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Abstract
Let F be a number field, π an irreducible automorphic representation of GL2(F )\GL2(AF ) with

unitary central character, and χ a Hecke character of analytic conductor Q. We are interested

in bounding L(1/2,π⊗χ) in terms of Q.

If π is cuspidal, then we get a Burgess-like bound as L(1/2,π⊗χ) ¿ Q
1
2− 1

8 (1−2θ)+ε, where

0 ≤ θ ≤ 1/2 is any exponent towards the Ramanujan-Petersson conjecture. The implicit

constant depends polynomially on the analytic conductor of π.

If π is the unitary Eisenstein series representation induced by the trivial character, then we get

L(1/2,π⊗χ) ¿Q
1
2− 1

12 (1−2θ)+ε. As a consequence, we get a subconvex bound for the L-function

L(1/2,χ) ¿Q
1
4− 1

24 (1−2θ)+ε.
The proof is based on an idea of unipotent translation originated from P.Sarnak then devel-

opped by P.Michel and A.Venkatesh, combined with the method of amplification.

Key Words: Automorphic Representation, Automorphic L-Function, Subconvexity
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Résumé
Soient F un corps de nombres,πune représentation automorphe irréductible de GL2(F )\GL2(AF )

admettant un caractère central unitaire, etχ un caractère de Hecke avec conducteur analytique

Q. Nous nous inérèssons à borner L(1/2,π⊗χ) en fonction de Q.

Si π est cuspidale, alors nous obtenons une borne du type Burgess comme L(1/2,π⊗χ) ¿
Q

1
2− 1

8 (1−2θ)+ε, où 0 ≤ θ ≤ 1/2 est un exposant vers la conjecture de Ramanujan-Petersson. La

constante implicite depend polynomialement en le conducteur analytique de π.

Si π est une représentation de séries d’Eisenstein unitaire induite par les caractères triviaux,

alors nous avons L(1/2,π⊗χ) ¿Q
1
2− 1

12 (1−2θ)+ε. Par conséquent, nous obtenons une borne de

sousconvexité pour la fontion-L : L(1/2,χ) ¿Q
1
4− 1

24 (1−2θ)+ε.
La preuve est basée sur une idée de translation unipotente provenant originalement de

P.Sarnak, ensuite développée par P.Michel et A.Venkatesh, combinée avec la méthode d’ampli-

fication.

Mots-Clés : Représentation Automorphe, Fonction-L Automorphe, Sous-convexité
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Introduction

0.1 A Brief Introduction to the Problem of Subconvexity

Generally speaking, the type of problem we are interested in is the subconvexity of Ranking-

Selberg L-functions, particularly for GL2 ×GL1. More precisely, let F be a number field with its

ring of adelesA. Fix an automorphic representation π of GL2(A). We know that π=⊗′
vπv as a

restricted tensor product of unitary irreducible representations πv of GL2(Fv ). Let χ vary over

Hecke characters of F×\A×. The analytic conductor of χ is denoted by C (χ) = C∞(χ)C f (χ),

where C f (χ) is the usual conductor of χ, and C∞(χ) is formed from the parameters of χ at

infinite places. We can form the Rankin-Selberg L-function L(s,π×χ) initially defined for

ℜs À 1 as an Euler product. Similar properties hold for L(s,χ). They can be analytically

continued to all s ∈ C. Furthermore there is a functional equation linking L(s,π×χ) (resp.

L(s,χ)) to L(1− s,π× χ̄) (resp. L(1− s, χ̄)), which implies the convex bounds

L(1/2,π×χ) ¿ε,F,π C (χ)1/2+ε,L(1/2,χ) ¿ε,F C (χ)1/4+ε,∀ε> 0.

The generalized Lindelöf hypothesis, which is a consequence of the generalised Riemann

hypothesis, implies that we can replace 1/2 by 0 in the above estimation. Any bound in

between as

L(1/2,π×χ) ¿ε,F,π C (χ)1/2−δ+ε,∀ε> 0 (0.1.1)

for some constant 0 < δ< 1/2 is a subconvex bound.

When F =Q, π is cupidal with trivial central character, and π∞ is a discrete series represen-

tation of GL2(R), there is a unique modular form f ∈ Sk (N ) for some k, N ∈N, which is also a

newform and Hecke eigenform, generating π and having Fourier expansion at infinity as

f (z) =
∞∑

n=1
λ f (n)n

k−1
2 e2πi nz ,λ f (1) = 1, z ∈C,ℑ(s) > 0.

Assume that the image of χ is finite, thus χ comes from a Dirichlet character still denoted

by χ : (Z/dZ)× →C1 for some integer d > 0. Then C (χ) =C f (χ) = d , and the L-functions are

1
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defined by

L(s,π×χ) = L(s, f ×χ) =
∞∑

n=1

λ f (n)χ(n)

ns ,L(s,χ) =
∞∑

n=1

χ(n)

ns ,ℜ(s) À 1.

The analytic continuation and functional equation are then classical. Historically, certain

bounds are critical. When χ=χ0 i.e. d = 1, Weyl obtained in [34]

L(1/2+ iτ,χ0) = ζ(1/2+ iτ) ¿ε |τ|1/4−1/12+ε,

i.e. δ= 1/6 in (0.1.1). When d 6= 1, Burgess in [3] obtained

L(1/2+ iτ,χ) ¿ε,τ |d |1/4−1/16+ε, (0.1.2)

i.e. δ= 1/8 in the level aspect of (0.1.1). Similar results for L(s, f ×χ) can be found in [16]

L(1/2+ iτ, f ×χ) ¿ε, f |τ|2|d |1/2−1/22+ε,

and in [5]

L(1/2+ iτ, f ×χ) ¿ε, f |τ|1/2+ε|d |1/2−1/8+ε. (0.1.3)

The generalisation to number fields in the level aspect of the above results for π cuspidal was

obtained by Venkatesh in [33]

L(1/2,π×χ) ¿ε,F,π,C∞(χ) C f (χ)
1
2− (1−2θ)2

14−12θ +ε,

and by Blomer and Harcos for totally real F in [6]

L(1/2,π×χ) ¿ε,F,π,C∞(χ) C f (χ)
1
2− 1

8 (1−2θ)+ε.

Here and in all the following, θ is any constant towards the conjecture of Ramanujan-Petersson

(θ = 0). We can take θ = 7/64 thanks to [4]. In their joint paper [28], Michel and Vankatesh

gave a hybrid bound as (0.1.1), with δ uniform in all aspects.

0.2 An Application

Besides of being a consequence of the (generalized) Riemann hypothesis, the subconvex-

ity problem is intimately related to various problems of equidistribution among which we

mention one problem of Linnik. Let q be a ternary positive definite quadratic form with

coefficients in Z. For a positive integer d , define

Rq (d) = {
(a,b,c) ∈Z3 | q(a,b,c) = d

}
,Vq,1(R) = {

(x, y, z) ∈R3 | q(x, y, z) = 1
}

.

2



0.3. Statement of the Main Results

We say that d is representable by q if Rq (d) 6= ;. We ask if
1√
|d |

Rq (d) is equidistributed as

d →∞ among representable integers. We adelize this problem by introducing the quaternion

algebra B associated with q . We then define the algebraic group G = PB×. To each d , we

can associate a torus T = Td ⊂G such that the above Linnik’s problem is translated into the

equidistribution of Td (Q)\Td (A) inside G(Q)\G(A) all projected to some quotient by some

compact subgroup of G(A). The Waldspurger’s formula

|
∫

T (F )\T (A)
e(t .g )d t |2 = L(1/2,π′)L(1/2,π′×χd )

CF

∏
v
αv (We,v ,Tv , gv )

then relates the problem to the subconvexity of L(1/2,π′ × χd ), where π′ is the Jacquet-

Langlands lifting of the automorphic representation π of G(A) which contains the pure tensor

e, and χd is the quadratic Hecke character associated with the quadratic extensionQ(
p

d)/Q.

In particular C (χd ) = C f (χd ) ³ d . The product of local terms αv (We,v ,Tv , gv ) decreases as

|d |−1/2. Therefore the convex bound is not sufficient for this application, and the subconvex

bound as in [33] is already good enough. For more details, please consult [15].

0.3 Statement of the Main Results

Let π, π1, π2 be generic automorphic representations of G(A) = GL2(A), where at least one

of π1,π2 is cuspidal. Let χ be a Hecke character. Denote by C (π) (resp. C (χ)) the analytic

conductor of π (resp. χ).

Ph. Michel and A.Venkatesh in [28] solved the subconvexity problem for GL2. In fact, the main

result of that paper is the existence of some δ> 0 such that

L(1/2,π1 ×π2) ¿F,ε,π1 C (π2)1/4−δ+ε,∀ε> 0.

That is to say, if one fixes π1, then we have subconvex bound for L(1/2,π1 ⊗π2) as C (π2) tends

to infinity. As a preliminary result, they also obtained the following subconvex bound

L(1/2,π×χ) ¿F,ε,π C (χ)1/2−δ+ε,∀ε> 0.

The main result is to give an explicit value for δ.

Theorem 0.3.1. For any cuspidal automorphic representation π of G(A) and any Hecke char-

acter χ of analytic conductor C (χ) =Q, we have

L(1/2,π⊗χ) ¿F,ε,π Q1/2−δ+ε,∀ε> 0

with

δ= 1−2θ

8
.

Note that under the Ramanujan-Petersson conjecture (θ = 0), δ= 1/8.

3
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Remark 0.3.2. This bound, when θ = 0, is called a Burgess-like bound in view of (0.1.2). The

best known value θ = 7/64 is due to Kim and Sarnak in [25] overQ, and to Blomer and Brumley

in [4] over an arbitrary number field.

Remark 0.3.3. In [7], Blomer, Harcos and Michel first established such a Burgess-like bound in

the level aspect for F =Q. It was then generalized in [5] and [6] by Blomer and Harcos to any

totally real number field F . Theorem 2 of [5] (δ= 1/8) is the best bound for F =Q in the level

aspect. In the case F =Q and χ is quadratic, δ= 1/6 was obtained by Conrey and Iwaniec as

Corollary 1.2 of [14].

Another result is

Theorem 0.3.4. Let χ be a Hecke character ofA× with analytic conductor C (χ) =Q, we have

L(1/2,χ) ¿F,ε Q1/4−δ+ε,∀ε> 0

with

δ= 1−2θ

24
.

0.4 Plan of the Thesis

Chapter 1 is concerned with some technical but fundamental aspects of the proof of Theorem

0.3.1:

In Section 1.1 we provide notations and conventions. In Sections 1.2 to 1.4 we recall how

Hecke’s theory can be extended from K -finite vectors to smooth vectors. In Section 1.5 we

discuss Whittaker models and their norms. In Sections 1.6 and 1.7, we discuss various forms

of the spectral decomposition of automorphic functions. In Section 1.8 we use results from

the Section 1.5 to construct and study local test vectors to be used in the sequel. In Section 1.9

we discuss the decay of matrix coefficients of automorphic representations.

Chapter 2 complements the technical aspects needed for the the proof of Theorem 0.3.4:

In Section 2.1 we recall Hecke-Jacquet-Langlands theory of L-functions in the case of the

Eisenstein series which concerns us. In Section 2.2 we generalize results from Section 1.7 to

all compact reductive groups. This is practical for giving Sobolev inequalities on homoge-

neous spaces of such compact groups. In Section 2.3 we study the intertwining operator in

unitary principal series representations. This will be used to control the constant term of our

degenerate Eisenstein series.

The proofs of the main results are outlined in Chapter 3. In Section 3.1 we start the proof of

Theorem 0.3.1 by first giving the intuition, then setting up the amplification method. We split

to two sorts of arguments: local ones and the global one. Then we give more details for the

global argument by stating all intermediate lemmas. Note that most of the lemmas are stated

4



0.4. Plan of the Thesis

without proof. The details of proof follow in Chapter 4,5. In Section 3.2 we extend our method

to treat the case of the Eisenstein series from π(1,1). This follows exactly the discussion in

Section 5.1.7 of [28]. In particular, it uses twice the argument given in Section 3.1.

Chapter 4&5 complement the discussion in Section 3.1. In Chapter 4 we deal with the local

arguments and prove Proposition 3.1.1. In Chapter 5 we conclude the proof by putting local

estimations into the global arguments.

Chapter 6 complements the discussion in Section 3.2. Section 6.1 presents our method of

smoothly truncating an Eisenstein series and gives a bound of the Sobolev norms of the

truncated function in terms of the height of truncation. Section 6.3 generalizes the machinery

of treating contribution from constant terms of Section 5.2.

A suggested order of reading the paper is as follows: Chapter 0 - Chapter 1 - Section 3.1 -

Chapter 4 - Chapter 5 - Chapter 2 - Chapter 6 - Section 3.2.

The difference in methods between this paper and [28] is explained in Remark 3.1.11.

5





1 Preliminaries: Cuspidal Case

1.1 Notations and Conventions

From now on, F is a number field of degree r = [F :Q] = r1+2r2, where r1 is the number of real

places and r2 is the number of complex places. VF is the set of all places of F . For any v ∈VF ,

Fv is the completion of F at the place v . A=AF is the adele ring of F . A× is the idele group.

We fix once for all an isometric section R+ →A× of the adelic norm map | · | :A× →R+, thus

identify A× with R+×A(1) where A(1) is the kernel of the adelic norm map. We’ll constantly

identify R+ with its image under the section map. Let F∞ = ∏
v |∞

Fv and F (1)
∞ be the subgroup of

F×
∞ of adelic norm 1. A f is the subring of finite adeles. A×

f is the unit group ofA f .

We denote by ψ = ∏
v
ψv the additive character ψ = ψQ ◦TrF /Q, where ψQ is the additive

character of Q\AQ taking e2πi x on R. At each place v ∈VF , d xv denotes a self-dual measure

w.r.t. ψv . Note if v <∞, then d xv is the measure which gives the ring of integers Ov of Fv

the measure q−dv /2
v , where qv is the cardinal of the residue field of Fv , and

∏
v<∞

qdv
v is the

discriminant of F . We set v(ψ) = −dv . Define d x = ∏
v∈VF

d xv on A. The quotient measure

on F \A has total volume 1 (c.f. Proposition 7 [26] Chapter X IV ). Define for s ∈ C, if v <∞
ζv (s) = (1− q−s

v )−1, if v is real ζv (s) = ΓR(s) = π−s/2Γ(s/2), if v is complex ζv (s) = ΓC(s) =
2(2π)−sΓ(s). Take d×xv = ζv (1)

d xv

|xv |
as the Haar measure on the multiplicative group F×

v , and

d×x =∏
v

d×xv as the Haar measure on the idele groupA×. If χ is a character of F×
v (resp. A×),

define the real part of χ to be the real number ℜ(χ) satisfying |χ(t)| = |t |ℜ(χ)
v ,∀t ∈ F×

v (resp.

|χ(t )| = |t |ℜ(χ),∀t ∈A×).

Unless otherwise specified, G = GL2 as an algebraic group defined over F . Hence Gv =
GL2(Fv ). If v is a complex place, then Kv = SU2(C); if v is a real place, then Kv = SO2(R);

if v < ∞ then Kv = G(Ov ). Zv =
{

z(u) =
(

u 0

0 u

)
: u ∈ F×

v

}
, Nv =

{
n(x) =

(
1 x

0 1

)
: x ∈ Fv

}
,

7



Chapter 1. Preliminaries: Cuspidal Case

Av =
{

a(y) =
(

y 0

0 1

)
: y ∈ F×

v

}
. If v |∞, we denote their Lie algebras by zv ,nv ,av , the Lie algebra

of Kv by kv and the Lie algebra of Gv by gv . We also write Bv = Zv Nv Av . If gv ∈ Zv Nv a(y)Kv ,

define the local height function Hv (gv ) = |y |v . For g =
′∏
v

gv , define the global height func-

tion H(g ) = ∏
v

Hv (gv ). The probability Haar measure on Kv is dkv . Zv (resp. Nv resp. Av )

is equipped with the measure d×u (resp. d x resp. d×y). Consider the Iwasawa decomposi-

tion Gv = Zv Nv Av Kv , a Haar measure of Gv is given by d gv = d×ud xd×y/|y |v dkv , which in

fact gives Kv ⊂Gv the measure q−dv
v for v <∞. View Zv \Gv as Nv Av Kv , equipped with the

measure d ḡv = d xd×y/|y |v dkv . The center of G(A) is Z = ∏
v∈VF

Zv . Denote A = ∏
v

Av . The

quotient group Z \G(A) is equipped with the product measure d ḡ = ∏
v∈VF

d ḡv . The quotient

measure on X (F ) = ZG(F )\G(A) is also denoted by d ḡ , with total mass Vol(X (F )). K = ∏
v∈VF

Kv

is equipped with the product measure dk =∏
v

dkv . Write K∞ = ∏
v |∞

Kv and K f =
∏

v<∞
Kv .

Given a Hecke character ω, L2(G(F )\G(A),ω) is the space of Borel functions ϕ satisfying

∀γ ∈G(F ),ϕ(γg ) =ϕ(g );∀z ∈ Z ,ϕ(zg ) =ω(z)ϕ(g );

‖ϕ‖2
X (F ) =

∫
X (F )

|ϕ(ḡ )|2d ḡ <∞.

Let L2
0(G(F )\G(A),ω) be the (closed) subspace of cusp forms ϕ ∈ L2(G(F )\G(A),ω), satisfying∫

F \A
ϕ(n(x)g )d x = 0, a.e.g ∈G(A).

