces posses a metric of constant Gauss curvature −1.

We will also see that the parabolic and elliptic cases leads to very few possible surfaces and

requires no more investigations. That is why we restrict the rest of our study to the hyperbolic

case.

In Chapter 3 we then describe the geometric properties of the hyperbolic plane H seen as a

metric space of constant Gauss curvature −1. This space is of prime importance as we use

it as the universal covering of our hyperbolic Riemann surfaces. This chapter also contains

description of other equivalent models of hyperbolic space, called matrix models, that are very

handy to make practical computations related to hyperbolic geometry. Finally some original

results are presented in the final section 3.4 of this chapter that will be used in the algorithms

of Chapter 6.

Chapter 2 explains how to describe an hyperbolic surface S = H/Γ as the quotient of the

hyperbolic space H by a discrete group of Möbius transformations Γ ⊂ Möb(H). Not any

discrete subgroup of Möb(H) gives rise to a valid surface. That is why, in Definition 7, we

express the conditions that Γmust respect such that H/Γ is valid surface. A group verifying

such conditions is called a fuchsian group.

5





1 Riemann Surfaces

For the benefit of the reader who comes from a different field we review in the first two, very

short, chapters some background concepts collected from textbooks. Only few definitions are

given, the goal being only to indicate where the subject of this thesis sits. The basic reference

for the two chapters is [7].

Let us begin by giving a definition of a Riemann surface 1.

Definition 1. A Riemann surface S is a complex manifold of dimension one.

In other words, S is a separated topological space such that there exists a coveringΩi ⊂ S, i ∈ I

of open subsets of S such that
⋃

i∈I Ωi = S.

Furthermore, for every Ωi , there must exist a homeomorphism fi : Ωi → Di ⊂ C. The pair

(Ωi , fi ) is called a chart of S. The set of the charts covering S is called an atlas of S.

Finally, we want that if two charts overlap,Ωi ∩Ω j =Σ 6= ;, the transition map

f j ◦ f −1
i

∣∣
fi (Σ) : fi (Σ) → f j (Σ)

is requested to be an holomorphic function.

C

S

Ωi
Ω jΣ

f j

fi
f j ◦ f −1

i

Figure 1.1: Transition map between two charts of a Riemann surface.

1Note that several equivalent definitions exist.
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Chapter 1. Riemann Surfaces

Definition 2. Let S and S′ be Riemann surfaces. If an homeomorphism g : S → S′ is such that

for each pair of charts (Ω, f ) and (Ω′, f ′) of S, respectively S′, the mapping

f ′ ◦ g ◦ f −1 : f (Ω∩ g−1(Ω′)) ⊂C→ f ′(Ω′) ⊂C

is a conformal mapping, then g is said to be a conformal mapping between S and S′.

Definition 3. Let S and S′ be Riemann surfaces. If there exists a conformal mapping g : S → S′

between them, with an inverse g−1 : S′ → S that is also conformal, then the surfaces S and S′ are

said to be conformally equivalent, or sometimes simply equivalent.

It will later turn out that Riemann surfaces can be seen as metric spaces and that conformal

mappings between surfaces are isometries between them.

1.1 Examples

Obviously, any open subset of C (or R2) is a Riemann surface. For the following part of this

document, we will focus on closed surfaces, that are compact surfaces without border.

Sphere A “classroom” example is the two dimensional sphere

S2 = {(x, y, z) ∈R3 | x2 + y2 + z2 = 1}.

To see it as a Riemann surface, we can provide the atlas A = {(Ω1,π1), (Ω2,π2)}, where

Ω1 =S2 \ {(0,0,1)}

Ω2 =S2 \ {(0,0,−1)}

and

π1 : Ω1 → C

(x, y, z) 7→ 1
1−z (x + i y)

π2 : Ω2 → C

(x, y, z) 7→ 1
1+z (x − i y)

The function π1 is called the stereographic projection, while π2 is a modified version of π1, the

purpose of the modification being that the transition map between the two charts preserves

orientation.

One can check by a direct calculation that the inverses of these functions are as follows,

where w =ℜ(w)+ iℑ(w) designates a complex number and w̄ =ℜ(w)− iℑ(w) is the complex

czonjugate.

8



1.1. Examples

π−1
1 : C → Ω1

w 7→
(

2ℜ(w)

1+w w̄
,

2ℑ(w)

1+w w̄
,
−1+w w̄

1+w w̄

)

π−1
2 : C → Ω2

w 7→
(

2ℜ(w)

1+w w̄
,
−2ℑ(w)

1+w w̄
,

1−w w̄

1+w w̄

)

Defining Σ=Ω1 ∩Ω2 =S2 \ {(0,0,1), (0,0,−1)} a direct calculation yields

π2 ◦π−1
1

∣∣
π1(Σ) : π1(Σ) =C∗ → π2(Σ) =C∗

w 7→ 1/w

which is an holomorphic function.

Riemann sphere Let us now define the following set Ĉ=C∪ {∞}, where ∞ is an additional

point often called infinity.

We can endow Ĉwith the charts (C, IdC) and(
Ĉ\ {0},

{
z 7→ 1/z

∞ 7→ 0

)
.

This surface is conformally equivalent to the one obtained in the previous example, S2, by

taking IdC as the conformal mapping represented in the charts. This is why the set Ĉ is called

the Riemann sphere.

Differentiable real 2-manifold The following theorem gives us a clue on how general the

concept of Riemann surface is.

Theorem 1. Let S be an orientable smooth manifold of dimension 2, given with a maximal

differentiable atlas Adiff. Then, Adiff possesses a sub-atlas Aconf ⊂ Adiff such that all transition

maps are holomorphic.

According to this theorem, e.g. all smooth orientable surfaces S in R3 may be seen as Riemann

surfaces. There is actually a stronger theorem stating that for any such surface an atlas exists

such that for all charts (Ωi , fi ) the mapping fi :Ωi → Di ⊂R2 =C is angle preserving, like in

the example of the sphere. This is the theorem on isothermal coordinates. A proof may be

found in [12, chapter 9, addendum 1].

9





2 Uniformization theorem

In this chapter, we give, without proof, a theorem called Uniformization theorem, conjectured

by Felix Klein and Henry Poincaré around 1882 and proven by H.Poincaré and Paul Koebe in

1907.

This very deep theorem serves as the foundation for a classification of all closed Riemann

surfaces 1.

Theorem 2 (Uniformization). Every simply connected Riemann surface is conformally equiva-

lent to one of the following Riemann surfaces

• the Riemann sphere Ĉ=C∪ {∞},

• the complex plane C,

• the unit disk D= {z ∈C | |z| < 1}.

Before we look at what this implies for closed surfaces we review some definitions which will

be frequently used in this document.

Definition 4. Let S be a topological space (e.g. an open subset of Rn or a Riemann surface). Two

parametrized curves (or arcs) γ,δ : [a,b] → S with the same endpoints: γ(a) = δ(a), γ(b) = δ(b),

are called homotopic if γ can be continuously deformed into δ with both endpoints kept fixed.

Formally, this means that there exists a continuous mapping (the “homotopy”) H : [0,1]×[a,b] →
S, with the following properties

H(0, t ) = γ(t ), H(1, t ) = δ(t ), ∀t ∈ [a,b],

H(s, a) = γ(a), H(s,b) = γ(b), ∀s ∈ [a,b].

1To be accurate, there are a number of different theorems in the literature for which the name Uniformization
theorem is used.

According to some of them, the theorem as we present it here would be presented as a corollary.

11



Chapter 2. Uniformization theorem

Definition 5. A topological space S is simply connected if for any couple of points p, q ∈ S the

following holds.

(1) There exists an arc γ : [a,b] → S such that γ(a) = p, γ(b) = q.

(2) Two arcs γ,δ : [a,b] → S with γ(a) = δ(a) = p and γ(b) = δ(b) = q, are always homotopic.

For example, the sphere S2, the complex plane C and the unit disk D are simply connected.

An important topological fact is that any Riemann surface S has a universal covering.

Definition 6. A continuous mapping Π : S′ → S from a topological space S′ to a topological

space S is a covering (or a covering map) if for any point p ∈ S an open neighbourhood Up ⊂ S

can be found that has the following “good” property.

The inverse imageΠ−1(Up ) in S′ is the union

Π−1(Up ) =⋃
i

Upi

of pairwise disjoint open neighbourhoods Upi ⊂ S′ (finitely or infinitely many) such that for

each i the restriction ofΠ to Upi

Π|Upi
: Upi →Up

is a homeomorphism.

In the case where S′ is simply connected the space S′ is called a universal covering of S andΠ is

called a universal covering map.

The points pi in this definition are called the lifts of the point p.

Using arguments from algebraic topology one proves that any Riemann surface S has a univer-

sal covering Π : S̃ → S. Then, with the “good” neighbourhoods and the conformal atlas of S

it is possible to define a conformal atlas for S̃ such thatΠ : S̃ → S is a conformal mapping. In

other words:

Any Riemann surface has a universal Riemann covering surface.

Together with the covering surface comes the group of covering transformations. For this we

provide a final definition.

Definition 7. Let Σ be a simply connected Riemann surface. A group Γ of mappings from Σ to Σ

is called a Fuchsian group 2if it satisfies the following “axioms”.

2To be accurate, we should us the term “fixed point free Fuchsian group” or “Fuchsian group with free action”.

12



1. Any φ ∈ Γ is a conformal transformation φ : Σ→ Σ, meaning that φ is a bijection and

both φ and φ−1 are conformal mappings.

2. For any point q ∈Σ there exists a “good” open neighbourhood Uq ⊂Σ such that the images

φ(Uq ), φ ∈ Γ are pairwise disjoint.

Translations An example is the groupZ⊕τZ, where τ ∈C\R. Its members are the translations

φ(z) = z +m +τn, z ∈C,

where m,n ∈Z.

If now a universal coveringΠ : S̃ → S of a Riemann surface S is given, then there exists a unique

Fuchsian group Γwith the following properties concerning lifts of points.

• Whenever p ′, p ′′ ∈ S̃ are two lifts of the same point p ∈ S, then we can find φ ∈ Γ such

that φ(p ′) = p ′′. (By property 2. of a Fuchsian group φ is unique.)

• For any ψ ∈ Γ: if p ′ is a lift of p then ψ(p ′) is also a lift of p.

This particular Fuchsian group is called the group of covering transformations corresponding

to the universal coveringΠ : S̃ → S.

In [7, Chapter1] it is explained how, conversely, for any Fuchsian group Γ acting on a simply

connected Riemann surface Σ one can define a Riemann surface S such that the universal

Riemann covering surface is Σ and the corresponding group of covering transformations is

Γ. This surface is unique up to conformal equivalence. It is called the quotient surface and is

written

S =Σ/Γ. (2.0.1)

Finally, a result of complex function theory says that the only fixed point free conformal trans-

formation of Ĉ=C∪∞ is the identity, and the only fixed point free conformal transformations

of C are the translations φ(z) = z +a, z ∈C, where a ∈C.

From these facts we can deduce the following classification.

Corollary 1 (Classification of closed Riemann surfaces). Every closed Riemann surface is

conformally equivalent to one of the following surfaces.

• The Riemann sphere Ĉ=C∪∞.

• A flat torus C/(Z⊕τZ) where τ ∈C\R.

• The quotient D/Γ of the unit disk D by the free action of a Fuchsian group on D.

13



Chapter 2. Uniformization theorem

We will now discuss how to treat the geometrical aspect of these models.

Riemann sphere The Riemann sphere Ĉ is an object of Euler characteristic χ= 2, thus using

the Gauss-Bonnet theorem, if we are able to find a Riemannian metric of constant Gauss

curvature on it, it must be positive.

The solution consists of taking the following Riemannian metric at point z = u + i v ∈C.

d s2 = 4

(1+u2 + v2)2 (du2 +d v2)

It is a metric that has everywhere Gauss curvature 1.

This space is called a parabolic surface.

Flat torus The flat tori simply receive the euclidean flat metric d s2 = du2 +d v2 of C seen as

a real 2-manifold.

These spaces are called elliptic surfaces.

Hyperbolic surfaces The last case, D/Γ is by far the richest. The surfaces corresponding to

that case are called hyperbolic surfaces.

The rest of this document is devoted to their study.

We describe in chapter 3 how we can naturally endow them with a Riemannian metric of

constant curvature −1.

14



3 Hyperbolic geometry

As we have pointed out in Chapter 2, the richest type of Riemann surfaces are the hyperbolic

ones, i.e. surfaces that can be written as S =D/Γ.

In this chapter, we show how we can endow the surface S with a metric space structure that is

compatible with it’s complex structure.

In order to do that, in Section 3.1, we present how to present D as a metric space and we

define a second space H which is isometric to D but is sometimes more suitable for certain

illustrations as well as for computation.

Then, in Section 3.2, we present two equivalent models, MD and MH where points and

geodesics can both be represented by certain Möbius transformations. These models are far

more useful than the previous ones to solve computational geometrical questions.
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Chapter 3. Hyperbolic geometry

3.1 The modelsH andD

In Chapter 2 we defined D to be the set {z ∈C | |z| < 1}.

The goal is to provide a metric on D that is invariant under the conformal transformations of D.

Möbius transformations Before doing that, we present a special case of complex functions

called Möbius transformations.

Definition 8 (Möbius transformation). Let a,b,c,d ∈C such that ad −bc 6= 0 . We define the

following complex function f : Ĉ→ Ĉ.

f (z) =



az +b

cz +d
if cz +d 6= 0

∞ if cz +d = 0
a
c if z =∞ and c 6= 0

∞ if z =∞ and c = 0

(3.1.1)

Such a function is called a Möbius transformation of Ĉ (see Section 1.1 for the definition of the

Riemann sphere Ĉ).

The set of all the Möbius transformations of Ĉ is denoted by Möb(Ĉ).

Remark 1. Since Möbius transformations are rational functions, they are holomorphic.

Proposition 1. The Mapping

Ψ : GL2(C) → Möb(Ĉ)(
a b

c d

)
7→ f

where f is the function defined in equation (3.1.1) is a group homomorphism

between (GL2(C), ·), the group of invertible 2 by 2 complex matrices with standard matrix

multiplication and (Möb(Ĉ),◦) the group Möb(Ĉ) with function composition.

Proof. It can be shown by a direct calculation that

∀A,B ∈ GL2(C),∀z ∈ Ĉ, Ψ(A)◦Ψ(B)(z) = Ψ(A ·B)(z)

Ψ(Id2)(z) = z.

Let us now take the matrix M =
(

a b

c d

)
∈ GL2(C). It corresponds to a uniquely defined Möbius

16



3.1. The modelsH andD

transformation acting on Ĉ. We use the following notation to express it.

M [z] :=Ψ(M)(z)(
a b

c d

)
[z] = az +b

cz +d
.

Since ∀λ ∈C∗, M ∈ GL2(C), z ∈ Ĉ,

(λM)[z] = λaz +λb

λcz +λd
= M [z],

seeing GL2(C) as a C-vector space,Ψ is invariant by scalar multiplication.

That is why we work with PGL2(C) = GL2(C)/(C∗Id2), the projective linear group.

By using the first isomorphism theorem, one can show that PGL2(C) ' Möb(Ĉ). The function

induced byΨ is an isomorphism of groups between PGL2(C) and Möb(Ĉ).

3.1.1 The hyperbolic diskD

In Chapter 2, we have pointed out that D is the universal covering 1 of the surfaces we are

going to study.

Möbius transformations ofD

Definition 9. We define Möb(D) to be the subgroup of Möb(Ĉ) leaving the set D invariant, i.e.

Möb(D) = { f ∈ Möb(Ĉ) | f (D) =D}

This definition leads to the very important theorem.

Theorem 3. The biholomorphic functions f :D→D are exactly the Möbius transformations of

the form

f (z) = e iφ z − c

1− c̄z

with φ ∈R and c ∈C.

Proof. You can find a proof of this in [11].

1At least up to conformal transformation.
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Chapter 3. Hyperbolic geometry

Corollary 2. Let

MD=
{(

a b

b̄ ā

)
∈ GL2(C) | a,b ∈C

}
,

be the subgroup of GL2(C) composed of the matrices of the form

(
a b

b̄ ā

)
then,

Möb(D) =Ψ(MD).

Proof. Taking e iφ = a
ā and c =− b

a , we obtain(
a b

b̄ ā

)
[z] = az +b

b̄z + ā
= a

ā
· z + b

a

1+ b̄
ā z

= e iφ z − c

1− c̄z
.

Metric on D The last point of this section is to provide D with a metric dD : D×D→ R+
invariant under the transformations of MD.

Definition 10. We first define the Riemannian metric ρD on D given by the following metric

tensor

ρD(z) = 4

(1− zz̄)2 Id2

Definition 11. Let us define dD to be

dD : D×D → R+
(z1, z2) 7→ cosh−1(1+δ(z1, z2))

where

δD : D×D → R+

(z1, z2) 7→ 2
|z2 − z1|2

(1−|z1|2)(1−|z2|2)

.

The function dD is called the hyperbolic distance of D.

It can be shown that the distance defined by the Riemannian metric tensor ρD coincides with

dD.

This metric has a constant Gauss curvature −1 and is unique in the sense of the following

theorem.
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3.1. The modelsH andD

Theorem 4. If d :D×D→R+ is a continuous metric invariant under the transformations of

MD, then d =λdD for some λ ∈R∗+. Furthermore, if the Gauss curvature of d (which is constant)

is −1, then d = dD.

Proof. You can find a proof of this in [14].

3.1.2 The hyperbolic half-planeH

Another very important model of the hyperbolic geometry is

H= {z ∈C | ℑ(z) > 0}.

this set is called the upper half-plane.

We provide the following definitions and propositions to show that theHmodel is conformally

equivalent to the hyperbolic disk model of the previous section.

Definition 12. Let us define the matrices

ΠHD =
(

i i

−1 1

)
∈ GL2(C) (3.1.2)

ΠDH =
(

1 −i

1 i

)
∈ GL2(C) (3.1.3)

These matrices have the following property.

Proposition 2. The mapping πH
D

:=Ψ(ΠH
D

) is a conformal bijection from D toHwhose inverse

is πD
H

:=Ψ(ΠD
H

).

Proof. A direct computation shows us that πH
D

(D) ⊂ H and that πD
H

(H) ⊂ D. Finally, using

Proposition 1, we see that

πHD ◦πDH =Ψ(ΠHD)◦Ψ(ΠDH) =Ψ(ΠHD ·ΠDH) =Ψ(2i Id2) = IdĈ.

Möbius transformations ofH By analogy to Definition 9, we set

Definition 13. Möb(H) is the subgroup of Möb(Ĉ) leaving the setH invariant, i.e.

Möb(H) = { f ∈ Möb(Ĉ) | f (H) =H}
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Chapter 3. Hyperbolic geometry

Proposition 3. Let MH= GL2(R) ⊂ GL2(C) be the subgroup of GL2(C) consisting of the real 2×2

invertible matrices. Then,

Möb(H) =Ψ(MH).

Proof. Using Propositions 1 and 2 and the conjugation principle, it is possible to show through

a calculation that

MH=ΠHDMDΠDH = GL2(R).

Metric onH The metric dD of D induces the metric dH :H×H→R+ where

dH(z1, z2) = dD(πDH(z1),πDH(z2)) = cosh−1(1+ |z2 − z1|2
2ℑ(z1)ℑ(z2)

). (3.1.4)

By construction, πH
D

is an isometry between the metric spaces (D,dD) and (H,dH).
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3.2. MH, MDmodels

3.2 MH, MDmodels

In the implementations of our algorithms the numerical evaluations are carried out by matri-

ces that represent Möbius transformations. More precisely, we use the tools that have been

developed in [1, Lecture 4]. We call this calculus the MHmodel when we work with Möbius

transformation that operate inH and the MDmodel when the Möbius transformations operate

in D.

For convenience we collect here a few definitions and formulas. For a full description of the

calculus we refer the reader to the lectures in [1].

As in [1] we restrict ourselves to the MHmodel.

The first point is to look at rotations with rotational angle π, the so-called half turns. If

z = r + i s ∈H is any point (r ∈R, s > 0), then the rotation inH of angle π and center z is given

by the Möbius transformation whose matrix is

p = 1

s

(
−r r 2 + s2

−1 r

)
(3.2.1)

In the MHmodel the idea is that p is a point. Points are thus matrices ∈ GL2(R) of determinant

1 and Trace(p) = 0.

In a similar way, symmetries with respect to geodesics are represented by matrices of the form

A = 1

σ

(
ρ −ρ2 +σ2

1 −ρ

)
, (σ> 0,ρ ∈R)

A =
(
−1 2a

0 1

)
, (a ∈R)

(3.2.2)

and in the MH model A is the geodesic. In [1] instead of “geodesic” the term “line” is used.

Lines are matrices ∈ GL2(R) of derminant -1 and Trace(A) = 0.

The advantage of this point of view is that everything can be formulated in terms of matrices.

For instance, the following formulas hold, in which · is the matrix product and tr is the half

trace: tr(A) := 1
2 Trace(A):

If p, q are points then their distance is given by

coshd(p, q) = |tr(p ·q)|√
tr(p2)tr(q2)

(3.2.3)
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Chapter 3. Hyperbolic geometry

If A and B are non-intersecting lines then their distance is given by

coshd(A,B) = |tr(A ·B)|√
tr(A2)tr(B 2)

(3.2.4)

If A and B are lines that intersect each other under the angle ^ then this angle is given by

cos^(A,B) = tr(A ·B)√
tr(A2)tr(B 2)

(3.2.5)

If p is a point and A a line then the oriented distance is given by

sinhd(A, p) = tr(A ·p)√
−tr(A2)tr(p2)

(3.2.6)

To “do geometry” the wedge product is very useful. For matrices X ,Y it is defined as

X ∧Y := 1

2
(X ·Y −Y ·X ). (3.2.7)

We then have the following geometric facts.

Proposition 4. Let p, q be points and A,B lines. Then the following hold.

(i) If p, q are distinct points, then p ∧q is the line through p and q.

(ii) If p is a point and A a line, then p ∧ A is the line through p perpendicular to A.

(iii) If A,B are lines and det(A∧B) > 0, then A∧B is the point incident with A and B.

(iv) If A,B are lines and det(A∧B) < 0, then A∧B is the line perpendicular to A and B.

Finally we mention that the same can be carried out with matrices that represent half turns

and geodesic symmetries in D. The corresponding matrices are obtained from those of the

MHmodel by conjugating them with the matrices

ΠHD =
(

i i

−1 1

)

ΠDH =
(

1 −i

1 i

)

from the preceding Section.
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3.3. Hyperbolic trigonometry

3.3 Hyperbolic trigonometry

In this Section, we just reproduce a list of very useful trigonometric relations that have been

taken "as they are" from the book [4].

These formulas are used later to calculate the geometrical properties of our surfaces.

We give them without proof, they can be proven by an almost direct calculation, using the

results of the MHmodel in Section 3.2.

3.3.1 Triangles

(i) coshc =−sinh a sinhb cosγ+cosh a coshb

(ii) cosγ= sinα sinβ coshc −cosα cosβ

(iii)
sinh a

sinα
= sinhb

sinβ
= sinhc

sinγ

a

b

c

γ

β

α

3.3.2 Right-angled triangles

(i) coshc = cosh a coshb

(ii) coshc = cotα cotβ

(iii) sinh a = sinα sinhc

(iv) sinh a = cotβ tanhb

(v) cosα= cosh a sinβ

(vi) cosα= tanhb cothc

a

b

c

α

β

3.3.3 Trirectangles

(i) cosφ= sinh a sinhb

(ii) cosφ= tanhα tanhβ

(iii) cosh a = coshα sinφ

(iv) cosh a = tanhβ cothb

(v) sinhα= sinh a coshβ

(vi) sinhα= cothb cotφ

a

b

φ

α

β
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Chapter 3. Hyperbolic geometry

3.3.4 Right-angled pentagons

(i) coshc = sinh a sinhb

(ii) coshc = cothα cothβ

a

b

β

α

c

3.3.5 Right-angled hexagons

(i) coshc = sinh a sinhb coshγ−cosh a coshb

(ii)
sinh a

sinhα
= sinhb

sinhβ
= sinhc

sinhγ

(iii) cothα sinhγ= coshγ coshb −coth a sinhb

γ

b

α

c

β

a

3.3.6 Crossed right-angled hexagons

(i) coshc = sinh a sinhb coshγ+cosh a coshb γ b

α

cβ

a
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3.4. Trace bounding

3.4 Trace bounding

In this section we present a theorem giving a lower bound on the trace of an hyperbolic Möbius

transformation.

Definition 14. Let the functions V , H :R→ MH and the Möbius transformation O ∈ MH be

V : t 7→V t :=
(

e t/2 0

0 e−t/2

)

H : t 7→ H t :=
(

cosh(t/2) sinh(t/2)

sinh(t/2) cosh(t/2)

)

O := 1p
2

(
1 1

−1 1

)

V t and H t are respectively called the vertical and the horizontal Möbius transformation of

distance t .

O is called the rotation around i of angle π
2 with positive orientation.

Remark 2. One sees that for all a,b, t ∈R:

• det(V t ) = det(H t ) = det(O) = 1

• tr(V t ) = tr(H t ) = cosh( t
2 )

tr(O) = 1/
p

2

• V 0 = H 0 = IdMH

• V a ·V b =V (a+b)

H a ·H b = H (a+b)

• V t =OH t O−1

H t =OV −t O−1

Definition 15. Let V ∗, H∗ ∈ MH be the following matrices

V ∗ =
(

1 0

0 −1

)

H∗ =
(

0 1

1 0

)
and let Let Ṽ , H̃ ⊂H be the following sets

Ṽ = {z ∈H |ℜ(z) = 0}
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Chapter 3. Hyperbolic geometry

H̃ = {z ∈H | |z| = 1}

V ∗ and H∗ represent symmetries of axes Ṽ and H̃.

Ṽ and H̃ are the axes of V t , respectively H t ,∀t ∈R and are called vertical and horizontal axes.

Definition 16. Let Ṽ −,Ṽ +, H̃−, H̃+ ⊂H be the following sets.

Ṽ − = {z ∈H |ℜ(z) < 0}

Ṽ + = {z ∈H |ℜ(z) > 0}

H̃− = {z ∈H | |z| < 1}

H̃+ = {z ∈H | |z| > 1}

They are the half-planes ofH of border Ṽ , respectively H̃ .

Theorem 5 (Minimal distance). Let M ∈ MH be a transformation of the form

M =
n∏

i=1
Xi

where the Xi are either of the form Xi = H h j or of the form Xi =V vk for some h j , vk ∈R.

Let {h j }p
j=1 ⊂ R and {vk }q

k=1 ⊂ R be respectively the powers of the H and the V that appear in

the product M.

If vk ≥ 0, ∀k = 1,2, ..., q

then, the following inequalities

• trM ≥ tr
∏p

j=1 H h j = trH
∑

j h j ≥ 1

• trM ≥ tr
∏q

k=1 V vk = trV
∑

k vk ≥ 1

are true.

These inequalities are strict unless vk = 0, ∀k = 1,2, ..., q respectively h j = 0, ∀ j = 1,2, ..., p.

Before giving the proof of this theorem, we will present some other properties that will be

useful for the proof.

Remark 3. Let a,b,α,β ∈R such that a ≥ |α| and b ≥ |β|. Then

ab +αβ≥ |aβ+αb|

and

ab −αβ≥ |aβ−αb|

26



3.4. Trace bounding

with equalities iif a = |α| or b = |β|.