Denote by R the right regular representation of G(A) on L2(G(F )\G(A),ω), and by R0 the

subrepresentation L2
0(G(F )\G(A),ω). We know that each irreducible component π of R

decomposes into π = ⊗̂′
vπv where πv are irreducible unitary representations of Gv . R =

R0 ⊕Rr es ⊕Rc is the spectral decomposition. R0 decomposes as a direct sum of irreducible

G(A)-representations, whose components are called cuspidal representations. Rr es is the

sum of all one dimensional subrepresentations. Rc is a direct integral of irreducible G(A)-

representations, expressed via Eisenstein series. Components of R0 and Rc are the generic

automorphic representations. Let θ be such that no complementary series representation

with parameter > θ appears as a local component of a cuspidal representation. Recall that a

principal series representation π(µ1,µ2) = IndG(Fv )
B(Fv )(µ1,µ2) with |µ1µ

−1
2 (t)| = |t |sv ,∀t ∈ Fv is a

complementary series if s is a non-zero real number in the interval (−1,1). |s|/2 is called its

parameter.

A compact open subgroup K ′
f ⊂G(A f ) is said to be of (congruence) type 0 if for every finite

8
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place v , there is an integer mv such that the local component

K ′
v = K 0

v [mv ] :=
{(

a b

c d

)
∈G(Ov ) | c ≡ 0 mod$mv

v

}
,

where $v is a uniformiser of the local field Fv . Let ϕ ∈ π be a pure tensor vector in an

automorphic representation. Suppose for every v < ∞, ϕ is invariant by K 0
v [mv ] but not

by K 0
v [mv − 1], then define mv = v(ϕ). Define v(π) = v(πv ) = min

ϕ∈πv
v(ϕ). The local con-

ductor C (πv ) = $
v(πv )
v . We similarly define the principal congruence subgroups Kv [n] :={(

a b

c d

)
∈G(Ov ) | a −1,b,c,d −1 ≡ 0 mod$n

v

}
.

For any semisimple (real) Lie group G , denote by CG the Casimir element. In our case, G = GL2.

At each place v |∞, Zv \Gv is semisimple, and ∆v =−CZv \Gv −2CKv is an elliptic operator on

Zv \Gv . Note that here we calculate CKv by using the Killing form of Lie(Zv \Gv ) instead of its

own Killing form.

If A is a positive semi-definite operator on a Hilbert space V , we denote by As the operator

which acts on the eigenspace Vλ for the eigenvalue λ of A by the multiplication by λs for

∀s ≥ 0. Note that A need not have discrete spectrum, i.e. Vλ need not be a subspace of V . This

notation concerns in particular ∆v ,CKv etc.

1.2 L-function Theory for K -finite Vectors: Cuspidal Case

The proof of the fact that the representation of G(A) on L2
0(G(F )\G(A),ω) decomposes as a

discrete direct sum of irreducible representations, as in Lemma 5.2 of [18], actually gives

important information on K -finite vectors in an irreducible component π. They consequently

have representatives in the space of smooth functions on the automorphic quotient, and are

rapidly decreasing in any Siegel domain (Lemma 5.6 of [18]). Let the superscript “fin” mean

“K -finite”. The rapid decay is important, because it adds to the description of W fin
π , the image

of πfin ⊂π⊂ L2
0(G(F )\G(A),ω) under the Whittaker intertwiner

ϕ 7→Wϕ(g ) =
∫

F \A
ϕ(n(x)g )ψ(−x)d x (1.2.1)

the important growth property, which is essential for the uniqueness of Whittaker model at

archimedean places (Section 2.8 and 4.4 of [2] for local uniqueness, Section 3.5 of [2] for global

uniqueness). If ϕ has a prescribed K -type and is a pure tensor, i.e. Wϕ(g ) =∏
v

Wϕ,v (gv ) splits,

Wϕ,v (a(y)k) is forced to have rapid decay at ∞, thus has nice behavior around 0

|Wϕ,v (a(y)k)|¿ε |y |1/2−θ+ε
v ,∀ε> 0. (1.2.2)

Now let χ be a character of F×\A× and s ∈C. Jacquet-Langlands [23] defined a functional on

9



Chapter 1. Preliminaries: Cuspidal Case

πfin, called the (global) zeta-functional :

ζ(s,ϕ,χ) =
∫

F×\A×
ϕ(a(y))χ(y)|y |s−1/2d×y,∀ϕ ∈π, a(y) =

(
y 0

0 1

)
. (1.2.3)

Since ϕ(a(y)) is rapidly decreasing at ∞, it is also rapidly decreasing at 0 since

ϕ(a(y)) =ϕ(w a(y)) =ω(y) ·w.ϕ(a(y−1)), w =
(

−1

1

)
.

Thus ζ(s,ϕ,χ) is well defined for all s, and the functional equation characterizes the left

invariance by w of ϕ

ζ(s,ϕ,χ) = ζ(1− s, w.ϕ,ω−1χ−1). (1.2.4)

If ϕ is a pure tensor in πfin '⊗′
vπ

fin
v , i.e. Wϕ factorizes, then since

ϕ(g ) = ∑
t∈F×

Wϕ(a(t )g ), (1.2.5)

we can see

ζ(s,ϕ,χ) =∏
v
ζ(s,Wϕ,v ,χv ,ψv ),ℜ(s) > 1+θ

with

ζ(s,Wϕ,v ,χv ,ψv ) =
∫

F×
v

Wϕ,v (a(y))χ(y)|y |s−1/2d×y.

The convergence is justified by the above local growth property of Wϕ,v and the fact that on an

unramified finite place v , the local zeta-function equals

ζ(s,Wϕ,v ,χv ,ψv ) = L(s,πv ⊗χv ) = (1−µvχv ($v )q−s
v )−1(1−νvχv ($v )q−s

v )−1

where πv = IndG(Fv )
B(Fv )(µv ,νv ) determines µv ,νv .

The analysis of local zeta-functions shows that ζ(s,Wϕ,v ,χv ,ψv ), as Wϕ,v varies over W fin
π,v ,

have a “common divisor” L(s,πv ⊗χv ), which is a meromorphic function on s such that
ζ(s,Wϕ,v ,χv ,ψv )

L(s,πv ⊗χv )
, originally defined for ℜ(s) > θ, can be analytically continued into an entire

function on s ∈ C, and equals 1 for almost all places v . Furthermore, there is a functional

equation

ζ(s,Wϕ,v ,χv ,ψv )

L(s,πv ⊗χv )
ε(s,πv ,χv ,ψv ) = ζ(1− s, wWϕ,v ,ω−1

v χ−1
v ,ψv )

L(1− s,πv ⊗ω−1
v χ−1

v )
(1.2.6)

where ε(s,πv ,χv ,ψv ) is an entire function of exponential type. Define usual and completed

L-functions as

L(s,π⊗χ) = ∏
v<∞

L(s,πv ⊗χv ),Λ(s,π⊗χ) =∏
v

L(s,πv ⊗χv ),ℜ(s) > 1+θ

10
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then the analytic continuations and functional equations of these L-functions follow from the

well-definedness of ζ(s,ϕ,χ) and (1.2.4), (1.2.6). The identity

ζ(s,ϕ,χ) = L(s,π⊗χ)
∏
v |∞

ζ(s,Wϕ,v ,χv ,ψv )
∏

v<∞

ζ(s,Wϕ,v ,χv ,ψv )

L(s,πv ⊗χv )

can be evaluated at s = 1/2 without analytic continuation of any integral. Thus

L(1/2,π⊗χ) = ∏
v |∞

ζ(1/2,Wϕ,v ,χv ,ψv )−1 · ∏
v<∞

L(1/2,πv ⊗χv )

ζ(1/2,Wϕ,v ,χv ,ψv )
·ζ(1/2,ϕ,χ). (1.2.7)

1.3 Smooth Vectors in Different Models

For any Lie group G and a unitary representation (ρ,V ) of G , let ρ∞ be the subspace of smooth

vectors in V . This is naturally a Fréchet space, defined by the semi-norms ‖X .v‖, X ∈U (g). If

V ⊂ L2(M) is realized as a space of functions on a orientable real manifold M equipped with a

smooth (right) G-action, and with a G-invariant volume form, then we can talk about Sobolev

functions for the action. Note that the action ρ : G →U (V ) need not coincide with the regular

representation on L2(M) induced by the action of G on M . One may think about ρ =π(µ1,µ2)

in the principal unitary series of G = GL2(R).

Definition 1.3.1. With the above notations, a function f on M is called Sobolev (for the G-

action), if it is smooth for the differential structure of M, and if its class [ f ] in V ⊂ L2(M) is

a smooth vector. We write V ∞ or ρnam,∞, if nam is the name of the model, or just ρ∞ if the

underlying model is clear, for the space of Sobolev functions.

We obviously have [ρnam,∞] ⊂ ρ∞. Reciprocally

Lemma 1.3.2. Assume that:

1. For any p ∈ M, the map sp : G → M , g 7→ p.g is a submersion at the identity e ∈G.

2. The action of any element X ∈ g on V ∩C∞(M) corresponds to a smooth vector field v(X ) on

M.

Then every vector v ∈ ρ∞ ⊂ L2(M) has a representative in C∞(M).

Definition 1.3.3. Fix a basis B of g, for any positive integer d > 0, one can define a Sobolev

norm on ρ∞ by

Sρd (v) = max
Xi∈B,l≤d

‖X1...Xl .v‖.

In fact, since the condition and the conclusion are of local nature, one may interpret everything

on the open set Cp of some euclidean space, diffeomorphic to some open neighborhood Up of

some point p ∈ M . The assumptions 1,2 ensures that the Sobolev norms Sρd are equivalent to

the usual Sobolev norms on Cp in the underlying euclidean space. One can apply the classical

Sobolev embedding theorem.

11
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Corollary 1.3.4. Under the assumptions of the above lemma, for any p ∈ M, there is an integer

d s.t. ∀ f ∈ L2(M)∩ρ∞,

sup
q∈Up

| f (q)|¿p,Up Sρd ([ f ]).

The assumptions of the above lemma apply in the following situations:

– ρ ⊂ R is a subrepresentation of the right regular representation on automorphic quotient

space. In such a situation, we say that ρ is realized in the automorphic model: “aut”.

– ρ =π is locally in principal unitary series with induced model, we say that ρ is realized in the

induced model: “ind”.

– ρ =Wπ is the Whittaker model of a generic automorphic representationπ. We say it is realized

in the Whittaker model.

– ρ = Kπ is the Kirillov model of a generic automorphic representation π. We say it is realized

in the Kirillov model.

Definition 1.3.5. If G is a totally disconnected group, acting on a totally disconnected space M,

then a function f on M is said to be smooth, if it is locally constant on M and K -finite for any

maximal compact subgroup K of G.

1.4 Smooth Vectors and Extended L-function Theory

We generalize the theory of L-function to smooth vectors. Use Corollary 1.3.4 and compactness

of F \A, one may easily see (Corollary I.1.5 [12]) that the Whittaker functional

l : R∞ →C,ϕ 7→Wϕ(1)

is in the continuous dual space of R∞ verifying

l (R(n(x)ϕ)) =ψ(x)l (ϕ)

and is related to the Whittaker intertwiner (1.2.1) by

Wϕ(g ) = l (R(g ).ϕ).

When we restrict to an irreducible component π of R , or more precisely to ⊗′
vπ

∞
v ⊂π∞, it splits

as

l =⊗′
v lv

where lv are local (continuous) Whittaker functionals of π∞
v verifying

l (n(x)w) =ψv (x)l (w), w ∈π∞
v .

The study of lv , v < ∞ is the same as in the Kv -finite case. So the uniqueness, the local

functional equation (1.2.6), the rapid decay and the controlled behavior at 0 (1.2.2) remain

12
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valid. For a v |∞, the uniqueness of lv is established by Shalika [31]. So one can define the

smooth Whittaker model associated with a unitary irreducible representation πv by

W ∞
πv

= {
Ww (g ) = lv (πv (g )w); w ∈π∞

v

}
(1.4.1)

as well as its smooth Kirillov model

K ∞
πv

= {
Kw (y) =Ww (a(y)); w ∈π∞

v

}
. (1.4.2)

The rapid decay at infinity of the local Whittaker functions Ww (g ) can be found in Lemma

I.1.2 [12]. Note that here, the rapid decay property is derived from the continuity of lv . In fact,

much more information is obtained by Jacquet, as a special case in Proposition 3.6 [11], where

the behavior of Ww (g ) is completely characterized, which implies rapid decay and (1.2.2) in

this situation. Consequently the rapid decay of ϕ ∈⊗′
vπ

∞
v ⊂π∞ ⊂ R∞

0 follows, by using (1.2.5).

Furthermore, local functional equations (1.2.6) are obtained by Jacquet [22] with absolute

convergence for ℜ(s) > θ as in Kv -finite case.

Remark 1.4.1. For a proof that rapid decay at infinity and local functional equation imply the

controlled behavior at 0, see Proposition 3.2.3 [28].

1.5 An Identification of Norms

A by-product of the above theory, already known in the K -finite case, is the identification of

the norm on π⊂ R0 and the natural norm we put on global Whittaker models.

Lemma 1.5.1. If π= ⊗̂′
vπv ⊂ R0 and ϕ ∈⊗′

vπ
∞
v is a pure tensor, then

‖ϕ‖2
X (F ) =

(discF )3/2Λ∗(1,π× π̄)

ΛF (2)

∏
v∈VF

ζv (2)
∫

F×
v ×Kv

|Wϕ,v (a(y)k)|2d×ydk

L(1,πv × π̄v )

whereΛF is the complete Dedekind zeta-function,Λ(s,π×π̄) = ∏
v∈VF

L(s,πv×π̄v ) is the completed

L-function associated with π× π̄ and Λ∗(1,π× π̄) is its residue at 1.

Remark 1.5.2. By [21], C (π)−ε¿ L∗(1,π×π̄) ¿C (π)ε. Here C (π) =C∞(π)C f (π) is the ananlytic

conductor of π. C f (π) is the normal conductor. L(s,π× π̄) = ∏
v<∞

L(s,πv × π̄v ) is the incomplete

Rankin-Selberg L-function.

The proof of Lemma 1.5.1 is a standard use of Rankin-Selberg’s method (c.f. [28] 4.4.2) : Unfold,

for ℜs À 1 ∫
ZG(F )\G(A)

ϕ(g )ϕ̄(g )E(s, f )(g )d ḡ

to get ∫
A××K

|Wϕ(a(y)k)|2 fs(a(y)k)|y |−1d×ydk

13
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=
∫
A××K

|Wϕ(a(y)k)|2|y |s−1d×ydk

where fs ∈π(| · |s−1/2, | · |1/2−s) is a spherical flat section, and

E(s, f )(g ) = ∑
γ∈B(F )\G(F )

fs(γg ). (1.5.1)

Then take the residue at s = 1. In fact, E(s, f ) converges for ℜ(s) > 1, has a meromorphic

continuation to all s ∈C, and is of moderate growth for any given s (see for example section

3.7 of [2]). On an unramified place v , for a spherical Wϕ,v , one has

ζv (2s)
∫

F×
v ×Kv

|Wϕ,v (a(y)k)|2|y |s−1
v d×ydk

L(s,πv × π̄v )
= |Wϕ,v (1)|2 (1.5.2)

which is 1 for a.e.v . The product
∏

v∈VF

L(s,πv × π̄v ) converges for ℜ(s) > 1. Thus

∫
ZG(F )\G(A)

ϕ(g )ϕ̄(g )E(s, f )(g )d ḡ = (discF )3/2

ΛF (2s)
Λ(s,π, Ad)

· ∏
v∈VF

ζv (2s)
∫

F×
v ×Kv

|Wϕ,v (a(y)k)|2|y |s−1
v d×ydk

L(s,πv × π̄v )
,ℜs > 1.

By the local behavior (1.2.2), one can evaluate the integrals on the right of s = 1. We can do

more by taking into account the theory of Kirillov model.

Define B1(Fv ) =
{(

a b

0 1

)
: a ∈ F×

v ,b ∈ Fv

}
.

Proposition 1.5.3. There are only two types of unitary irreducible representations of B1(Fv ):

1. A character of F×
v ' B1(Fv )/Nv .

2. The representation of B1(Fv ) on L2(F×
v ) defined by the formula :

(
a b

0 1

)
f (x) =ψ(bx) f (ax),

whereψ is a nontrivial character of Fv . Differentψ give equivalent representations. In particular,

there is only one non one-dimensional unitary irreducible representation of B1(Fv ). Let’s denote

this model by σ(ψ).

A riguous proof of this proposition, in the case of an archimedean field, can be found in [27]

Page 34 (29); and in the case of a non archimedean filed, can be found in [8] Chapter 8.

We finally deduce:

Proposition 1.5.4. Let π be the local component on v of a generic automorphic representation.

For a W ∈W ∞
π in the Whittaker model one actually has∫

F×
v ×Kv

|W (a(y)k)|2d×ydk =
∫

F×
v

|W (a(y))|2d×y.

14



1.6. Spectral Decomposition

As a consequence, the formula in Lemma 1.5.1 becomes

‖ϕ‖2
X (F ) =

(discF )1/2Λ∗(1,π, Ad)

ΛF (2)

∏
v∈VF

ζv (2)
∫

F×
v
|Wϕ,v (a(y))|2d×y

L(1,πv × π̄v )
.

Remark 1.5.5. The norm identifications actually justify the notations W ∞
πv

and K ∞
πv

as smooth

vectors in their completions Wπv and Kπv .

We have similar relation for Eisenstein series.

Proposition 1.5.6. If π=π(χ1,χ2) is (unitary) Eisenstein, and ϕ(g ) = E (0, f )(g ) with E (s, f )(g )

defined as in (1.5.1), for some f =∏
v

fv ∈πi nd , f i n in the induced model, then one can define the

Eisenstein norm of ϕ by

‖ϕ‖2
Ei s =

∫
K
| f (k)|2dk.

The following relation holds

(discF )1/2
∏

v∈VF

ζv (2)

ζv (1)2

∫
F×

v

|Wϕ,v (a(y))|2d×y = ‖ϕ‖2
Ei s ,

and the local data are defined as the analytic continuation in (χ1,χ2) of

Wϕ,v (g ) =W f ,v (g ) =
∫

Fv

fv (wn(x)g )ψv (−x)d x.

Remark 1.5.7. One can interpret Wϕ,v (a(y))χ2,v (y)−1|y |−1/2 as the Fourier transform of x 7→
f (wn(x)). The above norm identification is then a formal consequence of Plancherel formula

as discussed in 3.1.6 of [28]. One can also use Theorem 4.6.5 of [2].

1.6 Spectral Decomposition

The spectral decomposition, in the L2 sense, is established in the first 4 sections of [20], which

gives

R = ⊕
π cuspidal

π⊕
∫ i∞

−i∞

⊕
ξ∈áF×\A(1)

πs,ξ
d s

4πi
⊕ ⊕
χ∈àF×\A×,χ2=ω

χ◦det (1.6.1)

where, πs,ξ = π(ξ| · |s ,ωξ−1| · |−s). Note that πs,ξ ' π−s,ωξ−1 . According to Proposition I.1.4 of

[11], the above spectral decomposition has an analogy for smooth vectors, namely

R∞ = ⊕
π cuspidal

π∞⊕
∫ i∞

−i∞

⊕
ξ∈áF×\A(1)

π∞
s,ξ

d s

4πi
⊕ ⊕
χ∈àF×\A×,χ2=ω

χ◦det (1.6.2)
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with convergence in the topology of R∞. We are going to establish

Theorem 1.6.1. Suppose ϕ ∈ R∞, viewed as a function on G(A), then the following decomposi-

tion

ϕ(g ) = ∑
χ∈àF×\A×,χ2=ω

〈ϕ,χ◦det〉
Vol(X (F ))

χ◦det(g )+ ∑
π cuspidal

∑
e∈B(π)

〈ϕ,e〉e(g )

+ ∑
ξ∈áF×\A(1)

∑
Φ∈B(πs,ξ)

∫ i∞

−i∞
〈ϕ,E(s,Φ)〉E(s,Φ)(g )

d s

4πi

converges absolutely and uniformly on any compact subset, where B(?) means taking a basis

of ? consisting of K -isotypical pure tensors. We may assume that if ϕ is Kv [nv ]-invariant, then

every function appearing at the right hand side is Kv [nv ]-invariant for any finite place v. Kv

need not be the standard maximal compact subgroup of Gv .

Remark 1.6.2. Therefore, the sum
∑

ξ∈áF×\A(1)

is actually finite and the number depends only on F

and nv ’s.

If we consider the theory of Whittaker model as a theory of spectral decomposition with

respect to the left action of N (A), then we further have

Theorem 1.6.3. Conditions are the same as in the above theorem. ϕ ∈ R∞, as functions on

G(A):

ϕ(g ) =ϕN (g )+ ∑
π cuspidal

∑
e∈B(π)

〈ϕ,e〉 ∑
α∈F×

We (a(α)g )+

∑
ξ∈áF×\A(1)

∑
Φ∈B(πs,ξ)

∫ i∞

−i∞
〈ϕ,E(s,Φ)〉 ∑

α∈F×
WΦ,s(a(α)g )

d s

4πi

converges absolutely and uniformly on any given Siegel domain.

Remark 1.6.4. In practice, the basis B(?) will be chosen so that the components of its elements

at some archimedean place v are Kv -isotypic where Kv is the standard maximal compact

subgroup of Gv .

We begin with some local Sobolev type analysis.

1.6.1 Local Bounds of K -isotypical Functions

Lemma 1.6.5. Let v be a finite place, and π be a unitary irreducible representation of Gv .

Suppose W ∈W ∞
π , the smooth Whittaker model of π w.r.t. ψv , is invariant by Kv [m], then we

have the following Sobolev inequality

|W (na(y)k)|2Vol(1+$m
v Ov ) ≤ ‖W ‖21v(y)≥v(ψ)−m ,n ∈ Nv , y ∈ F×

v ,k ∈ Kv
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with the convention 1+$0
vOv =O×

v . On an unramified place (m = 0), recall that

W (na($l
v )k) = q−l /2

v

αl+1
1 −αl+1

2

α1 −α2
1l≥0

for some |α1α2| = 1, q−θ
v ≤ |α1| ≤ qθv

We leave the proof to the reader.

Lemma 1.6.6. Let v be a real place, and π be a unitary irreducible representation of Gv with

central character ω. If W ∈W ∞
π , then

∀n ∈ N (R), y ∈R×,k ∈ SO2(R), N ≡ 1 (mod 2), N > 0

|W (na(y)k)|¿N ,ε |y |−N max(|y |ε, |y |−1)SπN+1(W ).

Suppose further W ∈W fin
π transforms under the action of Kv = SO2(R) accroding to the character

κα =
(

cosα sinα

−sinα cosα

)
7→ e i mα.

Then we have the following Sobolev inequality, uniform in m,

|W (na(y)k)|¿N ,ω,θ |y |−N max(|y |ε, |y |−1)λN ′
W ‖W ‖

where λW is the eigenvalue for W of the elliptic operator ∆v =−CGv +2CKv , and N ′ depends

only on N and ω.

Let U =
(

1

0

)
, T =

(
0 1

0 0

)
be elements in the Lie algebra of GL2(R), then

T.W (a(y)) =−2πi yW (a(y)),U .W (a(y)) = y
∂

∂y
W (a(y)).

We may only consider the case y ∈R×
+. Then for ∀x, y ∈R×

+, we have

(−2πi y)N W (a(y)) = T N .W (a(x))+
∫ y

x
U T N .W (a(u))d×u.

Note that

|
∫ y

x
U T N .W (a(u))d×u| ≤ (

∫ y

x
|U T N .W (a(u))|2d×u)1/2(

∫ y

x
d×u)1/2

≤ ‖U T N .W ‖| log(y/x)|1/2.

Thus

|(−2πi y)N W (a(y))| ≤ |T N .W (a(x))|+‖U T N .W ‖| log(y/x)|1/2.
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Integrating against min(x,1/x)d x/x for 0 < x <∞, using Cauchy-Schwarz and
p

1/2(
p

a +p
b) ≤

p
a +b, we get

2|(−2πi y)N W (a(y))| ≤ ‖T N .W ‖+‖U T N .W ‖
∫ ∞

0
min(x,1/x)| log(y/x)|1/2d×x.

Using the bound | log t |¿ε max(t ε, t−ε), we get

2|(−2πi y)N W (a(y))|¿ε ‖T N .W ‖+‖U T N .W ‖max(|y |ε, |y |−1).

Thus the first inequality follows for k = 1. The general case follows by noting SπN+1(k.W ) ¿N

SπN+1(W ), since the adjoint action of K on g has bounded coefficients.

The second follows from the equivalence of two system of Sobolev norms, one is Sπd ’s, the

other is defined with ∆v and I ∈ Z (g). The proof is technical. We give it in the next section (

Theorem 1.7.1 ).

Before proceding to the complex place case, let’s first recall that the irreducible representa-

tions of SU2(C) are parametrized by m ∈ N, denoted by (ρm ,Vm). Here Vm is the space of

homogeneous polynomials in C[z1, z2] of degree m +1, equipped with the inner product

〈P1,P2〉 =
∫
|z1|2+|z2|2≤1

P1(z1, z2)P2(z1, z2)d z1d z2.

The action of SU2(C) is given by

u.P (z1, z2) = P ((z1, z2).u).

Let Pm,k (z1, z2) be a multiple of zm−k
1 zk

2 , normalized s.t. they form an othonormal basis of

Vm . Now let π be a unitary irreducible representation of G(C). Let Wm,k ∈ W fin
π span the

ρm-isotypical subspace, with Wm,k corresponding to Pm,k . Since ρm is unitary, we have the

following relation
m∑

k=0
|Wm,k (g u)|2 =

m∑
k=0

|Wm,k (g )|2,∀u ∈ SU2(C).

Therefore, we only need to bound Wm,k (a(y)) in order to bound Wm,k (g ). This works exactly

as in the real place case. We omit the proof.

Lemma 1.6.7. Let v be a complex place, and π be a unitary irreducible representation of Gv

with central character ω. If W ∈W ∞
π , then

∀n ∈ N (C), y ∈C×,k ∈ SU2(C), N ∈N

|W (na(y)k)|¿N ,ε |y |−N
v max(|y |εv , |y |−1/2

v )Sπ2N+2(W ).

Suppose further W ∈ W fin
π transforms under the action of Kv = SU2(C) accroding to ρm and

18
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corresponds to some Pm,k . Then we have the following Sobolev inequality, uniformly in m,

|W (na(y)k)|¿N ,ω,θ |y |−N
v max(|y |εv , |y |−1/2

v )λN ′
W ‖W ‖

where λW is the eigenvalue for W of the elliptic operator ∆v =−CGv +2CKv , and N ′ depends

only on N and ω.

1.6.2 Proof of Theorems 1.6.1, 1.6.3

We first deal with the cuspidal parts in the equations of Theorems 1.6.1, 1.6.3.

Let e ∈ π ⊂ R0 be a K -isotypic vector, with local Whittaker model We,v . Denote by nv the

Kv -type of We,v (or the weight & level), i.e.

– if v <∞, then We,v is Kv [nv ]-invariant. For a.e.v , nv = 0.

– if v is a real place, then We,v transforms under SO2(R) as e i nvα.

– if v is a complex place, then We,v transforms under SU2(C) as some Pnv ,k .

Collecting all the estimations in the previous subsection, using Lemma 1.5.1 or Proposition

1.5.4 with ‖e‖ = 1 and C∞(π) ¿λe,∞ = ∏
v |∞

λe,v ,C f (π) ≤ ∏
v<∞

qnv
v we obtain

We (na(y)k) ¿F,N ,ε |y |−N
∞ λN ′

e,∞(
∏

v<∞
qnv

v )ε
∏

v<∞,nv 6=0
L(1,πv × π̄v )Vol(1+$nv

v Ov )−1

· ∏
v<∞

1v(y)≥v(ψ)−nv ,where |y |∞ = ∏
v |∞

|y |v .

The term
∏

v<∞,nv 6=0
L(1,πv × π̄v )Vol(1+$nv

v Ov )−1 can be bounded from above by a constant

depending only on nv , v <∞, we thus get

We (na(y)k) ¿F,N ,ε,(nv )v<∞ λ
N ′
e,∞|y |−N

∞
∏

v<∞
1v(y)≥v(ψ)−nv .

Now since

e(na(y)k) = ∑
α∈F×

We (a(α)na(y)k) = ∑
α∈F×

We (n′a(αy)k),n′ = a(α)na(α)−1

we have ∑
α∈F×

|We (a(α)na(y)k)|¿F,N ,ε C (nv , v <∞)λN ′
e,∞

∑
α∈F×

|αy |−N
∞

∏
v<∞

1v(αy)≥v(ψ)−nv .

Consider the splittingA× 'A1 ×R+ and write y = y1t s.t. y1 ∈A1 and t ∈R+ ,→A× with trivial

finite components. We need only consider y1 in a fundamental domain of F×\A1. Since the

quotient F×\A1 is compact, we may assume that there exist 0 < c < C s.t. for any place v ,
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c ≤ |y1,v |v ≤C and for a.e. v , say ∀v > v0, |y1,v |v = 1. So the condition imposed in
∏

v<∞
implies

|α|v ≤ c−1qnv−v(ψ)
v and |α|v ≤ 1,∀v > v0 (one may choose v0 big enough depending only on

nv ’s) in oder to get a non zero contribution. Thus, α runs over the non zero elements in a

lattice of F∞ depending only on nv ’s. Therefore∑
α∈F×

|αy |−N
∞

∏
v<∞

1v(αy)≥v(ψ)−nv ¿nv ,v<∞ |y |−N
∞ ¿F,N |y |−N .

We conclude∑
α∈F×

|We (a(α)na(y)k)|¿F,N ,nv ,v<∞ λN ′
e,∞|y |−N . (1.6.3)

Now let’s turn to the Eisenstein parts of Theorems 1.6.1, 1.6.3.

Using Lemma 1.5.6 instead of 1.5.1 in the above argument, we get∑
α∈F×

|WΦ,s(a(α)na(y)k)|¿F,N ,nv ,v<∞ λN ′
Φ,s,∞|y |−N . (1.6.4)

We have an expression for the constant term

E(s,Φ)N (g ) =Φs(g )+M(s)Φs(g ).

Φs |K belongs to some irreducible component σ of ResG(A)
K πs,ξ = IndK

K∩B(A)(ξ,ωξ−1). From

basic representation theory, it is easy to see that

Φs(k) =
p

dimσ<σ(k).v, v0 >σ, v, v0 ∈σ of norm 1,σ(b).v0 = (ξ,ωξ−1)(b).v0.

Thus follows the bound (ℜ(s) = 0)

|Φs(na(y)k)| = |y |1/2|Φs(k)| ≤ |y |1/2
p

dimσ¿nv ,v<∞ |y |1/2λK∞(Φ)1/2

where λK∞(Φ) is the eigenvalue of Φ for the Casimir of K∞. Note that M(s) is unitary for s ∈ iR

and doesn’t change the K -type, thus

|M(s)Φs(na(y)k)|¿nv ,v<∞ |y |1/2λK∞(Φ)1/2.

Hence

|E(s,Φ)N (na(y)k)|¿nv ,v<∞ |y |1/2λK∞(Φ)1/2 ≤ |y |1/2λ1/2
Φ,s,∞. (1.6.5)

Theorems 1.6.1 & 1.6.3 will be established using the following generalized Weyl’s law

Theorem 1.6.8. Given a sequence of non-negative integers n̄ = (nv )v<∞ with nv = 0 for a.e.v.

Define

K f i n[n̄] = ∏
v<∞

Kv [nv ]
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and consider the space RK f i n [n̄] = L2(G(F )\G(A),ω)K f i n [n̄]. It is actually a representation of

G(F∞)×K f . The operator ∆∞ = ∏
v<∞

∆v is self-dual and commutes with the action of K . We

have ∆−1−ε
∞ is of trace class in RK f i n [n̄]. More precisely,

∑
π′

∑
e
|λe,∞|−1−ε+∑

ξ

∑
Φ

∫ ∞

−∞
|λΦiτ,∞|−1−εdτ

2π

=Oε(Vol(Z (A)G(F )\G(A)/K f i n[n̄])).

Here λe,∞ runs over the discrete spectrum of ∆∞, and λΦiτ,∞ runs over the continuous spectrum

of ∆∞.

Remark 1.6.9. We only need a weaker version here. Namely, we only need ∆−N
∞ to be of trace

class for some N > 0.

Remark 1.6.10. If instead of K f i n[n̄] we consider K∞ ×K f i n[n̄], the above theorem would

coincide with the traditional geometrical Weyl’s law. Note that this kind of Weyl’s law was

already used to establish theorems like 1.6.1 for K∞-fixed case, e.g. [15]. Weyl’s law is at the

heart of the theory of analytical spectral decomposition.

Remark 1.6.11. This theorem will appear as a part of the Ph.D thesis of Marc R. Palm at

Göttingen.

Definition 1.6.12. (c.f.page 292 [9]) The Schwartz function space R s is the space of smooth

functions ϕ in IndG(A)
Z (A)G(F )ω, which are rapidly decreasing in any given Siegel domain, as well

as X .ϕ for any X ∈U (g).

The above argument also gives

Corollary 1.6.13. We have R∞
0 ⊂ R s ⊂ R∞.

Remark 1.6.14. If we take into account the central character, namely, if we write Rω instead of

R, we have R s
ωR s

ω′ ⊂ R s
ωω′ . In particular, if the central character is the trivial character ω0, R s

ω0
is

a ring for the pointwise multiplication.

1.7 Two Sobolev Norm Systems

Let v be an archimedean place, and π be a unitary irreducible representation of Gv with a

fixed central character ω. Let {I1, ..., Ir } be a basis of Z (gv ). In our case, r = 1 if v is a real place,

and r = 2 if v is a complex place. We define the Sobolev norm system

Hπ
d (v) = max

i1+···+ir +2 j=d
‖I i1

1 · · · I ir
r ∆

j
v v‖.

Theorem 1.7.1. The Sobolev norm system Hπ
d is equivalent to the Sobolev system Sπd forπ a local

component of an automorphic representation. If the parameter s of π belongs to iR∪ [−θ,θ]

with θ < 1/2, then the implicit constants in the above equivalence depend only on θ.
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Chapter 1. Preliminaries: Cuspidal Case

The rest of this section is devoted to the proof of Theorem 1.7.1.

1.7.1 v is a real place

The Hecke algebra Hv =U (g)⊕ε∗U (g), where ε is the Dirac measure at

(
−1 0

0 1

)
. There is a

classification of unitarizable irreducible (Hv ,Kv ) modules (c.f. for example 4.A [18]). Each of

them π(µ1,µ2) is parametrized by s1, s2 ∈C,m1,m2 ∈ {0,1}. Put s = s1 − s2, t = s1 + s2 ∈ iR,m =
m1 −m2. There are 3 different series: 1. s ∈ iR; 2. 0 < s < 1 but only s < 2θ is possible for the

local component of an automorphic representation; 3. 0 < s = p ∈Z, s−m is an odd integer. In

each case, there is an orthogonal, not necessarily normalized, basis consisting of Kv -isotypical

vectors, {ek }. In cases 1 and 2, k runs through k ≡ m (mod 2), and in the case 3, |k| ≥ p +1,k ≡
p +1 (mod 2). There is a basis of gC,

{
H =

(
0 1

−1 0

)
,V+ =

(
1 i

i −1

)
,V− =

(
1 −i

−i −1

)
, J = i d

}
with explicit action given as

H .ek = i kek ;V+.ek = (s +1+k)ek+2;V−.ek = (s +1−k)ek−2; J .ek = tek

∆v .ek = (
1− s2

8
+ k2

4
)ek .

Consider a general vector v = ∑
k

ak ek , ak ∈ C. In the case 1, Theorem 2.6.2 of [2] implies

‖ek‖ = 1. We easily deduce

‖H .v‖2,‖V+.v‖2,‖V−.v‖2 ≤ 16‖∆1/2
v .v‖2.