Proof. (Remark 3) Firstly, ab ±αβ≥ ab −|α||β| ≥ a(b −|β|) ≥ 0.

And we also have

(ab +αβ)2 − (aβ+αb)2 = (ab −αβ)2 − (aβ−αb)2

= a2b2 +α2β2 −a2β2 −α2b2 = (a2 −α2)︸ ︷︷ ︸
≥0

(b2 −β2)︸ ︷︷ ︸
≥0

≥ 0.

with equality iif (a2 =α2) or (b2 =β2).

Remark 4. Let M =∏n
i=1 Xi , {h j }p

j=1 ⊂R and {vk }q
k=1 ⊂R be as in the assumptions of Theorem

5.

Then, there are isometries S,T ∈ MH that can be written as

S =
n′∏

i=1
H hS

j ·V vS
j = H hS

1 ·V vS
1 ·H hS

2 ·V vS
2 · . . . ·H hS

n′ ·V vS
n′

T =
n′∏

i=1
V vT

j ·H hT
j =V vT

1 ·H hT
1 ·V vT

2 ·H hT
2 · . . . ·V vT

n′ ·H hT
n′

for some n′ ∈N and for some hS
j , vS

j ,hT
j , vT

j ∈R such that

trM = trS = trT
p∑

i=1
hi =

n′∑
j=1

hS
j =

n′∑
j=1

hT
j

q∑
i=1

vi =
n′∑

j=1
vS

j =
n′∑

j=1
vT

j

vi ≥ 0 ∀i = 1, ...,n ⇒ vS
j ≥ 0 ∀ j = 1, ...,n′

⇒ vT
j ≥ 0 ∀ j = 1, ...,n′.

Proof. (Remark 4) This fact comes from the properties of Remark 2 and the fact that the trace

is invariant under conjugation.

Lemma 1. Let M ∈ SL+
2 (R) be such that M can be written as a product of a finite number of

elements of the set

{V a ∈ MH | a ∈R∗
+}∪ {H b ∈ MH | b ∈R}.
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Chapter 3. Hyperbolic geometry

Then,

M ∈ G̃ :=
{(

m1 m2

m3 m4

)
∈ SL+

2 (R) |m1 ±mi ≥ |m j ±mk |, ∀(i , j ,k) ∈ Perm(2,3,4)

}
.

(The inequality must be read as “m1 +mi ≥ |m j +mk | and m1 −mi ≥ |m j −mk |”.)

Proof. Lemma 1

First, by using the fact that ea > |e−a | and cosh(b) > |sinh(b)| ∀a ∈R+,b ∈R, we can check that

V a , H b ∈ G̃ , ∀a ∈R∗+,b ∈R.

Now let M , N ∈ G̃ and R = M ·N . We want to show that R ∈ G̃ .

By using Remark 3 a computation gives us

(r1 + r2)+ (r3 + r4) =
a≥|α|︷ ︸︸ ︷

(m1 +m3)

b≥|β|︷ ︸︸ ︷
(n1 +n2)+

α︷ ︸︸ ︷
(m2 +m4)

β︷ ︸︸ ︷
(n3 +n4) ≥ |...| ≥ 0

(r1 + r2)− (r3 + r4) =
a≥|α|︷ ︸︸ ︷

(m1 −m3)

b≥|β|︷ ︸︸ ︷
(n1 +n2)+

α︷ ︸︸ ︷
(m2 −m4)

β︷ ︸︸ ︷
(n3 +n4) ≥ |...| ≥ 0

from which r1 + r2 ≥ |r3 + r4|.

The other cases r1 ± ri ≥ |r j ± rk | can be shown by exactly the same kind of argument.

Proposition 5 (Words caracterisation).

Let M =
(

m1 m2

m3 m4

)
∈ SL+

2 (R) be an hyperbolic transformation. Then the following statements

are equivalent.

(a) M can be written as a product of a finite number of elements of the set {V a ∈ MH | a ∈
R∗+}∪ {H b ∈ MH | b ∈R}, with at least one element of the set {V a ∈ MH | a ∈R∗+}.

(b)

M ∈G :=
{(

m1 m2

m3 m4

)
∈ SL+

2 (R) | m1 ±m4 > |m2 ±m3|
}

which also implies that m1 > |mi |,∀i = 2,3,4.

(c) ∃!α,β,γ ∈Rwith β> 0 such that M = Hα ·V β ·Hγ.

(d) M ∈ SL+
2 (R) represents an hyperbolic transformation whose axis cuts the axis of H 1 and

H̃− $ M(H̃−)

28



3.4. Trace bounding

Proof. (Proposition 5) First, let us show that M ∈G indeed implies that m1 > |mi |,∀i = 2,3,4.

We have m1 +m4 > |...| ≥ 0 and m1 −m4 > |...| ≥ 0 and then m1 > |m4|.
Since m1 +m4 > m2 +m3 and m1 −m4 > m2 −m3, 2m1 > 2m2 from where m1 > m2. And

m1 +m4 > −m2 −m3 and m1 −m4 > −m2 +m3, 2m1 > −2m2 from where m1 > −m2 and

m1 > |m2|. The case m1 > |m3| is identical.

To finish the proof, we will show that (b)⇒(c)⇒(a)⇒(b). And then we will finally show that

(a,b,c)⇒(d) and (d)⇒(c).

(b)⇒(c)

A rather long computation shows that ∀α,β,γ ∈R, we have

R = HαV βHγ⇒ (3.4.1)

r1 + r4 = 2cosh(β/2)cosh((α+γ)/2)

r3 + r2 = 2cosh(β/2)sinh((α+γ)/2)

r1 − r4 = 2sinh(β/2)cosh((α−γ)/2) (3.4.2)

r3 − r2 = 2sinh(β/2)sinh((α−γ)/2)

Existence of α,β,γ:

Now let be N ∈ G . Since, by assumption, we have n1 ±n4 > |n3 ±n2|, the following

inequality −1 < n3±n2
n1±n4

< 1 holds. That allow us to write

α= tanh−1(
n3 +n2

n1 +n4
)+ tanh−1(

n3 −n2

n1 −n4
) (3.4.3)

γ= tanh−1(
n3 +n2

n1 +n4
)− tanh−1(

n3 −n2

n1 −n4
) (3.4.4)

and

β= 2tanh−1(

√
(n1 −n4)2 − (n3 −n2)2

(n1 +n4)2 − (n3 +n2)2 ) > 0. (3.4.5)

In the definition of β we use that n1n4 −n2n3 = det N > 0 in order to show that the

numerator is smaller than the denominator.

Now let be R = HαV βHγ with the α,β,γ defined just above. We want to prove that

R = N .
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Even if it is perhaps possible, a direct calculation would be very complex to achieve,

thus we will prove this fact in a different manner.

We see that

n3 +n2

n1 +n4
= tanh((α+γ)/2) = 2cosh(β/2)sinh((α+γ)/2)

2cosh(β/2)cosh((α+γ)/2)
= r3 + r2

r1 + r4

From which we deduce that ∃λ ∈R∗ such that

r1 + r4 =λ(n1 +n4) (3.4.6)

r3 + r2 =λ(n3 +n2)

By Lemma 1, we know that r1 + r4 ≥ 0 and by hypothesis N ∈G , we have n1 +n4 > 0 and

then we know that λ> 0.

In the same way

n3 −n2

n1 −n4
= tanh((α−γ)/2) = 2sinh(β/2)sinh((α−γ)/2)

2sinh(β/2)cosh((α−γ)/2)
= r3 − r2

r1 − r4

⇒∃µ ∈R∗ such that

r1 − r4 =µ(n1 −n4) (3.4.7)

r3 − r2 =µ(n3 −n2)

µ> 0

.

Finally, we calculate that

0 < (n1 −n4)2 − (n3 −n2)2

(n1 +n4)2 − (n3 +n2)2 = tanh2(β/2)

= 4sinh2(β/2)(cosh2((α−γ)/2)− sinh2((α−γ)/2))

4cosh2(β/2)(cosh2((α+γ)/2)− sinh2((α+γ)/2))

= (r1 − r4)2 − (r3 − r2)2

(r1 + r4)2 − (r3 + r2)2

= µ2

λ2

(n1 −n4)2 − (n3 −n2)2

(n1 +n4)2 − (n3 +n2)2 .

Since we know that λ,µ> 0, we must have λ=µ.

By adding and subtracting the equations (3.4.6) and (3.4.7), we see that R =λN .

30



3.4. Trace bounding

Finally, since we know that by assumption N ∈ SL+
2 (R), we have

1 = det(HαV βHγ) = detR =λ2 det N =λ2

and, since λ> 0, we have λ= 1 which finally proves that N = R = HαV βHγ for theα,β,γ

defined in (3.4.3)-(3.4.5) which concludes the existence part.

Uniqueness of α,β,γ:

Let us assume we have α,β,γ,α′,β′,γ′ ∈R, β,β′ > 0 such that

R := HαV βHγ = Hα′
V β′

Hγ′ .

We have to show that α=α′, β=β′ and γ= γ′.
Starting with the equations (3.4.1), the same computation as before gives us that

n3 +n2

n1 +n4
= tanh((α+γ)/2) = tanh((α′+γ′)/2) ⇒α+γ=α′+γ′

n3 −n2

n1 −n4
= tanh((α−γ)/2) = tanh((α′−γ′)/2) ⇒α−γ=α′−γ′

⇒α=α′ and γ= γ′

and

(n1 −n4)2 − (n3 −n2)2

(n1 +n4)2 − (n3 +n2)2 = tanh2(β/2) = tanh2(β′/2)

Since β,β′ > 0, this implies that β=β′ which ends the proof of (b)⇒(c).

(c)⇒(a) Trivial.

(a)⇒(b)

To prove that (a)⇒(b), we will show the following statements, ∀A ∈G ,∀a ∈R∗+,∀b ∈R

1) V a ∈G

2) A ·V a ∈G

3) V a · A ∈G

4) A ·H b ∈G

5) H b · A ∈G .

Since, by assumption, A ∈G , the point (b)⇒(c) and Lemma 1 imply that A ∈ G̃ . (So we

have G ⊂ G̃ , but we need this fact only here.)

Now we give the proof item per item using Lemma 1.

1) V a ∈G , ∀a ∈R∗+:

(V a)1 ± (V a)4 = ea/2 ±e−a/2 > 0 = |(V a)2 ± (V a)3|
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2) R := A ·V a ∈G ,∀a ∈R∗+, A ∈G : Using that a1 > |ai |, i = 2,3,4 (see the beginning of

the proof) we get

(r1+r4)+ (r2+r3) = ea/2

≥|a2+a4|︷ ︸︸ ︷
(a1 +a3)+e−a/2(a2+a4) ≥

>0︷ ︸︸ ︷
(a1 +a3)

>0︷ ︸︸ ︷
(ea/2 −e−a/2) > 0

(r1+r4)− (r2+r3) = ea/2

≥|a2−a4|︷ ︸︸ ︷
(a1 −a3)−e−a/2(a2−a4) ≥

>0︷ ︸︸ ︷
(a1 −a3)

>0︷ ︸︸ ︷
(ea/2 −e−a/2) > 0

which implies that r1 + r4 > |r2 + r3|. The case r1 − r4 > |r2 − r3| is similar.

3) R := A ·H b ∈G ,∀b ∈R, A ∈G :

(r1 + r4)+ (r2 + r3) =
>0︷︸︸︷

eb/2(

>0︷ ︸︸ ︷
(a1 +a4)+ (a2 +a3)) > 0

(r1 + r4)− (r2 + r3) = e−b/2((a1 +a4)− (a2 +a3)) > 0

which implies that r1 + r4 > |r2 + r3|. The case r1 − r4 > |r2 − r3| is similar.

4) R :=V a · A ∈G ,∀a ∈R∗+, A ∈G : Similar to case 2).

5) R := H b · A ∈G ,∀b ∈R, A ∈G : Similar to case 3).

This concludes the proof that (a), (b) and (c) are equivalent. Now let us prove that

(a,b,c)⇒(d)

Let M ∈G be a Möbius transformation.

Firstly we have to show that M is hyperbolic which is equivalent to check that trM > 1.

By point (c), M = HαV βHγ for some α,β,γ ∈ R∗, β > 0. Then, by equation (3.4.1), we

see that

trM = m1 +m4

2
=

>1︷ ︸︸ ︷
cosh(β/2)

≥1︷ ︸︸ ︷
cosh((α+γ)/2) > 1.

Now we have to show that the axis of M cuts the axis H̃ . By using the theorem 4.7 of [1]

page 48, we can conclude that this is the case if and only if det(M ∧H∗) = 1
4 det(M H∗−

H∗M) > 0. A computation tells us that, after simplification

det(M ∧H∗) =
>0︷ ︸︸ ︷

((m1−m4)+ (m2−m3))

>0︷ ︸︸ ︷
((m1−m4)− (m2−m3)) > 0.

Finally, we have to prove that H̃− $ M(H̃−).

By point (c), let α,β,γ ∈Rwith β> 0 be such that M = HαV βHγ.

Since H̃ is the axis of Hα, Hα(H̃) = H̃ and then Hα(H̃−) is an half plane of border H̃ it

follows that Hα(H̃−) ∈ {H̃−, H̃+}. We also have that 0 ∈ H̃− and Hα(0) = sinh(α)
cosh(α) and then

|Hα(0)| < 1 from where Hα(0) ∈ H̃− and then Hα(H̃−) = H̃−. The same argument yields

Hγ(H̃−) = H̃−.

32



3.4. Trace bounding

Next, ∀z, |z| < 1 ⇔|V β(z)| = eβ|z| < eβ and then, since β> 0, we have

{z ∈H | |z| < 1} = H̃− $V β(H̃−) = {z ∈H | |z| < eβ}.

This allow us to write the following.

H̃− $V β(H̃−) =V β(Hγ(H̃−))

⇒ Hα(H̃−)$ Hα(V β(Hγ(H̃−)))

⇒ H̃− $ M(H̃−).

The last step to do on the proof of the proposition is to show that

(d)⇒(c)

ℑ

ℜ
−1 1M(−1) M(1)

M̃

Q̃

H̃

M(H̃)

Ṽ

p1

p2

q1
q2s1

s2

r

Figure 3.1: The hyperbolic plane with H̃ and M̃ .

Let p1 ∈H be the intersection point of H̃ and M̃ , the axis of M ;

let p2 = M(p1) be be the intersection point of M(H̃) and M̃ . Since H̃− $ M(H̃−), H̃ ∩
M(H̃) = ;. And since M̃ cuts H̃ , the endpoints −1,1 ∈ H of H̃ are not in M̃ and then

−1 and 1 are not endpoints of M(H̃). From that, we deduce that ∃D̃ ⊂H,∃q1, q2 ∈ D̃ a

geodesic and two points such that D̃ ⊥q1 H̃ and D̃ ⊥q2 M(H̃).

Let Q ∈ SL+
2 (R) be the unique hyperbolic transformation with axis D̃ such that Q(q1) = q2.

Since H̃ ⊥q1 D̃ , Q(H̃) ⊥Q(q1)

=D̃︷ ︸︸ ︷
Q(D̃) and then

Q(H̃), M(H̃) ⊥q2 D̃ from where Q(H̃) = M(H̃).

Let s1 = i ∈ H̃ ∩ Ṽ and let S ∈ SL+
2 (R) be the unique hyperbolic transformation with axis

H̃ such that S(q1) = s1. Let α ∈ R be the unique real number such that S = Hα. Let

s2 = S(q2).

Since D̃ ⊥q1 H̃ from where S(D̃) ⊥s1 S(H̃) = H̃ and Ṽ ⊥s1 S(H̃) we obtain that S(D̃) = Ṽ

and that s2 ∈ Ṽ .

Then we can take β ∈R to be the unique real number such that V β(s1) = (s2).
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Since q2 ∈ M(H̃), q2 ∈ H̃+ and then s2 = S(q2) ∈ S(H̃+) = H̃+. From where |s2| =
|V β(s1)| = |i eβ| > 1 ⇒β> 0.

We will now prove that Q = H−αV βHα. Since both of these transformations are hyper-

bolic, to do that we will show that q2 =Q(q1) = H−αV βHα(q1) and that D̃ = axis(Q) =
axis(H−αV βHα). We have

H−αV βHα(q1) = H−αV β(s1) = H−α(s2) = (Hα)−1(s2) = q2 =Q(q1)

and, using the conjugation principle we have that

axis(H−αV βHα) = H−α(axis(V β)) = H−α(Ṽ ) = D̃ = axis(Q).

This finishes the proof that Q = H−αV βHα.

Now let r = M−1(q2). Since q2 ∈ M(H̃), r ∈ H̃ . Let then be δ ∈R the unique real number

such that Hδ(r ) = q1.

We want to prove that M =QHδ. Since both of these transformations are hyperbolic this

follows from

QHδ(r ) =Q(q1) = q2 = M(r )

and

QHδ(H̃) =Q(H̃) = M(H̃).

Hence, M = H−αV βHα+δ with β> 0 which proves (c).

This concludes the proof of the proposition.

We can now give the proof of the Theorem 5.

Proof. (Theorem 5) Let M be a product of some H hi and some V v j like in the assumptions of

Theorem 5. We will now separate the proof into three different parts.

Part 0

If vk = 0, ∀k = 1, ..., q , then, by Remark 2, M = H
∑

j h j and then

trM = tr
p∏

j=1
H h j = trH

∑
j h j .

If h j = 0, ∀ j = 1, ..., p, then, by Remark 2, M =V
∑

j vk and then

trM = tr
q∏

k=1
V vk = trV

∑
k vk .
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For the next part, using Remark 4, we may assume, without loss of generality that M is of the

form

M =V v1 ·H h1 ·V v2 ·H h2 · . . . ·V vn ·H hn (3.4.8)

with vi > 0,hi 6= 0, ∀i = 1, . . . ,n for a given integer n ≥ 1.

Part 1

In this part, assuming that M is of the form (3.4.8), we want to show that

trM > trH
∑

i hi . (3.4.9)

Let R =∏n−1
i=1 V vi ·H hi such that M = R ·V vn H hn .

Since the trace is invariant under conjugaison,

trM = tr(R ·V vn ·H hn ) = tr(H hn ·R︸ ︷︷ ︸
:=S

·V vn ) = tr(S ·V vn )

We are going to prove the inequality (3.4.9) by induction over n.

Initial step n = 1:

then

trM = tr(V v1 ·H h1 ) = cosh(
v1

2
)cosh(

h1

2
) > cosh(

h1

2
) = trH h1 .

Induction:

Suppose that the inequality (3.4.9) holds for all M ′ of the form

M ′ =∏n−1
i=1 V v ′

i ·H h′
i with v ′

i > 0. We want to show that the inequality (3.4.9) holds for M . Using

the lemma 1 on S, we see that s1 ≥ |s4| and then

trM − trS = tr(S ·V vn )− tr(S) =
1

2
(s1 (evn /2 −1)︸ ︷︷ ︸

>0

+s4 (e−vn /2 −1)︸ ︷︷ ︸
<0

) ≥ 1

2
(s1(evn /2 −1)+ s1︸︷︷︸

≥|s4|
(e−vn /2 −1))︸ ︷︷ ︸

<0

= s1(cosh(vn+1/2)−1) ≥ 0.

Finally, by induction hypothesis on the M ′ defined in the next equation, we have that

trS = tr(H hn ·R) = tr(R ·H hn ) =V v1 ·H h1 · · ·V vn−1 ·H (hn−1+hn )︸ ︷︷ ︸
=:M ′

> trH
∑n

i=1 hi
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and then

trM ≥ trS > trH
∑

i hi .

Part 2

In this last part, assuming that M is of the form M = H h1 ·V v1 ·H h2 ·V v2 · . . . ·H hn ·V vn , we want

to show that

trM > trV
∑

i vi . (3.4.10)

ℑ

ℜ

H̃ = φ̃1

φ̃2

φ̃3

p1

p2 p3
p4

r1

r2 r3

s1 s2

s3

ψ̃1

ψ̃2

ψ̃3

M̃

M(H̃) = φ̃4

Figure 3.2: The hyperbolic plane with φ̃i and ψ̃i in a case where n = 3. For better visibility the
axis of M̃ has been drawn lower than its actual position.

Let S0 = Id2, we now define recursively the following Möbius transformations.

∀i = 1, . . . ,n :

φi := Si−1 ·H hi ·S−1
i−1 (3.4.11)

Ri :=φi ·Si−1 = Si−1 ·H hi (3.4.12)

ψi := Ri ·V vi ·R−1
i (3.4.13)

Si :=ψi ·Ri = Ri ·V vi = Si−1 ·H hi ·V vi (3.4.14)

By using the Proposition 5, we see that M̃ , the axis of M , cuts H̃ and we define p1 ∈H to be the

intersection point.
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By (3.4.14), we can see that Sn = M by a simple recursion argument.

Let us define pn+1 = M(p1) ∈ M(H̃) =: φ̃n+1.

Let s0 = i ∈H, we now define recursively the following points ofH.

∀i = 1, . . . ,n :

ri :=φi (si−1) ∈H
si :=ψi (ri ) ∈H

We can show by recursion that ri = Ri (s0) and that si = Si (s0).

Finally, since φi and ψi are conjugates of hyperbolic transformations, they are themselves

hyperbolic transformations. We then define φ̃i ⊂ H and ψ̃i ⊂ H to be the axes of φi and

respectively ψi .

Using equation (3.4.11) and the conjugation principle ã(Y X Y −1) = Y (X̃ ), we see that ∀i =
1, . . .n,

φ̃i = Si−1(H̃).

and by (3.4.12),

Ri (H̃) = Si−1 ·H hi (H̃) = Si−1(H̃) = φ̃i .

Similarly, by using (3.4.13) and (3.4.14), we find that

ψ̃i = Ri (Ṽ )

and

Si (Ṽ ) = Ri ·V vi (Ṽ ) = Ri (Ṽ ) = ψ̃i .

Then, since ∀i = 1, . . . ,n, Ri , and Si are isometries, we have

Ṽ ⊥s0 H̃ ⇒ Ri (Ṽ ) ⊥Ri (s0) Ri (H̃) ⇒ ψ̃i ⊥ri φ̃i

Ṽ ⊥s0 H̃ ⇒ Si (Ṽ ) ⊥Si (s0) Si (H̃) ⇒ ψ̃i ⊥si φ̃i+1.

For i = 1, . . . ,n, let us define the following half planes of border φ̃i

φ̃−
i = Si−1(H̃−) ⊂H

φ̃+
i = Si−1(H̃+) ⊂H.
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We will prove by induction that for i = 1, . . . ,n

φ̃−
i $ φ̃−

i+1

and

φ̃+
i+1 $ φ̃+

i .

By using Proposition 5, we see that φ̃i and φ̃i+1 are strongly parallel and

H̃− $ H hi V vi (H̃−).

Then by (3.4.14),

φ̃−
i = Si−1(H̃−)$ Si−1H hi V vi (H̃−) = Si (H̃−) = φ̃−

i+1

and

φ̃+
i =H\ φ̃−

i %H\ φ̃i+1 = φ̃+
i+1

and since φ̃i+1 ⊂ φ̃i ,

φ̃+
i+1 $ φ̃+

i .

Now, p1 ∈ H̃ , and so for i = 2, . . . ,n +1, p1 ∈ φ̃−
i . And since pn+1 ∈ M(H̃) = Sn(H̃) = φ̃n+1, we

have for i = 1, . . . ,n, pn+1 ∈ φ̃+
i .

Since p0, pn+1 ∈ M̃ , by the definition of half-planes,∀i = 2, . . . ,n, the geodesic M̃ cuts φ̃i . We

define the intersection points to be pi := M̃ ∩ φ̃i .

Since for i = 2, . . . ,n, the open geodesic segment ]pi−1, pi [⊂ φ̃−
i whereas the open geodesic

segment ]pi , pi+1[⊂ φ̃+
i , then all the segments are disjoint

∀i , j ∈ {1, . . . ,n}, i 6= j ]pi , pi+1[∩ ]p j , p j+1[=;.

And since the pi are aligned and ]p1, pn+1[=∐n
i=1]p1, pi+1[, we have that

dist(p1, pn+1) =
n∑

i=1
dist(pi , pi+1).

But, since pi ∈ φ̃i , pi+1 ∈ φ̃i+1 and since ψ̃i ⊥ri φ̃i and ψ̃i ⊥si φ̃i+1, we have, by theorem (2.24)
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of [1], that dist(p1, pi+1) ≥ dist(ri , si ) and then

dist(p1, pn+1) ≥
n∑

i=1
dist(ri , si ).

Now we show that the inequality is strict.

dist(p1, pn+1) = ∑n
i=1 dist(ri , si ) ⇔ pi = ri = si−1,∀i = 1, . . . ,n + 1, but since by assumption,

hi 6= 0, dist(p1, pn+1) >∑n
i=1 dist(ri , si ).

Finally, since

dist(ri , si ) = dist(Ri (s0),ψi Ri (s0)) = dist(s0,R−1
i ψi Ri (s0)) = dist(s0,V vi (s0)),

we may write, using theorem (2.24) of [1],

2cosh−1(trM︸︷︷︸
>1

) = dist(p1, pn+1) >
n∑

i=1
dist(ri , si ) =

n∑
i=1

dist(s0,V vi (s0))

= dist(s0,V
∑

i vi (s0)) = 2cosh−1(trV
∑

i vi︸ ︷︷ ︸
>1

)

and then

trM > trV
∑

i Vi > 1.

This concludes the proof of the theorem.
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In this part, we will find a description of Riemann surfaces that is well suited for computa-

tion. Therefore, we will be able to describe certain properties of surfaces, such as the systole,

fundamental domain, etc. that can be calculated algorithmically.

Choice of the language. Since the nature of these problems is to a large extent combinatorial,

with sometimes some subtle stop conditions, we have to use a suitable language to express it.

It appears that the most suitable way to express these concepts is the so called Oriented Object

Programming2 (OOP) programming paradigm. Most of the the time, in this document, we will

try to be quite language-independent by using UML class diagrams 3.

Instead of using pure pseudocode, we will use the Python language to give explicit implemen-

tations of certain algorithms.

We have chosen Python as the language of reference of this section, rather than a faster but

lower-level language like C++ to keep the focus on the didactic aspect rather than implemen-

tation details.

Objects and class diagrams. It is not the point here to recapitulate the whole theory of

objects. The reader is supposed to be familiar with the concepts of class, inheritance, method,

etc.

If this is not the case, the reader will find more explanations about these concepts in the books

[5], [6].

What we want to keep in mind is that we will have to define a class to describe each kind of

concept (mathematical, geometrical, purely abstract) that we want to model.

A class possesses two main kinds of informations: it’s attributes and it’s methods. The attributes

are the data necessary to describe a given object of this class and the methods are some

functions that can act on these data.

For the sake of clarity we use the following typeset to speak about classes: ClassExample, and

the following typeset for variables and methods : variableExample.

2 For a description of the concept see [5].
3Unified Modeling Language: is a standard to represent object oriented programing concepts in an unified

implementation-independent way.
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We present in Figure 3.3 an example of class diagram to clarify our notations.

<<abstract>>
GeometricShape

area : Float
-color : Color

setColor(color : Color)
getColor() : Color
draw() <<abstract>>

Rectangle

width : Float
height : Float

draw()

Circle
radius : Float

draw()

Figure 3.3: An example of class diagram.

The example diagram contains 3 classes: GeometricShape, Rectangle and Circle.

Here GeometricShape is the base class of the classes Rectangle and Circle.

GeometricShape possesses:

• An attribute called area which is of type Float.