In the case 2, ‖ek‖2 = |pπ Γ((s +1)/2)Γ(s/2)

Γ((s +1+k)/2)Γ((s +1−k)/2)
| according to Theorem 2.6.4 of [2]. As

a consequence
‖ek+2‖2

‖ek‖2 = | s −1−k

s +1+k
|¿θ 1,

‖ek−2‖2

‖ek‖2 = | s −1+k

s +1−k
|¿θ 1.

We get

‖H .v‖2,‖V+.v‖2,‖V−.v‖2 ¿θ 16‖∆1/2
v .v‖2.

In the case 3, it can be inferred from Theorem 2.6.5 of [2] thatπ(µ1,µ2) has the following model:

LetH+ be the Poincaré half plane, andH− be its opposite. The space is, with the coordinates

z = x + i y

L2(H±) =
{

f :H± →C, holomorphic :
∫

y 6=0
| f (z)|2 y p+1 d xd y

|y |2 <∞
}

.

Therefore one may take, for |k| ≥ p +1

ek (z) = (z − i )−(k+p+1)/2(z + i )(k−p−1)/21sgn(k)sgn(y)<0.
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Change to the Poincaré disk model, one calculates easily, with B(·, ·) the Beta function

‖ek‖2 =π4−p B((|k|−p −1)/2+1, p).

Consequently
‖ek+2‖2

‖ek‖2 ¿ k2,
‖ek−2‖2

‖ek‖2 ¿ k2

‖H .v‖2,‖V+.v‖2,‖V−.v‖2 ¿ 16‖∆v .v‖2.

We conclude that in all cases

‖H .v‖2,‖V+.v‖2,‖V−.v‖2 ¿θ ‖∆v .v‖2

thus Sπd ¿θ,d Hπ
d ¿ Sπ2d , and the two systems are equivalent.

1.7.2 v is a complex place

The unitary irreducible seriesπ(µ1,µ2) are parametrized by s1, s2 ∈C,k1,k2 ∈Zwith t = s1+s2 ∈
iR, s = s1 − s2 ∈ iR and µ j (ρe iα) = ρ2s j e i k jθ, j = 1,2. Or t = s1 + s2 ∈ iR,0 < s = s1 − s2 < 2θ,k1 =
k2. Let n0 = k1 − k2. We may suppose n0 ≥ 0 after exchange µ1 and µ2 if necessary. The

representation π(µ1,µ2) has an orthogonal basis
{

e(n0)
n,k : 0 ≤ k ≤ n,n ≥ |n0|,n ≡ |n0| (mod 2)

}
determined by

e(n0)
n,k (

(
y1 x

0 y2

)
g ) =µ1(y1)µ2(y2)|y1/y2|e(n0)

n,k (g ),∀g ∈Gv

e(n0)
n,k (

(
e iα1 0

0 e−iα1

)
u

(
e iα2 0

0 e−iα2

)
) = e i n0α1 e i (n−2k)α2 ,∀u ∈ Kv = SU2(C)

e(n0)
n,k (

(
cosβ sinβ

−sinβ cosβ

)
) = (cosβ)

n+n0
2 −k (sinβ)k− n−n0

2 P
(

n0−n
2 +k,

n0+n
2 −k)

n−n0
2

(cos2β)

where P (α,β)
k are the Jacobi polynomials. Alternatively,

e(n0)
n,k = 〈ρn(u)zn−k

1 zk
2 , zn−k0

1 zk0
2 〉ρn

〈zn−k0
1 zk0

2 , zn−k0
1 zk0

2 〉ρn

,n −2k0 = n0.

It will also be convenient to extend by 0 to all integers n,k. The (complexified) Lie algebra SU2

has a basis

H2 =
(

i

−i

)
, X± =±

(
−1/2

1/2

)
− i

(
i /2

i /2

)
which act as

H2.e(n0)
n,k = i (n −2k)e(n0)

n,k , X+.e(n0)
n,k = (n −k)e(n0)

n,k+1, X−.e(n0)
n,k = ke(n0)

n,k−1
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∆v .e(n0)
n,k = ((1− s2 −n2

0)/8+n(n +2)/4)e(n0)
n,k .

It is obvious then that ∆−1−ε
v is of trace class in π(µ1,µ2). A standard argument then shows

that it suffices to prove Theorem 1.7.1 for v running over an orthonormal basis. The Cartan

complement p of SU2 has a basis (We ignore the center)

H1 =
(

1

−1

)
,Y+ = ad(X+)(H1),Y− = ad(X−)(H1).

Using the recurrence relations of Jacobi polynomials (c.f. [1]), we can find

H1.e(n0)
n,k = 2(k +1)(k +n0 +1)(2k +n0 +2+2s)

(2k +n0 +1)(2k +n0 +2)
e(n0)

n+2,k+1+

2sn0(n −2k)

(2k +n0)(2k +n0 +2)
e(n0)

n,k + (n +n0)(4k −n +n0)(2s −2k +n0)

2(2k +n0)(2k +n0 +1)
e(n0)

n−2,k−1.

Since

Y+.e(n0)
n,k = X+H1.e(n0)

n,k −H1X+.e(n0)
n,k ,Y−.e(n0)

n,k = X−H1.e(n0)
n,k −H1X−.e(n0)

n,k

we can only consider the actions of H1, H2, X+, X− if we don’t want to optimize.

Case 1: s ∈ iR. Then we are in the unitary principal series case and the norm structure is the

standard L2 norm on SU2(C).

‖e(n0)
n,k ‖2 = (n −k)!k !

( n−n0
2 )!( n+n0

2 )!(n +1)
.

One easily verifies ‖X .e(n0)
n,k ‖¿‖∆3/2

v .e(n0)
n,k ‖, X = H1, H2, X+, X−, hence

‖X .v‖¿‖∆4
v .v‖,∀v ∈π∞, X = H1, H2, X±,Y±.

Case 2: 0 < s < 2θ < 1. Then n0 = 0, thus n ≡ 0 (mod 2). Let’s write e(s,0)
n,k = e(0)

n,k to emphasize

the dependence on s. The norm structure is defined via the intertwining operator (with

analytic continuation for s < 0)

M(s)e(s,0)
n,k (g ) =

∫
C

e(s,0)
n,k (n(x)g )d x =λn,k (s)e(−s,0)

n,k (g ).

Lemma 1.7.2. λn,k (s) = (−1)n/2π
(s −1) · · · (s −n/2)

s(s +1) · · · (s +n/2)
Therefore,

‖e(s,0)
n,k ‖2 = (−1)n/2π

(s −1) · · · (s −n/2)

s(s +1) · · · (s +n/2)

(n −k)!k !

( n
2 )!( n

2 )!(n +1)

With this, we easily see

‖X .v‖¿θ ‖∆4
v .v‖,∀v ∈π∞, X = H1, H2, X±,Y±.
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To prove the lemma, first consider n = 2k. We know e(s,0)
2k,k (

(
1 0

0 1

)
) = P (0,0)

k (1) = 1, so

λ2k,k (s) = M(s)e(s,0)
n,k (

(
1 0

0 1

)
) = π

2

∫ 1

−1
(

1− t

2
)s−1P (0,0)

k (t )d t .

Now we can use the recurrence relation of Legendre polynomials to establish

λ2k+2,k+1(s) = 2(2k +1)

s
λ2k,k (s +1)+λ2k−2,k−1(s).

The first two values are easy to obtain λ0,0(s) =π/s,λ2,1(s) =−π(s −1)

s(s +1)
. By induction, we get

λ2k,k (s) = (−1)kπ
(s −1) · · · (s −k)

s(s +1) · · · (s +k)
.

Since M(s) commutes with the action of Gv , it commutes with the action of X+, X−. It follows

that λn,k (s) =λn,n/2(s),∀k. This proves the above lemma and concludes the proof of Theorem

1.7.1.

1.8 Construction of Automorphic Forms from Local Kirillov Models

Suppose π is cuspidal. The norm identifications tell us that, given a pure tensor ϕ ∈ ⊗′
vπ

∞
v ,

resulting from (1.2.1), the Wϕ,v or the Kϕ,v must be a smooth vector in Wπv or Kπv . Conversely,

if we are given Kv ∈ K ∞
πv

, which uniquely determine corresponding Wv ∈ W ∞
πv

, and form

W (g ) = ∏
v

Wv (gv ), and ϕ by (1.2.5), are we sure to get an element in π∞? The converse

theorem, as is discussed in the section 5.2 of [11], gives an affirmative answer. Note that, to

determine Wv from Kv for an archimedean place v , a concrete way is to apply the Casimir

element C of GL2(R) in the real case, or the two embedded Casimir elements of GL2(R)

in GL2(C) to get partial differential equations, since these elements should act as scalars

depending only on πv , then solve the corresponding Dirichlet problems.

Alternatively, maybe also more naturally and directly, if one wants to avoid the converse

theorem, one may decompose W as an infinite sum of K -isotypical Whittaker functions, then

change the order of summation to show that ϕ is a convergent (thanks to the local and global

estimations in the above sections) infinite sum of K -isotypical functions in π, with rapidly

decreasing spectral parameter for K , thus is itself in π∞.

If π is Eisenstein, the situation is simpler. In fact, Wϕ,v determinesϕ at v in the induced model

on a dense open subset, thus determines the corresponding function in the induced model.

Then we apply (1.5.1).
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1.9 Decay of Matrix Coefficients

Consider a place v , let πλ be the complementary series representation of Gv with parameter

λ/2 and with trivial central character. It has a unique Kv invariant unit vector w0. The

elementary spherical function associated with πλ is defined to be (following Harish-Chandra’s

notation)

ϕv,λ(g ) = 〈πλ(g )w0, w0〉.
Its limit when λ→ 0, denoted by ϕv,0 = Ξv , is the Harish-Chandra function. They are all

positive and bi-Kv -invariant.

Theorem 1.9.1. Let π be any unitary irreducible representation of Gv . Let x1, x2 be 2 Kv -finite

vectors in π. Then

1 If π is tempered, then

〈π(g )x1, x2〉 ≤ dim(Kv x1)1/2 dim(Kv x2)1/2‖x1‖ ·‖x2‖Ξv (g ).

2 If π is in the complementary series with parameter λ/2, then for any ε > 0, there is a

Av (ε) > 0

〈π(g )x1, x2〉 ≤ Av (ε)dim(Kv x1)1/2 dim(Kv x2)1/2‖x1‖ ·‖x2‖Ξv (g )1−λ−ε.

Here dim(Kv x) = dim span(Kv · x) is the dimension of the span of x by Kv action.

The tempered case is well known in [13]. The non-tempered case, first proved in Theorem

2.11 [32] for real case, then recaptured in Lemma 9.1 [33], essentially is based on the following

estimation

Av (ε)−1ϕ1−λ+ε
v,0 ≤ϕv,λ ≤ϕ1−λ

v,0 . (1.9.1)

This is an elementary exercise in analysis, we leave it to the reader.
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2 Preliminaries: Eisenstein Case

2.1 L-function Theory for K -finite Vectors: Eisenstein Case

Before generalizing, let’s first consider a very general but motivating question. Given a group

G , a subgroup H , and a (unitary) irreducible representation π of G . A general question is to

determine which irreducibles of H occur in the restriction ofπ to H , and with what multiplicity.

This is called the question of "Branching Rules". If we take G = GL2(A), H = Z A with notations

as in section 2.1, and let σ be an irreducible representation of H which coincides with π when

restricting to Z , then with obvious notations, one has

dimCHomHv (ResGv
Hv
πv ,σv ) = 1,∀v ∈VF ,

dimCHomH (ResG
Hπ,σ) ≤ 1.

Here, σ need not even be unitary. If the restriction of σ to A is given by the (quasi-)character

χ−1| · |−s+1/2, then the local zeta-functional ζ(s, ·,χv ,ψv ) introduced in the previous section is

an element in HomHv (ResGv
Hv
πv ,σv ). Their converging product

∏
v |∞

ζ(s, ·,χv ,ψv )
∏

v<∞
ζ(s, ·,χv ,ψv )

L(s,πv ⊗χv )

is an element in HomH (ResG
Hπ,σ). When π is a cuspidal representation realized in the

space of automorphic functions, the global zeta-functional ζ(s, ·,χ) is another element in

HomH (ResG
Hπ,σ). As we have seen, their proportionality is given by L(s,π⊗χ).

When π is an Eisenstein series representation, the local candidates of HomHv (ResGv
Hv
πv ,σv )

and their converging factors still make sense, as is shown in the sections 4.5, 4.6, 4.7 and 3.7

of [2]. But the global one defined in (1.2.3) is no longer a good candidate since it does not

converge any more. A remedy is provided by

ζ(s,ϕ,χ) =
∫

F×\A×
(ϕ−ϕN )(a(y))χ(y)|y |s−1/2d×y, (2.1.1)
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Chapter 2. Preliminaries: Eisenstein Case

where ϕN is the constant term defined by

ϕN (g ) =
∫

F \A
ϕ(n(x)g )d x.

However, ζ(s,ϕ,χ) is still not defined for all s but only for ℜs > 1. In the range ℜs > 1, it is easy

to see that (1.2.7) continues to hold. As we shall see soon, the global zeta-functional can be

analytically continued. This is reminiscent of Tate’s thesis: the global zeta-functional in the

GL1 case there is also an analytically continued one. In order to apply the Poisson formula,

one should single out the contribution at the origin and analytically continue it.

For our purpose, we are particularly interested in the principal series π=π(1,1) induced from

trivial characters. We restrict ourselves to this case, even though the following treatment is

applicable to a wider situation. If fτ ∈ IndG
B (| · |τ, | · |−τ) is a flat section with f0 ∈πfin, we define

the normalized Eisenstein series as

ϕ(g ) =ΛF (1+2τ)E( fτ)(g ) |τ=0, (2.1.2)

where E( fτ) = E(τ, f0) is the usual Eisenstein intertwiner defined as in (1.5.1), and ΛF (s) =
Λ(s,1) is the completed zeta-function. As (4.11) of [28] shows,

ϕN (a(y)g ) = |y |1/2ϕN (g )+|y |1/2 log |y |Λ∗
F (1) f0(g ), (2.1.3)

where Λ∗
F (1) is the residue of ΛF at 1. The global zeta-functional can be rewritten as

ζ(s,ϕ,χ) =
∫
|y |≥1

(ϕ−ϕN )(a(y))χ(y)|y |s−1/2d×y

+
∫
|y |≤1

(ϕ(a(y))−ϕN (w a(y)))χ(y)|y |s−1/2d×y

−
∫

F×\A×
ϕN (a(y))1|y |≤1χ(y)|y |s−1/2d×y

+
∫

F×\A×
ϕN (w a(y))1|y |≤1χ(y)|y |s−1/2d×y.

ϕ−ϕN is rapidly decaying in any Siegel domain. In particular (ϕ−ϕN )(a(y)) is rapidly decaying

as |y |→∞. Note that

ϕ(a(y))−ϕN (w a(y)) = (wϕ−wϕN )(a(y−1)),

is also rapidly decaying as |y | → 0, since wϕ is also K -finite. We deduce that the first two

integrals are convergent for all s ∈C. The last two integrals can be calculated explicitly. They

are 0 unless χ(y) = |y |iσ for some σ ∈R, in which case they converge for ℜs > 1 and are equal

to Vol(F×\A(1)) times

−ϕN (1)

s + iσ
+ f0(1)

(s + iσ)2 resp.− ϕN (w)

1− s − iσ
+ f0(w)

(1− s − iσ)2 .
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2.2. Two Sobolev Norm Systems (continued)

The above terms obviously admit analytic continuation to s ∈C. We can also see the obvious

functional equation from it. Let’s sumarize:

Proposition 2.1.1. Define C = Vol(F×\A(1)) if π is Eisenstein and χ(y) = |y |iσ, and C = 0 other-

wise. We define the global zeta-functional as

ζ(s,ϕ,χ) =
∫
|y |≥1

(ϕ−ϕN )(a(y))χ(y)|y |s−1/2d×y

+
∫
|y |≤1

(ϕ(a(y))−ϕN (w a(y)))χ(y)|y |s−1/2d×y

+C (−ϕN (1)

s + iσ
+ f0(1)

(s + iσ)2 − ϕN (w)

1− s − iσ
+ f0(w)

(1− s − iσ)2 ).

Then (1.2.7) holds. It satisfies the functional equation (1.2.4).

Remark 2.1.2. In fact, the above theory in the last 2 sections is valid for smooth (not necessarily

K -finite) vectors as we explain in the next sections.

2.2 Two Sobolev Norm Systems (continued)

We may need Theorem 1.7.1 for more groups, namely for a general compact reductive group.

In this case, the unitary irreducible representations of G are classified by the theory of highest

weight (c.f. IV.7 [24]).

Fix a Cartan subalgebra h of g. Recall hR = ih. Let Φ=Φ(hC : gC) be the set of roots. Choose

an ordering which determines Φ+ as the set of positive roots. Denote by Π the resulting

set of simple roots. Then there is a one-one correspondence between the set of irreducible

representations and the set of dominant analytically integral linear functionals λ on hC. If

Φλ is the representation corresponding to λ in the above correspondence, then the induced

representation φλ on gC is given by the Verma model L(λ+δ), where δ is half the sum of all

positive roots (c.f. IV.8 [24]). We also denote by φλ its extension to the universal enveloping

algebra of gC. Let T be the torus corresponding to h. Let T̃ be the torus in the universal

covering group G̃ of G corresponding to h. Then the character χλ of Φλ is given on T̃ by

(Theorem 4.46 [24])

χλ(t ) = D(t )−1
∑

w∈W
(det w)ξw(λ+δ)(t ). (2.2.1)

Here, W is the Weyl group. ξλ(eH ) = eλ(H),∀H ∈ h,∀λ ∈ h′R, and H 7→ eH is the exponential

map from h to T̃ . det w is computed for the linear action of W on hR. D(t) is the Weyl’s

denominator

D(t ) = ξδ(t )
∏
α∈Φ+

(1−ξ−α(t )) = ∑
w∈W

(det w)ξwδ(t ). (2.2.2)

It should be understood that χλ descends to T when λ is analytically integral. If {ei }dλ
i=1 is an
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Chapter 2. Preliminaries: Eisenstein Case

orthonormal basis of Φλ, then we have the dimension formula (Theorem 4.48 [24])

dλ =
∏
α∈Φ+ <λ+δ,α>∏
α∈Φ+ < δ,α> . (2.2.3)

By definition, χλ(g ) =
dλ∑
i=i

<Φλ(g )ei ,ei >. We deduce that

χλ(e(s−t )X ) =
dλ∑
i=i

<Φλ(e sX )ei ,Φλ(e t X )ei >,∀X ∈ g,∀s, t ∈R,

∂2

∂s∂t
|s=t=0 χλ(e(s−t )X ) =

dλ∑
i=i

‖φλ(X )ei‖2.

But
∂2

∂s∂t
|s=t=0 χλ(e(s−t )X ) =− d 2

d s2 |s=0 χλ(e sX ), we get the inequality

‖φλ(X )ei‖2 ≤− d 2

d s2 |s=0 χλ(e sX ). (2.2.4)

We shall apply (2.2.4) to a basis of g and compare the right hand side with ‖φλ(∆)ei‖2.

Lemma 2.2.1. The Laplacian ∆ acts on Φλ as multiplication by

cλ =<λ,λ>+2 <λ,δ> .

In fact, we only need to consider the effect of ∆ on the highest vector vλ in L(λ+δ). Let

gC = hC⊕
∑
α∈Φ

gα be the root decomposition. Let Hα ∈ hC be such that B(Hα, H) =α(H),∀H ∈
hC, here B(·, ·) is the Killing form. Choose Eα ∈ gα s.t. B(Eα,E−α) = 1, then [Eα,E−α] = Hα.

BC = {Hβ,Eα : β ∈ Π,α ∈ Φ} is a basis of gC. Write the dual basis with respect to B(·, ·) by

B′
C = {H ′

β,E ′
α :β ∈Π,α ∈Φ}. It is easy to see H ′

β ∈ hR,E ′
α = E−α. We thus get

∆= ∑
β∈Π

H ′
βHβ+

∑
α∈Φ

E−αEα = ∑
β∈Π

H ′
βHβ+

∑
α∈Φ+

Hα+2
∑
α∈Φ+

E−αEα.

If vλ is a highest vector of Φλ, it is killed by Eα,α ∈Φ+, hence

φλ(∆).vλ =
( ∑
β∈Π

λ(H ′
β)λ(Hβ)+ ∑

α∈Φ+
λ(Hα)

)
vλ = cλvλ.

Now if Eα = Xα + i Yα with Xα,Yα ∈ g, then Ēα = Xα − i Yα ∈ CE−α. One may adjust s.t.

E−α = −Ēα. Consequently, [Xα,Yα] = − i

2
Hα. B = {i Hβ, Xα,Yα : β ∈ Π,α ∈ Φ+} is a basis

of g w.r.t. which the Sobolev system Sd can be defined. Furthermore, the conjugation relations
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2.2. Two Sobolev Norm Systems (continued)

Ade Xα(e sYα) = e−
i s
2 Hα , AdeYα(e sXα) = e

i s
2 Hα tell us

χλ(e sYα) =χλ(e−
i s
2 Hα),χλ(e sXα) =χλ(e

i s
2 Hα),

since χλ is central. We therefore only need to consider − d 2

d s2 |s=0 χλ(e i sHα) for α ∈Φ+. From

Weyl’s formulas (2.2.1),(2.2.2) and (2.2.3), we know that for any regular H ∈ h, as functions of s,

the numerator and the denominator of χλ(e sH ) vanishes at s = 0 up to order r+ = |Φ+|. Define

an(λ, H) = ∑
w∈W

(det w)(w(λ+δ)(H))n .

We then get the Taylor expansion of χλ(e sH ) at s = 0

(
∞∑

n=r+
an(λ, H)

sn−r+

n!
)(

∞∑
n=r+

an(0, H)
sn−r+

n!
)−1.

Note the easy trivial bounds

|an(λ, i Hα)| ≤ |W |‖λ+δ‖n‖α‖n ,

and the fact that an(0, i Hα),α ∈Φ+,n ∈N are constants depending only on the structure of G ,

we deduce

− d 2

d s2 |s=0 χλ(e i sHα) ¿G |ar+(λ, i Hα)|+ |ar++1(λ, i Hα)|+ |ar++2(λ, i Hα)|

¿G ‖λ+δ‖r++2.

But by Lemma 2.2.1, cλ ' ‖λ+δ‖2, we thus get

‖φλ(i Hα)ei‖¿ (− d 2

d s2 |s=0 χλ(e i sHα))1/2 ¿G c(r++2)/2
λ

.

Finally, for a general vector v ∈Φλ, write v =
dλ∑

i=1
vi with vi ∈Cei , then

‖φλ(i Hα)v‖ ≤
dλ∑

i=1
‖φλ(i Hα)vi‖¿G c(r++2)/2

λ

dλ∑
i=1

‖vi‖¿ c(r++2)/2
λ

dλ‖v‖.

We observe from (2.2.3) that

dλ¿G ‖λ+δ‖r+ ¿ cr+/2
λ

. (2.2.5)

Therefore

‖φλ(i Hα)v‖¿G cr++1
λ

‖v‖ = ‖φλ(∆r++1)v‖,

which concludes Theorem 1.7.1 for G compact.
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Chapter 2. Preliminaries: Eisenstein Case

2.3 Unitary Principal Series and Eisenstein Intertwiner

Take the unramified principal series representation πτ = π(| · |τ, | · |−τ). Let e(τ)
~n denote the

unitary vector of weight and level ~n = (nv )v in π, with nv being defined as in Section 1.6.2.

Denote by M(τ) the standard intertwining operator from πτ to πt au . Recall from the section 4

of [20] that, after analytical continuation we can write

M(τ) = ΛF (1−2τ)

ΛF (1+2τ)
R(τ)

where R(τ) takes the spherical function taking value 1 on K to the spherical one taking value 1

on K , and is unitary if τ ∈ iR.

Proposition 2.3.1. We have R(τ)e(τ)
~n =λ~n(τ)e(−τ)

~n with

λ~n(τ) = ∏
v real

(
nv−2∏

k=0,2|k

k +1−2τ

k +1+2τ

) ∏
v complex

(
nv /2∏
k=1

k −2τ

k +2τ

) ∏
v<∞,nv>0

(
q−2nvτ

v
1−q−(1−2τ)

v

1−q−(1+2τ)
v

)
.

If we write M(τ)
∏

v
Mv (τ),R(τ) =∏

v
Rv (τ),λ~n(τ) =∏

v
λnv (τ) with notations of obvious mean-

ing, then in the proof of Theorem 1.7.1 we have already obtained λnv (τ) =
nv−2∏

2|k,k=0

k +1−2τ

k +1+2τ
if v

is a real place, λnv (τ) =
nv /2∏
k=1

k −2τ

k +2τ
if v is a complex place.

It is a classical result on conductors that, for πv =πτ,v , π
K 0

v [m]
v is of dimension m +1. It is also

easy to see that K 0
v [m]\Kv /K 0

v [m] has a full set of representatives {1,

(
0 1

1 0

)
,n−($l

v ),1 ≤ l ≤

m −1}, such that the double cosets are invariant under the anti-involution

(
a b

c d

)
7→

(
d b

c a

)
.

Thus (Kv ,K 0
v [m]) is a Gelfand pair. Therefore π

K 0
v [m]

v is spanned by the K 0
v [m]-invariant vector

of every unitary irreducible representation of Kv occurring in ResGv
Kv
πv = IndKv

B(Ov )(1,1). For

simplicity of notations, let’s suppress the index v from now on, and denote the unitary vector

invariant by K 0[l ], orthogonal to πK 0[l−1], by e(τ)
l . Each e(τ)

l generates a K -subrepresentation

which are distinct one from the other, in IndKv

B(Ov )(1,1), and e(τ)
l = e(0)

l is fixed as upon restriction

to K . Since M(τ) intertwines the action of G thus K , we must have that M(τ)e(τ)
l is proportional

to e(−τ)
l , which explains the existence of λ~n(τ).

We are going to characterize e(τ)
l explicitly. In fact, if we write On =$nO −$n+1O ,n ≥ 1, then

D0 = B(O )w N (O ) =
{(

a b

c d

)
∈ K : c ∈O×

}
,
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2.3. Unitary Principal Series and Eisenstein Intertwiner

Dn = B(O )N−(On) =
{(

a b

c d

)
∈ K : c ∈On

}
,1 ≤ n ≤ m,

D ′
m = K 0[m] =∪∞

n=mDn

are the double cosets of K w.r.t. B(O ) and K 0[m]. For any f ∈ πK 0[m], there is a sequence of

complex numbers fn ,0 ≤ n ≤ m s.t. f |Dn= fn and fn = fm ,∀n ≥ m. We denote the sequence

associated with e(τ)
l by a(l ,n). It is elementary to calculate the mass dn of Dn assuming the

mass of K is 1. We have

d0 = q

q +1
,dn = q−(n−1)

q +1
(1−q−1),n ≥ 1.

Then the a(l ,n) satisfy

1 a(l ,n) = a(l , l ) for all n ≥ l and a(0,n) = 1 for all n ≥ 0;

2
∞∑

n=0
a(l ,n)a(l ′,n)dn = 0 and

∞∑
n=0

|a(l ,n)|2dn = 1.

A solution is given by

1 a(0,n) = 1; a(1,0) = q−1/2, a(1,1) =−q1/2;

2 a(l , l −1) = q
l−2

2

√
q +1

q −1
, a(l , l ) =−(q −1)q

l−2
2

√
q +1

q −1
, a(l ,n) = 0,0 ≤ n ≤ l −2, l ≥ 2.

Since we have

M(τ)e(τ)
l (n−($n)) =

∫
O

e(τ)
l

((
−$n −1

1+$n x x

))
d x +

∫
|x|>1

|x|−2τ−1e(τ)
l

((
1 0

1/x +$n 1

))
d x,

by taking n = l −1 if l > 0 or n = 0 if l = 0, we easily obtain

M(τ)e(τ)
0 = Vol(O )

1−q−(1+2τ)

1−q−2τ e(−τ)
0 , M(τ)e(τ)

l = Vol(O )q−2lτ 1−q−(1−2τ)

1−q−2τ e(−τ)
l , l ≥ 1.

Proposition 2.3.1 follows.

Corollary 2.3.2. If we write

ϕ0
~n =ΛF (1+2τ)E(e(τ)

~n )(g ) |τ=0,

then its constant term is

ϕ0
~n,N =

(
2γF +hF

( ∑
v real

nv−2∑
2|k,k=0

2

k +1
+ ∑

v complex

nv /2∑
k=1

2

k
+ ∑

v<∞,nv>0

(
−nv − 2

q −1

)
log qv

)
e(0)
~n

)
,
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Chapter 2. Preliminaries: Eisenstein Case

where γF ,hF are defined by the Taylor expansion of ΛF as

ΛF (1+ s) = hF

s
+γF +o(s).

Corollary 2.3.3. If ϕ = ΛF (1+ 2τ)E( fs) |τ=0 is associated with f0 ∈ π(1,1)∞ in the induced

model, with level ~n f = (nv = 0)v<∞, then

sup
k∈K

|ϕN (k)|¿F,ε ‖C 3/4+ε
K∞ . f0‖,

where CK∞ = ∏
v |∞

CKv is the product of Casimir elements of maximal compact subgroups at

infinite places. Together with (2.1.3) we get

|ϕN (g )|¿F H(g )1/2 log H(g )‖C 3/4+ε
K∞ . f0‖.

Consequently, given c0 > 0,

ϕ(g )−ϕN (g ) ¿F,N ,c0 Sd ( f0)H(g )−N ,∀N ∈N,∀H(g ) ≥ c0,

ϕ(g ) ¿F,c0 Sd ( f0)H(g )1/2 log H(g ),∀H(g ) ≥ c0,

The first d depends on N and the degree of F /Q. The second d depends only on the degree of

F /Q. Norms of f0 are calculated in the induced model.

In fact, we decompose f0 as

f0 =
∑
~n

a~n( f0)e(0)
~n

use the previous corollary, bounds from the previous section especially (2.2.5) and the obvious

Wely’s law for IndK∞
B∞

(1,1). Furthermore, the argument in Section 1.6.2 gives,

ϕ(g )−ϕN (g ) ¿F,N ,c0 Sd ( f0)H(g )−N ,∀H(g ) ≥ c0.

Remark 2.3.4. Corollary 2.3.3 is valid for any unitary smooth Eisenstein series.
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3 Outline of the Proof

3.1 Cuspidal Case

The departure point of the proof is Jacquet-Langlands’ generalization of Hecke’s integral

representation of L-function, namely equation (1.2.7) that we copy here

L(1/2,π⊗χ) = ∏
v |∞

ζ(1/2,Wϕ,v ,χv ,ψv )−1 · ∏
v<∞

L(1/2,πv ⊗χv )

ζ(1/2,Wϕ,v ,χv ,ψv )
·ζ(1/2,ϕ,χ).

with ϕ ∈π∞ a pure tensor and smooth vector.

Then based on P.Sarnak’s idea in [30], we consider the following family of test functions

ϕ= n(t ).ϕ0,ϕ0 ∈π∞ is a fixed pure tensor , t ∈A.

With this choice, the study of local zeta-functions shows that, under some technical conditions

on ϕ0, each local integral reaches its natural asymptotic lower bound for some tv = Tv with

|Tv |v ³ε C (χv )1±ε. Take ϕ= n(T ).ϕ0 with T = (Tv )v chosen above, then we get the estimation

of the product of local terms in (1.2.7):

Proposition 3.1.1. There is a pure tensor ϕ ∈⊗′
vπ

∞
v such that ∀ε> 0

∏
v |∞

ζ(1/2,Wϕ,v ,χv ,ψv )−1 · ∏
v<∞

L(1/2,πv ⊗χv )

ζ(1/2,Wϕ,v ,χv ,ψv )
¿ε,F Q1/2+ε (3.1.1)

where Q =C (χ) is the analytic conductor of χ.

Recall the global zeta-function defined by

ζ(1/2,ϕ,χ) =
∫
A×

(
ϕ−ϕN

)
(a(y))χ(y)d×y, a(y) =

(
y

1

)
,

where the constant term ϕN = 0 if π is cuspidal. For simplicity, let’s focus on this case. We

want to bound the global zeta-function by some negative power of C (χ). To deal with the fact
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Chapter 3. Outline of the Proof

that F×\A× is non compact, we then truncate the integral
∫

F×\A×
as

∫ ∗

F×\A×
=

∫
F×\A×

h(|y |) and

remark that∫ ∗

F×\A×
ϕ(a(y))χ(y)d×y ≤

(∫ ∗

F×\A×
1d×y

)1/2 (∫ ∗

F×\A×

(
n(T ).|ϕ0|2

)
(a(y))d×y

)1/2

.

The translation n(t) on |ϕ0|2 is the same as translating the domain of integration a(F×\A×)

into a(F×\A×)n(t). In the classical case (F =Q and ϕ0 is spherical), the translated domain

is the same as the semi straight-line {y t + yi : y > 0}. As t →∞, the slope of the line tends to

0. The line becomes equidistributed on the modular surface SL2(Z)\H. As a consequence

the n(t) (or n(T )) translation “kills” the portion of |ϕ0|2 orthogonal to the 1-dimensional

representations. Intuitively,∫ ∗

a(F×\A×)n(T )
|ϕ0(t )|2d t →

∫
Z (A)G(F )\G(A)

|ϕ0(g )|2d g = 〈ϕ0,ϕ0〉. (3.1.2)

In order to diminish the right hand side, we amplify ϕ0 by defining, for E equal to some

positive power of Q to be chosen, Consider the following average of Dirac measures :

σ= 1/M 2
E

∑
v,v ′∈IE

δa(|$v |v |$−1
v ′ |v ′ )

with

IE = {
v | qv ∈ [E ,2E ],Tv = 0

}
, ME = |IE |À E/logE ,

and take, with $v denoting a uniformiser at the place v ,

ϕ′
0 = 1/M 2

E

∑
v,v ′∈IE

χ($v$
−1
v ′ )a($v$

−1
v ′ ).ϕ0 =σ′

χ∗ϕ0,

where σ′
χ = 1/M 2

E

∑
v,v ′∈IE

χ($v$
−1
v ′ )δa($v$

−1
v ′ ) is the adjoint measure of σ, i.e.

∫
F×\A×

h(|y |)n(T ).ϕ′
0(a(y))χ(y)d×y =

∫
F×\A×

σ∗h(|y |)n(T ).ϕ0(a(y))χ(y)d×y.

Instead of ϕ0, we put ϕ′
0 into the above argument. This modification does not change the

quality of truncation on integral. But in (3.1.2), we get 〈ϕ′
0,ϕ′

0〉 instead, which is some weighted

average of

〈a(
$v1

$v ′
1

)ϕ0, a(
$v2

$v ′
2

)ϕ0〉, v1, v ′
1, v2, v ′

2 ∈ IE . (3.1.3)

Since the decay of matrix coefficients is of local nature, when v1, v ′
1, v2, v ′

2 are distinct, the

above term must have size some negative power of E . When v1, v ′
1, v2, v ′

2 are not distinct, they

are bounded by O(1), and killed by the big denominator M 2
E . Of course this modification will

increase the contribution of non dimension 1 parts of |ϕ0|2 by some positive power of E as a

factor.
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3.1. Cuspidal Case

Finally, we optimize the choice of E and the truncation on integral to get

Proposition 3.1.2. Suppose π is cuspidal. For the same ϕ, there is an absolute constant δ> 0

such that ∀ε> 0

ζ(1/2,ϕ,χ) ¿ε,π Q−δ+ε. (3.1.4)

We may choose
1−2θ

8
, or

25

256
using the best known result of [4] i.e. θ = 7/64.

which together with (3.1.1) gives Theorem 0.3.1.