• A method called setColor which takes one argument color of type Color, modifies

it’internal state and returs nothing.

• A method called getColor which takes no argument and returns an object of type Color.

• A virtual method (written in italic) called draw which takes no argument and returns

nothing. Furthermore this method is marked as abstract. It means that this method

has no implementation and is meant to be overloaded. A class that contains abstract

methods is an abstract class.

A Python code implementing these three classes would look like this.

1 c l a s s GeometricShape :

def _ _ i n i t _ _ ( s e l f ) : #Constructor

3 s e l f . area = 0.0

s e l f . __color = Color ( " black " )

5 def setColor ( s e l f , color ) :

s e l f . __color = color

7 def getColor ( s e l f ) :

return s e l f . __color

9 def draw ( s e l f ) : abstractMethod

11 c l a s s Rectangle ( GeometricShape ) :

def _ _ i n i t _ _ ( s e l f , width , height ) : #Constructor

13 GeometricShape . _ _ i n i t _ _ ( s e l f ) # Cal ls the parent ’ s constructor .
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s e l f . width = width

15 s e l f . height = height

def draw ( s e l f ) :

17 outputDevice . drawRectangle ( 0 , 0 , width , height ) # pseudo implementation

19 c l a s s Rectangle ( GeometricShape ) :

def _ _ i n i t _ _ ( s e l f , radius ) : #Constructor

21 GeometricShape . _ _ i n i t _ _ ( s e l f ) # Cal ls the parent ’ s constructor .

s e l f . radius = radius

23 def draw ( s e l f ) :

outputDevice . drawCircle ( 0 , 0 , radius ) # pseudo implementation
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4 Surface modeling

In this chapter we will introduce a way to implement a model for the concept of a Riemann

surface that will be suitable to explain algorithms to solve geometrical questions about the

surface.

According to the notations of part I, let S =H/Γ, with Γ ⊂ Möb(H) it’s Fuchsian group, be a

Riemann surface.

Our goal being to have a geometric description of the surface, it appears that the better starting

point is to suppose that we have a marked surface. In other words, that a Fenchel-Nielsen

parametrization of S is already known (see chap 4.1 on page 48).

We will see in section 7.1 how to deduce a set of generators of the Fuchsian group Γ of the

surface from these informations.
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Chapter 4. Surface modeling

4.1 Fenchel-Nielsen parameters modeling

We consider that it is known that any hyperbolic compact surface of genus g can be described 1

by a graph of order 3 with

• 2(g −1) nodes corresponding to Y -pieces.

• 3(g −1) edges corresponding to pants gluing. Each edge of the graph is associated with

two real numbers (l ,τ) that are called the length and the twist of the gluing.

A quite natural way to model this programmatically is to associate a name to each Y -piece in

the form of a String that will later serve as an identifier of this Y -piece.

The edges of the graph are then fully described by a tuple of length 5 of the form

( "Y1name" , "Y2name" , L , t , "edgeName"=" " )

where L and t are represented by (float floating point real numbers), the last argument being

optional.

L is called the length parameter and is strictly positive L>0.0.

t is called the twist parameter and, in our approach can be any floating point number, positive

or negative.

Note that it is also possible to overcome the issues arising from usage of floating point numbers

in the case of algebraic surfaces, by using exact numbers representations, but it is outside the

scope of this document.

The Fenchel-Nielsen parameters of the surface we are modeling can simply be given as a list of

3(g −1) tuples as described above.

Examples Here are three examples of valid Fenchel-Nielsen graphs and their Python repre-

sentation.

1This description is not unique.
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4.1. Fenchel-Nielsen parameters modeling

Y1 Y2 Y1 Y2

Y1

Y4

Y2

Y3

(2.2,0.6)

(3.2,1.6)

(4.2,2.6)

(2.2,0.6)

(3.2,1.6)

(4.2,2.6)

(2.2,0.6) (3.2,1.6)

(4.2,2.6)

(7.2,5.6)

(5.2,3.6) (6.2,4.6)

graph1 graph2 graph3

Figure 4.1: Examples of Fenchel-Nielsen graphs.

In Python language, these graphs are implemented in the following way2

1 #The graph of a surface of genus 2 .

graph1 = [ ( "Y1" , "Y2" , 2 . 2 , 0 . 6 ) , ( "Y1" , "Y2" , 3 . 2 , 1 . 6 ) , ( "Y1" , "Y2" , 4 . 2 , 2 . 6 ) ]

3

#The graph of a surface of genus 2 .

5 graph2 = [ ( "Y1" , "Y1" , 2 . 2 , 0 . 6 ) , ( "Y2" , "Y2" , 4 . 2 , 2 . 6 ) , ( "Y1" , "Y2" , 3 . 2 , 1 . 6 ) ]

7 #The graph of a surface of genus 3 .

graph3 = [ ( "Y1" , "Y1" , 2 . 2 , 0 . 6 ) , ( "Y2" , "Y2" , 3 . 2 , 1 . 6 ) , ( "Y3" , "Y3" , 4 . 2 , 2 . 6 ) ,

9 ( "Y1" , "Y4" , 5 . 2 , 3 . 6 ) , ( "Y2" , "Y4" , 6 . 2 , 4 . 6 ) , ( "Y3" , "Y4" , 7 . 2 , 5 . 6 ) ]

Validity conditions A graph given in this form is a valid Fenchel-Nielsen parametrization of

a surface if and only if it gives rise to a connected graph of order 3.

That means that every "YName" String identifier must appear exactly 3 times in the graph.

As a counter-example, the graph invalidGraph shown below is not valid since the Y -piece

named "Ylow" appears only twice and the Y-piece named "Yhigh" appears 4 times.

1 invalidGraph = [ ( "Ylow" , "Yhigh" , 1 . 0 , 0 . 0 ) , ( "Ylow" , "Yhigh" , 1 . 0 , 0 . 0 ) ,

( "Yhigh" , "Yhigh" , 1 . 0 , 0 . 0 ) ]

2In this example, we chose not to give names to the edges.
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Chapter 4. Surface modeling

4.2 Surface sub-objects

The point of this chapter is to define a new class called Surface.

Any object3 surface of the type Surface is aimed to be a valid representations of a given

marked surface S =H/Γ.

To ensure our model catches the useful geometrical properties of S that we will need in the

algorithms of Chapter 6, we shall define five important types of subsets of S. These are, the

Y -pieces (who are the subsets of S that are bounded by three simple closed geodesic, i.e.

elements of τ0,3), the collars, the borders, the roads and the slots 4 of S.

border

closed geodesic

collar

Y-piece

Figure 4.2: A surface of genus 2 with 3 collars and 2 Y -pieces , together with a topological
representation of a Y -piece and a collar.

Collars Before giving more details about its implementation we provide a more accurate

description of how we understand the gluing term of the previous section 4.1.

Definition 17. Let S =H/Γ be an hyperbolic surface, ε ∈R∗+ and γ⊂ S a closed geodesic.

We define the following subset of S

Coll εγ(S) = {
s ∈ S | dS(γ, s) ≤ ε}

where dS is the hyperbolic metric of S and dS(γ, s) := infp∈γdS(p, s).

3Also called instance of the Surface class.
4Note that the terms border, road and slot are not official, they are just invented for practical purpose and clarity

within this document.
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4.2. Surface sub-objects

The set Coll εγ(S) is called ε-collar around γ in S.

This definition leads us to the very well known and important Lemma due to L.Keen.

Lemma 2 (L.Keen). Let Coll εγ(S) be an ε-collar around a simple closed geodesic γ ∈ S.

If

sinh(ε)sinh(
1

2
l (γ)) ≤ 1,

then Coll εγ(S) is diffeomorphic to an annulus A ⊂C i.e. a set of the form

A = { z ∈C | |z| ∈ [1,2]} (4.2.1)

Due to this Lemma’s hypothesis, we will always assume that we take sufficiently small ε and

directly speak of collar if the ε is not relevant in the particular context. So, collars will always

be diffeomorphic to annuli.

Borders

Definition 18. Let γ ∈ S be a simple closed geodesic, C ⊂ S a collar around γ, A ⊂C an annulus

as in (4.2.1) and f : C → A a diffeomorphism.

Since the topological boundary ∂A of A is the disjoint union of the two circles

c1 = {|z| = 1} ⊂C and c2 = {|z| = 2} ⊂C, the topological boundary ∂C of C is composed of exactly

two disjoint closed curves b1 = f −1(c1) and b2 = f −1(c2).

The curves b1 and b2 will now be called the borders of the collar C .

Remark 5. One can easily show with the above-mentioned collar lemma that if Y1,Y2 ⊂ S are

two Y -pieces sharing as common boundary the closed geodesic γ, then one of the borders of

the collar C around γ lies in Y1 and the other one lies in Y2.

The collars and their borders on a surface will play an important role in the construction of the

algorithms we will provide. That is why we define a new class Collar and a new class Border to

symbolically (and numerically) represent these mathematical objects.

The relevant properties and methods with respect to the geometry that these classes have to

represent will be explained in Sections 4.4.2 and 4.4.3.

Y-Piece As we have seen that any closed surface S of genus g can be divided into 2g − 2

non-overlapping open subset, called Y -pieces, separated by 3g −3 non intersecting simple

closed geodesics.
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Chapter 4. Surface modeling

The Y -pieces will be represented in the following by the class YPce, which is detailed in chapter

4.4.4.

b0

b1b2

u0u1u2

f0

f1 f2

s0s2 s2s0s2s0

s1

s3

s3s3

s1s1

Figure 4.3: The Roads and the Slots of a YPce.

Roads Let Y ⊂ S be a Y -piece with γ1,γ2,γ3 the 3 simple closed geodesics composing it’s

boundary.

The roads are the 6 different simple geodesic arcs that intersect orthogonally two borders of

an YPce.

Let b and b′ be two Borders of an Y -piece y (the case b = b′ is also possible).

Let f , g : [0,1] → y be two continuous curves on y , such that f (0), g (0) ∈ b and f (1), g (1) ∈ b′.

If there exists a continuous mapping h : [0,1]× [0,1] such that ∀s ∈ [0,1]:

h(s,0) = f (s)

h(s,1) = g (s)

h(0, s) ∈ b

h(1, s) ∈ b′,

then f and g are said to be locally homotopic curves across y .

We can also extend this definition to an orientation-free equivalence relation if, in addition,

we consider the curves x 7→ f (x), x 7→ f (1−x), x ∈ [0,1] to be equivalent.

We can now state the following lemma which plays a fundamental role in the sequel.

Lemma 3. Let ei be a geodesic arc of a simple closed geodesic γ, as above, crossing a Y -piece yi

and cutting the border(s) bi and b′
i of yi .

Then, in the set of the curves starting on bi and ending on b′
i , there is exactly one road of the

YPce that is locally homotopic (without orientation) to ei .

Proof. You may find a proof of this lemma in the book [4, Chapter 3]
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4.2. Surface sub-objects

Slot As we have seen, each road possess exactly two endpoints. Each of these endpoints lies

on a main geodesic of the surface.

These two points will for now on be called slot. In Section 5.1, on page 69 we will clarify the

notion of frame. A frame will turn out to be the data given by a point and a "direction".

The slots of a surface, will then be interpreted not only as points, but as "natural" frames (the

incoming road will define the axis of the frame associated to the slot).

The class that will be used to model the slots of a surface will be called Slot and is detailed in

the SurfaceTopology module, on page 64.
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4.3 Winding index

s0s3s2s1 s0s3s2s1 s0s3s2s1s0

s0s1s2s3s0s1s2s3 s0s1s2s3s0

d := τ

w = 2w = 0 w := 0 w =−6
s0

s3

s2

s1

s0

s3
s2
s1

Figure 4.4: The lift of a collar with lifts of Slots facing each other.
For ease of comprehension the slots have been drawn on their associated borders. Though
they are in fact on the main geodesic.
Here τ is the Fenchel-Nielsen twist oriented distance. w is the winding index related to some
examples "connected" slots.

Let c be a Collar around a main geodesic α and b,b′ be the Borders of c. Let s0, s1, s2, s3 ∈α
designate the slots whose roads lead towards b and s0′, s1′, s2′, s3′ ∈α the slots whose roads

lead towards b′.

Let α̃⊂H be a lift of α in the universal coveringH, let S ⊂ α̃ be the set of all the lifts of s0, s1, s2

and s3 lying on α̃ and let S′ ⊂ α̃ be the set of all the lifts of s0′, s1′, s2′ and s3′ lying on α̃.

We define a function τ : S ×S′ →Z, called the winding index that somehow encapsulates the

"distance between two lifts of slots".

τ is defined recurcively through the following properties, ∀s̃ ∈ S, s̃′ ∈ S′:

• If s̃ is a lift of s0, and if t is the twist distance Fenchel-Nielsen parameter associated to

this Collar, then by the definition of t , there is exactly one s̃′ ∈ S′ such that the oriented

distance from s̃ to s̃′ with respect to the orientation of b is t . Furthermore, according to

this definition, s̃′ will be a lift of s2′.

In that circumstance, as starting point, we define that τ(s̃, s̃′) = 0.

• If we take prevSlot,nextSlot : S′ → S′ to be respectively the previous slot and the next

slot along the current border we set

τ(s̃, s̃′)+1 = τ(s̃, s̃′.nextSlot())

τ(s̃, s̃′)−1 = τ(s̃, s̃′.prevSlot())

• Finally, we want τ to be symmetric in the sense that if we exchange the roles of the two

Borders we obtain the same result. Thus, we complete the definition by requiring that

τ(s̃, s̃′) = τ(s̃′, s̃)
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4.3. Winding index

These three conditions obviously allows us to deduce the value of τ for any combination of

two lifts of Slot facing each other on the same Collar.

A resulting property of τ is that if one of its argument is fixed, the restriction of τ to the set of

the possible values of the second one is a bijection between S′ and Z.

Since in our approach there is no need to implement a class representing a lift of a Slot there

is no method to compute this winding index in the implementation. However, there are two

methods of the Slot class that are related to the winding index. Assuming that s1 and s2 are

two Slots lying on the two facing borders of the same Collar, and assuming that s̃1 and s̃2 are

lifts of these slots such that τ(s̃1, s̃2)) = n and that the oriented distance from s̃1 to s̃2 is D,

these two methods are the following

s1.collarFacingSlot(n): who returns s2.

s1.collarFacingDist(n): who returns D .

See also subsection 4.4.6 on page 64.
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Chapter 4. Surface modeling

4.4 The SurfaceTopology module

According to the definitions of the previous sections we define a module 5

named SurfaceTopology.

This package contains the six following classes.

Surface: The class representing a marked surface.

YPce: The class representing a Y -piece ∈ T0,3, bounded by 3 of the main 6 simple closed

geodesics of the surface.

Collar: The class representing an ε-collar around a main geodesic of the surface, with ε> 0

an arbitrary small real number. (The value of ε does not enter any computation.)

Border: The class representing one of the two boundaries of a Collar.

Road: The class representing an orthogonal geodesic arc between two boundaries of a Y -

piece .

Slot: The class representing the intersection point of a Road and a Border.

SurfaceTopology

Surface

Collar YPce

Border Road

Slot

collars
3g-3

yPces

2g-2

borders
2

roads
6

slots
4

endSlots
2

Figure 4.5: Aggregation diagram of the classes of module SurfaceTopology.

Figure 4.5 shows the different classes defined in the SurfaceTopology module and the aggre-

gation / composition relations between them.

5In Python , a module is an autonomous file possessing the extension .py containing classes and variables
that can be used in other modules using the import statement. Here, the file is then called SurfaceTopology.py.

6We defined the main closed geodesics of a marked surface to be the ones that have been chosen for the pants
decomposition.
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4.4. The SurfaceTopology module

An arrow starting from a class A with a plain diamond pointing to a class B has to be read as

composition and means that the class A contains a list of objects of type B. As an example, the

class Border contains a list of four Slots called slots.

On the other hand the arrows starting with an empty diamond (between Road and Slot)

represent an aggregation relation. The Road class contains a list of two references (or pointers

depending on the language and implementation) on Slots called endSlots.

The difference between composition and aggregation lies in the ownership of the objects:

A composition relation implies that the contained objects strongly belong to the owner, and

are destroyed whenever the owner is destroyed.

An aggregation relation implies that the container contains just a list of references to pre-

existing objects that may survive the destruction of the container.

Note that this difference has an impact on the coding in most of the languages, like C++ , where

the developer has to declare the exact type of the variables and has to explicitly implement the

destructors of the classes.

But in Python , the language we choose to illustrate our algorithms, every variable is a reference

and no destructor is mandatory, since the Python interpreter can automatically decide to

destroy the objects that are not referenced anymore, by a process called garbage collecting.

This peculiarity of Python is both it’s strength, since less code is needed and since memory

leaks errors are impossible (or at least uncommon), and it’s weakness since the garbage

collecting is a very inefficient process.

4.4.1 The Surface class

Surface
#genus : Int

#FNGraph : FNGraph

collars : Collar[3*genus-3]

yPces : YPce[2*genus-2]

Surface(fnParams : FNGraph)

getY(String) : &YPce

getCollar(String) : &Collar

Figure 4.6: Surface class diagram.

We define a class, Surface, that is supposed to contain the data (in finite amount) necessary to

represent the geometrical and topological properties of a given surface.

The two main roles of this class are

• To be the container of the YPces and the Collars composing it.
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Chapter 4. Surface modeling

• To act as the factory of the five other classes of the SurfaceTopology module. I.e.

the constructor of the Surface class is public 7 and takes a valid FNGraph (see Section

4.1) as argument, whereas the Collars, YPces, Borders, Roads and Slots have private

constructors and are only supposed to be constructed and filled with adequate data by

the Surface constructor.

Attributes and properties As we have seen in Section 4.2, a Surface of genus g is composed

of a list of 3g −3 Collars and a list of 2g −2 YPce s. That is why the Surface class will have the

following attributes.

property

Int genus: A property 8 representing the genus of the surface. Its value is deduced on the fly

through the length of the yPces list.

property

FNGraph fnGraph: A property giving back the FNGraph that has been used to construct the

surface. It can be deduced through the content of the collars list and can be useful to

obtain a copy of a Surface.

Collar[3g-3] collars: A list of the 3g −3 Collars of the Surface.

YPce[2g-2] yPces: A list of the 2g −2 YPces of the Surface.

Methods

Surface ( FNGraph ): The constructor of the class.

As discussed in the previous Section 4.1, a Fenchel-Nielsen graph is one of the inputs

needed to construct Surface objects.

This method is also in charge of the initialization of the Collar, YPce, Border, Road and

Slot classes and their content.

&YPce getY( String): We have seen that, in a FNGraph each Y -piece is identified by a String.

This method allows one to recover the YPce object that has the given String as its name.

An exception is raised if the passed argument does not correspond to the name of one

of the Y -pieces .

7A public method is supposed to be used from outside, in contrast to private and protected methods that are
supposed to be used only internally.

8A property is a special kind of attribute, it can be called like a normal variable but it is in fact a method taking
no argument. The advantage of using this concept is to provide the user of the class with an interface that is
independent of the underlying implementation. Furthermore, since the properties are just functions, they have no
impact on the size of the object they belong to. In the context of this document, we will signal the properties with a
# in the class diagrams and consider them as read-only.
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4.4. The SurfaceTopology module

&Collar getCollar( String): We have seen that, in an FNGraph each edge (represented by a

Collar) can optionally be identified by a String. This method allows one to recover the

Collar object corresponding to the passed argument.

An exception is raised if the passed argument does not correspond to the name of one

of the Collars.

4.4.2 The Collar class

Collar
L : Float(unsigned)

t : Float

borders : Border[2]

#yPces : YPce[2]

- Collar()

Figure 4.7: Collar class diagram.

The class Collar will at the same time represent an edge of the Fenchel-Nielsen graph of a

surface.

Geometrically, this class also represents an ε-collar around a main geodesic of the surface.

The ε in question is supposed to be an arbitrary small number, it aims just to give a sense to

the fact that the Collar is topologically bounded by two Borders. One has to think of ε as being

chosen so small that the 3g −3 Collars are pairwise disjoint.

Collar contains following attributes

Float L: A positive number representing the length of the main geodesic of this Collar.

Float t: The twist associated to the gluing of the adjacent YPces (see Section 4.1).

Border[2] borders: The two Borders of this Collar.

property

&YPce[2] yPces: A property returning the two YPces of this Collar. It can be deduced by the

content of borders.

Finally, the constructor of the Collar class is marked as private (the - sign in the class diagram)

which means that they have not to be created from outside. The only method authorized to

construct new Collars is the constructor of the Surface class.
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4.4.3 The Border class

Border
index : Int (0,1 or 2)

yPce : &YPce

collar : &Collar

slots : Slot[4]

#facingBorder : &Border

- Border()

Figure 4.8: Border class diagram.

The class Border is designed to model a border, one of the two boundaries of a collar around a

main geodesic γ.

In Section 4.2, we defined the roads of an Y -piece . Each border intersects precisely four roads.

These intersections are points are called slots and are represented by the class Slot.

The Border class has the following attributes.

Int index: As will be described below, each YPce contains a list of 3 Borders, this integer

allows the Border to know it’s position in it’s adjacent YPce’s Border list. This attribute

can take the values 0,1 or 2.

&YPce yPce: The YPce adjacent to this Border.

&Collar collar: The Collar adjacent to this Border.

Slot[4] slots: A list of the 4 Slots lying on this Border. According to the notations of Section

4.2, this list is of the form [s0, s1, s2, s3], where s0 and s2 are endpoints of the two u roads

connected to γ, while s1 and s3 are the two endpoints of the f road connecting γ to

itself.

property

& Border facingBorder: The Border that lies at the other side of the adjacent Collar.

Finally, the constructor of the Border class is marked as private (the - sign in the class diagram)

which means that they cannot be created from outside . The only method authorized to

construct new Borders is the constructor of the Surface class.
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4.4. The SurfaceTopology module

4.4.4 The YPce class

YPce
name : String

borders : &Border[3]

#collars : &Collar[3]

#yPces : &YPce[3]

roads : Road[6]

#u1,u2,u3,f1,f2,f3 : &Road

- YPce()

Figure 4.9: YPce class diagram.

A (marked) surface of genus g is divided into 2g −2 Y -pieces as described in Section 4.2.

Each YPce is identified by a String. It is bounded by 3 Collars and contains 6 distinguished

geodesic arcs represented by the Road class.

These Roads are the perpendicular geodesic arcs u1,u2,u3, f1, f2 and f3 of the Y -piece as

drawn in Figure 4.3 and are represented by a list [u1,u2,u3, f1, f2, f3], given in this order.

This class then possesses the following attributes.

String name: Each YPce is identified by an unique String, inherited from the FNGraph. The

name attribute stores this identifier.

&Border[3] borders: The YPce is adjacent to 3 Collars, (it may occur that two among these

Collars coincide). Each boundary of the YPce is one of the two Borders of the adjacent

Collar. This list contains a reference to these borders.

property

&Collar[3] collars: The 3 Collars adjacent to this YPce, deduced from the borders list.

property

&YPce[3] yPces: The 3 YPces adjacent to this YPce, deduced from the borders list.

Road[6] roads: The 6 Roads of the YPce, as shown in Figure 4.2 ,

given in the order [u0,u1,u2, f0, f1, f2].

property

&Road u0,u1,u2,f0,f1,f2: These properties allow one to reach the roads by their name.

#Example

2 ypce . f1 i s ypce . roads [ 4 ]

>>True
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Finally, the constructor of the YPce class is marked as private (the - sign in the class diagram)

which means that they cannot be created from outside. The only method authorized to

construct new YPces is the constructor of the Surface class.

4.4.5 The Road class

Road
index : Int (0 - 5)

# label : String ("u0","u1",...,"f1" or "f2")

yPce : &YPce

beginSlot : &Slot

endSlot : &Slot

length : Float

-adjacencyMatrix : Bool[6][6] static const

- Road(fnParams : FNGraph)

crossingRoads() : &Road[N]

Figure 4.10: Road class diagram.

The Road class will be our model to represent the 6 oriented geodesic arcs of a particular YPce,

as described in Section 4.2, on page 52.

Both of the endpoints of these arcs lie on some of the main closed geodesics bounding the YPce.

We identify these endpoints with two Slots that we call beginSlot and endSlot according to

the orientation we have chosen for the roads. To be precise, the slots lie on the Border of a

Collar and not on the closed geodesic; so the endpoints are at distance ε away from the slots.

We shall suppress this fact by assuming that ε is “infinitesimally small”.

Road attributes

Int index: This integer stores the position of this Road in the YPce.roads list.

property

String label: The label "u0","u1","u2","f0","f1" or "f2" as a String,

depending on the value of index.

&YPce yPce: The YPce on which the Road lies.

&Slot beginSlot: The Slot from which the road starts.

&Slot endSlot: The Slot on which the road ends.

Float length: The geometrical distance between the two endpoints of the road. This parame-

ter only depends on the length of the Borders of the YPce an can be calculated at the

construction of the YPce, using the formulas given in Section 3.3.
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4.4. The SurfaceTopology module

static const

Bool[6][6] adjacencyMatrix: This attribute corresponds to the following 6× 6 boolean

matrix

0 1 1 0 1 0

1 0 1 0 0 1

1 1 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0


(a possible example). It is marked as static, const and private and has therefore to

be considered as a global constant whose scope is restricted to the methods of the Road

class.

This matrix contains a 1 (true) at the position given by the indexes i , j if and only if the

road with index i intersects the road with index j .

This matrix is used by the method crossingRoads().

Road methods

&Road[N] crossingRoads(): Returns a list of the Roads crossing this one

( using the adjacencyMatrix content).

The value of N is 1 for the u roads and 3 for the f roads.

Road ( ): The constructor is marked private and is only supposed to be called by the Surface

constructor.
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4.4.6 The Slot class

Slot
index : Int (0-3)

border : &Border

road : &Road

#collar : &Collar

#yPce : &YPce

#nextSlot :&Slot

#prevSlot :&Slot

#nextDist :&Float

#prevDist :&Float

#roadFacingSlot :&Slot

#roadFacingDist :&Float

collarFacingSlot(Int): &Slot

collarFacingDist(Int): Float

- Slot()

Figure 4.11: Slot class diagram.

Finally, Slot is the last class of the SurfaceTopology module.

It represents the intersection between a Border and a Road. This class plays a particular role

in the context of the search of (simple) closed geodesics of the surface. They will be used as

the vertices of certain geodesic polygons to be constructed on the surface. These polygons will

themselves turn out to be in 1 to 1 correspondence with the simple closed geodesics of the

surface and will be represented by the class Path, see Chapter 6.

Properties and methods

Int index: Represents the position of this Slot as an element of the Border’s Slot list. It can

take the value 0 for s0 to 3 for s3.

& Border: border The border on which the Slot lies.

& Road: road The road of which the Slot is an endpoint.

property

& Collar: collar The collar adjacent to the Slot.

property

& YPce: yPce The YPce adjacent to the Slot.

property

& Slot: nextSlot The next Slot on the same Border going in the positive direction according

to the Border’s orientation.
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property

& Slot: prevSlot The previous Slot on the same Border going in the opposite direction to

the Border’s orientation.

property

& Float: nextDist The positive hyperbolic distance between self and self.nextSlot.

property

& Float: prevDist The positive hyperbolic distance between self and self.prevSlot.

property

& Slot: roadFacingSlot The Slot at the other endpoint of the Road.

property

& Float: roadFacingDist The distance between self and the roadFacingSlot.

& Slot: roadFacingSlot(Int) The slot we reach by crossing the collar with a given windingIn-

dex.