We discuss Proposition 3.1.2 in more detail. In order to simplify notations and for further

convenience, we introduce a functional on automorphic representations:

ϕ 7→ lχ|·|
s
(ϕ) =

∫
F×\A×

ϕ(a(y))χ(y)|y |sd×y.

Note that for π cuspidal one has

lχ|·|
s
(ϕ) = ζ(s +1/2,ϕ,χ).

So (3.1.4) is equivalent to

lχ(ϕ) ¿ε,π Q−δ+ε.

There is a local analogue of this functional :

Wϕ,v 7→ lχv |·|s (Wϕ,v ) =
∫

F×
v

Wϕ,v (a(y))χ(y)|y |sd×y.

The truncation function h ∈C∞
c (R+) is made from a fixed function h0 such that h is supported

in [Q−κ−1,Qκ−1]. Here, κ ∈ (0,1) is a parameter to be chosen later.

Lemma 3.1.3. We have

lχ(ϕ) =
∫

F×\A×
σ∗h(|y |)ϕ(a(y))χ(y)d×y +Oh0,ϕ0,ε(Q

−κ/2+ε).

Define another functional:

ϕ 7→ lχ,h(ϕ) =
∫

F×\A×
h(|y |)ϕ(a(y))χ(y)d×y.

We are reduced to examine :

lχ,σ∗h(ϕ) = lχ,h(σ′
χ∗ϕ) =

∫
F×\A×

h(|y |)σ′
χ∗ϕ(a(y))χ(y)d×y
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Chapter 3. Outline of the Proof

The inequality of Cauchy-Schwarz gives

|lχ,h(σ′
χ∗ϕ)|2 ≤

∫
F×\A×

h(|y |)d×y
∫

F×\A×
|σ′
χ∗ϕ(a(y))|2h(|y |)d×y. (3.1.5)

We then spectrally decompose |σ′
χ ∗ϕ0|2 in L2(G(F )\G(A),1) as in Theorem 1.6.3, which is

possible because ϕ0 ∈ R s . Setting l h = l 1,h we have

l h(n(T )|σ′
χ∗ϕ0|2) = l h(n(T )|σ′

χ∗ϕ0|2N ) (3.1.6)

+ ∑
π′cuspidal

l h(n(T )Pπ′(|σ′
χ∗ϕ0|2)) (3.1.7)

+ 1

4π

∑
ξ∈áF×\A(1)

∫ ∞

−∞
l h(n(T )(Pξ,iτ(|σ′

χ∗ϕ0|2)−Pξ,iτ(|σ′
χ∗ϕ0|2)N ))dτ (3.1.8)

interchanging integrals being verified by Theorem 1.6.3. In every summand of (3.1.7) (resp.

(3.1.8) ) Pπ′(resp. Pξ,iτ) denotes the projection on the space of π′(resp. π(ξ| · |iτ,ξ−1| · |−iτ)). The

function

|σ′
χ∗ϕ0|2 = 1

M 4
E

∑
v1,v ′

1,v2,v ′
2∈IE

χ(
$v1

$v ′
1

)χ−1(
$v2

$v ′
2

)a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0

Let’s write

Scusp (v1, v ′
1, v2, v ′

2) = ∑
π′cuspidal

l h(n(T )Pπ′(a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)),

hence

(3.1.7) = 1

M 4
E

∑
v1,v ′

1,v2,v ′
2∈IE

χ(
$v1

$v ′
1

)χ−1(
$v2

$v ′
2

)Scusp (v1, v ′
1, v2, v ′

2).

Define

Scst (v1, v ′
1, v2, v ′

2) = l h(n(T )(a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)N ) = l h((a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)N ),

SEi s(v1, v ′
1, v2, v ′

2) = ∑
ξ∈áF×\A(1)

∫ ∞

−∞
l h(n(T )Pξ,iτ(a(

$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)

−Pξ,iτ(a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)N )dτ.

Therefore,

(3.1.6) = 1

M 4
E

∑
v1,v ′

1,v2,v ′
2∈IE

χ(
$v1

$v ′
1

)χ−1(
$v2

$v ′
2

)Scst (v1, v ′
1, v2, v ′

2), (3.1.9)

(3.1.8) = 1

4πM 4
E

∑
v1,v ′

1,v2,v ′
2∈IE

χ(
$v1

$v ′
1

)χ−1(
$v2

$v ′
2

)SEi s(v1, v ′
1, v2, v ′

2).

Remark 3.1.4. Not every cuspidal representation π′ (resp. not every character ξ) has a non

trivial contribution in this decomposition. Only the ones which have less conductors than
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3.1. Cuspidal Case

σ′
χ∗ϕ0 on every place v has. The exact choice of the base for spectral decomposition is a subtle

matter. It will be described in Section 5.3. Similarly, the number of ξ’s with non zero contribution

is also finite and depends on F and ϕ0.

Lemma 3.1.5. We have

(3.1.6) ¿ε,F,π κEε−2Q(2+κ)ε.

Recall that, θ is such that no complementary series representation with parameter > θ appears

as a local component of a cuspidal representation. Let λe,∞ (resp. λΦiτ,,∞) be the eigenvalue

for e (resp. E(Φ, iτ)) with respect to ∆∞, for e (resp. Φ) runsing through an orthonormal base

B(π′) (resp. B(π(ξ,ξ−1)), consisting of pure tensors of π′ (resp. π(ξ| · |iτ,ξ| · |−iτ)). For the

portion (3.1.7)+(3.1.8), an adelic version of Weyl’s law Theorem 1.6.8 is needed. From it we

deduce

Lemma 3.1.6. For a typical term, we have

Scusp (v1, v ′
1, v2, v ′

2) ¿ε,F,π,θ,κ,h0 E 2Q−(1/2−θ)+ε.

Consequently we get

(3.1.7) ¿ε,F,π,θ,κ,h0 E 2Q−(1/2−θ)+ε.

Lemma 3.1.7. For a typical term, we have

SEi s(v1, v ′
1, v2, v ′

2) ¿ε,F,π,κ,h0 EQ(κ−1)/2+ε+E 2Q−1/2+ε.

Consequently we get

(3.1.8) ¿ε,F,π,κ,h0 EQ(κ−1)/2+ε+E 2Q−1/2+ε.

Lemmas 3.1.5 to 3.1.7 immediately imply

Lemma 3.1.8. We have

l h(n(T )|σ′
χ∗ϕ0|2) ¿π,κ,ε Eε−2Q(2+κ)ε+E 2Q−(1/2−θ)+ε+EQ(κ−1)/2+ε.

Remark 3.1.9. A comparison between the eigenvalues appearing here and those appearing in

the trace of∆−l
∞ should be taken into account, where l > 1 will be specified. We’ll see this in detail

later.

Remark 3.1.10. We should explain what “typical term” means in Lemmas 3.1.6 and 3.1.7. In

fact, a full list of the types of positions of v1, v ′
1, v2, v2 are
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Chapter 3. Outline of the Proof

Case 1: v1, v ′
1, v2, v ′

2 are distinct.

Case 2: v1 = v2 or v ′
1 = v ′

2, and there are 3 elements in
{

v1, v ′
1, v2, v ′

2

}
.

Case 3: v1 = v ′
2 or v ′

1 = v2 and there are 3 elements in
{

v1, v ′
1, v2, v ′

2

}
.

Case 4: v1 = v2 and v ′
1 = v ′

2, and there are 2 elements in
{

v1, v ′
1, v2, v ′

2

}
.

Case 5: v1 = v ′
2 and v ′

1 = v2 and there are 2 elements in
{

v1, v ′
1, v2, v ′

2

}
.

Case 6: v1 = v ′
1 = v2 or v1 = v ′

1 = v ′
2 or v2 = v ′

2 = v1 or v2 = v ′
2 = v ′

1 and there are 2 elements in{
v1, v ′

1, v2, v ′
2

}
.

Case 7: v1 = v ′
1 = v2 = v ′

2.

Case 1 is dominant in the sense that there are ' M 4
E possibilities for this case but O(M 3

E ) for

the other cases. Therefore it is considered to be typical. We should consider each case and add

together their effects to get the second assertions in Lemmas 3.1.6 and 3.1.7. But it turns out that

it is Case 1 which gives the most significant contribution in any situation that will be considered.

Now it is clear that Proposition 3.1.2 follows from Lemma 3.1.3, (3.1.5) and Lemma 3.1.8, by

solving the equation

min
κ,E

max(Eε−1,EQ−1/4+θ/2,Q−κ/2,E 1/2Q(κ−1)/4+ε) =Q− 1−2θ
8 +ε

An optimal choice is

E =Q
1−2θ

8 ,κ= 1/4+θ/6.

Remark 3.1.11. If we apply the n(T ) translation before the projections in (3.1.7) and (3.1.8), and

use a more general result concerning the decay of matrix coefficients, then we find ourselves in

the exact setting of [28], where all the technical calculations are folded in the “Ergodic Principle”

in Section 2.5.3.

3.2 Eisenstein Case

Recall that π=π(1,1) is induced from the trivial character of B(A). Then the corresponding

L-function

L(1/2,π⊗χ) = L(1/2,χ)2.

Therefore, in order to prove Theorem 0.3.4, we only need to give a subconvex bound for

L(1/2,π⊗χ). We choose the local data as in the previous section. Then the local estimation

Proposition 3.1.1 is still valid. For this choice, the test function ϕ0 is K f -invariant. We need a

proposition similar to Proposition 3.1.2.

Proposition 3.2.1. Suppose π = π(1,1) is Eisenstein. For the ϕ chosen as above, there is an

absolute constant δ> 0 such that ∀ε> 0

ζ(1/2,ϕ,χ) ¿ε,π Q−δ+ε. (3.2.1)
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3.2. Eisenstein Case

We may choose δ= 1−2θ

12
, or

25

384
using the best known result of [4] i.e. θ = 7/64.

The truncation on the integral works the same way as in the cuspidal case.

Lemma 3.2.2. If χ(y) = |y |iτ for some τ ∈R, then

lχ(ϕ−ϕN ) =
∫

F×\A×
σ∗h(|y |)(ϕ−ϕN )(a(y))χ(y)d×y +Oε(Q

−κ/2 +Q−(1−κ)/2+ε).

Otherwise, the estimation is the same as in Lemma 3.1.3

lχ(ϕ−ϕN ) =
∫

F×\A×
σ∗h(|y |)(ϕ−ϕN )(a(y))χ(y)d×y +O(Q−κ/2).

We are reduced to control

lχ,h(σ′
χ∗ (ϕ−ϕN )) =

∫
F×\A×

h(|y |)σ′
χ∗ (ϕ−ϕN )(a(y))χ(y)d×y.

We write ϕ0 as a sum of ϕ1,∞, ϕ1,1 and ϕ2. Here

ϕ1,∞+ϕ1,1 =ϕ1 =Λ(c,u)(ϕ0)

is the truncated function of ϕ0 defined in Section 6.1. ϕ1,1 is the one-dimensional portion of

ϕ1 defined by

ϕ1,1(g ) = ∑
χ′∈àF×\A×,χ′2=1

〈ϕ1,χ′ ◦det〉
V ol (X (F ))

χ′ ◦det(g ).

Note that ϕ1 is K f -invariant as ϕ0 is, so are ϕ1,∞ and ϕ1,1. Consequently, we write

lχ,h(σ′
χ∗ (ϕ−ϕN )) = lχ,h(σ′

χ∗ (n(T )ϕ1,∞))+ lχ,h(σ′
χ∗ϕ1,1)

+lχ,h(σ′
χ∗ (n(T )ϕ2))− lχ,h(σ′

χ∗ϕ0,N ).

The treatment of lχ,h(σ′
χ ∗ (n(T )ϕ1,∞)) is the same as in the cuspidal case discussed in the

previous section, except that we should extend the estimation of the constant contribution for

ϕ1,∞. This is given in Section 6.3.2, especially by applying Corollary 6.3.2 to ϕ1 =ϕ2 =ϕ1,∞.

We thus have

lχ,h(σ′
χ∗ (n(T )ϕ1,∞)) ¿F,ε,κ max

(
EQ−(1/4−θ/2)+ε,E 1/2Q(κ−1)/4+ε

)
×

max
v1,v ′

1,v2,v ′
2∈IE

‖∆5/4+2ε
∞

(
a(
$v1

$v ′
1

)ϕ1,∞a(
$v2

$v ′
2

)ϕ1,∞

)
‖1/2

+QεE−1+ε‖ϕ1,∞‖1/2−ε‖∆∞.ϕ1,∞‖1/2+ε

+Q(κ−1)/2‖ϕ1,∞‖3/8−ε‖∆2
∞.ϕ1,∞‖5/8+ε.
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Chapter 3. Outline of the Proof

Together with Corollary 6.1.5 (with r = 1,2 there), we get

Lemma 3.2.3.

lχ,h(σ′
χ∗ (n(T )ϕ1,∞)) ¿F,ε,κ,ϕ0 c1/2+εmax

(
EQ−(1/4−θ/2)+ε,E 1/2Q(κ−1)/4+ε

)
+cεQεE−1+ε+ cεQ(κ−1)/2.

In order to estimate lχ,h(σ′
χ∗ϕ1,1), we first estimate the coefficients 〈ϕ1,χ′ ◦det〉. Note that

〈ϕ0,χ′ ◦det〉 = 0

since ϕ0 is an Eisenstein series, thus orthogonal to the one-dimensional representations. We

deduce

|〈ϕ1,χ′ ◦det〉| = |〈ϕ2,χ′ ◦det〉| ≤
∫
S
|ϕ2(g )|d g ,

where S is a Siegel domain containing a fundamental domain of Z (A)G(F )\G(A). Recall

ϕ2(g ) = ∑
γ∈B(F )\G(F )

ϕ0,N (γg )u(H(γg )− c).

For c > 1, the number of γ ∈ B(F )\G(F ) s.t. ∃g ∈ S , H(γg ) > c is bounded by a constant

depending only on F , thus using (2.1.3) we get∫
S
|ϕ2(g )|d g ¿F

∫
|y |>c,k∈K

ϕ0,N (a(y)k)
d×y

|y | dk ¿ε c−1/2+ε‖ϕ0‖2
Eis.

Combining with the trivial bound lχ,σ∗h(χ′ ◦det) ¿F,κ logQ, we obtain

Lemma 3.2.4.

lχ,h(σ′
χ∗ϕ1,1) = lχ,σ∗h(ϕ1,1) ¿F,ε c−1/2+εQε.

The implicit constant depends on the norm of ϕ0 in the induced model.

Bounding lχ,h(σ′
χ∗ϕ0,N ) is just an easy consequence of (2.1.3).

Lemma 3.2.5.

lχ,h(σ′
χ∗ϕ0,N ) = lχ,σ∗h(ϕ0,N ) ¿F,ε Q(κ−1)/2+ε.

The implicit constant depends on some Sobolev norm of ϕ0 in the induced model.

It remains the term lχ,h(σ′
χ∗(n(T )ϕ2)) = lχ,σ∗h(n(T )ϕ2). The following idea is again to use the

equidistribution property of the torus {a(y)n(T )}. Note from Corollary 2.3.3 that ϕ0,N (g ) ¿F

H(g )1/2 log H(g )‖C 3/4+ε
K∞ . f0‖. By Corollary 2.3.2 and (2.1.3), we have ϕ0

0,N (g ) = 2γF H(g )1/2 +
hF H(g )1/2 log H(g ), where ϕ0

0 =ϕ0
~0

is defined in Corollary 2.3.2. Thus for some constant cF
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3.2. Eisenstein Case

depending only on F ,

|ϕ0,N (g )|¿F ‖C 3/4+ε
K∞ . f0‖ϕ0

0,N (g ), H(g ) ≥ cF .

If we decompose ϕ0
0 =ϕ0

1,∞+ϕ0
1,1 +ϕ0

2 as what we did for ϕ0, then we have

|ϕ2(g )|¿F ‖C 3/4+ε
K∞ . f0‖ϕ0

2(g ),∀c ≥ cF .

Consequently, |lχ,σ∗h(n(T )ϕ2)|¿F ‖C 3/4+ε
K∞ . f0‖lσ∗h(n(T )ϕ0

2). Thus we have a bound

|lχ,σ∗h(n(T )ϕ2)|¿F ‖C 3/4+ε
K∞ . f0‖× (|lσ∗h(n(T )(ϕ0

0 −ϕ0
0,N )|

+|lσ∗h(ϕ0
0,N )|+ |lσ∗h(n(T )ϕ0

1,∞)|+ |lσ∗h(ϕ0
1,1)|).

The discussion in Section 5.4 applies to lσ∗h(n(T )(ϕ0
0−ϕ0

0,N ), after discarding the amplification.

Thus

|lσ∗h(n(T )(ϕ0
0 −ϕ0

0,N )|¿ε Q(κ−1)/2+ε.

We have already seen that ϕ0
0,N (a(y)) = 2γF |y |1/2 +hF |y |1/2 log H(g ), thus

|lσ∗h(ϕ0
0,N )|¿F,ε Q(κ−1)/2+ε.

The method of Lemma 3.2.4 applies to lσ∗h(ϕ0
1,1) also gives

|lσ∗h(ϕ0
1,1)|¿F,ε c−1/2Qε.

The method of Lemma 3.2.3 applies to lσ∗h(n(T )ϕ0
1,∞) gives

lσ∗h(n(T )ϕ0
1,∞) ¿F,ε,κ,ϕ0

0
c1/2+εmax

(
EQ−(1/4−θ/2)+ε,E 1/2Q(κ−1)/4+ε

)
+cεQεE−1+ε+ cεQ(κ−1)/2.

We obtain

Lemma 3.2.6.

|lχ,σ∗h(n(T )ϕ2)|¿F,ε,κ,ϕ0 c1/2+εmax
(
EQ−(1/4−θ/2)+ε,E 1/2Q(κ−1)/4+ε

)
+cεQεE−1+ε+ cεQ(κ−1)/2 +Q(κ−1)/2+ε+ c−1/2Qε.