& Float: roadFacingDist(Int) Returns the distance between self

and the collarFacingSlot(twistParam), for a given twistParam.
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5 Fundamental domains

Let S =H/Γ be an hyperbolic Riemann surface. We provide the definition of a fundamental

domain of S before studying how we can computationally provide representations of such

sets. Then, we also present some algorithms that we can apply to these models of domains to

obtain, for example canonical domains.

Definition 19 (Fundamental Domain). Let S =H/Γ be a Riemann surface. A subset F ⊂H is

called a Fundamental Domain if and only if it respects the following conditions:

•
⋃

g∈Γ g (F ) =H

• ∀x, y ∈ int(F ), [x]Γ = [y]Γ⇔ x = y.

• ∂F the boundary of F has Lebesgue measure 0.

Here [x]Γ = {γ(x) | γ ∈ Γ} is the orbit of a point x ∈H under the action of the group Γ.

Remark 6. In this document we consider only domains with piecewise geodesic boundaries,

the Lebesgue measure zero condition will then always be satisfied.

Note that there are infinitely many valid fundamental domains for a given surface. In this

chapter, we will present how to model two different kinds of fundamental domains of a given

surface (represented by a Surface object).

The first kind of fundamental domain will be called basic domain and will be represented

computationally by the class BasicDomain, and mainly represents a patchwork of Y -pieces

domains.

The second type of domains will be called canonical domain and represented by the class

CanonicalDomain. The canonical domains are convex 4g -polygons.

Both of these classes are subclasses of the Domain class, which will be the base of every

hyperbolic domain we deal with.
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The details about these classes can be found in the HyperbolicDomain module on page 79.
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5.1. Frames inH

5.1 Frames inH

In order to describe the geometry of the fundamental domains and the algorithms involved in

their construction, we provide some handy description of a frame inH.

Definition 20. Let a ∈H be a point and let λa ⊂H be an half-geodesic with endpoint1 a.

We call the pair (a,λa), also denoted ~a, the oriented point a in direction of λa .

In Definition 24, it will be pointed out how the position of any oriented point~b can be described

relatively to the position of an oriented point ~a. This is why the oriented points will be referred

to as frames.

The point a is referred as the origin of the frame ~a and λa as the vertical axis of the frame ~a.

On the purely geometrical point of view, every oriented point ofH plays exactly the same role,

but it is still necessary to pick one up to play the role of the absolute or canonical frame the

following choice looks the least arbitrary.

Definition 21. The frame~0 := (i ,V +
i ) with i ∈H associated to the purely imaginary half-geodesic

V +
i = {λi ∈H| λ ∈R,λ> 1}, will be referred as the absolute or canonical frame.

Now we can introduce the definition of some Möbius transformations that will encapsulate

the relations between the positions of these frames relatively to each other.

Proposition 6. Let ~a = (a,λa) be a frame.

Then, there exists a unique2 Möbius transformation φa ∈ Möb(H) such that φa(i ) = a and

φa(V +
i ) =λa .

The transformation φa will be referred as the absolute position of the frame ~a.

Proof. Given without proof, since well known.

Remark 7. We can note that φ0 = IdH.

Definition 22. Let ~a,~b be frames ofH.

The transformation φab :=φb(φa)−1 will be called the absolute transformation from a to b.

Remark 8. One can see that φab(a) = b and φab(λa) =λb .

Remark 9. One can also note that φ0b =φb .

1boundary
2Here, note that Möb(H) stands for the direct transformations only.
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Definition 23. Let ~a,~b,~c be frames ofH.

The transformation φbc
a := (φa)−1φbcφa = (φa)−1φc (φb)−1φa will be called the relative trans-

formation from~b to~c with respect to the frame ~a.

Remark 10. We can note that φab
0 =φab .

Definition 24. Finally, ~a and~b being frames of H, we define the transformation φb
a :=φab

a =
(φa)−1φb to be the relative position of the frame~b with respect to the frame ~a.

Remark 11. Note that φa
0 =φa .

We can now justify these definitions (and the chosen notations) by the following propositions

about the compositions of the transformations.

Proposition 7. Let ~a,~b,~c and ~d be any frames inH, then the following equations hold.

φcd
a φbc

a =φbd
a

φb
aφ

c
b =φc

a .

Proof. By a direct computation using Definitions 23 and 24.

Remark 12. The preceding proposition can also be applied recursively to obtain a composition

of any number of transformations.

5.1.1 The HFrame class

Computationally speaking, the 2 by 2 real matrices that represent the Möbius Transformations

of Hwill from now on be represented by elements of the class TMH3.

In this section, we describe how to conceive a class HFrame that represents a frame inH as

described above.

HFrame
parent : *HFrame

relativePosition : TMH

#absolutePosition : &TMH

HFrame(*HFrame parent = None, TMH relativePosition = idH)

setRelativePosition(TMH position)

setAbsolutePosition(TMH position)

relink(*HFrame newParent)

Figure 5.1: HFrame class diagram.

3We do not give more details about the content of this TMH class, but one can assume that the objects of this
class can be added, multiplied, inverted, etc...
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Each HFrame a is the representation of a frame (a,λa). The constructor of the HFrame class

takes two informations:

• A pointer 4, called parent that either points to an other HFrame or points to None.

• A Möbius transformation of H, relativePosition, represented by the class TMH.

This relativePosition variable contains the relative position of the current frame

with respect to the parent frame, like in Definition 24.

If the variable parent is None, it is assumed that the parent is the absolute frame~0.

The class HFrame also contains a property called absolutePosition that returns the absolute

position of the current frame, in the form of a TMH, as defined in Proposition 6.

If the parent is None, according to the Remark 11, the absolute and the relative position

coincide and the property absolutePosition simply returns a copy of relativePosition.

If the parent is pointing to a valid HFrame, according to Proposition 7,

the absolutePosition will return

self.parent.absolutePosition*self.relativePosition.

Finally, the class possesses three methods:

setRelativePosition(TMH newRelPos) Replace the current relativePosition by the

value of newRelPos. It also affects the value of absolutePosition.

setAbsolutePosition(TMH newAbsPos) Modify the value of the current

relativePosition in order to make the new value of absolutePosition coincide

with the value of newAbsPos.

relink(HFrame * newParent = None) Change the current parent and modify the value of

the current relativePosition in order to let value of

absolutePosition be unchanged.

Note that both classes TMH and HFrame are parts of the HyperbolicGeometry module,

which gather all the basic classes to represent the points and the transformations in different

models (H, D, MH, MD, etc.) as well as tools for translating objects from a model to an other.

4In our philosophy, the pointers are nullable, whereas the references must refer to a valid object.

71



Chapter 5. Fundamental domains

5.2 Hyperbolic polygons

Let us now describe more precisely how piecewise geodesic hyperbolic polygons can play

the role of the fundamental domain of a surface, and conversely, why we can guarantee the

existence of such domains for any hyperbolic (closed) surface.

The answer to this question which we will provide in this chapter is modeled on the proof of

the classical surface classification theorem, that is valid for any connected closed surface. The

proof of this theorem may be found in many textbooks on topology, e.g. [9, Chapter 1, §8]. It

serves as a guideline for the case of our Riemann surfaces.

Let us now begin with some definitions.

Definition 25. A compact connected subset F ⊂H is an hyperbolic polygon with n edges, or

simply an n-gon if and only if it’s boundary ∂F respects the following conditions.

• There exists n geodesic arcs denoted by e1 := −−−→v1v2,e2 := −−−→v2v3, . . . ,en−1 := −−−−−→vn−1vn ,en :=
−−−→vn v1,

where −−−→vi v j stands for the oriented geodesic arc from vi to v j ,

such that ∂F =⋃n
i=1 ei ;

• e1 ∩e2 = {v2}, e2 ∩e3 = {v3}, . . . , en−1 ∩en = {vn}, e1 ∩en = {v1};

• ei ∩e j =;, for all other i < j .

By convention, we will assume that the interior of F has a positive orientation i.e. that we turn

counter-clockwise around the polygon when we follow the successive oriented edges, like in

figure 5.2.

Note that ∂F is connected and of Lebesgue measure 0. The n points v1, . . . , vn ∈ ∂F , are called

the vertices of the polygon.

v1
v2

v3

v4

v5

v6

v7

v8

e1e2
e3

e4

e5 e6

e7

e8

Figure 5.2: An 8-gon up to homeomorphism.

Rather than thinking about polygons in terms of sets, we can also think in terms of marked

hyperbolic polygons.
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Definition 26. A marked hyperbolic n-polygon P is the data given by an ordered list P =
[v1, v2, . . . , vn], where vi ∈H,∀i ∈ {1, . . . ,n}, of points that we will call vertices.

Each of these vertices is supposed to be joined to the next one by an oriented geodesic arc

ei := −−−−→vi vi+1, called edge; whereas the last vertex vn is connect to the first one by the edge

en :=−−−→vn v1 so that we get a closed curve. All arcs are supposed to have positive lengths.

This definition is less strict than the Definition 25 on an hyperbolic polygon, in the sense that it

allows features like self-intersections or cusps, like in Figures 5.5 and 5.3. Furthermore, it is not

always the full boundary of a domain.

However, this degree of freedom will be helpful in the design of the algorithms.

b

ac

Figure 5.3: The marked polygon is degenerated.
The winding angle is such that αP (a) = 2π,αP (b) = 0,αP (c) =−2π

The following remark connects the two definitions.

Remark 13. The classical Jordan curve theorem (see e.g. [13, Section 0.3] tells us that a marked

polygon in the sense of Definition 26 that satisfies the items as in Definition 25 is always the

boundary of a compact domain F ⊂H that is homeomorphic to a closed disk.

If a given marked hyperbolic polygon is the boundary of a domain F as in the above remark,

then it is said to be non-degenerated. In the other cases it will be called degenerated.

Since a marked polygon is an oriented curve, it is also still possible to define a notion of "interior

angle" at each vertex even though the "interior" is sometimes not well defined. Assume that

the two edges at vertex v have only the point v in common. Then the interior angle at v is

defined to be the positive angle in the interval ]0,2π[ that you have “on your left” if you are

following the orientation of the edges. It is also possible to extend this definition to certain

limiting cases where the two edges at v have the smaller edge in common. Two such cases are

considered in Definition 28.

The interior angle of each vertex has been drawn in blue in Figures 5.5 and 5.3.

Next we come to a number of limit situations of marked polygons that may arise in various

cases.

Definition 27 (Flat point). Consider a (marked) n-gon P. It may happen that three consecutive
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5 vertices v j−1, v j and v j+1 are aligned, i.e. v j ∈−−−−−−→v j−1v j+1 for a certain j 6.

A vertex v j with this property is said to be a flat vertex of P.

Note that the value interior angle at a flat vertex is π.

vi−1vi+1

vi vi

vi+1
vi−1

Figure 5.4: The angles in an "exagerated" view of a cusp.

Definition 28 (Peaks and cusps). Let us take a marked n-gon P and a sequence of vertices of P

that, up to cyclic permutation, can be written

vi−k , . . . , vi−1, vi , vi+1, vi+k ,

where vi−k = vi+k , . . . , vi−1 = vi+1, and where the two interior angles α at vi−k and β at vi+k

satisfy α+β 6= 2π. A vertex vi for which this holds is called

• a cusp point of P if α+β< 2π,

• a peak point of P if α+β> 2π.

The interior angle at a peak point is defined to be 0 whereas it is defined to be 2π for cusps.

Look at the Figure 5.5 for illustration.5

A marked n-gon with no flat vertex, and no peak/cusp will be said to be minimal.

v1

v2
v3

v7

v6

v8 v9

v4

v5

Figure 5.5: A marked 9-gon up to homeomorphism, with v3 a cusp vertex and v6 a peak vertex.

5In the sens that −−−−−−→v j−1, v j and −−−−−−→v j , v j+1 are consecutive edges.
6The cases vn , v0, v1 and vn−1vn v1 have to be defined separately.
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Later, we will consider polygons that are fundamental domains of a surface. It will then be

handy to dispose of a definition for "being a fundamental domain" that also includes the

degenerated hyperbolic polygons since we have not been able to avoid dealing with this kind

of objects in our algorithms.

To do that we introduce the concept of winding angle around a point with respect to a marked

polygon, which is also sometimes referred to as "Umlaufszahl".

Definition 29. Let P = [v1, . . . , vn] be a marked polygon inH and p ∈H be a point that does not

lie on the polygon itself (seen as a curve).

Then, for each edge ei =−−−−→vi vi+1, we take αi to be the oriented angle from the geodesic arc −−→pvi

to the geodesic arc −−−−→pvi+1 at point p. By “oriented angle” we mean the angle of rotation in the

interval ]−π,π] of the rotation around p that sends −−→pvi towards −−−−→pvi+1.

Given that, we define

αP (p) :=
n∑

i=1
αi

to be the winding angle around p with respect to P. As in Euclidean geometry it is an integer

multiple of 2π.

For example in Figure 5.3, the yellow points have a winding angle of 2π, the red ones have −2π

and all the other ones have 0.

Note also that in a non-degenerated polygon, according to our orientation convention, the

winding angle is 2π in the interior and 0 everywhere else.

The last definition we need before passing to the fundamental domains themselves is the

following.

Definition 30. Let v1, v2, w1, w2 ∈H be points (or vertices of a polygon), such that d(v1, v2) =
d(w1, w2). Then, by Proposition 6, there is a unique Möbius transformation, denoted by

φ
−−−−→w1w2−−−→v1v2

∈ Möb(H)

such that,

φ
−−−−→w1w2−−−→v1v2

(v1) = w2

φ
−−−−→w1w2−−−→v1v2

(v2) = w1.

This transformation is here referred to as the direct identification from the edge −−−→v1v2 to the

edge −−−−→w1w2.

These two edges are then said to be pairwise identified through φ
−−−−→w1w2−−−→v1v2

.
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Note that φ
−−−−→w1w2−−−→v1v2

=
(
φ
−−−→v1v2−−−−→w1w2

)−1
.
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5.3 Domain representation

At the beginning of the Chapter, on page 67, we gave a standard definition of a fundamental

domain for a given surface S =H/Γ.

Let us begin this chapter by the definition of a pairwise identified polygon. We will then recall

the Surface classification Theorem that for any surface S = H/Γ, there exist some pairwise

identified polygon which is at the same time a fundamental domain of S.

Definition 31 (pairwise identified polygon). Let P be an hyperbolic marked polygon with 2n

vertices. Then P is said to be a pairwise identified (hyperbolic) polygon if and only if the 2n

edges can be split into n pairs of edges of the same hyperbolic length.

Let us assume that (~ei ,~e j ) is one of these pairs, then, we define the Möbius transformations

γei =φ
~e j

~ei
, to be the identification associated to ei , where φ

~e j

~ei
is the direct identification from

~ei =−−−−→vi vi+1 to~e j =−−−−−→v j v j+1, in the sense of Definition 30 (vi is sent to v j+1, and vi+1 to v j ).

Note that we have γe j = (γei )−1, we then define the n oriented identifications to be the ones for

which i < j .

On Figure 5.2, on page 72, a case is represented; four different colors have been used to

highlight the different pairwise identified edges.

A pairwise identified polygon can also be characterized by a symbol called its signature, through

this concept is classic, we give our definition to make things clear.

Definition 32 (signature). Let {a,b,c, ...} be the ordered sequence of the n oriented identifica-

tions that appear in a pairwise identified polygon. Then, the signature of the identifications is

defined as the "word" that can, for example be of the form

abcc−1d a−1 . . .

obtained by the following process:

1) Start at any edge on the oriented polygon.

2) Write the name of the oriented identification (d for example) associated to this edge.

3) Add the inversion symbol −1 to this name if the current edge happens to be the end of the

oriented identification.

4) Take the next edge on the oriented boundary and redo steps 2 and 3 until every edge has been

treated.

All these definitions allow us to state the following classical theorem.
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Theorem 6 (Surface classification Theorem). Let S =H/Γ be a closed Riemann surface of genus

g with Γ it’s Fuchsian group. Then, there exist a fundamental domain F ⊂H of S respecting the

following conditions.

a) F is a pairwise identified convex hyperbolic polygon with 4g vertices v1, v2, . . . , v4g ∈H.

b) The 2g oriented identifications {γ1, . . . ,γ2g } associated to the 2g pairs of edges 7 form a

minimal generating set of the Fuchsian group Γ.

c) Each vertex lies in the same orbit of Γ, i.e. vi ∼Γ v j , ∀i , j ∈ {1,2, . . . ,4g }.

d) The signature of F is canonical i.e. it is a pattern of the form aba−1b−1cdc−1d−1 . . .

e) F is non-degenerated.

Any fundamental domains of S respecting a)- e) will be called a canonical domain.

This Theorem as it is given here is in fact a corollary of the official and more general Topological

compact surface classification theorem, restricted to the case of hyperbolic surfaces, that we

know to be orientable. A proof of it can be found in [4, Chapter 6].

One of the goals of this document (as indicated by it’s title) is to actually provide a formal

explanation on how such a polygon can be found computationally. This is carried out under

the hypothesis that the surfaces are described by Fenchel-Nielsen parameters.

The algorithms needed to perform this are explained in Sections 5.5 and 5.6.

Before that, in the next Section, 5.4, we will introduce a description of how to represent the

preceding mathematical notions (domain,vertex,etc.) in terms of classes.

These classes are grouped in the HyperbolicDomain module.

Once the data structure needed has been clearly described, the Section 5.5 explains how

to algorithmically build a Domain and show that it is a fundamental domain with certain

particular properties. These domains will be called basic domains.

Finally, in Section 5.6, we describe how, given a basic domain, we can transform it step by step

into a canonical domain in the sense of the Theorem 6.

This will in itself constitute a (formal) proof of Theorem 6.

7This avoids taking the inverse of these identifications with.
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5.4 The HyperbolicDomain module

According to the definitions of the previous Section,

we define a module called HyperbolicDomain that will contain the following classes :

• DomVertex: That plays the role of the model of a vertex of a polygonal domain.

• DomEdge: That is a representation of an edge of a polygonal domain.

• DomIdentification: Represents an (oriented) identification from a DomEdge to an other

DomEdge.

• Domain: That is the base class of the pairwise identified polygonal domains.

• HexDom,YDom,CollarDom: Are models of sub-domains as defined in Section 4.2 and

serve as "tiles" in the construction of a BasicDomain. They are subclasses of the Do-

main class.

• BasicDomain, CanonicalDomain: Are models of a basic domain and of a canonical

domain respectively. They are subclasses of the Domain class.

Figure 5.6 shows the inheritance relations as well as the aggregation/composition relations

between these classes.
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HyperbolicDomain

DomIdentification DomVertex

DomEdge

Domain

BasicDomain CanonicalDomain

CollarDom

YDom

HexDom

boundary

4g
identifications

2g

edges

2 2

2

hexagons

2

collarDomains
3g-3

yDomains

2g-2

Figure 5.6: Classes of the HyperbolicDomain module.

5.4.1 The DomVertex class

DomVertex
frame : HFrame

slot : & Slot

nextEdge : & DomEdge

prevEdge : & DomEdge

# nextVertex : & DomVertex

# prevVertex : & DomVertex

# nextIdentified : & DomVertex

# prevIdentified : & DomVertex

# identifiedCycle : & DomVertex [ ]

move(&TMH)

-DomVertex()

Figure 5.7: DomVertex class diagram.

The DomVertex class is meant to be a model of a vertex of a polygonal domain.
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We now describe the actual data contained in a DomVertex. These data are in terms of

attributes. We also define some other relevant data that can be deduced through the values of

the attributes in terms of properties and methods.

First of all we stipulate that the DomVertex class shall not be designed to represent arbitrary

points ofH but only those points inH that are in the orbit (under the Fuchsian group Γ) of a

Slot, i.e. of a vertex of the initially given fundamental domain.

This stipulation might at first glance be seen as a severe restriction, but it is actually quite mild

and has the following advantages:

• The algorithm for the construction of canonical domains is exact. 8

• The canonical polygons constructed by the algorithm are convex

Since each DomVertex p ∈ H is a covering of a Slot s ∈ H/Γ (under the natural universal

covering mapH→H/Γ), there is a unique half-geodesic rp ending at p that is a covering 9 of

the Road adjacent to s.

The pair (p,rp ) will be considered as the frame associated to the DomVertex p.

That is why the position of a DomVertex will contain the following two members:

&Slot slot: A reference to the underlying Slot of the surface.

HFrame frame: The frame containing the (absolute) position of (p,rp ). The origin of this

frame is p ∈H and represents the position of the DomVertex.

The rest of the informations with respect to a DomVertex that one has to know are the adjacent

DomEdges, the DomIdentifications involving these DomEdges and, finally, the DomVertexes

that are identified with this one by these identifications. The following members will hold

these informations (as references).

&DomEdge nextEdge: A reference to the next DomEdge on the (oriented) boundary. We

must have that (expressed in python)

1 s e l f . nextEdge . beginVertex i s s e l f #−> True

&DomEdge prevEdge: A reference to the previous DomEdge on the boundary,such that

8in the sense that it does not rely on numerical values
9at least locally
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1 s e l f . prevEdge . endVertex i s s e l f #−> True

property

DomVertex nextVertex: A reference to the next DomVertex on the (oriented) boundary. We

must have that (expressed in python)

1 s e l f . nextVertex i s s e l f . nextEdge . endVertex #−> True

property

DomVertex prevVertex: A reference to the previous DomVertex on the (oriented) boundary.

We must have that

1 s e l f . prevVertex i s s e l f . prevEdge . beginVertex #−> True

property

DomVertex nextIdentified: Let a denote the identification sending nextEdge to it’s as-

sociated DomEdge. Then nextIdentified is the vertex that is identified to this one

through a.

1 s e l f . nextIdenti f ied i s s e l f . nextEdge . facingEdge . endVertex #−> True

Since a ∈ Γ, these two points are identified. As a consequence we have

1 s e l f . s l o t i s s e l f . nextIdenti f ied . s l o t #−> True

property

DomVertex prevIdentified: The DomVertex identified to self through the prevEdge’s

identification.

1 s e l f . prevIdenti f ied i s s e l f . prevEdge . facingEdge . beginVertex #−> True

property

DomVertex identifiedCycle[]: Let self be a DomVertex. This method (property) re-

turns the list of vertices obtained by recursively appending the result of

currentVertex.nextIdentified, starting with currentVertex as self until

currentVertex is reached again. This will happen since the number of vertices is finite.

Note that this list is designed to contain self as the first element and the last one.
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Here is an interesting property that arises in every Domain. For the notation we recall that

v.slotmeans the slot on the surface S =H/Γ to which v is mapped under the natural covering

H→H/Γ.

Lemma 4. Let vertex be a DomVertex of a Domain domain Then, for any other vertex v2 of

the domain, vertex.slot is v2.slot if and only if v2 ∈ vertex.identifiedCycle.

Proof. Let φ ∈ Γ be the Möbius transformation obtained by taking the product of the

nextIdentification.transformation associated to each of the elements of

the vertex.identifiedCycle list for a certain vertex of a Domain.

Obviously, vertex is a fixed point of φ. Since Γ is a Fuchsian group, φ= Id.

From that, we can deduce that the sum of the interior angles associated to each of the vertices

of a vertex.identifiedCycle list is 2π.

Since domain is a fundamental domain andH→ S =H/Γ a covering map, 2π is also precisely

the sum of the interior angles of the set of all vertices v for which v.slot is vertex.slot.

This concludes the proof.

Finally, the constructor of a DomVertex is declared as private. In our point of view, the owner

of the DomVertexes is Domain, who creates them and deletes them while the algorithm is

running.

self.nextIdentified

self.prevVertex

self

self.nextVertex==self.prevIdentified

self.prevEdge

self.nextEdge

Figure 5.8: The members of DomVertex class, graphically.
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5.4.2 The DomEdge class

DomEdge

beginVertex : & DomVertex

endVertex : & DomVertex

idendification : & DomIdentification

# nextEdge : & DomEdge

# prevEdge : & DomEdge

# facingEdge : & DomEdge

-DomEdge()

Figure 5.9: DomEdge class diagram.

The DomEdge class represents the edges of a Domain. Each edge is supposed to be an oriented

geodesic arc starting on an explicit DomVertex called beginVertex and ending on a vertex

called endVertex.

Furthermore, each DomEdge is involved in a unique DomIdentification, either as beginEdge

or as endEdge (see page 85).

Finally, a property facingEdge is provided that returns the other DomEdge associated to the

same identification, and two properties nextEdge and prevEdge which are, respectively the

next and the previous DomEdges on the oriented boundary.

self.facingEdge

self.prevVertex

self
self.nextVertexself.prevEdge

self.nextEdge

self.identification

Figure 5.10: The members of DomEdge class, graphically.
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5.4.3 The DomIdentification class

DomIdentification
transformation: TMH

beginEdge : & DomEdge

endEdge : & DomEdge

-DomIdentification()

Figure 5.11: DomIdentification class diagram.

By hypothesis a Domain is a pairwise identified polygon. Each pair of edges is then represented

in our model by a DomIdentification, which is seen as oriented from beginEdge to endEdge.

For convenience, the DomIdentification also contains a Möbius transformation (represented

by the class TMH). that is the absolute transformation sending beginEdge to endEdge. This

attribute might also have been designed as a property to be deduced on the fly based on the

positions of the vertices.

5.4.4 The Domain class

Domain
identifications: DomIdentification []

# boundaryVertices: & DomVertex []

# boundaryEdges: & DomEdge []

# beginVertex: & DomVertex

-vertices: DomVertex []

-edges: DomEdge []

move(& TMH)

-Domain()

-cleanMemory()

Figure 5.12: Domain class diagram.

The Domain class, certainly the most important one of the whole HyperbolicDomainmodule,

represents the base class of any pairwise identified domain of a given Surface.

A Domain is characterized by its list DomIdentification that contains all the pairwise side

identifications. The list is considered as orderless.

The remaining information that one needs to know are the lists of the DomVertexes, respec-

tively the DomEdges met along the oriented boundary. These lists are available through the

boundaryVertices and boundaryEdges properties. They are thus just properties and not

actual members of the Domain. We have designed it in this way because their content can be

deduced from the content of the identifications list.

Finally, at least in the proposed implementation, the Domain class is supposed to be the
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actual container 10 of the DomVertexes and DomEdges involved in it’s boundary. For this

reason the Domain class contains the two following private lists: vertices and edges and

the private method cleanmMemory().

In Section 5.6, we describe in details how a Domain can be modified (in place) step by step

until it reaches the state of being a CanonicalDomain. This process will, once in a while,

destroy some vertices of the boundary (but never create any). For this reason, from the

memory management point of view, it is better to allow the lists vertices and edges to

temporarily contain more vertices and edges than there are on the actual boundary. The

supernumerary elements are destroyed only at the end of the process, by the clanMemory()

method.

The Domain class has a protected constructor, the actually constructible domains are the

derived classes of Domain i.e. the BasicDomain and the CanonicalDomain that are discussed

in the next Sections.

The other derived classes of Domain are HexDom, YDom and CollarDom. These do not

represent domains of a whole compact surface but domains of some subsets of the surface

(hexagon, Y -piece and a collar respectively).

5.4.5 The YDom class

Domain

YDom
yPce : &YPce

#posDom : HexDom

#negDom : HexDom

YDom( &YPce)

Figure 5.13: YDom class diagram.

The definition 19 of a fundamental domain can be generalized for the subsets of a surface with

geodesic boundary. In this case we will rather speak of sub-domains.

Let Y ⊂ S be an YPce.

The class YDom provides an explicit fundamental (sub-)domain for any given Y -piece in the

following way.

First, we recall that any Y -piece can be cut into two isometric right-angled hexagons by cutting

it along the roads u0,u1 and u2.

10It posses a list containing the actual objects and not references to them
and is supposed to free the memory every time the objects are deleted.

86



5.4. The HyperbolicDomain module

The shape of each of these two hexagons depends only on the length of the three borders of

the Y -piece and can be computed using the formulas given in Section 3.3.

Each of these hexagons will be represented by objects of the class HexDom and are also

sub-domains themselves.

Note that each vertex of these hexagons covers a Slot of the Surface.

If we travel around the boundary of the first HexDom in the counterclockwise direction (which

is the orientation we choose on the Surface), we meet the following Slots (on the right hand

side in figure 5.14):

b0.s0, b0.s1, b0.s2, b2.s0, b2.s1, b2.s2, b1.s0, b1.s1, b1.s2

This HexDom is said to be positive. The other HexDom of the YPce will give the following

slots, by following it’s boundary counterclockwise (on the left hand side in figure 5.14)

b0.s2, b0.s3, b0.s0, b1.s2, b1.s3, b1.s0, b2.s2, b2.s3, b2.s0

By opposition, this HexDom will be called negative.

+-

b0.s0 b0.s2

b2.s0

b2.s2
b1.s0

b1.s2
b1.s0

b2.s2

b2.s0

b0.s2
d=b0.s0.nextDist

d=b0.s0.roadFacingDist

Figure 5.14: A fundamental domain of an Y -piece in D. The two HexDoms are contrasted by a
difference in shading.

Finally, by gluing the two HexDoms of an YPce along one of the Roads (here we took u0), we

obtain a right-angled octagon like on figure 5.14.

This kind of octagon will be modeled by the class YDom and represent a fundamental domain

of the corresponding YPce.

Now let us give a more technical description of the class YDom itself.
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The parent class of YDom is Domain, by inheritance, YDom has a list of DomVertexs, a list of

DomEdges and a list of DomIdentifications.

As shown in Figure 5.14, an YDom consists at the end of its construction of 10 vertices and 10

edges.

Two of these 10 vertices have an interior angle ofπ, however they are still useful later, in Section

5.5, when we have to put together some YDoms with some CollarDoms in order to construct

a BasicDomain.

The class YDom has the following attributes.

YPceyPce: A reference to the YPce of which this YDom is a fundamental sub-domain.

property

HexDom posDom: The positive HexDom of this YPce.

property

HexDom negDom: The negative HexDom of this YPce.

Constructor

YDom (&YPce yPce)

The constructor of the YDom class takes a (constant) reference to the YPce yPce of which it

will be a fundamental domain as its only parameter.

The constructor is supposed do do the following things (we try here to avoid speaking of the

implementation details ). Figure 5.14 is a visual aspect of the result we achieve 11.

• Create 10 DomVertexes and attribute to them the following Slots, in the same order as

DomVertex.slot

b0.s0, b0.s2, b2.s0, b2.s2, b1.s0, b1.s2, b1.s0, b2.s2, b2.s0, b0.s2

• Compute the HFrame of each of these DomVertexes and store these in the DomVer-

tex.frame attribute.

The HFrame we chose for the first DomVertex (the one that lies over the slot b0.s0) is

the canonical frame~0 (see DomVertex.frame attribute).

The other 9 HFrames can then be deduced to be certain products of "vertical", "hori-

zontal" and "half turn" transformations V (d), H (d), O ∈ MH as defined in Definition 14,

on page 25.

11This picture is absolutely realistic in the sense that it has been produced by the "actual" implementation of the
library that we try to describe here. It has nevertheless been finalized using the Inkscape freeware.

88



5.4. The HyperbolicDomain module

• Create the 10 DomEdges of the Domain.

• Create 2 DomIdentifications for the 2 pairs of DomEdges that are pairwise identified.

These are drawn in blue and red in Figure 5.14.

The other 6 DomEdges are not part of a pairwise identification.

5.4.6 The HexDom class

Domain

HexDom
isPositive : Bool

yPce : &YPce

HexDom( &YPce)

getSlotFrame( &Slot) : HFrame

Figure 5.15: HexDom class diagram.

The HexDom is an hyperbolic right-angled hexagon which is a domain, one half of an YPce.

This class has already been explained in the class description of YDom, page 86.

5.4.7 The CollarDom class

Domain

CollarDom
collar : &Collar
CollarDom( &Collar)

Figure 5.16: CollarDom class diagram.

Any Surface can be "decomposed" in 2g −2 YPces and 3g −3 Collars, which makes 5g −5

subsets.

We can create a sub-domain for each YPce using the YDom class.

In a similar manner, each Collar will posses a sub-domain in the form of a CollarDom.

As shown in Figure 5.17, there are 6 DomVertexex and then 6 DomEdges in the boundary of a

CollarDom.
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The two DomEdges that are drawn in blue are pairwise identified (the identification is by a

“horizontal translation along the main geodesic”).

In the implementations the value of ε will be set to be zero. The domain is then degenerated

with all the vertices aligned. All the operations to be carried out, however, will still be well

defined.

s0s2 s2

s0s2 s2

d = τ
d = s2.nextDist

d = ε' 0

Figure 5.17: A fundamental domain CollarDom of a Collar inD is drawn in red. For the ease of
exposition we gave a "width" to the CollarDom, but in reality it is totally flat and has zero area.
In addition, two yellow YDoms have been "glued" to this CollarDom for better visualization.
The two blue DomEdges are pairwise identified.

5.4.8 The BasicDomain class

Domain

BasicDomain
isPositive : Bool

yPce : &YPce

HexDom( &YPce)

getSlotFrame( &Slot) : HFrame

Figure 5.18: BasicDomain class diagram.

5.4.9 The CanonicalDomain class

In Theorem 6, we described the conditions that a domain of a surface must respect to be called

canonical.
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5.4. The HyperbolicDomain module

Domain

CanonicalDomain

+CanonicalDomain(& Domain)

-Bool cleanCusps()

-Bool cleanUselessPoints()

-Bool moveBadVertex()

Figure 5.19: CanonicalDomain class diagram.

91



Chapter 5. Fundamental domains

5.5 Basic Domain construction

The goal of this section is to provide the reader with a clear view of how it is possible to create

a fundamental domain of a given Surface S.

The class BasicDomain will represent the Domains that are obtained through this algorithm.

The BasicDomain class has an interest in itself since it remembers its sub-domains (YDom,

HexDom, etc.); it can be useful to draw "tilings" ofH in which each YPce has its own color for

example.

Another example of usage of the BasicDomain is the creation of some "good" triangulations of

the Surface, this is not treated here but we would like to point out the thesis of Marc Maintrot

[8], where this is carried out.

Rather than detailing the precise implementation of the BasicDomain class, we will explain

in geometrical terms how it works .

Since it is difficult to produce a satisfactory graphical illustration of what happens in H or

D, Figure 5.20 represents an Euclidean equivalent of the algorithm. In this example, the

red triangles "behave" a little bit like YDoms and the green rectangles are metaphors of

the CollarDoms. Finally, in this example Euclidean isometries play the role of the Möbius

transformations that are used in the actual algorithm.

Nevertheless, for the hyperbolic situation Figure 5.21 shows the result of the creation of a

BasicDomain in H. The Fenchel-Nielsen graph that has been used is the graph3 example

given page 49.
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1

2 3 4

5

1

5

2

3

4

Figure 5.20: Metaphor of our algorithm, creating the fundamental domain of a prism in R2.

Step 1:

Firstly, for each of the 2g −2 YPces of the Surface, create an YDom (see page 86) and put

these in a list yDomsToPlace.

Then, for each of the 3g −3 Collars of the Surface, create a CollarDom (see page 89) and put

these in a list collarDomsToPlace.

These 5g −5 sub domains are the "tiles" that we have to put together to form the BasicDomain,

like one would solve a "jigsaw puzzle".

At this step, the absolute positions of these tiles do not matter. One can think of them as lying

in their own copy ofH.

Step 2:

Each YDom possesses 6 "outer edges" which are DomEdges that are not pairwise identified

within the YDom. Each CollarDom possesses 4 "outer edges".

The given situation is is that each "outer edge" of the 2g −2 YDoms is identified with a unique
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"outer edge" of one of the 3g −3 CollarDoms.

Step 2 of this algorithm consists in completing these identifications by constructing the

remaining 12g −12 DomIdentifications

At the end of this step we then have a set of 5g −5 marked polygons. These polygons, taken

together, have pairwise side identification in the sense that any DomEdge of any of these 5g −5

Domains is pairwise identified with another such DomEdge; but the two members of a pair

need not be in the same Domain.

The situation of this step is drawn as part B (upper right) in Figure 5.20.

Step 3:

“Select” one of the YDoms of the list yDomsToPlace (the first one for example). Copy it as

the initial state of the BasicDomain we are creating. Then, since this tile has been placed,

delete it from the yDomsToPlace list.

At the end of this step, the BasicDomain we are creating is then exactly like an YDom, with 6

outer edges, and 2 pairs of internally pairwise identified DomEdges.

In our Euclidean allegory of Figure 5.20, this step is shown in the part C 1, where a single

triangle has been "placed".

Remark 14. At this point of our description we have not been specific about how the initial

YDom should be selected. The idea is that different selection routines may be useful and added

to the algorithm at a later stage depending on the particularly given geometrical situation. In

Section 5.7 we discuss one such routine (see Remark 18, page 110).

Step 4:

Scan the list BasicDomain.edges of the edges of the actual state of the BasicDomain we are

building.

If among these DomEdges you find an outer edge (that we will call outer), then go to Step 5.

If, on the other hand, there are no more outer edges, then the BasicDomain is now a valid

pairwise identified polygon. At this moment it is complete and is a fundamental domain of the

Surface S.

Step 5:

At the start of this step, we have an "incomplete" BasicDomain and an outer edge outer

that has been found on its boundary.

Due to Step 2, we know that outer is pairwise identified with some other DomEdge, called

here outer2.
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The outer2 edge is the edge of one of the "tiles" (sub-domain) that has still to be placed (it may

be a YDom or a CollarDom depending on outer). Let us call tileToPlace this sub-Domain

containing outer2.

Calculate the (unique) Möbius transformation ψ ∈ MH that brings the DomEdge outer2 over

the DomEdge outer (note that the orientation of the edge matters).

Apply the transformation ψ to each of the vertices of tileToPlace (to do that one may use

the tileToPlace.move(ψ) method).

Copy the DomVertexes and the DomEdges of tileToPlace into the BasicDomain.

Finally "glue" this new tile correctly to the BasicDomain, delete outer and outer2 since they

are not part of the boundary anymore. Also delete tileToPlace of the list of the tiles that still

have to be placed.

After having done that go back to Step 4 until there are no more tiles to be placed.

Figure 5.21: A BasicDomain in D corresponding to the graph3 in Figure 4.1, page 49.
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5.6 Canonical Domain construction

In this chapter, we assume that we have been able to create a basic domain i.e. a fundamental

domain in the sense of Theorem 6, given in the form of a BasicDomain object, as described in

the previous section.

The goal is now to "transform" it into a canonical domain that will be represented by a

CanonicalDomain object.

The algorithm we would like to present for this consists of a succession of simple steps which

themselves consist of "cutting" the current fundamental polygon into two parts, and then

"moving" one part to "glue" it to the other in a different way.

In the course of this process, it may happen that the non-degenerated polygon that we are

dealing with as a fundamental domain becomes degenerated.

For that matter we provide an "extended" definition of fundamental domain that coincides

with the classical Definition 19 for non-degenerated pairwise identified marked polygons and

which is also well defined for the degenerated ones.

This definition is the following.

Definition 33 (Fundamental polygon). Let S = H/Γ by a surface and let Π : H→ S be the

associated projection.

Let P be a marked pairwise identified polygon of H, possibly degenerated.

Let Π(P ) represent the points of the surface that lie under a vertex or an edge (P is identified

with it’s trace and has a Lebesgue measure 0).

P is said to be a generalized fundamental polygon of S if and only the following conditions

hold:

(1) All identifying transformations of P belong to Γ.

(2) If v, w are vertices of P that are not cusp or peak points, thenΠ(v) =Π(w) if and only if v

and w belong to the same identified cycle.

(3) ∀s ∈ S \Π(p),
∑

p∈Π−1(s)αP (p) = 2π.

In the last itemΠ−1(s) is the orbit of all the lifts of s inH and αP (p) is the winding angle around

p with respect to P as in Definition 29, page 75.

In the following the term “fundamental polygon” shall always mean a generalized fundamental

polygon.
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Remark 15. From Lemma 4 (page83) follows that the boundary of a fundamental domain in

the sense of Definition 19 (page 67) is a fundamental polygon .

Remark 16. Any fundamental polygon that is non-degenerated is the boundary of a funda-

mental domain in the sens of Definition 19.

Proof. If a fundamental polygon P is non-degenerated then, by the Jordan curve theorem

(Remark13), it is the boundary of a simply connected domain F ⊂H, such that ∂F = P . The

winding angle αP (p) can take the following values depending on the position of p ∈H.

αP (p) = orP

{
2π p ∈ F

0 p ∉ F,
(5.6.1)

where orP is the orientation of P . The condition on αP (p) implies that orP = 1. Now let us first

prove that
⋃

g∈Γ g (F ) =H.

Let p ∈H\ P . Since P is a fundamental polygon, by definition,
∑

q∈[p]ΓαP (q) = 2π. This means,

combined with Equation 5.6.1, that there exists a point q ∈ [p]Γ with q ∈ F . This proves this

first point.

Secondly, it remains to prove that ∀x, y ∈ int(F ), [x]Γ = [y]Γ⇔ x = y .

By contradiction, one can show that if ∃x, y ∈ int(F ) with [x]Γ = [y]Γ and x 6= y , then we must

have that
∑

z∈|x|ΓαP (z) ≥ 4π since both αP (x) and αP (y) will appear in this sum. This is a

contradiction, which concludes this proof.

We proceed to detailing the algorithmic process that can progressively transform a BasicDo-

main into a canonical one.

Technically speaking, we introduce the CanonicalDomain class to represent this type of

domain. The constructor of the CanonicalDomain is public and takes a Domain as argument.

Let us now describe the ingredients of this process. For each ingredient we shall prove that the

new polygon obtained satisfies again the conditions of Definition 33.

Killing cusp and peak points

Algorithmically cusps and peaks will be treated in the same way and we shall use the term

“cusp” for both.

Let cuspVertex be a DomVertex, along the boundary of some Domain, such that the follow-

ing condition holds.
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1 cuspVertex . nextIdenti f ied i s cuspVertex

#Equivalent to

3 cuspVertex . prevIdenti f ied i s cuspVertex

cuspVertex

cuspVertex.prevEdge cuspVertex.nextEdge

Figure 5.22: Deleting a cusp vertex.

Then cuspVertex is a fixed point under the action of the Möbius transformation

cuspVertex.nextIdentification.transformation. Since, by hypothesis, we have a fun-

damental polygon, the Fuchsian group Γ contains this transformation.

The only possibility is then that this DomIdentification is the identity and that

cuspVertex.prexVertex and cuspVertex.nextVertex coincide as points ofH.

It is then possible to remove cuspVertex, cuspVertex.nextVertex, cuspVertex.prevEdge

and cuspVertex.nextEdge from the boundary, while suppressing

cuspVertex.prevIdentification from the list identifications of the Domain.

To concretely achieve this goal here are the data that have to be modified, note that the new

values are expressed in terms of the older state of the domain.

Attributes whose value changes. New values

cuspVertex.prevVertex.nextEdge cuspVertex.nextVertex.nextEdge

cuspVertex.nextEdge.nextEdge.beginVertex cuspVertex.prevVertex

cuspVertex.prevIdentification deleted from

domain.identifications

Read with left bracketing, i.e. “((cuspVertex.nextEdge).nextEdge).beginVertex”, etc.

Note also that the "New values" have to be understood in terms of the old states of the

attributes.

By taking out this flat triangle from the polygon, it is clear that we did not affect it’s geometry

and that the new Domain obtained is still a fundamental polygon in the sense of Definition 33.
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The Domain resulting from this action possesses two vertices less, two edges less and one

identification less.

The CanonicalDomain will then implement the following method, based on the following

algorithm:

Bool cleanCusps()

It’s purpose is the following:

• For every DomVertex of the boundary,

• Check if it is a cusp vertex.

• Delete it as explained if this is the case.

• Restart the procedure until no more vertex of the polygon is a cusp vertex.

Finally the method returns True if some vertices were deleted and False if the polygon was

already free of cusps since the beginning.

Killing useless vertices

We define a useless vertex to be a DomVertex, here called uV, that satisfies the following

condition.

1 (uV . prevIdenti f ied i s not uV) and

(uV . prevIdenti f ied i s uV . nextIdenti f ied )

uV

uV.prevIdentified

Figure 5.23: Deleting a useless vertex.

The consequence of this is that uV.prevIdentification brings the triangle

T = (uV,uV.prevVertex,uV.nextVertex)
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to the triangle

T ′ = (uV.prevIdentified,

uV.prevIdentified.prevVertex,

uV.prevIdentified.nextVertex)

(vertices 2 and 3 of T go respectively to 3 and 2 of T ′).

Let P ⊂H be the current fundamental polygon. From the cut paste lemma that will be proved

below it follows that P ′ = T ′∪P \ T is also a fundamental polygon. The concrete modifications

to the Domain data to achieve this operation are the following.

Attributes whose value changes. New values

uV.prevEdge.endVertex uV.nextVertex

uV.prevEdge.facingEdge.beginVertex uV.prevIdentified.prevVertex

uV.nextIdentification deleted from

domain.identifications

According to this procedure CanonicalDomain implements the Bool cleanCusps()

method. Like for the cusps, this method finds and destroys every existing useless point of the

Domain and returns True if any points were deleted.

Moving a bad vertex

The definition of CanonicalDomain stipulates that all the vertices of its boundary belong to

the same equivalence class (i.e. to coverings of the same Slot).

Let us assume that baseSlot is a Slot of a surface and domain a Domain containing at some

point n vertices among which exactly m, with 0 < m < n, lie in the equivalence class of

baseSlot (this information is held by the vertex.slot member).

Without loss of generality we may assume that domain has already been set in a state where it

contains neither cusps neither useless vertices.

The algorithm to be described here transforms domain into a new fundamental polygon also

containing n vertices, but this time m +1 of them will lie over baseSlot.

Firstly, we scan the DomEdges of the domain.boundaryEdges until we find an edge edgeA=
~e A , satisfying the following condition.

( edgeA . beginVertex . s l o t i s baseSlot ) and ( edgeA . endVertex . s l o t i s not baseSlot )
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A

B

C
~e A ~eB

φA(~e A)

T

T ′

~eC

φB (A)

φB (B) φB (C )

φB (~e A)
φB (~eC )

~eC
A

C

Figure 5.24: Getting rid of a bad vertex. In this picture, the colors indicate in which equivalence
class each vertex lies. The red class is supposed to be distinct from the blue one.

We define~eB :=edgeB=edgeA.nextEdge and we define A,B ,C or

vertexA, vertexB, vertexC to be edgeA.beginVertex, edgeA.endVertex and

edgeB.endVertex respectively. Finally, we defineφA ,φB ∈ Γ to be the Möbius transformations

associated with the identifications of~e A and~eB , as in Figure 5.24.

The vertex B does not lie in the "good" equivalence class, that is why we choose to call such a

vertex a bad vertex.

We can now create a "new" edge~eC from A to C .

Let P be the actual fundamental polygon.

The algorithm presented here is supposed to "remove" T from P and replace it by T ′ :=φB (T ),

as in Figure 5.24. That the new polygon P ′ obtained in this way satisfies the conditions of

Definition 33 will again follow from the cut paste lemma.

Looking at Figure 5.24 we see that P ′ contains exactly the same vertices as P with the exception

of the vertex B which did not lie over baseSlot and has been replaced by the new vertexφB (A)

which does.

The "operation" translates itself into a method of the class CanonicalDomain:

Bool moveBadVertex(&DomVertex baseVertex)

If this method finds a bad vertex of the fundamental polygon, then it transforms the polygon

as explained above and returns True; if, however, every vertex of the polygon is in the same

equivalence class as baseVertex, then the method returns False.

We now provide a table showing what data have actually to be changed during this operation.

The terms edgeA, vertexA, etc. are as defined above.
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Attributes whose value changes. New values

vertexA.nextEdge edgeB

vertexB.nextEdge edgeA

vertexB.prevEdge edgeB.facingEdge

vertexB.nextIdentified.prevEdge edgeA

edgeA.beginVertex vertexB

edgeA.endVertex vertexB.nextIdentified

edgeB.beginVertex vertexA

edgeB.facingEdge.endVertex vertexB

vertexB.position modified to contain φB (A).

edgeA.identification.transformation modified to contain φAφ
−1
B .

On the memory management point of view this method reuses all the already existing objects,

the DomVertex used to represent the vertex B now represents φB (A), the DomEdges are

"reused" according to the following pattern :

B →φB (A), ~e A →φB (~e A), ~eB →~eC , φB (~eB ) →φB (~eC )

φA →φAφ
−1
B , φB →φC =φB

Bringing every vertex to the same equivalence class

Let us now describe the first steps of the constructor of the CanonicalDomain class.

The argument only needs to be a reference to a Domain (usually it will be a BasicDomain

since it is the only kind that is constructible directly from a Surface).

The first step of the construction consist of making a "deep" copy of this Domain into the

current object. We do not describe exactly how to achieve this copy since it is quite straightfor-

ward.

Then, the current object is modified in place using the following loop (explicitly given in

Python for clarity)

1 bool1 = bool2 = bool3 = True

#This loop w i l l r e s t a r t u n t i l no more change happens in the Domain .

3 while ( bool1 or bool2 or bool3 ) :

#Destroy every cusp v e r t i c e s and return True i f any were found .

5 bool1 = s e l f . ki l lCusps ( )

#Destroy every useless v e r t i c e s and return True i f any were found .

7 bool2 = s e l f . k i l l U s e l e s s ( )

#Move one bad vertex to a vertex equivalent to baseVertex and return True i f any

were found .

9 bool3 = s e l f . moveBad( baseVertex )
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5.6. Canonical Domain construction

When the loop stops, the actual state of the CanonicalDomain under construction will be

a a fundamental polygon of the surface, containing no cusp vertices, nor useless vertices.

Furthermore, every vertex will lie in the same equivalence class, the same as baseVertex.

We just still have to justify why we can guarantee that it indeed stops.

Let N (i ) and B(i ) denote the total number of vertices, respectively the total number of bad

vertices after i iterations of the loop.

We have to show that ∃k ∈N, B(k) = 0, because then the algorithm must stop.

At each loop, some vertex can possibly be killed, but none of the 3 methods can increase the

number of vertices. Thus, N ( j +1) ≤ N ( j ).

Since the property of being a fundamental polygon is preserved by the loop we know that N

cannot in any way go below 3 (4g is probably the minimum).

Since N is bounded by below, ∃ j∗ ∈N, N ( j∗) = N (t ),∀t ≥ j∗.

If we take k = j∗+B( j∗), we can see that B(k) = 0, which concludes this proof.

Rearranging the Domain such that it has a canonical signature

Theorem 6 states, among other things, that the signature of a canonical domain is itself

canonical in the sense that it is of the form aba−1b−1cdc−1d−1 . . ..

At this point, we have shown that, for a given surface, it is always possible to obtain a valid Do-

main of it such that every vertex lies over the same Slot. We will assume that these operations

have been carried out and explain the last steps of the transformation of the Domain.

a

ã

(a) (b) (c) (d) (e)

ã

a

β bb̃

ã

a

β̃ b̃ β β̃

a

ã

βα
ã

α

α̃

β

β̃

A B

Ω φb(Ω)

Ψ

φa(Ψ)

Figure 5.25: Steps to obtain a canonical signature.

Let edgeA, edgeB, edgeC and edgeD be four consecutive DomEdges of the boundary.

If they are such that the following condition holds, then these edges are here said to form a

quartet.

1 ( edgeA . facingEdge i s edgeC ) and ( edgeB . facingEdge i s edgeD)
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Chapter 5. Fundamental domains

If the edges "only" respects the following condition

1 ( edgeA . facingEdge i s edgeC ) and ( edgeB . facingEdge i s not edgeD)

then they are called here a trio.

Figure 5.25 shows different steps of the transformation of the domain. The edges have been

labeled a,b, . . . while their facing edges are denoted by ã, b̃, . . . for convenience.

Figure (e) shows an example where the edges α,β, α̃, β̃ form a quartet. The edges a,β, ã in

figure (c) and (d) form a trio.

The signature of a polygon is canonical if and only if its edges consist of a certain 12 number of

consecutive quartets.

The procedure to obtain a valid CanonicalDomain is as follows.

i) Take edgeA (or simply a) to be an edge of the polygon (the first one at the start of the

algorithm).

If this edge is the first edge of a quartet jump to step iv). If this edge is the first edge of a

trio jump to step iii). Else, go to step ii).

ii) If edgeA is neither the first edge of a quartet nor the first edge of a trio, then it is pos-

sible to find an edge here referred to as edgeB (or b) such that b lies between a and ã

and edgeB.facingEdge (or b̃) lies beyond the edgeA.facingEdge, ã, on the oriented

polygon like on Figure (b).

To guarantee the existence of such an edgeB, we can argue by contradiction, assuming

that we are in the case of Figure (a), where each edge of the part A of the polygon is

identified with an edge of the part A and each edge of the part B is identified with an edge

of B .

Then, the list edgeA.endVertex.identifiedCycle does only contain vertices in B and

must end with the vertex edgeA.facingEdge.beginVertex. This list then cannot con-

tain edgeA.beginVertex.

This is a contradiction with point 2 of Definition 33 and the assumption that the domain

was set in a state where every vertex lies over the same slot of the surface.

It is then possible to "create" a new edge β joining edgeA.endVertex to

edgeA.facingEdge.beginVertex, defining a new sub-polygonΩ like in Figure (b).

12 Due to topology, it is known that this number must precisely be g , the genus of the surface.
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5.6. Canonical Domain construction

The Domain is then modified by a cut and paste procedure quite similar to the one de-

scribed in the moveBadVertex method. The result, shown in Figure (c), is a new Domain,

whereΩ has been replaced by φb(Ω), φb being the identification associated to edge b.

Note that on the implementation point of view it is possible to apply this transformation

without destroying or creating any object, indeed, the DomEdges used to represent b and

b̃ can now be used to represent β and β̃, while the DomIdentification φb is now used to

represent φβ.

On the geometrical point of view, this operation preserve every constraints that the former

Domain was satisfying, and now the edge a is at the start of a trio aβã, which allows us to

jump to the next step.

iii) Let a be at the start of a trio aβã as in figure (d).

Then, it is possible to create a new edge α joining the begin vertex of β̃ to the end vertex of

a, defining a sub-polygonΨ shown in Figure (d).

As in the previous step, a simple cut-past procedure allows us to replaceΨ by φa(Ψ), as

shown in Figure (e). The edges α,β, α̃, β̃ now form a quartet.

iv) None of the previous steps changes the number of edges of the domain, but now 4 more

edges are adjacent and form a quartet.

Take the next edge of β̃ as the new edgeA and return to step i) until you reach the end of

the domain.vertices.

At the end of this process, the CanonicalDomain will have exactly 4g edges13. Furthermore,

the signature of the domain is of the form aba−1b−1cdc−1d−1 . . ..