Collecting Lemma 3.2.2, 3.2.3, 3.2.4, 3.2.5 and 3.2.6, we are reduced to solving

min
κ,E ,c

max(Q−κ/2,Q(κ−1)/2,c1/2EQ−(1−2θ)/4,c1/2E 1/2Q(κ−1)/4,E−1,c−1/2) =Q− 1−2θ
12 .
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Chapter 3. Outline of the Proof

An optimal choice of parameters is given by

κ= 1+2θ

6
,E =Q

1−2θ
12 ,c =Q

1−2θ
6 .

Proposition 3.2.1 follows.
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4 Choice of ϕ0 and Local Estimation

In this chapter we define the vector ϕ of Proposition 3.1.1. Recall that it is of the shape

ϕ= n(T )ϕ0. Here ϕ0 ∈π is a pure tensor corresponding to W0(g ) =∏
v

W0,v (gv ) in the Kirillov

model of π. Recall also that we only need to specify W0,v for every place v ∈VF .

4.1 Archimedean places

We first make the notion “Analytic Conductor” precise. The general definition, for both GL1

and GL2 representations, is given in 3.1.8 [28]. In this paper, we’re particularly interested in

GL1 case. Using the notations from 3.1.8 [28] and from Chapter XIV § 4 [26], one easily sees

that if Fv =R and χv (a) = sgn(a)m |a|iϕ, then µχv =
iϕ+m

2
,m ∈ {0,1} thus we may define

C (χv ) = 2+| iϕ+m

2
|.

If Fv =C and χv (a) = (
a

|a| )
m |a|i 2ϕ, then µχv = iϕ+|m|/2, we may define

C (χv ) = (2+|iϕ+|m|/2|)2.

Lemma 4.1.1. Letφ ∈ S(F×
v ) (i.e. φ as well as all its derivatives decay faster than any polynomial

of |t−1| as |t |→+∞ and more rapidly than any polynomial of |t | as |t |→ 0). Let C =C (χv ) be

the analytic conductor of χv . Set, for t ∈ F×
v ,

Gφ(χv , t ) =
∫

Fv

φ(x)ψv (t x)χv (x)d x.

Then for any N ∈N,1/2 ≤α<β< 1

|Gφ(χv , t )|¿φ,N ,α,β min((
1+|t |

C
)N , (

C

|t | )
N ,C 1/2−α|t |α−β).
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Chapter 4. Choice ofϕ0 and Local Estimation

This is essentially the Lemma 3.1.14 of [28]. Let’s recall the proof: Note that C is comparable

with the maximal absolute value among eigenvalues of χv for a fixed F×
v -invariant basis of

differential operators of degree [Fv :R]. The first two bounds then follow from two different

kinds of integration by parts. For the third bound, apply the local functional equation as in

Tate’s thesis, we obtain

Gφ(χv , t ) =
∫

Fv
Φ(x + t )χ−1

v (x)|x|αd×x

γ(χv ,ψv ,1−α)

where Φ=�φ| · |α ∈ S(Fv ) is the Fourier transform of φ(x)|x|α. Recall if we fix a small ε> 0, and

let α ∈ [1/2,1−ε], by (3.5) of [28], and the third property after Theorem 3 of §3 [26]

|γ(χv ,ψv ,1−α)| 'ε Cα−1/2

Then after some evident change of variables, one gets

|Gφ(χv , t )| 'ε C 1/2−α|t |α|
∫

Fv

Φ(t x)|x −1|α−1χ−1(x −1)d x|

But for any β> 0, Φ(x) ¿β,φ |x|−β, thus

|Gφ(χv , t )|¿ε,β,φ C 1/2−α|t |α−β
∫

Fv

|x|−β|x −1|α−1d x

The integral converges if 1/2 ≤α<β< 1. Under this condition, we get

|Gφ(χv , t )|¿α,β,φ C 1/2−α|t |α−β

Corollary 4.1.2. For any ε > 0 there is a C0 depending only on φ and ε, such that for C ≥ C0

there exists t with |t | ∈ [C 1−ε,C 1+ε], s.t. |Gφ(χ, t )| ≥φ,ε C−1/2−ε.

Apply the Plancherel formula for L2(Fv )∫
Fv

|φ(x)|2d x =
∫

Fv

|Gφ(χv , t )|2d t ¿φ,N

∫
|t |≤C 1−ε

(
1+|t |

C
)2N d t +

∫
|t |≥C 1+ε

(
C

|t | )
2N

+(C 1+ε−C 1−ε) max
|t |∈[C 1−ε,C 1+ε]

|Gφ(χv , t )|2

The result follows by taking N = 1+d 1

2ε
e (N > 1/2+ 1

2ε
suffices) for example.

Choose W0,v ∈ S(F×
v ) and Tv = t as in the above corollary, s.t.

ζ(1/2,n(Tv )W0,v ,χv ,ψv ) Àε,W0,v C (χv )−1/2−ε (4.1.1)

Corollary 4.1.3. For any 0 < ε< 1/2, and any σ ∈R varying in a compact set

|Gφ(χv | · |σv , t )|¿ε,φ min(C−1/2+ε, |t |−1/2+ε)
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4.2. Non-Archimedean places

We have |Gφ(χv , t)| ¿α,β,N ,φ min(C 1/2−α|t |α−β, |t |N C−N ) ≤ C− N (β−1/2)
N+β−α . Take α = 1/2, β ap-

proaching 1 and N big enough. Considering Gφ(χv | · |σv , t ) =Gφ|·|σv (χv , t ) gives the result.

Remark 4.1.4. If C (χv ) < C0, note that Gφ(χv , t) can be extended to an analytic function on

t and χv not identically 0 for any fixed χv . Since C (χv ) ≤C0 defines a compact region for χv ,

a routine argument gives the existence of a finite set A ⊂ R depending on φ and C0 s.t. for

any such χv , ∃t ∈ A, |Gφ(χv , t)| Àφ,ε 1. Thus Corollary 4.1.2 remains true if the condition

|t | ∈ [C 1−ε,C 1+ε] is replaced by |t | ∈ [C /2,2C ]. We note that C (χv ) > 1 by definition. We take

Tv = t accordingly.

4.2 Non-Archimedean places

We study the local analog of the generalized Gauss sum as in the previous subsection. For

simplicity, we assume that the conductor of ψv is Ov . Take the convention n($0
v ) = 1.

Lemma 4.2.1. Let W transform as ωv under translations by a(O×
v ). Suppose the conductor of

ωvχv is 1+$r
vOv and ℜ(s) =σ. Then if r > 0, l > 0

|ζ(s +1/2,n($−l
v )W,χv ,ψv )| = q−r /2q−σ(l−r )|W ($l−r

v )|.

If r > 0, l = 0,

ζ(s +1/2,n($−l
v )W,χv ,ψv ) = 0.

If r = 0, l > 0

ζ(s +1/2,n($−l
v )W,χv ,ψv ) =

∞∑
k=l

W ($k
v )χv ($v )k q−sk

v − 1

qv −1
W ($l−1

v )χv ($v )l−1q−s(l−1)
v .

If r = 0, l = 0

ζ(s +1/2,n($−l
v )W,χv ,ψv ) =∑

k
W ($k

v )χv ($v )k q−sk
v .

In fact for r > 0, ζ(1/2,n($−l
v )W,χv ) =W ($l−r

v )χv ($v )l−r
∫
O×

v

ψv ($−r
v y)ωvχv (y)d×y , the inte-

gral being a Gauss sum with absolute value q−r /2. The following corollary is Lemma 11.7 of

[33].

Corollary 4.2.2. Let r be the conductor of ωvχv . If πv is spherical, take W0,v to be the spherical

vector. If πv is ramified, take W0,v (y) =ωv (y)1v(y)=0. Then if r > 0

|ζ(s,n($−r
v )W0,v ,χv ,ψv )| = q−r /2

v .

If r = 0,

ζ(s,W0,v ,χv ,ψv ) = L(s,πv ⊗χv ).
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Chapter 4. Choice ofϕ0 and Local Estimation

As a consequence

∏
v<∞

| L(1/2,πv ⊗χv )

ζ(1/2,n(Tv )W0,v ,χv ,ψv )
| ≤ ∏

v<∞,ωvχv r ami f i ed

1

(1−q−1/2+θ
v )2

C (ωvχv )1/2

¿ε,π,F
∏

v<∞
C (χv )1/2+ε. (4.2.1)

Note that (3.1.1) is established by (4.1.1) and (4.2.1) once T = (Tv )v andϕ= n(T )ϕ0 are chosen,

where ϕ0 corresponds to (W0,v )v .

Proposition 4.2.3. The function ϕ0 corresponding to
∏

v
W0,v in the Kirillov model of π verifies

ϕ0 ∈ R s .

This is an obvious consequence of the discussion in the section 1.8. In fact it is easy to verify

ϕ0 ∈ R∞
0 , then we apply Corollary 1.6.12.

4.3 A Calculation in Unitary Principal Series

First consider a finite place. We are interested in consequences of Lemma 4.2.1 in the case of a

unitary principal series representation. We may assume v(ψ) = 0. For simplicity of notations,

we omit the subscript v . Assume that the representation takes the form π=π(ξ,ξ−1) for some

unramified unitary character ξ of F×. For an integer m ≥ 0, we are interested in vectors of π

invariant by K 0[m]. Let Wπ denote the Whittaker model of π.

Lemma 4.3.1. If W ∈Wπ is invariant by K 0[m], then we have

|W (a(y))|¿ (v(y)+1)(m +1)qm/2‖W ‖|y |1/21v(y)≥0,

the implicit constant being absolute. As a consequence,

|l |·|s (n(ω̄−l )W )|¿ε (m +1)qm/2q−l (1−ε)‖W ‖,∀ε> 0,ℜ(s) = 1/2+ε. (4.3.1)

Recall that for any f ∈πK 0[m], there is a sequence of complex numbers fn ,0 ≤ n ≤ m s.t.

f |B(O )w N (O )= f0, f (

(
1 0

x 1

)
) = fn ,∀x ∈On .

Therefore, if

W (a(y)) =W f (a(y)) = ξ−1(y)|y |1/2
∫

F
f (wn(x))ψ(−x y)d x
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4.3. A Calculation in Unitary Principal Series

denotes the Whittaker function of f , then we obtain, with t = ξ(ω̄)

W (a(y)) = ξ−1(y)|y |1/21v(y)≥0( f0 −q−1 fv(y)+1t 2(v(y)+1) + (1−q−1)
v(y)∑
n=1

fn t 2n).

If v(y) ≥ m, we rewrite

W (a(y)) = ξ−1(y)|y |1/21v(y)≥0( f0 + (1−q−1)
m−1∑
n=1

fn t 2n+

(
t 2m − t 2(v(y)+1)

1− t 2 −q−1 t 2m − t 2(v(y)+2)

1− t 2 ) fm).

If t = 1 we can analytically continue the above formula. By the discussion in the section 3.1.6

of [28], we have

‖W ‖2 = (1−q−1)−1(| f0|2 +
m−1∑
n=1

| fn |2q−n(1−q−1)+| fm |2q−m).

We apply Cauchy-Schwarz and get the lemma.

We apply the second case of Lemma 4.2.1 to the above W =W f and obtain for ℜ(s) = 1/2+ε/2

(4.3.1) by noting

|l |·|s (n(ω̄−l )W )| ≤ (
∞∑

k=l
|W (ω̄k )|2)1/2(

∞∑
k=l

q−k(1−ε))1/2 +|W (ω̄l−1)|q−(l−1)/2

q −1
.

The analog of (4.3.1) at an infinite place is just a consequence of integration by parts. Take the

case of a real place for example, if W ∈W ∞
π then we know that W (a(y)) is of rapid decay as

|y |→∞, controlled by |y |1/2 as |y |→ 0, as well as X .W for any X in the enveloping algebra of

G . Consequently

l |·|
s
(n(t )W ) =−1

t

∫
F

n(t ).U .W (a(y))|y |s−2 + (s −1)n(t ).W (a(y))|y |s−2d y,ℜ(s) = 1/2+ε.

The right side converges thanks to the upper bounds of W (a(y)),U .W (a(y)), where recall

U =
(

1

0

)
. We then use the local functional equation to see

l |·|
s−1

(n(t )W ) = γ(s −1/2,π,ψ)−1l |·|
1−s

(w.n(t ).W ).

The gamma factor γ(s −1/2,π,ψ) = γ(s −1/2,ξ,ψ)γ(s −1/2,ξ−1,ψ) is of size ³ε C (ξ)1−2ε|s|1−2ε,

while the integral is bounded, separating the contributions from |y | ≤ 1 and from |y | > 1,

as ¿ε ‖w.n(t).W ‖+‖T.w.n(t).W ‖, with T =
(

0 1

0 0

)
in the Lie algebra of G . We do similar
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Chapter 4. Choice ofϕ0 and Local Estimation

estimation for n(t ).U .W . Using Theorem 1.7.1, We thus find

|l |·|s (n(t )W )|¿ε |t |−1|s|−2+εC (ξ)−1+ε‖∆.W ‖,∀ε> 0,ℜ(s) = 1/2+ε. (4.3.2)

Finally, note that if v is a complex place, the proof of Theorem 1.7.1 given here implies that we

should replace ‖∆.W ‖ by ‖∆8.W ‖ in (4.3.2).
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5 Global Estimation: Cuspidal Case

5.1 Truncation

The goal of this section is to establish Lemma 3.1.3.

Fix a function h0 ∈ C∞(R+) supported in (0,2] such that h0 |(0,1]= 1 and 0 < h0 < 1. Denote

by M (·) the Mellin transform. For any A > 0, let h0,A(t) = h0(t/A). The following relation is

immediate:

|M (σ∗h0,Q−κ−1 )(s)| ≤ 4|ℜ(s)|Q−(κ+1)ℜ(s)|M (h0)(s)|.
For any t > 0, choose yt ∈A× such that |yt | = t , and define

f (t ) =
∫

F×\A(1)
ϕ(a(y yt ))χ(y yt )d×y,

then

lχ,σ∗h0,Q−κ−1 (ϕ) =
∫ +∞

0
σ∗h0,Q−κ−1 (t ) f (t )d×t .

Note that M ( f )(s) = lχ|·|
s
(ϕ), Mellin inversion gives,

|lχ,σ∗h0,Q−κ−1 (ϕ)| = |
∫
ℜ(s)=−1/2−ε

M (σ∗h0,Q−κ−1 )(−s)lχ|·|
s
(ϕ)

d s

2πi
|

¿Q−(κ+1)(1/2+ε)
∫
ℜ(s)=−1/2−ε

|M (h0)(−s)lχ|·|
s
(ϕ)|d s.

According to (1.2.7), one can write

lχ|·|
s
(ϕ) = L(π⊗χ, s +1/2)

∏
v |∞

lχv |·|sv (n(Tv )W0,v )
∏

v<∞
lχv |·|sv (n(Tv )W0,v )

L(πv ⊗χv , s +1/2)

= L(S)(π⊗χ, s +1/2)
∏
v∈S

lχv |·|sv (n(Tv )W0,v ),

where S is the subset of places v for which Tv 6= 0. From Corollary 4.1.3 and Corollary 4.2.2, one

sees that for each v ∈ S, |lχv |·|sv (n(Tv )W0,v )|¿ε,ϕ0 C (χv )−1/2+ε and the product of the implicit

51



Chapter 5. Global Estimation: Cuspidal Case

constants tends to 0 as S increases. So∏
v∈S

lχv |·|sv (n(Tv )W0,v ) ¿ε,ϕ0 Q−1/2+ε.

By the convexity bound together with bounds towards the Ramanujan-Petersson conjecture,

we have

L(S)(π⊗χ, s +1/2) ¿ε (1+|s|)2C (π⊗χ)1/2+ε,ℜ(s) =−1/2−ε.

Note that C (π⊗χ) ¿C (π)C (χ)2, we finally get

lχ,σ∗h0,Q−κ−1 (ϕ) ¿ε,ϕ0,h0 Q−κ/2+ε.

Similar argument, using Mellin inversion for ℜs = 1/2+ε, gives

lχ,σ∗(1−h0,Qκ−1 )(ϕ) ¿ε,ϕ0,h0 Q−κ/2+ε.

Lemma 3.1.3 is proved by taking h = h0,Qκ−1 −h0,Q−κ−1 .

We will need to exploit the Mellin transform of h further. Since for any h ∈Cc (R+)

M (h)(s) = (−1)n M (h(n))(s +n)

s(s +1) · · · (s +n −1)
,

we have, for h = h0,A ,

M (h(n))(s) = As−nM (h(n)
0 )(s).

For h = h0,Qκ−1 −h0,Q−κ−1 , we thus have for n ≥ 1

M (h)(s) = (−1)n (Q(κ−1)s −Q−(κ+1)s)M (h(n)
0 )(s +n)

s(s +1) · · · (s +n −1)
.

Note that h(n)
0 is supported in [1,2] and

|M (h)(s)| ≤ 2κ|s| logQ max(Q(κ−1)ℜ(s),Q−(κ+1)ℜ(s))‖h(n)
0 ‖∞

∫ 2
1 tℜ(s)+nd×t

|s(s +1) · · · (s +n −1)|

¿ℜ(s)+n
2κ logQ‖h(n)

0 ‖∞Q(κ−1)ℜ(s)

|(s +1) · · · (s +n −1)| ,ℜ(s) ≥ 0, (5.1.1)

¿ℜ(s)+n
2κ logQ‖h(n)

0 ‖∞Q(−κ−1)ℜ(s)

|(s +1) · · · (s +n −1)| ,ℜ(s) < 0. (5.1.2)
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5.2. Estimation of the Constant Contribution

5.2 Estimation of the Constant Contribution

Writing the Fourier expansion

ϕ0(g ) = ∑
α∈F×

W0(a(α)g ),

we obtain

(a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)N (g ) = ∑
α∈F×

W0(a(α)g a(
$v1

$v ′
1

))W0(a(α)g a(
$v2

$v ′
2

)).