We come to the proof that the algorithm produces a fundamental polygon at each step:

Lemma 5 (Cut-Paste 1). Let P be a fundamental polygon and P ′ the polygon obtained by

applying one of the above operations. Then P ′ is again a fundamental polygon.

Proof. We check properties (1), (2), (3) of Definition 33.

Since all new identifying Möbius transformations are products of previous ones they all belong

to Γ. This proves that property (1) remains valid.

In all operations an identified cycle may either obtain more members or loose members or

disappear completely. But no new cycles are ever created. Therefore (2) remains also valid.

The operation "killing cusp and peak points" has no effect on the "Umlaufszahlen", so this

operation does not change the validity of (3).

13This can be proven by purely topological arguments and is well known.
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Chapter 5. Fundamental domains

To look at the remaining operations we decompose them into elementary ones. The first

is to insert a cut: Let P = [v1, . . . , vn] be the oriented polygon. For simplicity we describe a

cut from v1 to vk with 3 ≤ k ≤ n −1. It consists of replacing P by the two separate polygons

P ′ = [v1, . . . , vk ] and P ′′ = [v1, vk , vk+1 . . . , vn]. By the definition of αP we have

∀p ∈H αP (p) =αP ′(p)+αP ′′(p) (5.6.2)

The second elementary operation is to remove a cut. It is the inverse of the first.

The third elementary operation is to apply a member of Γ to the vertices of P . It consists of

replacing a polygon Q = [w1, . . . , wm] by φ(Q) = [φ(w1), . . . ,φ(wm)] for some φ ∈ Γ. It follows

from the definition of αQ and the fact that φ is a direct isometry that

∀p ∈H αφ(Q)(φ(p)) =αQ (p). (5.6.3)

For any s ∈ S =H/Γ\Π(Q) this implies∑
p∈Π−1(s)

αφ(Q)(p) = ∑
p∈Π−1(s)

αφ(Q)(φ(p)) = ∑
p∈Π−1(s)

αQ (p). (5.6.4)

Since all the remaining operations to be considered in this proof are product of elementary

ones it follows from (5.6.2) and (5.6.4) that they preserve the validity of (3).

In the next section we prove that the resulting polygon is convex., here we finish with a few

lines about the calculability of this algorithm.

Remark 17. We add a few comments about the calculability of this algorithm which addresses

objects that involve numerical values.

1. All boolean decisions that have to be taken (during the building of a BasicDomain as well

as during the steps of its "transformation" into a CanonicalDomain) are always based on

comparisons of pointers, but not on the actual values of the positions of the vertices, which are

usually numerical.

2. The positions of the vertices and the identification transformations are represented by some

Möbius transformations, represented here by the class TMH (Hyperbolic Möbius Transforma-

tion).

3. Depending on the context, the class TMH can implement either numerical values or, if needed,

the whole process can also be carried out by real algebraic numbers which are exact.
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5.7. Convexity of the polygon

5.7 Convexity of the polygon

The material of this Section is the subject of a forthcoming joint paper with Peter Buser.

The main question asked is whether the Canonical Domain construction algorithm actually

produces a convex fundamental polygon which is then the boundary of a convex fundamental

domain as in Theorem 6, page 78.

We would have liked to investigate this on the basis of the conditions of Definition 33, page 96.

But this has not worked out, so far. We present therefore an approach that goes a second time

through the classical proof of the Surface Classification Theorem (e.g. in Massey [9, Chapter I])

and then uses isotopy arguments borrowed from [4, Appendix].

Firstly we show the following.

Lemma 6 (Cut-Paste 2). At each step of the algorithm where the current fundamental poly-

gon P has no cusp or peak points there exists a fundamental domain F of Γ (in the sense of

Definiton 19, page 67) with the following properties

(1) The vertices of P lie on ∂F .

(2) For any edge −−−−→vi vi+1 (i = 1, . . . ,n, vn+1 := v1) of P there exists a piecewise geodesic arc fi ⊂ ∂F

homotopic to −−−−→vi vi+1 (with fixed endpoints vi , vi+1).

(3) ∂F is the curve f1 f2 · · · fn .

(4) P and F have the same side paring transformations.

Vk
fkVk+1

F

Figure 5.26: Fundamental polygon inscribed in a fundamental domain

Proof. This is true at the beginning of the algorithm, by hypothesis.
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Now we assume by induction that at some step of the algorithm the polygon P and the domain

F are as in the lemma, and that the algorithm is going to perform one of the “operations”

described in Section 5.6 and then afterwards will be removing possibly occurring peak and

cups points. Let P̃ designate the then resulting polygon. We must find some F̃ for it.

Case 1. The operation is “killing a useless vertex”. This consists of replacing a couple of

consecutive edges −−−−→vi−1vi , −−−−→vi vi+1 by the single edge −−−−−−→vi−1vi+1 (v1−1 := vn , vn+1 := v1) and some

corresponding couple −−−−−→vk−1vk , −−−−−→vk vk+1 by −−−−−−−→vk−1vk+1.

In this case we set F̃ = F and consider the composed arcs fi−1 fi and fk−1 fk each as just one

side of F̃ . We can easily verify that F̃ has all the required properties.

Case 2. The operation is one of the remaining ones. We may assume that P has no peak and

cusp points and no useless vertices.

As in the proof of Lemma 5 the operation is a product of three elementary operations: 1.

insert the arc −−−→v1vk (with 3 ≤ k ≤ n −1) to obtain P ′ = []v1, . . . , vk ], P ′′ = [v1, vk , vk+1, . . . , vn]; 2.

then move P ′′ to φ(P ′′) with the appropriate φ ∈ Γ; 3. attach φ(P ′′) to P ′, say along the edge
−−−−−−→vm vm+1 =φ(−−−−→vl vl+1) and remove this edge.

We apply the same procedure to F : Since F has pecewise geodesic boundary and is homeo-

morphic to a disk, we can insert a piecewise geodesic arc f1k in F going from v1 to vk such

that f1k \{v1, vk } ⊂ int(F ). It separates F into two domains F ′, F ′′. By the Jordan curve theorem

F ′ and F ′′ are both homeomorphic to a disk. Like P and F the couples P ′,F ′ and P ′′,F ′′ both

have the properties (1), (2), (3) of the statement of the Lemma.

Now we move F ′′ to φ(F ′′). By property (4) of F we have φ( fl ) = fm . This means that φ(F ′′) is

attached to F ′ along side fm . We set

F̃ = F ′∪φ(F ′′)

and then have fm \ {vm , vm+1} ⊂ intF̃ . We can easily see that the pair P̃ , F̃ has the properties

(1)–(4) of the Lemma. (One must use that P has no useless vertices and so the only sides that

are “lost” in the process of building the union F ′∪φ(F ′′) are the coinciding sides fm of F ′ and

φ( fl ) of φ(F ′′).)
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Figure 5.27: Cutting and pasting a part of a fundamental polygon

Finally, we show that F̃ is again a fundamental domain of S:

•
⋃

g∈Γ g (F̃ ) =H:

Let p ∈H be a point. Since F is, by hypothesis, a fundamental domain, ∃γ ∈ Γ such that

q := γ(p) ∈ F . If q ∈ F ′ then γ(p) ∈ F̃ and p ∈⋃
g∈Γ g (F̃ ). If q ∈ F ′′ then φ(q) =φ(γ(p)) ∈

φ(F ′′) ⊂ F̃ , which concludes the point.

• ∀x, y ∈ int(F ′)∪ int(φ(F ′′)), [x]Γ = [y]Γ⇒ x = y :

-If x, y ∈ int(F ′), then x = y because int(F ′) ⊂ int(F ).

-If x, y ∈ int(φ(F ′′)) then φ−1(x),φ−1(y) ∈ int(F ′′), therefore φ−1(x) =φ−1(y) and x = y .

-If x ∈ ∫
(F ′) and y ∈ ∫

(φ(F ′′)), then φ−1(y) ∈ F ′′. Since[x]Γ = [φ−1]Γ and F is a Funda-

mental domain this last case cannot occur.

Since int(F ′)∪ int(φ(F ′′)) differs from int(F̃ ) only by finitely many arcs this is sufficient to show

that F̃ is a fundamental domain.

The proof of the Lemma is now complete.

For the rest of this Section P = [v1, . . . , v4g ] is the canonical fundamental polygon for

S =H/Γ resulting from the algorithm in Section 5.6.

By point (2) of the Lemma both, the polygon P and the canonical fundamental domain F have

the same side pairing transformations. Since F is canonical we get the following.

Corollary 3. The side pairing transformations of P form a set of canonical generators of Γ.

We come to the question of when P is itself the boundary of a “classical” fundamental domain.

For this we shall prove the following.
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Lemma 7. For k = 1, . . . ,4g , consider the Möbius transformation γk ∈ Γ that sends vertex v1 of

P to vertex vk . Select a point w1 on the axis of γ2 and set

wk = γk (w1), k = 1, . . . ,4g ; P∗ = [w1, . . . , w4g ].

Then P∗ is the sequence of vertices of a convex geodesic canonical fundamental domain F∗ of

S =H/Γ.

Remark 18. In Remark 14, page 94, we have mentioned that one may add to the canonical

domain algorithm suitable selection routines for the initial slot on the boundary of the basic

domain.

In our implementation the slot is selected on a side of the basic domain that corresponds to a

non-separating main geodesic of S. A search routine along the boundary of the domain carries

this out. It then turns out that on the resulting polygon P vertex v1 lies automatically on the

axis of γ2. Hence we have the following.

Corollary 4. With a suitable selection of the initial slot for the canonical domain algorithm the

resulting polygon P is the boundary of a convex geodesic canonical fundamental domain.

For the proof of Lemma 7 we use isotopies.

Definition 34. An isotopy of a topological space X is a continuous mapping J : [0,1]×X → X

with the following properties:

1. J (0, p) = p, ∀p ∈ X .

2. For any s ∈ [0,1] the mapping js : X → X given by

js(p) = J (s, p), p ∈ X

is a homeomorphism.

Isotopies provide particularly interesting homotopies of curves: If c : [a,b] → X is a curve then

we may set

H(s, t ) = J (s,c(t )), s ∈ [0,1], t ∈ [a,b].

This may be applied to several curves simultaneously. If, e.g. c1, . . . ,cn are pairwise disjoint

simple closed curves and we apply an isotopy, then the deformed curves are again pairwise

disjoint and simple.

Proof. (Lemma 7) We recall that for k = 1, . . . ,4g we have the arcs fk from vk to vk+1 (v4g+1 :=
v1) homotopic to the edges ek =−−−−−→vk vk+1. Under the projectionΠ :H→ S =H/Γ the curves fk

are mapped to simple closed arcs (loops) αk =Π( fk ), k = 1, . . . ,4g .
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5.7. Convexity of the polygon

They intersect each other at a common base point v = Π(v1) = ·· · = Π(v4g ). The loops

α1,α2,α5,α6, . . . ,α4g−3,α4g−2 represent generators of the fundamental group of S.

Let a1 be the closed geodesic in the free homotopy class of α1. Then the axis ã1 of the Möbius

transformation γ2 ∈ Γ that sends v1 to v2 is a lift of a1. Hence, the point w :=Π(w1) lies on a1.

Now we make use of isotopies. It is shown in the proof of Theorem 6.7.4, page 166 of [4] that

there exists an isotopy J : [0,1]×S → S such that for the final homeomorphism

j : S → S, j (p) = J (1, p),∀p ∈ S

the following points are satisfied:

1. j (α1) = a1.

2. j (v) = w .

3. ak := j (αk ) is a geodesic loop with base point w , ∀k = 1, . . . ,4g .

4. The complement S \
4g⋃

k=1
ak is a convex geodesic polygon.

J induces free homotopies of curves: Assuming that all αk are represented as parametrized

curves αk : [0,1] → S these homotopies are

Hk (s, t ) = J (s,αk (t )), s ∈ [0,1], t ∈ [0,1]

Now look at the curve

c(s) = J (s,c) = H1(s,0) = ·· · = H4g (s,0), s ∈ [0,1].

It leads from v to w . Lifting the homotopy H1 to the universal covering Hwe get a covering

curve c1 of c going from v1 to w1 and a covering curve c2 of c with initial point v2. Since Γ

acts without fixed points and since γ2(v1) = v2 we have c2 = γ2(c1). We conclude that the

endpoint of c2 is γ2(w1) = w2. The geodesic arc Π(−−−−→w1w2 is therefore homotopic, with base

point w fixed to a1. By the uniqueness of geodesic arcs in such homotopy classes we must

haveΠ(−−−−→w1w2 = a1.

In other words,−−−−→w1w2 is a lift of a1. Proceeding in the same manner we se that −−−−−−→wk wk+1 is a lift

of ak for all k. By point 4. above, P∗ is the set of vertices of a convex geodesic polygon.
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6 Exploration algorithms

One of the most useful informations on a Riemann surface is the set of the closed geodesics

on it. The important feature is that this information is purely intrinsic to the global geometry

of the surface and does not depend on the choice of the marking.

Among the closed geodesics the simple ones, i.e. those without self-intersections give us even

more information.

Finally, the set of the systoles, i.e. the shortest closed geodesics of the surface, (which are

always simple for obvious reasons) almost constitutes the DNA of the surface.

For example, knowledge of the systoles can be useful to discover the non-trivial automor-

phisms of a given surface.

In this chapter, we describe a procedure, very inspired by Peter Buser’s ideas [3], that provides

a very efficient and useful way to "code" the simple closed geodesics of a given marked surface.

Then, we will explain how we can enumerate the different closed geodesics of a surface. The

algorithm is quite general and we can adapt the "stop conditions" of it so as to obtain the

systoles of a surface, or the set of all closed curves shorter than a given length.

The question of how to enumerate the simple closed geodesic is intrinsically connected to the

question of their representation (in term of classes).

Here is a summary of how we proceed in this chapter.

1. We firstly assume that one knows everything about S and about a simple closed geodesic

γ ⊂ S (in the sense that these objects are given geometrically). Starting from these

informations we introduce a new data structure called Path which comes along with a

number of sub-classes.

Then, we explain how we theoretically could translate the geodesic γ "by hand" into a

valid Path object, the result being uniquely determined by γ and by the structure of the
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surface object modeling S.

2. We describe a list of constraints that a path object of type Path is supposed to respect

in order to be called simple (or simply valid1).

We also provide a condition that path should respect to be called closed.

As an important fact, one can show that any Path deduced from an actual simple closed

geodesic γ⊂ S, as in the previous item will itself be simple and closed as a Path.

3. Then, conversely to item1, we assume that a Path object path is given and that it is both

simple and closed.

On the one hand we explain how a unique closed geodesic γ ⊂ S as well as any of its

geometrical properties can be deduced from the discrete data stored in path.

On the other hand, we show how a closed piecewise geodesic curve γε ⊂ S homotopic to

γ can be deduced. This γε will be shown to be simple, from which we can deduce that

the geodesic γ itself is simple.

According to that we can conclude that there is a bijection between the simple closed

geodesics of S and the simple closed Path objects that can be constructed.

4. Under the hypothesis that a valid Path object is given, we show how to translate it into a

codeword object of the form

(&Slot,Int[])

through the method Path.toCode().

Any codeword that can be obtained from a valid Path is defined to be a valid code word.

We see later that there is a bijection between the valid Paths and the valid codewords.

5. At first glance, it is not easy to know if a given code word is valid or not. That is why,

instead of providing algorithms that directly enumerate every possible valid code word,

we will use the useful redundant informations of a Path object to provide algorithms

that enumerate every possible valid Path, among which we then find the closed ones.

The different algorithms we provide here are themselves classes. The parent of all these

enumeration algorithm classes is the class PathExplorer.

We will see how this class is able to create a new Path object, and then sequentially

modify it in place so as to make it sweep out all its possibles states.

6. As an example, we describe the most simple non-trivial child of PathExplorer, the

PathDecoder, which is able to translate any valid codeword into a new valid Path.

This class is used by the static Path.fromCode(codeWord) method. It concludes the

proof of the existence of a bijection between the valid codewords and the valid Paths.

1Technically speaking, we proceed in such a way that our algorithm will never build nor modify a Path into an
invalid state.

That is why there is no method isValid(), since there is supposedly no way to obtain an invalid Path.
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Items 1) and 4) of this enumeration are treated in Section 6.1. Section 6.2 constitutes the item

2), Section 6.3 item 3), while items 5) and 6) are treated in Section 6.4. Finally, the Sections 6.5

and 6.6 contain the technical details about the implementation of the involved classes.
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6.1 Encoding of simple closed geodesics

This section has been designed to be the first one of this chapter in order to introduce, one

by one, the different classes that will appear in the SurfacePath module, parallel to the

mathematical objects they are supposed to be models of.

The reader may consult the section 6.5, on page 137 while reading this one in order to to know

exactly what data are effectively handled by its classes and how.

The goal is to explain how to translate a given simple closed geodesic γ⊂ S, (we may think of

γ as being drawn on S) into a certain (finite) number of objects with distinct identities.2 We

also explain what will be the classes of these objects, and what members they store.

Our arguments will also provide a proof that this can be done in a unique way3.

Thus, assume that a Riemann surface S =H/Γ is given in the form of an object surface of

type Surface, and assume that α1,α2, . . . ,α3g−3 are the 3g −3 main geodesics of the marked

surface and that c1,c2, . . . are the corresponding Collars around these geodesics of surface.

Let us now consider a given simple closed geodesic γ⊂ S.

The goal is then to give a representation of γ as an object of class Path.

The main geodesics αi are themselves valid simple closed geodesics, and should therefore

also be encodable as Path objects, but this is treated as a special case. This is why, for now, we

suppose that γ ∉ {α1, . . . ,α3g−3}. The case of encoding the main geodesics αi is treated at the

end in Definition 39.

Since by hypothesis the set of the αi is a maximal set of pairwise disjoint closed geodesics, γ

must intersect at least one of the αi . Note that all these intersections are transversal, i.e. the

geodesics form non-zero angles at the intersection points.

Let us denote by q1, q2, . . . , qm ∈ S the m ≥ 1 points of intersection of γ with all the main

geodesics αi . Since, by hypothesis γ is simple, these points are distinct.

Furthermore, we temporarily choose an arbitrary orientation of γ, and assume that q1, . . . , qm

have been sorted such that γ is the union of m consecutive geodesic arcs

e1 :=−−−→q1q2,e2 :=−−−→q2q3, . . . ,em :=−−−→qm q1

as in Figure 6.1. We later describe a more intrinsic orientation to give to the geodesic.

Definition 35 (Depth). The above number m will be called the depth of the simple closed

geodesic γ. By extension, the Path class provides the depth property.

2Here, on a technical point of view, the address in the memory.
3Up to a reordering of the identities.
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6.1. Encoding of simple closed geodesics

The main geodesics αi are defined to have depth of 0.

Note that simple closed geodesics of depth 1 can (and will) only occur on Q-pieces, of the

Fenchel-Nielsen graph (if there are any).

At this stage we have m different possibilities for the choice of q1 and two choices for the

orientation of γ.

The Path object that will be constructed to model γ depends on both of these choices. This

makes 2m different Path objects that are all models of γ.

These 2m paths will be said to be conjugated4.

The 2m Paths will be considered as "valid" objects and dealt with in the same way. As for

now, we assume a choice of q1 and an orientation has been made and continue describing the

"encoding process" based on this choice.

We later describe a condition of being canonical a Path can provide or not (the truth value

can be accessed by the Path.isCanonical method()). This condition is useful in the sense

that each Path will be conjugated to a unique canonical Path. It’s existence will allow us to see

this "encoding procedure" as a bijective application5 from the set of the (unoriented) simple

closed geodesics to the set of the possible canonical Paths.

q1

q2

q3

q4

q5

q6

q7

q6

p6

p ′
6

Figure 6.1: A closed geodesic of depth 7, on a Surface of genus 6.

Lemma 8. Let ε> 0 be sufficiently small.

If a simple closed geodesic γ of depth m intersects a main geodesic α j of S at a point qi , then

either γ=α j or there exists a subarc of γ that cuts either border of the ε-collar aroundα j exactly

4They may be seen as the cyclic permutations of the qi and their reversions.
5In the mathematical sense.
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once.

These two points will be referred to as path points and denoted by pi and p ′
i , according to to the

orientation chosen for γ, as shown in in Figure 6.1.

Furthermore γ contains exactly 2m distinct path points.

Proof. If γ 6=α j , then the angle θ between γ andα j at q j is not zero. From the basic hyperbolic

geometry formulas of page 23, it is easy to see that γ intersects then each of the borders exactly

once, for any sufficiently small value of ε> 0.

All these intersection points are distinct since γ is simple.

In the model we develop, we will only deal with the path points {p1, p ′
1, p2, p ′

2, . . . , pm , p ′
m} and

forget about the qi . Note that we think of ε as arbitrarily small. In the limit ε→ 0 the points

pi , p ′
i and qi coincide, seen as geometrical points of S.

The class we use to describe the path points will be PathPoint. For a full description of the

content of this class, see page 146.

We will soon say more about this class, but, before that, we introduce the smallest independent

object that can be added to a Path: the PathElem class.

Topologically speaking, we can see γ as a connected loop (oriented) of 2m geodesic segments

that go from one path point to another. These 2m segments come by pairs. The first geodesic

segment is of the form [pi , p ′
i+1] and lies entirely within an YPce. The second geodesic arc is

of the form [p ′
i+1, pi+1] and lies within a Collar.

Each of these pairs will now be represented by an object of the new class PathElem (see page

149).

Each Path of depth m will then contain a list of m PathElems called pathElements 6.

Let us take ei to be the i -th path element of a Path. There are three path points that are related

to ei. They correspond to pi , p ′
i+1 and pi+1.

These correspond to the following members of ei (and of the class PathElem): ei.begPP

ei.midPP and ei.endPP.

Note that ei.midPP and ei.endPP are actually stored as data of ei while begPP is only a

reference to the endPP of the previous PathElem.

We will also later consider Path objects that do not correspond to closed geodesics, but only to

open piecewise geodesic curves. The property Path.isClosed returns True iff a current Path

6For an optimal memory management, pathElements, should be a stack (last in first out).
I.e. std::stack<PathElem> in C++
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6.1. Encoding of simple closed geodesics

is closed7.

That is why, for technical reasons, one more PathPoint, called Path.begPP is held directly by

the Path class.

If e1 is the first PathElem of a Path path, then e1.begPP is set to be a reference to path.begPP.

If em is the last PathElem of a Path path, then em.endPP will be referred to as the path.endPP

property.

path.begPP and path.endPP are two PathPoints with distinct identities (i.e. distinct ad-

dresses in memory) but representing the same point of the surface S. If we think of the

universal covering H, we may interpret these two PathPoints as two different lifts of the same

point, being the extremities of a geodesic arc γ̃⊂H of the same length as γ and covering it.

Each PathPoint will also hold the references fPP and pPP, that points respectively to the next

and to the previous PathPoints on γ, with respect to it’s orientation (f for "future" and p for

"past"). These two references can also be None if the given PathPoint lies at the extremity

of the Path. i.e. for any Path path, path.begPP.pPP and path.endPP.fPP contain the None

value.

Let ei be one of the PathElems of a Path. ei can be seen as the geodesic arc [qi , qi+1]. Using

the Lemma 3 of page 52, we can see that each PathElem is locally homotopic to one and only

one Road of the Surface. That is why the PathElem class contains the roadLayer property

(see page 149). Furthermore, since both the Road and the PathElem ei are oriented, each

PathPoint can be associated to a unique Slot of the surface. That is why the PathPoint class

contains the slotLayer reference.

Winding index

Finally, there is a last very important data that each PathElem has to store, it is called the

winding index of the PathElem.

To define it we have to think in terms of lifts in the universal covering.

Figure 6.2 illustrates the objects to which the next definition refers.

7See page 144.
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q̃i

q̃i+1

q̃i+2

γ̃i

γ̃i+1

α̃i

α̃i+1

α̃i+2

γ̃

r̃i

r̃i+1

s̃i
s̃i+1

τ= 0

τ=−1
τ= 1

Figure 6.2: Two consecutive lifts of PathElems inH and the winding index associated to the
first one. In this example we have τ= 0.

Let [qi , qi+1] ⊂ S and [qi+1, qi+2] ⊂ S be two consecutive path elements corresponding to the

ei1 and ei2 PathElem.

Let γ̃i ⊂H be a lift of [qi , qi+1] in the universal covering H. The endpoints of γ̃i will be written

q̃i , q̃i+1 ∈H. The (unique) geodesic that passes through q̃i and q̃i+1 will be written γ̃⊂H.

There will then be a unique point q̃i+2 ∈ γ̃ such that the geodesic arc γ̃i+1 := [q̃i+1, q̃i+2] ⊂H is

a lift of [qi+1, qi+2] ⊂ S.

Let us denote by αi ,αi+1,αi+2 ⊂ S the three main geodesics that respectively pass through

qi , qi+1 and qi+2. (Ignoring the original enumeration of the main geodesics.)

Let α̃i , α̃i+1, α̃i+2 ⊂H be the (unique) lifts of αi ,αi+1 and αi+2 that pass through q̃i , q̃i+1 and

q̃i+2.

Let ri ,ri+1 ⊂ S be the Roads associated to ei1 and ei2. Due to Lemma 3, page 52, one can

also conclude that there are uniques lifts r̃i , r̃i+1 ⊂H of these roads with the configuration as

shown in Figure 6.2

Let now s̃i , s̃i+1 ⊂H be the two endpoints of r̃i , respectively of r̃i+1 that lie on αi+1. Note that

these points are lifts of the Slots associated to ei1.midPP and ei1.endPP.

We have then two lifts of Slots facing the same Collar and associated to each of the facing

borders of this Collar. On page 54, in section 4.3, we described the concept of winding index

which is an integer τ= τ(s̃i , s̃i+1) that "encodes" the distance from s̃i to s̃i+1.
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6.1. Encoding of simple closed geodesics

This value τ ∈Zwill be called the winding index of the PathElem ei1 and will be stored by the

PathElem.twistParameter member.
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6.2 Simple Path

In the previous section we presented how any simple closed geodesic γ⊂ S can be "encoded"

into a (unique) Path object composed of m PathElems. See also the exact class description

6.5.6 to see what exact data are.

In this section, we do the opposite.

We assume in the first place that we have a Path object (that may be considered "randomly

generated") and we describe a special kind of piecewise geodesic curve on the Surface S that

we can deduce from the Path data. We then call the curves obtained in such manner ε-path.

Then, we see under what conditions we can affirm that a given ε-path is simple (and/or closed)

as a piecewise geodesic curve on S. These conditions are entirely "combinatorial" (as opposed

to numerical).

Let S be a surface. Let ε> 0 be a sufficiently small real number. In order that the following

arguments will be correct, εmust be strictly smaller than half the smallest non zero hyperbolic

distance that exists between any two different Slots of the given Surface. Note also that this

implies that the conclusion of the Collar Lemma (Lemma 2, page 51) is verified for each of the

ε-collars of the current surface.

Definition 36. Given a Slot s of S, and an integer q ∈N, and an ε> 0 small enough as above,

then it is possible to define q points on S in the following way.

Take a chart of the surface that covers an ε-neighborhood around s in S. For convenience, we

may assume that the chart consistst in lifting a small neighbourhood of s to a neighbourhood

of a lift s̃ in the universal coveringH. Furthermore, we choose the covering such that the lift of

the frame associated to s is the canonical frame (the one whose origin is i ∈H and whose axis

is vertical). In other words, we will, from now on, use the expression "putting ourselves in the

frame of s" to express the preceding idea. Also, we will not always make a distinction between

the neighbourhood on S and its lift inH.

ε

ε
ε
4

Figure 6.3: A free hand representation of what is meant by an ε-SlotLayer.
There are four PathPoints in this example.
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6.2. Simple Path

Let us take V (t ), H(t ) to be respectively the vertical and the horizontal hyperbolic translations

of a distance t , as defined in section 3.4, page 25.

We can take the following q hyperbolic transformations

H(
0

q
ε) ·V (ε), H(

1

q
ε) ·V (ε), H(

2

q
ε) ·V (ε), . . . , H(

q −1

q
ε) ·V (ε)

:=φ0
s ,φ1

s , . . . ,φq−1
s (6.2.1)

and interpret them as frames inH. The origins of these frames are here denoted

p̃0
s , p̃1

s , . . . , p̃q−1
s ∈H.

They are points lying on the Border of the ε-collar associated to the Slot s, as in Figure 6.3.

The number q will be called the size of the slot layer.

We have taken ε so small that we can guarantee that two different ε-SlotLayers cannot interfere.

This is why we can also guarantee that their projections p0
s , . . . , pq−1

s ∈ S on the surface uniquely

define q distinct points on the surface S itself.

Note that the ε we are using here serves to justify that we are building simple curves. In the

calculations and implementations we will go to the limit ε= 0.

From now on we will consider that a slot layer is the data given by a Slot s and an ordered list

of q points p̃0
s , . . . , p̃q−1

s .

We shall call these points "the q pathpoints of an ε-slot layer s".

Each slot layer s will be represented as an object of the class SlotLayer, described on page 142,

whereas the q points are represented by objects of the class PathPoint, described on page 146.

Given the set of all the Slots of a Surface, it is possible to replace each of them by a SlotLayer.

This collection of 24g −24 SlotLayer is represented by the class SurfaceLayer described on

138.

We now describe how to construct an explicit set of curves on the given Surface S.

The name we give to this kind of curves on the surface is ε-path or simply path, since the

actual value of ε does not matter (in the algorithms these curves are defined in exactly the

same way but with ε = 0). The class that represent these curves will be Path, described on

page 144.
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Let us now now explain step by step how to "construct" an (ε-)path. At intervals we shall add

restrictions or constraints our objects have to verify at any step.

All these constraints are grouped together on page 124.

SlotLayer
road crossing
collar crossing
begin PathPoint
end PathPoint

Figure 6.4: A free hand representation of what is meant by an ε-Path. To be accurate, a lift of it
inH.
There are three PathElems in this example (gray then black then gray), which makes a total of
7 PathPoints.

Definition 37 (Simple path). Let ε> 0 be be as described above.

Let γ⊂ S be an open oriented piecewise geodesic curve, as on Figure 6.4.

Let p0, p1, . . . pn−1 be the n "discontinuous" points.

We will call p0 the begin path point, pn−1 the end path point and treat them as special cases.

The other n −2 PathPoints will be called standard path points.

If γ respects all the following "axiomatic" conditions it will be considered as a valid ε-path.

Condition 1 (Structure). Each of the n points pi along γ is precisely one of the ε-path point

pi = pu
s associated to one of the ε-slot layers of the surface layer for a certain u and a certain

SlotLayer s.

This condition justifies the fact that from now on we will also speak of the PathPoints along a

Path.

Furthermore, the n PathPoints are supposed to be distinct.

A consequence of that is that the sum of the sizes8 of the different SlotLayers of the SurfaceLayer

is precisely n.

Using the "class vocabulary" described in the SurfacePath 6.5 Module, this constraint can be

written (in Python ) as follows.

1 sum( s l o t L a y e r . s i z e f o r s l o t L a y e r in surfaceLayer . s l o t s ) == path . numPathPoints

8The number of PathPoints in a given SlotLayer
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6.2. Simple Path

Let P = (p1, . . . , pn−1) be a Path and pi its PathPoints.

If pi−1, pi , pi+1 are three consecutive points of its PathPoints we shall say that pi is standard.

This condition leads us to introduce the following notations.

Notation 1. Given a PathPoint pathPoint, there are (at most) four other PathPoints that are

"logically" connected to pathPoint.

• Firstly, since the Path is an oriented curve, we can think of the PathPoints

. . . , pi−1, pi , pi+1, . . . as coming "one after the other" in a time-like fashion. For this reason

we shall use the words "future" and "past". Point pi+1 is the future path point of pi while

pi−1 is its past path point and can respectively be reached through the PathPoint.fPP

and PathPoint.pPP properties.

The first PathPoint p0 (or Path.begPP) has no past path point i.e. Path.begPP.pPP is

None.

Similarly, the last PathPoint p2n (or Path.endPP) has no future path point i.e.

Path.begPP.fPP is None.

• Secondly, each PathPoint has at most two "neighbors" as an element of the list of the

PathPoints of its SlotLayer. We will use the notion of "left" and "right" to express this.

"Going to the right" means to follow the orientation of the underlying Border (see 6.5.6).

These two PathPoints can be reached through the PathPoint.lPP and PathPoint.rPP

members9 (which can be None for the first and the last element of SlotLayer.pathPoints

list).

Condition 2 (Proximity). For any standard PathPointpathPoint of the Path, exactly one of

the two conditions holds

• The geodesic arc r , from pathPoint to pathPoint.fPP lies in an ε-neighborhood of a

Road of the surface. To be more accurate, we state this condition in Python grammar

1 pathPoint . s l o t . roadFacingSlot i s pathPoint . fPP . s l o t

And

The geodesic arc c, from pathPoint to pathPoint.pPP lies in an ε-neighborhood of a

main geodesic of the surface, within an ε-Collar I.e.

1 pathPoint . s l o t . border . facingBorder i s pathPoint . pPP . s l o t . border

9references
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In this case, we say that the PathPoint is "going outside" the Collar

(see also the Path.isEnteringCollar property).

• Or The role of fPP and pPP are reversed in the following formal sense:

1 pathPoint . s l o t . roadFacingSlot i s pathPoint . pPP . s l o t

pathPoint . s l o t . border . facingBorder i s pathPoint . fPP . s l o t . border

In this case, the PathPoint is said to "enter into" the Collar.

The first and the last PathPoints p0 (=:Path.begPP ) and p2n (=:Path.endPP ) are supposed

to be "going outside" a Collar in the sense that

path . begPP . s l o t . roadFacingSlot i s path . begPP . fPP . s l o t

2 path . endPP . s l o t . border . facingBorder i s path . endPP . pPP . s l o t . border

The consequence of this second condition is that an open Path of depth n is a succession of

n pairs of geodesic arcs such that the first one is a road crossing geodesic arc connected to a

collar crossing arc, as in Figure 6.4.

Each of these pairs forms an object called PathElem, see 149.

Any Path respecting Conditions 1 and 2 is called valid.

It is now possible to "extend" this definition of a valid open Path to also speak of the closed

ones.

Definition 38 (Closed path). If a path is such that

path . endPP . rPP i s path . begPP

then it is possible to merge the begPP and endPP PathPoints into a single standard one.

This is what we call a closed Path. See also the Path.isClosed property.

The goal of our study is to focus on paths that, in addition are simple (as curves).

Proposition 8 (simple path). Let path be a valid Path (open or closed).

Then, the corresponding ε-path is simple (seen as a curve) if and only if the subsequent Condi-

tions 3 and 5 are verified.
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Condition 3 (Parallel road crossing). This condition states that there are no intersections

between the q parallel road crossings of a RoadLayer (see also page 140).

Figure 6.5: The lift of some road crossings along a RoadLayer.

As example Figure 6.5 shows the lifts of a RoadLayer (gray) used four times by the Path. The

SlotLayers in which the PathPoints are are drawn in orange.

In Python , according to the classes detailed in Sections 6.5 and 6.6, this condition is equivalent

to asking that for each PathPoint pp of the Path we have

1 pp . roadFacingPP . lPP i s pp . rPP . roadFacingPP

pp . roadFacingPP . rPP i s pp . lPP . roadFacingPP

unless one of the subexpression is None10, which is also considered valid and simple.

Two different Roads of the same YPce may or may not intersect each other.

To know which Roads intersect a given one, see the Road.corssingRoads() method, page

62.

Let roadA and roadB be two Roads (two RoadLayers to be accurate) and let cA ,cB be two road

crossings along roadA, respectively roadB.

One sees that cA intersects cB if and only if roadA intersects roadB.

We can then introduce the following condition.

Condition 4 (Incident roads). If some road r is used by a road crossing, then all the other roads

intersecting r must be empty (not used).

10For example, if pp is the endPP of the Path, then pp.roadFacingPP is None.
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To allow the PathExplorer class to respect this condition, the RoadLayer class stores the

number of times it has been used through the timesUsed attribute (see pages 62 and 140).

This allows to avoid entering a Road that crosses an already used road.

Any Path that respects these two Conditions 3 and 4 is guaranteed to have no self-intersection

within the YPces of the Surface.

The last Condition we need to guarantee the simplicity of a Path is then the following.

Condition 5 (CollarCrossing). The different collar crossings within a common Collar (Collar-

Layer in fact) must not intersect each other.

We discuss later, in Section 6.4, how to construct all the Paths that respect these constraints.

This Condition 5 allows the algorithm to limit the winding indices that have to be tried, when

going across a non-empty CollarLayer.

s0

s3

s2

s1

s0

s3
s2

s1
s0

s3

s2

s1

s0

s3
s2

s1

Figure 6.6: Crossing a non-empty CollarLayer.

The Figure 6.6, on the left, shows a case where a Path is extended by adding a new collar

crossing (blue) across a nonempty Collar. The preexistent collar crossings are drawn in black.

The right part of the picture shows in blue the 3 possible collar crossing allowed by the

Condition 5.

According to these condition, we can say that any Path that respects the Conditions 1-5 is

simple as a curve.

We have seen earlier that every closed Path of depth m is conjugated to 2m other Paths, which

corresponds in fact to the same curve but with a different choice of the start point and/or a

change in the orientation.

For this reason we add a last condition we expect the Path objects to respect and call it being

canonical. This condition is designed such that there will be exactly one canonical Path in

each of the equivalence classes induced by the conjugation relation.
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In order to formulate this condition, we recall that we may assume that we have a given order

relation < over the different Slots of a Surface (one can for example compare their address in

memory).

Condition 6 (Canonical Path). Let p be a Path, let begPP := p.begPP be the first PathPoint

of the Path, and let s:= begPP.slot be the Slot (SlotLayer) in which begPP lies.

The Path p is said to be canonical if and only if the two following conditions are verified.

• begPP lies over the smallest Slot.

I.e. if pp is any PathPoint of the Path, then

begPP . s l o t <= pp . s l o t

• begPP is the leftmost PathPoint of its SlotLayer. In other terms,

1 begPP . lPP i s None

like the blue path point of Figure 6.5.
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6.3 Path geometry

In the previous Section, we described how we can interpret the data of a Path object and the

constraints it must satisfy in order to "encode" a valid simple and closed curve, that we called

a ε-path γε ⊂ S.

Since the Surface is hyperbolic, there will be only one geodesic γ⊂ S in the equivalence class

of a given ε-path. Furthermore, since the ε-path is a simple curve, then γ must be simple as

well, again because the surface is hyperbolic:

Proposition 9. Let φ⊂ S be a simple closed curve on an hyperbolic surface S, not homotopic to

a point. Then, there exists a unique simple closed geodesic γ⊂ S that is homotopic to φ.

Proof. This proposition is very well known and we do not need to provide an actual proof

here. The existence of a geodesic γ, homotopic to φ comes from the Arzela-Ascoli theorem.

The uniqueness is a consequence of the negative curvature [10]. The fact that this γ is simple

can be shown by contradiction, knowing that S is hyperbolic and φ is simple [4, Theorem

1.6.6].

The goal is now to explain, given a Path object, how to obtain geometrical informations, such

as the length of the unique simple closed geodesic γ it models.

pE.begPP

pE.endPP

pE.midPP

V (road.length)

H(slotMid.collarFacingDist(w))

Figure 6.7: The transformation associated to a PathElem.

Let P be a simple closed Path of depth n.

As we have seen in the two previous Sections, P consists of n PathElems, each of these

PathElems consists itself of a road crossing followed by a collar crossing.
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Let pE be one of the PathElems of the Path and let wIdx = pE.windingIndex be the winding

index associated to the collar crossing of pE.

Let then bPP = pE.begPP, mPP = pE.midPP and ePP = pE.endPP, be respectively its begin,

middle and end PathPoint, as shown in Figure 6.7, and explained in Section 6.5.7.

Finally, let bS = bPP.slot, mS = mPP.slot and eS = ePP.slot be the SlotLayers in which

these PathPoints are.

Lemma 9. According to the notations preceding the definition 14, page 25, of V (t ), H (t ),O ∈ MH

and according to the definitions of the relative frames as in Section 5.1, page 69, the relative

position ψ ∈ MH of the frame eS with respect to the frame bS is

ψ=V (bS.roadFacingDist) ·H(mS.collarFacingDist(wIdx)).

This transformation ψ will be called the relative transformation associated to the PathElem pE.

The PathElem.relativeTransformation property is designed so as to return this ψ.

Proof. By construction, we know that the Road bS.road that connects bS to mS is the vertical

axis, in the frame of bS. Its length is known and is stocked in the

bS.road.length=:bs.roadFacingDist member. The relative position of mS with respect to

bS is then V (bS.roadFacingDist) ·O.

According to the definition of the winding index, page 54, the oriented distance from mS to

eS (along the main geodesic, with respect to the orientation of the BordermS.border) can be

obtained trough the mS.collarFacingDist(wIdx) method.

The position of the eS in the frame of mS is then O ·H(mS.collarFacingDist(wIdx)).

Finally, we have then

ψ=V (bS.roadFacingDist︸ ︷︷ ︸
∈R+

) ·O ·O︸ ︷︷ ︸
IdH

·H(mS.collarFacingDist(wIdx)︸ ︷︷ ︸
∈R

).

This Lemma leads us to the following Proposition.

Proposition 10. Let path be a simple closed Path of depth n and let pE1, pE2, . . . , pEn desig-

nate its n PathElems.

Let s0:=pE1.slot be the initial SlotLayer of the Path.

Letψ1 := pE1.relativeTransformation,. . . ,ψn := pEn.relativeTransformation be the n

transformations described by the preceding Lemma.
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Let γε ⊂ S be the ε-path described by path and let γ⊂ S be the unique simple closed geodesic in

the homotopy class of γε.

Let G be the following Möbius transformation

G =ψ1 ·ψ2 · . . . ·ψn ∈ MH.

Then G is an hyperbolic transformation and its axis G̃ ⊂H is a lift of γ expressed in the frame

associated to the Slot s0.

Furthermore the length of γ can be deduced from the trace of G, using the matrix model formula

3.2, page 21.

Proof. Let bPP1:=pE1.begPP,. . . , bPPn:=pEn.begPP be the n begin PathPoints

and let bS1 := bPP1.slot,. . . , bSn := bPPn.slot be the SlotLayers associated to these

PathPoints.

Similarly, let ePP1:=pE1.endPP,. . . , ePPn:=pEn.endPP be the n end PathPoints,

associated to the Slots eS1 := ePP1.slot,. . . , eSn := ePPn.slot.

Since path is closed, ePP1 = bPP2, ePP2 = bPP3,. . . and bPP1 = ePPn.

Using recursively the Proposition 7, page 70, we can interpret the Möbius transformation G as

the "relative position" of one of them. More precisely, if we lift path to a (piecewise geodesic)

arc in H that has the same length, then G maps its initial point to the endpoint. If we lift,

similarly, the closed geodesic γ in the homotopy class of path to a geodesic arc γ′ in H that

has the same length, then G also maps the initial point of γ′ to the endpoint of γ′. Finally, γ′

lies on the lift γ̃ of γ which is the axis of G . Therefore the displacement length of G equals the

length of γ. This concludes the proof.
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6.4 Path exploration

In Section 6.1, we described how any simple closed geodesic γ⊂ S can be encoded into a valid

simple closed Path object.

Then, in Section 6.2, we precisely described what are the constraints a Path must respect to be

valid and simple.

Finally, in Section 6.3 we explained how, given a simple closed Path psiPath, we can deduce

both the length and the trace of a simple closed geodesic ψ. Furthermore, due to Proposi-

tion 5 we can deduce that psiPath would indeed be the result of the "encoding process" of

Section 6.1, applied to ψ.

This shows that there is a bijection between the "abstract" set of the simple closed geodesics

of S, sometimes written Spec(S), and the set of all the possible valid closed simple Paths.

Obviously, both these sets are infinite (though still countable). This is why it would not make

sense to try to enumerate "all" of the possible valid closed simple Paths.

Rather than that, we will try to produce several "exploration algorithms". Each of these

algorithms will be specialized in spanning a different kind of finite subset of the form

{γ ∈ Spec(S) |P (γ)}. (6.4.1)

Here P has to be understood as an "additional constraint" that can be true or false depending

on γ. This constraint P is the characteristic constraint of the algorithm.

For example P (γ) := (length(γ) < 15) is a constraint that would lead to find every simple closed

geodesic whose length is less than 15.

In order to achieve this goal, let us introduce the notion of the codeword of a Path.

6.4.1 Codeword

The Path class is designed to provide a rich programmatic interface well suitable to a developer

to "encode" any (or at least as much as possible) new constraint P he wishes into an actual

boolean function that applies to the Path objects.

It is also designed to be well optimized on the memory-management strategy, but still, at any

point of its lifetime it is a "big" object 11.

That is why we introduce the concept of codeword.

Definition 39. Let path be a simple Path of depth n.

11In fact it consumes very very little memory, but still much more than a codeword.
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Then, we can build the following pair (2-uple)

(path.begPP.slot, [w1, w2, . . . , wn]) (6.4.2)

where path.begPP.slot is (a reference to) the start SlotLayer of the Path. I.e. the SlotLayer

in which the first PathPoint lies.

The second element, the list [w1, w2, . . . , wn] are the n winding indexes (see Section 6.1), associ-

ated to the n successive collar crossings of the Path.

Such a pair is called the codeword of the Path.

See also the description of the trivial Path.toCode() method which returns such a codeword,

page 144.

Finally, the encoding of the main geodesics α1, . . . ,α3g−3 themeselves is as follows:

(slot, [ ]), (6.4.3)

where slot is the smallest Slot of the Collar around the corresponding αi .

We will also see at the end of this chapter that a codeword represents enough information to

re-build the original Path through the Path.fromCode(codeword) method; or detect the fact

that the codeword is invalid in the sense that it is the codeword of no valid simple Path.

Definition 40 (partial order relations). Let pathA and pathB be two Path objects of depth n

and m respectively.

Let (sA , [w A
1 , w A

2 , . . . , w A
n ]) and (sB , [wB

1 , wB
2 , . . . , wB

m]) be their respective codewords.

Then, we can introduce a partial order relation denoted by "<" over the Path class in the following

way.

pathA < pathB if and only if

• sA = sB

• and m > n and w A
i = wB

i , for all i ∈ {1, . . . ,n}.

Philosophically speaking pathA < pathB means that pathA can somehow be completed to

obtain pathB by appending m −n additional PathElems at the end of the future.

Note that the relation is only partial: the negation of pathA < pathB does not imply anything

special.

We will also need a global order relation in our argumentation; we take then the following one.
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Definition 41 (global order relations). Let pathA and pathB be two Path objects of depth n

and m respectively.

Let (sA , [w A
1 , w A

2 , . . . , w A
n ]) and (sB , [wB

1 , wB
2 , . . . , wB

m]) be their respective codewords.

We also recall that we already have an order relation "≤" over the the Slot class.

Then, we can introduce a partial order relation denoted by "≺" over the Path class in the

following way.

pathA ¹ pathB if and only if

• sA ≤ sB

• and m ≥ n and ([w A
1 , w A

2 , . . . , w A
n ] ≤ [wB

1 , wB
2 , . . . , wB

m] in the sense of the traditional lexi-

cographic ordering of two lists.

6.4.2 Algorithms

We now have enough material to explain how our algorithms works.

Definition 42 (Filter). A filter Bool P(Path) is a constraint on a Path path, i.e. a boolean

condition, that behaves well in the following sense

∀ Path subPath,
(
subPath < path and P(path)

)⇒ P(subPath).

Furthermore the filter P is said to be finite if the set {γ ∈ Spec(S) |P (γ)} is finite.

We can now represent the set of all the valid simple Paths as a finite set of trees, as in Figure

6.8. The roots of each of these trees are the 24g −24 possible start slots.

The nodes of these trees are the possible valid and simple states of the Path. In this context it

is clearer to think of these nodes in terms of codewords.

On page 150, we define the PathAlgorithms module.

In this module, there is a class called PathExplorer.

This PathExplorer is the container of a SurfaceLayer that "contains" one Path object path 12.

Here is what the PathExplorer does.

It possesses a method called PathExplorer.exploreStates() and another, purely virtual

(i.e.abstract) method called PathExplorer.checkState().

12To be accurate it is in fact also designed to handle multiple Path at the same time that do not intersect each
other. This is notably used for the BersDecompositionFinder class (7.5) , which is the child class of PathExplorer
that find the Bers decompositions of a surface.
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invalid Path state

invalid open Path state

valid closed Path state

Depth of Path

Winding index

start Slot

Figure 6.8: A (partial) view of the tree of the different possible valid simple Paths. The numbers
represent the order in which a PathExplorer will explore the possible states.

When the method exploreStates() is called, it will start to "explore" the tree of the valid

simple states by applying some in-place modifications to its Path object.

After each modification, the checkState() method is called.

Note also that the different simple states are tested in increasing order with respect to the ≺
relation defined in Definition 41.

The fact that checkState() is a purely virtual method means that the PathExplorer has no

actual implementation of this method.
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6.5 The SurfacePath module

This module collects the necessary material allowing us to enumerate representations of

simple closed geodesics, satisfying certain restrictions (such as length), and their geometrical

properties.

The classes of this module are the following:

SurfaceLayer: Given a Surface, it is possible to construct a SurfaceLayer that is a kind of

drawable copy of it. Indeed, during the algorithms presented later, some simple curves

over the Surface, represented by Path objects, will have to store some data about what

places they went through and what they do in the corresponding SurfaceLayer.

RoadLayer: Class used (and stored) by the SurfaceLayer class. It is a decoration of one given

Road of the Surface. It stores an integer timesUsed, which represents the number of

PathElems that come along the Road.

CollarLayer: Class used (and stored) by the SurfaceLayer class. It is a decoration of one given

Collar of the Surface. It stores an integer timesCrossed, which represents the number

of PathElems that cross the Collar.

SlotLayer: This class is a decoration attached to each Slot of a Surface and stored by a Sur-

faceLayer. It acts as a list of PathPoint elements.

Path: This path represents a certain kind of curve over the surface, the set of the valid13 closed

Paths that can be constructed are in one to one correspondence with the simple closed

geodesics of the surface. A path acts as a list of PathElems. A list of PathPoints can also

be deduced.

PathPoint: A PathPoint is a point on a Surface that is related to a SlotLayer. A Path is a

piecewise geodesic curve on the surface that goes from one PathPoint to another.

PathElem: This is the smallest element that can be appended to a Path.

13Defined later.
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SurfacePath

RoadLayer

CollarLayer

SurfaceLayer

SlotLayer

Path

PathElemPathPoint

3g-3

12g-12

24g-24

*

*

2

1
2

Figure 6.9: Classes of the SurfacePath module.

6.5.1 The SurfaceLayer class

Surface

SurfaceLayer

paths : Path [ ]

SurfaceLayer( Surface )

Figure 6.10: SurfaceLayer class diagram.

The ultimate goal that justifies these classes is to give an enumeration of the possible simple

closed geodesics of a given surface.

The most trivial algorithm to do that, for example, enumerates each lexicographically ordered

codeword and then checks whether it corresponds to a simple closed geodesic. But the second

part is in fact very inefficient.

We rather have a more subtle and complete data structure that will evolve in place and take

each valid state one after the other.

Metaphorically, these algorithms consist in taking a virtual pen and drawing some piecewise

geodesic curve (in the form of a Path object) on a virtual surface.
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At each step there are a finite number of combinatorial decisions that can be taken in order

to build a new (deeper) state for the Path object. The fact that we are looking only for simple

curves will be very helpful, since the decisions that have been taken at the previous steps

drastically restrict the possible decisions of the current step.

That is why, from the computational complexity point of view, it can be useful to "store" a track

of which parts of the surface have been crossed by the Path and how.

The class that is the "ultimate" holder of this data structure is the SurfaceLayer class.

The SurfaceLayer is a child of the Surface class and then it inherits all of its attributes.

The Surface class is thought of as immutable14, whereas a SurfaceLayer is meant to be a

"copy" of a given Surface that contains a list of Path objects. We will describe how the

SurfaceLayer is affected by the Paths it contains.

The difference between a Surface and a SurfaceLayer (besides the Path list), is that a Sur-

faceLayer instead of containing Roads like a Surface, it contains a list of RoadLayer objects.

Instead of containing Collars it contains CollarLayers and instead of containing Slots, it

contains SlotLayers.

Each of these three classes are designed to hold cross-references with the PathElems and the

PathPoints contained by the Paths of the SurfaceLayer that go "through" or "across" them.

The SurfaceLayer can be created by a public constructor that takes a Surface object and copies

it.

The SurfaceLayer class is meant to be used by the PathExplorer sub-classes. In most of

the algorithms, only one Path is involved at a time, for example looking for simple closed

geodesics, systoles, and so on.

Some other algorithms involve two ore more mutually non intersecting Paths, for example

those looking for Bers decompositions, or the algorithm for the graphical representation of

the Birman-Series set.

See also:

Path class page 144, RoadLayer class page 140, CollarLayer class page 141.

14That means it is not supposed to be modified after it’s instanciation.

139



Chapter 6. Exploration algorithms

6.5.2 The RoadLayer class

Road

RoadLayer

timesUsed : unsigned Int

#isUsed : Bool

#isCrossed : Bool
use()

unUse()

Figure 6.11: RoadLayer class diagram.

The RoadLayer class is a "specialized" version of the Road class (see page 62) that is supposed

to interact with certain Path objects.

The objects of this class are created by the SurfaceLayer’s constructor. It inherits all the

members of the Road class (it’s parent) but, instead of having Slots as end points, it has

SlotLayers.

The only actual member that is characteristic of the RoadLayer class, is the timesUsed (positive

or null) integer.

We have seen that each Path can be decomposed into a certain number of PathElems, that

represent a number of geodesic arcs, within an YPce, that go from one of its bounding main

geodesic to another (or the same one). We have seen in Lemma 3, page 52, that any of these

arcs is locally homotopic to one single Road (or RoadLayer, to be accurate).

Each time a given PathElem happens to be locally homotopic to a given RoadLayer, we say

that it uses this RoadLayer.

The timesUsed member is simply supposed to store the number PathElems that are locally

homotopic to the current RoadLayer, among all the PathElems contained by all the Paths

(usually only a single one is present) of the current SurfaceLayer.path list.

The isUsed property returns the truth value of self.timesUsed > 0.

Geometrically speaking, two RoadLayers may intersect each other or not (they are said to be

crossing if they do). Through the inheritance of the Road class, each RoadLayer has a method

RoadLayer.crossingRoads() that returns a list15 of the RoadLayers that intersect this one.

The isCrossed property is designed to return True iff at least one of the crossing road layers

isUsed.

15Of their identities, to be accurate.
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Note that if there is a RoadLayer for which both isUsed and isCrossed are True, then this

means that there are intersections among the PathElems of this SurfaceLayer.

Finally, the use() and unUse() methods simply increment//decrement the timesUsed mem-

ber by one unit.

See also:

PathElem class page 149, SurfaceLayer class page 138, SlotLayer class page 142.

6.5.3 The CollarLayer class

Collar

CollarLayer

timesCrossed : unsigned Int

#isCrossed : Bool
cross()

unCross()

Figure 6.12: CollarLayer class diagram.

The CollarLayer class is a "specialized" version of the Collar class (see page 59) that is sup-

posed to interact with Path objects.

The role that the CollarLayer plays with respect to the Collar class is very similar to the one

of the RoadLayer with respect to Road. I.e. instead of containing 4 Slot objects, it contains 4

SlotLayers.

Each PathElem of a Path is considered to go "through" a given CollarLayer. In that case the

PathElem is said to cross the CollarLayer.

Besides the members of the Collar class, CollarLayer will then have the following members:

CollarLayer.timesCrossed is an unsigned integer that "stores" the exact number of

PathElems that go through this CollarLayer.

CollarLayer.isCrossed is a property that returns True iff self.timesCrossed > 0.

Finally, the cross() and unCross() methods simply increment//decrement

the timesCrossed member by one unit.
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See also:

PathElem class page 149, SurfaceLayer class page 138, SlotLayer class page 142.

6.5.4 The SlotLayer class

Slot

SlotLayer

lPP : PathPoint

rPP : PathPoint

#isEmpty : Bool

#isOpen : Bool

#pathPoints : &PathPoint [ ]

insertLeft(&PathPoint)

insertRight(&PathPoint)

Figure 6.13: SlotLayer class diagram.

The SlotLayer is the "decorated" version of the Slot class (page 64) that is used in the context

of a SurfaceLayer.

The SlotLayer inherits all the members of the Slot class, but instead of being the endpoint of a

Road, it is the endpoint of a RoadLayer. Instead of being adjacent to a Collar, it is adjacent to

a CollarLayer.

A Path of depth m can be seen as a list of m PathElems, but it can also be seen as a list of 2m

PathPoints, respectively, (2m +1) PathPoints in the case of an "open" Path see page 144).

Each PathPoint is associated to a unique SlotLayer of the surface (see Section 6.1). Conversely,

given a SlotLayer there is a finite list [p1, . . . , pn] consisting of the PathPoints associated to

this SlotLayer. The order of this list is very important. It is defined in Section 6.1.

This (ordered list) can be obtained through the pathPoints property of SlotLayer.

As far as memory is concerned, the only actual members of a SlotLayer object are two nullable

references (or pointers) called lPP and rPP for "left" and "right" (according to their position in

the list).

lPP points to the first PathPoint p1 while rPP points to the last PathPoint pn .

In the case where there is only one PathPoint associated to this SlotLayer we have lPP ==

rPP.

In the case where there is no PathPoint associated to this SlotLayer
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we have lPP == rPP == None. Furthermore, in that case and in that case only, the property

SlotLayer.isEmpty will return True.

The isOpen property returns True iff the adjacent RoadLayer is not "crossed" by some path

elements. It is equivalent to

1 return not s e l f . road . isCrossed

and serves as a condition for the PathExplorer algorithms to know if this SlotLayer can be

used to grow a Path without creating self-intersections.

When a PathExplorer "grows" a Path by appending to it a new PathElem, then two new

PathPoints are also created. They need to be "inserted" to the appropriate SlotLayers. There

are two ways to do this (both of them will be needed, depending on the situation).

The first way is through the SlotLayer.insertLeft(pathPoint) and

SlotLayer.insertRight(pathPoint), where pathPoint is a virtual 16 PathPoint.

The second way to "insert" a (virtual) PathPoint in a given SlotLayer is through the

PathPoint.insertLeft(pp) and PathPoint.insertRight(pp) discribed on page 146.

The effects of these two methods are the following:

-They set a reference self (the current SlotLayer) in the pathPoint.slot member.

-They set appropriately the lPP and rPP members of the SlotLayer, and of the PathPoints

pathPoint and its new "neighbor".

See also:

PathPoint class page 149, SurfaceLayer class page 138.

16A virtual PathPoint is a technical "trick", it is a PathPoint that exists "data-wise" but has (still) not been
cross-referenced with other objects.
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6.5.5 The Path class

Path
surfaceLayer : &SurfaceLayer

pathElements : PathElem [ ]

#depth : Int

begPP : PathPoint

#endPP : &PathPoint

#isClosed : Bool

toCode() : (&Slot,Int[ ])

fromCode(&Slot,Int[ ]) : Path static

transformation(): TMH

extendFutur(): &PathElem

popFutur()

popSelf()

Figure 6.14: Path class diagram.

There are two kinds of mathematical objects a Path can represent. It either represents a closed

curve (geodesic) on a surface, or it can represent an open segment of curve, as described in

Section 6.1.

Here, we focus on the "technical" explanation on how we implemented it17.

The data held by a Path object consists of

-a PathPoint named begPP,

-a list named pathElements of m PathElems, where m is the depth of the path,

-a reference Path.surfaceLayer to the SurfaceLayer to which this Path belongs.

The depth can be obtained through the Path.depth property which returns the length of the

pathElements list.

Attributes and properties

&SurfaceLayer surfaceLayer: A reference to the SurfaceLayer on which this Path lies.

PathElem pathElements: A list of the PathElems of this Path.

In C++ it is recommendable to use a std::stack<PathElem>.

property

Int depth: The depth of a Path is defined to be the number of its path elements, 0 for the

main geodesics. Its value is deduced on the fly through the length of the pathElements

list.

17There are certainly other (better) ways to do it.
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property

Int isClosed: The depth of a Path is defined to be the number of its path elements, 0 for the

main geodesics. Its value is deduced on the fly through the length of the pathElements

list.

PathPoint begPP: The first PathPoint of a Path. Unlike the other PathPoints which are held

by the PathElems, this one is held directly by the Path.

The reason for doing it this way is that we also have to handle non closed Paths. These

have a total of 2m + 1 PathPoints, where m is theirs depth. This makes 2 in each

PathElem plus the begPP.

On the other hand, since the main geodesics of a surface need a start slot to be well

defined the begPP of these Paths will store a reference to this Slot.

property

&PathPoint endPP: Returns a reference to the last PathPoint of the Path. This value depends

on the fact whether the Path is closed or not. A possible Python implementation is the

following:

1 i f s e l f . depth i s 0 : return s e l f . begPP #For main geodesics .

lastPE = s e l f . pathElements[−1] # The l a s t Path Element of the Path .

3 i f s e l f . isClosed : return lastPE . midPP #For closed Path .

return lastPE . endPP #For non closed Path .

Methods

(&Slot, Int [ ] ) toCode(): Each Path can return a "fingerprint" that is called its code word.

static

(&Slot, Int) fromCode(): Each Path can return a "fingerprint" that is calledits code word.
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6.5.6 The PathPoint class

PathPoint
index : Int

#path : &Path

pathElem : &PathElem or None

slotLayer : &SlotLayer

#collarLayer : &CollarLayer

#roadLayer : &RoadLayer

#isEnteringCollar : Bool

#windingIndex : Int

fPP : &PathPoint

pPP : &PathPoint

lPP : &PathPoint

rPP : &PathPoint

#roadFacingPP : &PathPoint

#collarFacingPP : &PathPoint

getLeftPP(): (&PathPoint,Int)

getRightPP(): (&PathPoint,Int)

insertLeft(&PathPoint)

insertRight(&PathPoint)

popSelf( )

Figure 6.15: PathPoint class diagram.

As explained in the Sections 6.1 and 6.2, a Path may be seen as a piecewise geodesic curve going

from one PathPoint to the next one. Furthermore, each PathPoint lies in the neighborhood

of a Slot, within a SlotLayer.

According to that, in this section, we explain one by one the different attributes and methods

of this class.

Attributes and properties

Int index: The index of the PathPoint with respect to its Path. The first PathPoint has index

0, the next one 1, etc...

property

&Path path: A reference to the Path to which this PathPoint belongs.

&PathElem pathElem: The path element to which this PathPoint belongs.

This reference is None for the begin path point, since this PathPoint belongs directly to

the Path and not to a PathElem.

&SlotLayer slotLayer: The slot layer to which this PathPoint belongs.

property

&CollarLayer collarLayer: The CollarLayer that is adjacent to the current PathPoint.
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property

&RoadLayer roadLayer: The RoadLayer that is adjacent to the current PathPoint.

property

Bool isEnteringCollar: Returns True if the next (with respect to the orientation of the

Path) PathPoint is on the other side of the adjacent CollarLayer, and False otherwise.

Note also that this property is True if and only if the index of the PathPoint is odd.

property

Int windingIndex: The winding index associated to the adjacent collar crossing, or None for

the first PathPoint, since it has no adjacent collar crossing.

See also Section 4.3 for the definition of the winding index.

&PathPoint fPP: The future path point i.e. the next PathPoint along the Path.

This reference is None for the last path point of the Path, Path.endPP.

&PathPoint pPP: The past path point i.e. the previous PathPoint along the Path.

This reference is None for the first path point of the Path, Path.begPP.

&PathPoint lPP: The left path point i.e. the PathPoint who lies in the same SlotLayer and is

on the left of self by respect to the frame associated to the Slot.

In other terms, self.lPP comes before self, by respect to the orientation of the Border

on which they are.

&PathPoint rPP: The right path point i.e. the PathPoint who lies in the same SlotLayer and

is on the right of self by respect to the frame associated to the Slot.

In other terms, self.rPP comes after self, by respect to the orientation of the Border

on which they are.

property

&PathPoint roadFacingPP: The PathPoint connected to self through the road crossing.

This property returns self.pPP if self.isEnteringCollar is True and self.fPP oth-

erwise.

Note also that this means it returns None for Path.endPP.

property

&PathPoint collarFacingPP: The PathPoint connected to self through the collar cross-

ing.

This property returns self.fPP if self.isEnteringCollar is True and self.pPP oth-

erwise.

Note also that this means it returns None for Path.begPP.
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Methods Note that the methods of this class are normally only meant to be used by the

different methods of the PathExplorer class. Indeed, the PathExplorer is described as the

only place where the Path objects can be created or modified.

In a language like C++ , these methods could then have been declared a private, with the

class PathExplorer declared as friend.

(&PathPoint,Int) getLeftPP(): This method is similar to self.lPP, but it is not limited to

the PathPoints lying in the same SlotLayer.

This method starts from the current PathPoint and follows the Border in the opposite

direction to its orientation until it reaches a PathPoint.

The return value is a pair. The first element is a reference to the reached PathPoint. The

second element of the return value is an integer (between 0 and 4 included) that states

how much time it was necessary to "jump" from one SlotLayer to another.

Note also, as an example, that if self is the only PathPoint in the whole CollarLayer,

the result of self.getLeftPP() will be (self,4)

(&PathPoint,Int) getRightPP(): This method does exactly the same thing as getLeftPP(),

but this time it follows the Border along to its orientation

insertLeft(&PathPointpp): Inserts the (supposedly newly created) to the left of self.

Which means to settle the different attributes (lPP,rPP,slotLayer,etc.) of some ob-

jects (of class PathPoint and SlotLayer) accordingly.

For example, after self.insertLeft(foo), we must have self.lPP == foo, foo.rPP

== self ,self.slotLayer == foo.SlotLayer, etc...

insertRight(&PathPointpp): Method similar to insertRight(pp), but inserts on the right.

popSelf(): Deletes the current PathPoint from the current SlotLayer and sets the involved

attributes in a new state.

The PathPoint self can be inserted at a new position after this method is executed.
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6.5.7 The PathElem class

PathElem
begPP : &PathPoint

midPP : PathPoint

endPP : PathPoint

path : &Path

roadLayer : &RoadLayer

collarLayer : &CollarLayer

windingIndex : Int

#relativeTransformation : TMH

Figure 6.16: PathElem class diagram.

This class is the smallest element that can be added or substracted to a Path. The PathElem

class is the actual container of the PathPoint objects 18.

For a detailed meaning of that a PathElem is we refer to Sections 6.1 and 6.2. Here, we

onlypresent its attributes one by one.

Attributes and properties

&PathPoint begPP: The first PathPoint of the PathElem, at the start of the road crossing.

This is only a reference: it can either point towards the endPP of the previous PathElem

or towards Path.begPP if the Path is open and if self is the first PathElem of the Path.

PathPoint midPP: The middle PathPoint of the PathElem, at the end of the road crossing and

at the start of the collar crossing.

PathPoint endPP: The end PathPoint of the PathElem, at the end of the collar crossing.

Path path: A reference to the Path to which this PathElem belongs.

&RoadLayer roadLayer: A reference to the RoadLayer used by the road crossing.

&CollarLayer collarLayer: A reference to the CollarLayer crossed by the collar crossing.

Int windingIndex: The winding index associated to the collar crossing (see Section 4.3 page

54).

property

TMH relativeTransformation: The Möbius Transformation ofH that represents the rel-

ative position of the frame associated to the Slot of PathElem.endPP by respect to the

frame associated to the Slot of PathElem.begPP.

This transformation is denoted ψ in Lemma 9, page 131.

18With the exception of the PathPointPath.begPP who is directly hold by the Path object.
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6.6 The PathAlgorithms module

The PathAlgorithms module collects the different exploration algorithms that we have. In

Section 6.4, we described what we understand by the term exploration algorithms.

All the different variations of these exploration algorithms will be represented by some classes

that derive from the common base class PathExplorer.

In this document we describe only the two most important cases, i.e. the (trivial) PathDecoder

and the SimpleGeodesicFinder which can "enumerate" all the simple closed geodesics shorter

than a given length.

PathAlgorithms

PathExplorer

PathDecoder SimpleGeodesicFinder

Figure 6.17: Classes of the PathAlgorithms module.

6.6.1 The PathExplorer class

PathExplorer

path : Path

surface : SurfaceLayer

exploreStates()

checkState() : Bool «abstract»

windingLimits() : (Int,Int) «abstract»

-exploreState()

-deeperState() : Bool

-nextState() : Bool

-backState()

Figure 6.18: PathExplorer class diagram.

The PathExplorer is the base class of all the actual algorithms that involve testing one after

the other all the possible simple Paths, with some stop conditions.

These stop conditions consist in two abstract methods which are Bool checkstate() and

(Int,Int) windingLimits(). They must be implemented by the children of the PathEx-

plorer class, which are the actual algorithms, like PathDecoder or SimpleGeodesicFinder.
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In addition to these two public abstract methods, there is a last public method

called exploreStates(). This is the method one has to call to launch the enumeration

algorithm.

To explain what it does, it is easier to see what each methods of this class does one by one.

exploreStates(): Enumerates each possible (simple) Path states and launches the

checkstate(), virtual and abstract method, for each reached state.

To achieve this goal, an empty Path is created with the first Slot of the Surface as start

slot, this puts the PathExplorer in its initial state. Then, the recurcive (and protected)

method _exploreState() is called.

When this is done, the method checkstate() has been called by _exploreState() for

each state of the Path that starts with the current start slot.

The corresponding SlotLayer to the start slot is then "closed", which means that the

different Path that will be enumerated in the next stages of this function will never

be allowed to pass through it again. This condition may be seen as the minimization

condition, to avoid counting twice the same geodesic, up to cyclic permutation.

Then we take the next smallest Slot as the start slot of the Path and do the same thing,

until every Slot has been treated.

abstract

Bool checkState(): This method is called each time the PathExplorer is in a new state.

This method is supposed do do the two following things:

• Check if the current path attribute is a solution to the current problem. (For

example, “is the path closed? and does it correspond to a geodesic shorter than L?”,

in the case of SimpleGeodesicFinder).

If this is the case, add the corresponding codeword to a list of the solutions.

• Return True if there can possibly exist bigger Path than the current one, in the

sense of the relation 40 of page 134 that is still a solution to our current algorithm.

Return False if we can guarantee that there can be no solutions that "begins" with

the current Path.

abstract

(Int,Int) windingLimits(): In the case where the algorithm has to pass over an empty

Collar, there could theoretically be infinitely many possible winding indices to be chosen

for the current PathElem.

This is why, in this circumstance, the PathExplorer calls this abstract method

windingLimits().

This method returns the minimal and the maximal winding index that needs to be taken

into consideration.
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See also:

The implementations of this method in PathDecoder and SimpleGeodesicFinder.

6.6.2 The PathDecoder class

PathExplorer

path : &Path

surface : SurfaceLayer

exploreStates()

checkState() : Bool «abstract»

windingLimits() : (Int,Int) «abstract»

PathDecoder
codeWord : (Slot, Int [] )

checkState() : Bool

windingLimits() : (Int,Int)

Figure 6.19: PathDecoder class diagram.

This class is the most trivial child of the PathExplorer class. The goal of the PathDecoder is

simply to be able to rebuild a valid Path object, given a codeword.

The purposes of the existence of this class are, firstly, to let the PathExplorer class be the only

place where the Path objects are created, modified (it is called the factory design pattern). This

avoids to have redundancy in the code.

The second purpose is to provide a very simple example of an actual exploration algorithm.

Though it is not really an exploration, in the sense that there is only one possible choice at

each step.

This class overloads the two abstract methods windingLimits() and checkState() in the

following way.

(Int,Int) windingLimits(): This method returns the minimal and maximal winding index

to chose, when the exploration algorithm faces an empty collar. Since the codeword

that we want to reproduce is given by the self.codeWord member, if m is the depth of

the current Path self.path, then these minimal and maximal winding indices that we

have to return have both the same value wm , where wm is the m-th winding index given

in the codeword.

BoolcheckState(): This method returns False if the last winding index of the current Path

is the same as the one that is expected by the codeword. If the path is completed, the

path is the desired solution. Finally, it returns True if the Path is correct, but incomplete.
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6.6.3 The SimpleGeodesicFinder class

PathExplorer

paths : &Path

exploreStates()
checkState() : Bool «abstract»
windingLimits() : (Int,Int) «abstract»

SimpleGeodesicFinder

paths : Path [ ]

checkState() : Bool
windingLimits() : (Int,Int)
findGeodesics( Float L ): Codeword[ ]
SimpleGeodesicFinder( Surface)

Figure 6.20: SimpleGeodesicFinder class diagram.

This class represents the algorithm that enumerates all the possible simple closed Paths up to

a given length L.

This class is constructed with the Surface as argument. Once it is instantiated, the user can

obtain a list of the codewords of all19 the simple closed geodesics whose length is shorter than

a length L, by calling the findGeodesics( Float L ) method.

This method, will call the PathExplorer.exploreStates() method in its turn.

To achieve this goal, we need to explain on what kind of mathematical arguments the imple-

mentation of the two overloaded methods checkState() and windingLimits() relies.

L

wmax

wmin

α0

αm

Path

D

bL

These two main geodesics
are the first one and the
last one who can possibly
intersect bL .

Q
D

p0

pm

L

C

pmax
pend

pmin

Figure 6.21: Finding a minimal and a maximal winding index.

19Theoretically speaking, we can guarantee that the algorithm will miss none of them.
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Figure 6.21 shows a representation of the situation at some state of the progression of the

exploration algorithm.

The Path that the algorithm is acting on has a state of some depth m. We assume that the

Collar we are searching to cross is empty, which forces us to decide, on the basis of the length

L that has been given as the goal, what are respectively the minimal and the maximal winding

indices αmin,αmax ∈Z that have to be considered in the next stages of the algorithm.

In the figure, the first and the last main geodesics crossed by the Path are called α0 and αm

respectively (blue).

A half-collar of width L around α0 (light red) has also been drawn and is called C . The

associated border (green) is called bL .

The shortest geodesic arc from α0 to αm has been drawn in red. Let D denote its length and

let p0 and pm be its endpoints.

There are two possibilities at this point:

1. If D > L, then we can guarantee that even if the Path can be completed into a closed one,

its length is out of our range. If the Path is in such a state, the method checkState()

will then return False.

This has the effect of making the exploration algorithm go back one step and try some

new Paths.

2. If D ≤ L, then there are exactly 2 points of intersection 20 betweenαm and bL . We denote

them by pmin and pmax.

From now on we assume to be in the second case.

In Figure 6.21 several Slots have been drawn on the main geodesic αm .

Each of these Slots can be considered to be labeled by the winding index between them and

the current end PathPoint’s Slot.

These Slots are the candidates for being the next Slot through which the Path will pass.

In Figure 6.21 the Slots that lie on the geodesic arc [pmin, pmax] = αm ∩C have been drawn

in black. They have to be tried by the algorithm, since they possibly lead to simple closed

geodesics shorter than L.

The two Slots that are the two closest slots to C but lying outside of it are drawn in red. We

call them smin and smax, with wmin and wmax as their associated winding indices.

20Note that these two points may be considered equal in the limit case D = L.
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These two Slots also have to be tested by the exploration algorithm, since they can also lead to

some solutions.

Finally, all the other Slots (before smin and after smax) have been drawn in gray, they cannot 21

lead to solutions shorter than L and then do not need to be tested.

The pair of winding indices (wmin, wmax) ∈Z is then the result that we expect the method

windingLimits() to return.

To calculate these two integers, the calculation we implemented is quite straightforward, but

still requires several lines of code. We only present here an overview of how to actually obtain

these two integers.

• Let pend denote the position of the last Slot reached by the Path, on αm , as in Figure

6.21.

Using the results of Sections 3.2 and 6.3, one can quite easily compute the oriented

distance from pend to pm as well as the distance D .

• Then, by symmetry, pm is the midpoint of pmin and pmax.

Noting that the red shape Q of the figure is a trirectangle, we can use the formula (V) of

Section 3.3.3, page 23, to compute the distance between pmin and pm .

One can deduce from this the oriented distances dmin and dmax, from pend to pmin and

pmax respectively.

• Finally, from the definition of the winding index of Section 4.3, we can deduce how to

compute wmin and wmax knowing dmin and dmax.

In other terms, if endSlot is the last Slot reached by the Path, wmin and wmax must be

such that

endSlot.collarFacingDist(wmax −1) ≤ dmax

endSlot.collarFacingDist(wmax) > dmax

endSlot.collarFacingDist(wmin +1) ≥ dmin

endSlot.collarFacingDist(wmin) < dmin.

21Indeed, taking one of these Slots forces the Path to leave C forever. Even if we can later close it, it would be
rejected because its length will be longer than L.
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7 Applications

The goal of this chapter, which may be seen as a conclusion of this work, is to provide the

reader with an overview of some "geometrical questions" that the concepts described in the

previous chapters have allowed us to implement.

The precise description of the actual algorithms would be too long and technical to be of real

interest and is thus not presented here.

These algorithms are intended to be delivered 1 in the form of a publicly accessible program

library that will come along with its own detailed code-level documentation.

In the present chapter we will then stick to a purely informal description of these algorithms

using the spoken language.

7.1 Finding a base of the fuchsian group

In Chapter 5, we described how to build a canonical domain, in the form of an object of class

CanonicalDomain of any surface given through its Fenchel-Nielsen parameters.

Looking at the identifications associated to each of the consecutive edges of the Canonical-

Domain, we obtain 4g Möbius transformations of the form a,b, a−1,b−1,c,d ,c−1,d−1, . . . and

then the 2g elements a,b,c,d , . . . form a generating set of the Fuchsian group associated to the

surface.

7.2 Finding closed geodesics

A very important application of the PathAlgorithms module is to find all the closed simple

geodesics of a surface that are shorter than a given length L.

To do that, we described in some details the class SimpleGeodesicFinder in Section 6.6.3.

1In the current of the year 2013 hopefully.
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Starting from this one can as well implement very similar algorithms for example to find only

the systoles of the surface or to find the N first elements of its spectrum.

7.3 Testing intersection between two simple closed geodesics

In Section 6.6.2, we described how a Path can be reconstructed from a codeword, by the class

PathDecoder.

When two different codewords w1,w2 are given (for example if they are two of the solutions of

another algorithm), one can be interested in knowing whether the two corresponding Paths

intersect each other.

To answer this question, one can implement a new class IntersectionFinder that works in a

very similar way as the PathDecoder.

In Section 6.5, we briefly mentioned that the SurfaceLayer class is also conceived to be able

to contain more than one Path at a time.

The IntersectionFinder then works in the following way.

• Firstly, the first codeword w1 is decoded into a Path p1, exactly as a PathDecoder would

do it.

At the end of its creation, p1 "stays alive" within the SurfaceLayer, which makes some

RoadLayers to be used, some CollarLayers to be crossed, etc.

• Then, the Path p2 is constructed within the same SurfaceLayer by a similar process.

As a consequence, when the Path p2 is being built, the PathExplorer algorithm will

avoid creating intersections both with the PathElems of p1 and with the ones of p2

itself.

If the construction of p2 can be achieved (without breaking the Conditions of Section 6.2), this

then means that the two Paths do not intersect each other.

On the other hand, if the Path p2 cannot be reconstructed in the same SurfaceLayer as p1, we

can conclude that they intersect each other.

Furthermore we can also use the geometrical results of Section 6.3 to find the position of these

intersection(s).

7.4 Bers decompositions

Given a Riemann surface of genus g , there are (infinitely) many choices for the set of the 3g −3

main geodesics. We call these sets decompositions of the surface.
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Let α1 ≤ α2 ≤ . . . ≤ α3g−3 represent one of these decompositions, where the main geodesics

have been sorted by increasing lengths. The length of the longest geodesic α3g−3 of a given

decomposition is here called the "weight" of the decomposition.

Among all the possible decompositions of a given surface, the ones with the smallest weight

are called Bers decompositions of the surface.

The weight of any Bers decomposition of a surface is called the Bers constant of the surface.

The algorithms developed here allow us to find a Bers decomposition of any given Surface.

To do that, one can do the following steps.

Firstly, since the Surface is given by Fenchel-Nielsen parameters and a Fenchel-Nielsen graph

we already have a decoponsition of it, by construction. Let L be the weight of this decomposi-

tion.

Obviously the Bers constant of the surface is less than or equal to L.

Then, one can use the SimpleGeodesicFinder algorithm to get a list (ordered by increasing

lengths) c1, . . . ,cm of the codewords of the simple closed geodesics of the surface shorter than

L.

Any Bers decomposition of the Surface must consists of 3g −3 geodesics of this list.

Finding the good decomposition then simply becomes a combinatorial problem of finding the

3g −3 smallest possible words, non intersecting each other among this finite list of m words.

Note also that we explained in the previous section how one can check if two given words

intersect each other.

The class that provides this algorithm is named BersFinder and is part of our upcoming

library.

7.5 Birman-Series set

Let S be a Riemann surface. Let Spec(S) denote the set of all the simple (closed or not) geodesics

of S.

The set

B := ⋃
γ⊂Spec(S)

γ⊂ S

of all the points of the surface intersecting any simple geodesic is called the Birman - Series

set. It has been defined in [2].

As an example of application of the concepts developed here, we have taken advantage of both
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the tools of the HyperbolicDomain module and of the PathAlgorithms module to build a

class named BirmanSeriesFinder.

This class would be too long to be explained here, we simply explain what it is able to do.

Given a goal ε, a Surface S and a Domain F ⊂ H of S, the BirmanSeriesFinder is able to

(numerically) draw a certain set Bε ⊂ F that represents an approximation of the Birman-Series

set in the sense of the following conditions.

• B ⊂ Bε which means that no geodesic is "forgotten".

• If p ∈ Bε then there exists q ∈ B such that the hyperbolic distance dH(p, q) < ε.

To conclude, Figure 7.1 shows an example of such a Birman-Series set.

Note also that this figure represents the "current state of the art" of our library and is not yet

totally guaranteed to be correct.

Figure 7.1: A Birman-Series set within a basic domain.
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