As a consequence, we get a Rankin-Selberg like equality for ℜ(s) big enough,

l |·|
s
((a(

$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)N ) =
∫
A×

W0(a(y)a(
$v1

$v ′
1

))W0(a(y)a(
$v2

$v ′
2

))|y |sd×y. (5.2.1)

This integral splits into product of local factors∫
A×

W0(a(y)a(
$v1

$v ′
1

))W0(a(y)a(
$v2

$v ′
2

))|y |sd×y = ∏
v |∞

∫
F×

v

|W0,v (a(y))|2|y |sv d×y ·

L(s +1,π× π̄)

ζF (2s +2)

∏
v<∞

ζv (2s +2)
∫

F×
v

W0,v (a(y)a(uv ))W0,v (a(y)a(u′
v ))|y |sv d×y

L(s +1,πv × π̄v )
.

Here, uv ,u′
v are suitably chosen according to

{
v1, v ′

1, v2, v ′
2

}
. For almost all v , the local term

equals 1. This identity admits meromorphic continuation to C and is holomorphic for ℜ(s) > 0.

By the convergence of L(s,π× π̄), we have

L(s +1,π× π̄)

ζF (2s +2)
¿ε 1, for ℜ(s) = ε> 0.

If v is a ramified place for π, we can always say that the corresponding local factor is bounded

by some constant depending only on ℜ(s),π. So we may only consider unramified places of π.

On such a place, W0,v is spherical and is the new vector (c.f. (1.5.2)). If α1,v ,α2,v are the Satake

parameters (|α1,vα2,v | = 1), then

W0,v (a($m
v )) = q−m/2

v

αm+1
1,v −αm+1

2,v

α1,v −α2,v
,m ≥ 0,

W0,v (a($m
v )) = 0,m < 0.

Hence the corresponding local term is explicitly computable. We do the calculation of one

case and leave the others to the reader. Let uv =$v ,u′
v = 1 (i.e. v = v1 and v 6= v ′

1, v2, v ′
2), then

ζv (2s +2)
∫

F×
v

W0,v (a(y)a(uv ))W0,v (a(y)a(u′
v ))|y |sv d×y

L(s +1,πv × π̄v )
= (trv −nv trv q−s−1

v )q−1/2
v

1−q−2s−2
v
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Chapter 5. Global Estimation: Cuspidal Case

where trv =α1,v +α2,v ,nv =α1,vα2,v . Let max(|α1,v |, |α2,v |) = qθv
v , then |trv |¿ qθv

v we get, for

ε> 0 small,

| (trv −nv trv q−s−1
v )q−1/2

v

1−q−2s−2
v

|¿ q−1/2
v |trv |,ℜ(s) = ε.

Similarly, we deal with all the other cases and get

∏
v<∞

ζv (2s +2)
∫

F×
v

W0,v (a(y)a(uv ))W0,v (a(y)a(u′
v ))|y |sv d×y

L(s +1,πv × π̄v )
¿ε,π

∏
v=v1,v ′

1,v2,v ′
2

q−1/2
v |trv |.

Inserting it to (5.2.1), we obtain

l |·|
s
((a(

$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)N ) ¿ε,π
∏

v=v1,v ′
1,v2,v ′

2

q−1/2
v |trv |,ℜ(s) = ε> 0.

Note that

Scst (v1, v ′
1, v2, v ′

2) =
∫
ℜ(s)=ε

M (h)(−s)l |·|
s
((a(

$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)N )
d s

2πi
,

which with (5.1.2) gives

Scst (v1, v ′
1, v2, v ′

2) ¿F,π,ε κ logQQ(1+κ)εE−2
∏

v=v1,v ′
1,v2,v ′

2

|trv |.

Lemma 5.2.1. We have Ramanujan conjecture on average, i.e.∑
qv∈IE

|trv |¿ε ME Eε

In fact, by the theory of Rankin-Selberg, L(s,π× π̄) is meromorphic and only has possible

simple poles at s = 0,1. This implies
∑

α ideal of F,NF (α)≤N
|λπ(α)|2 ¿ε N 1+ε,∀ε> 0. Here, λπ(α) is

the Hecke eigenvalues which coincides with trv when α is the prime ideal corresponding with

v . Using (3.1.9), we obtain Lemma 3.1.5 from Lemma 5.2.1.

5.3 Estimation of the Cuspidal Constribution

The goal of this section is to establish Lemma 3.1.6. Recall that we are reduced to estimate

Scusp (v1, v ′
1, v2, v ′

2) = ∑
π′cuspidal

l h(n(T )Pπ′(a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0)).

The projector Pπ′ is realized by the choice of a basis of π′, denoted by B(π′; v1, v ′
1, v2, v ′

2). It is

determined by the choices of local basis of π′
v , denoted by Bv (π′; v1, v ′

1, v2, v ′
2). When there is
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5.3. Estimation of the Cuspidal Constribution

no confusion, we may write them shortly as B resp. Bv . There are related with each other by

B =⊗′
vBv ,e ↔ (We,v )v .

Here, We,v is the component at v of e in the Kirillov model. We may also write it as ev if there

is no confusion. According to Remark 1.6.4, we only need to choose Bv for v <∞.

Definition 5.3.1. Denote, for any subgroup H ⊂ G(Fv ) and g ∈ G(Fv ), H g = g H g−1. Then

the Harish-Chandra’s function Ξ
g0
v associated to the Borel subgroup B(Fv )g0 is given by, with

notations in Section 1.9

Ξ
g0
v (g ) =Ξv (g−1

0 g g0).

Definition 5.3.2. Suppose v(π′) = m. For any integer n, recall that the space of K 0
v [n]-invariant

vectors of π′
v is of dimension max(n −m +1,0). A standard basis of level n consists of, for each

integer l s.t. m ≤ l ≤ n, a vector invariant by K 0
v [l ] and orthogonal to all the vectors invariant

by K 0
v [l −1], and vectors orthogonal to the space of K 0

v [n]-invariant vectors. A nice basis of level

n w.r.t. g ∈Gv consists of the g translates of the vectors of a standard basis of level n. Define the

maximal compact subgroup K ∗
v of Gv associated with the above nice basis to be

K ∗
v = K g

v .

If Bv is a standard or nice basis of level n, we write B∗
v to be the elements in Bv invariant by

K 0
v [n] or its corresponding translate. We also call the basis as in Remark 1.6.4 standard. At an

infinite place, we define B∗
v =Bv . We write

B∗ =⊗′
vB∗

v

If Bv is of level n, then∑
ev∈B∗

v

dim(Kv ev ) ¿ qn
v (5.3.1)

We choose Bv and K ∗
v explicitly as follows:

Case 1: v is different from v1, v ′
1, v2, v ′

2 resp. v = v1 = v2 resp. v = v ′
1 = v ′

2. Since a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0

is K 0
v [v(ϕ0)] resp. K 0

v [v(ϕ0)]a($v ) resp. K 0
v [v(ϕ0)]a($−1

v ) invariant, we take Bv to be a standard

basis of level v(ϕ0) resp. a nice basis of level v(ϕ0) w.r.t. a($v ) resp. a nice basis of level v(ϕ0)

w.r.t. a($−1
v ).

Case 2: v = v1 or v2 resp. v = v ′
1 or v ′

2. Since a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0 is K 0
v [v(ϕ0)+1]a($v ) resp.

K 0
v [v(ϕ0)+1] invariant, we take Bv to be a nice basis of level v(ϕ0)+1 w.r.t. a($v ) resp. a

standard basis of level v(ϕ0)+1.

Case 3: v = v1 = v ′
2 or v = v2 = v ′

1. Since a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0 is K 0
v [v(ϕ0)+2]a($v ) invariant, we

take Bv to be a nice basis of level v(ϕ0)+2 w.r.t. a($v ).
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Then we rewrite

Scusp (v1, v ′
1, v2, v ′

2) =∑
π′

∑
e∈B∗

〈a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0,e〉l h(n(T )e). (5.3.2)

We have

l h(n(T )e) =
∫
ℜ(s)=0

M (h)(−s)l |·|
s
(n(T )e)

d s

2πi
, (5.3.3)

and since the vector e is a pure tensor,

l |·|
s
(n(T )e) = L(s +1/2,π′)

∏
v |∞

l |·|
s
(n(Tv )We,v )

∏
v<∞

l |·|
s
(n(Tv )We,v )

L(s +1/2,π′
v )

.

The convexity bound gives

|L(s +1/2,π′)|¿ε C (π′⊗| · |s)1/4+ε¿ (1+|s|)1/2+εC (π′)1/4+ε,∀ε> 0.

Lemma 5.3.3. Let I1 be the set of places v s.t. v ∈ {
v1, v ′

1, v2, v ′
2

}
and πv is unramified, π′

v is

ramified. Let I2 be the set of places v s.t. v ∈ {
v1, v ′

1, v2, v ′
2

}
and πv ,π′

v are unramified. Then we

have ∀ε> 0

|l |·|s (n(T )e)| ≤ε,θ,ϕ0 (1+|s|)1/2+ε|T |−1/2+θ+ελ3/4+ε
e,∞

∏
v∈I1

q v(π′)/4+ε
v

∏
v∈I2

dim(K ∗
v ev )1/2.

Write

Mv (e) = sup
s∈iR

|C (π′
v )1/4+εl |·|

s
(n(Tv )We,v )|,∀v |∞,

Mv (e) = sup
s∈iR

|C (π′
v )1/4+ε l |·|

s
(n(Tv )We,v )

L(s +1/2,π′
v )

|,∀v <∞.

To prove Lemma 5.3.3, we estimate the local terms Mv (e) case by case. This is technical and

will be given in the following subsections. Lemma 5.3.3 will be a consequence of Corollary

5.3.5, 5.3.8, Lemma 5.3.6, 5.3.9, 5.3.10, as well as Lemma 1.5.1 and the remark following it (with

‖e‖X (F ) = 1). Recall the following bound resulting from (5.1.1)∫
iR
|M (h)(−s)|(1+|s|)1/2+ε d s

2πi
¿ε 2κ logQ‖h(3)

0 ‖∞.

From it we obtain

(5.3.2) ≤∑
π′

∑
e
|〈a(

$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0,e〉|× |l h(n(T )e)|

¿F,ε,θ,ϕ0,h0 |T |−1/2+θ+ε‖Pcusp

(
∆5/4+2ε
∞

(
a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0

))
‖×
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√∑
π′

∑
e∞∈⊗v |∞B∗

v

λ−1−ε
e,∞

∏
v<∞,Tv 6=0

(v(ϕ0)+1)
∏

v<∞,Tv=0,v(ϕ0)>0
(v(ϕ0)+3)S(I1, I2) (5.3.4)

with

S(I1, I2) = ∏
v∈I1

∑
ev∈B∗

v

q v(π′)/2+ε
v

∏
v∈I2

∑
ev∈B∗

v

dim(K ∗
v ev ).

It is easy to see that ‖Pcusp

(
∆5/4+2ε
∞

(
a(
$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0

))
‖ is bounded above by some Sobolev

norm of ϕ0. In a typical situation as mentioned in Remark 3.1.10, distinguishing v(π′) = 0 and

v(π′) = 1 and using (5.3.1) we get

S(I1, I2) ¿ ∏
v∈{v1.v ′

1,v2,v ′
2}

qv ¿ E 4.

Therefore

(5.3.4) ¿ϕ0 E 2(trace of ∆−1−ε
∞ )1/2,

which proves the first part of Lemma 3.1.6. The second part follows from similar bounds for

S(I1, I2) in the other 6 situations mentioned in Remark 3.1.10.

5.3.1 At v such that Tv 6= 0

In this case, Bv is given by the first case of Case 1, hence is standard. Note that

|l |·|s (n(Tv )We,v )|2 =
∫

F×
v

〈n(−Tv )a(y)n(Tv )We,v ,We,v 〉|y |sd×y.

By Theorem 1.9.1, we get,

|l |·|s (n(Tv )We,v )|2 ≤ Av (ε)dim(Kv ev )‖We,v‖2
∫

F×
v

Ξv (n(−Tv )a(y)n(Tv ))1−2θ−εd×y. (5.3.5)

Lemma 5.3.4. For any ε> 0, we have

|l |·|s (n(Tv )We,v )|¿ε,θ |Tv |−1/2+θ+ε
v dim(Kv ev )1/2‖We,v‖.

Corollary 5.3.5. There exist a constant C (θ,ε) depending only on θ and ε s.t.

If v |∞, then we have

Mv (e) ≤C (θ,ε)λ3/4+ε
e,v |Tv |−1/2+θ+ε

v ‖We,v‖.

If v <∞, then

Mv (e) ≤C (θ,ε)|Tv |−1/2+θ+ε
v q3v(ϕ0)/4

v ‖We,v‖.
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Note that dim(Kv ev ),C (π′
v ) ¿λe,v if v |∞, and ev is K 0

v [v(ϕ0)] invariant by the choice of B∗
v ,

v(π′) ≤ v(ϕ0) if v <∞, we deduce the corollary from the lemma by noting that

[Kv : K 0
v [v(ϕ0)]] ¿ q v(ϕ0)

v .

Let us now prove Lemma 5.3.4 place by place.

At a Real Place : Fv =R

Recall the (bi-Kv -invariant,

(
−1 0

0 1

)
-invariant) Harish-Chandra’s function as in [15] 5.2.2 is

given by:

Ξv (

(
er /2 0

0 e−r /2

)
) =P−1/2(coshr ),r > 0.

For some absolute constants α,β> 0, we have

P−1/2(coshr ) ≤ e−r /2(α+βr ).

We make a change of variable t = y + y−1

2
and get

∫
R×
Ξv (n(−Tv )a(y)n(Tv ))1−2θd×y

≤ 2(1+T 2
v )−

1−2θ
2 (1+ log(1+T 2

v ))1−2θ
∫ ∞

1
(t −1)−1/2+θ(α′+β log t )1−2θ

+t−1/2+θ(α′+β log(t +1))1−2θ d tp
t 2 −1

¿θ (1+T 2
v )−

1−2θ
2 (1+ log(1+T 2

v ))1−2θ.

We get the lemma at v using (5.3.5).

At a Complex Place : Fv =C

The Harish-Chandra’s function as in [15] 5.2.1 is given by:

Ξv (

(
t 0

0 t−1

)
) = 2log t

t − t−1 , t > 0.

When we evaluate it at n(−Tv )a(y)n(Tv ), the corresponding t satisfies

t 2 + t−2 = |y |+ |y |−1 + |Tv |2|y −1|2
|y | .

This expression being invariant by the change of variable y 7→ y−1, we get, with the change of
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5.3. Estimation of the Cuspidal Constribution

variable r = |y |+ |y |−1

2∫
C×
Ξv (n(−Tv )a(y)n(Tv ))1−2θd×y = 2

∫
|y |>1

(
2log t

t − t−1 )1−2θd×y

≤ 2(2(1+|Tv |2))−
1−2θ

2 (log2(1+|Tv |2))1−2θ ·2π
∫ ∞

1
(

1+ log(r+1)
log2p

r −1
)1−2θ drp

r 2 −1

¿θ (1+T 2
v )−

1−2θ
2 (1+ log(1+T 2

v ))1−2θ.

We get the lemma at v using (5.3.5).

At a Non Archimedean Place

The values of the Harish-Chandra function associated with the standard Borel subgroup can

be inferred from the Macdonald formula, Theorem 4.6.6 of [2], by letting α1 → 1,α2 = 1.

Ξv (n) =Ξv (

(
$n

v 0

0 1

)
) = q−n/2

v +nq−n/2
v

1−q−1
v

1+q−1
v

,n ≥ 0

Apply (42) of [15] to the torus T= n(−Tv )Zv Av n(Tv ), the local integral can be calculated and

bounded as, with d = max(0,−v(Tv ))

qdv /2
v

∫
F×

v

Ξv (n(−Tv )a(y)n(Tv ))1−2θd×y

= 2
∑

n>2d
Ξv (n)1−2θ+

d−1∑
n=1

qd−n
v −qd−n−1

v

qd
v −qd−1

v

Ξv (2(d −n))1−2θ

+ 1

qd
v −qd−1

v

Ξv (0)1−2θ+ qd
v −2qd−1

v

qd
v −qd−1

v

Ξv (2d)1−2θ

¿C (θ)max(1, |Tv |)−(1−2θ)(1+max(1, log |Tv |))2−2θ.

We get the lemma at v using (5.3.5) and conclude the lemma. We record the following estima-

tion: for some constant C ′(θ) depending only on θ,

qdv /2
v

∫
F×

v

Ξv (a(y))1−2θd×y ≤ 2
∑

n>0
(n +1)q−n(1/2−θ)

v +1 ≤C ′(θ) (5.3.6)

5.3.2 At v such that Tv = 0, πv ramified

The number of such places is finite and depends only on π. Bv is given by Cases 1,2,3.

Applying (5.3.5) (with Tv = 0) and (5.3.6) we get similarly to section 5.3.1

Lemma 5.3.6. For ∀ε> 0, there is a constant C (θ,ε) s.t.

Mv (e) ≤C (θ,ε)q3v(ϕ0)/4+3/2+ε
v ‖We,v‖.
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This follows from the bound dim(K ∗
v ev ) ≤ q v(ϕ0)+2

v : a suitable translate of ev is at most

K 0
v [v(ϕ0)+2] invariant, and v(π′) ≤ v(ϕ0)+2.

5.3.3 At v such that Tv = 0, πv unramified, π′
v ramified

In that case v ∈ {
v1, v ′

1, v2, v ′
2

}
. So the number of possible places is at most 4 and v(π′) ≤ 2.

By the theory of new vectors and conductor, we know that y 7→ We,v (a(y)) is supported in{
y ∈ F×

v : v(y) = m
}

for some integer m ≥ 0 (c.f. [10]). Therefore, by Cauchy-Schwarz (since

s ∈ iR) we deduce

Lemma 5.3.7. We have

| l |·|
s
(We,v )

L(s +1/2,π′
v )
| = |l |·|s (We,v )| ≤ q−dv /2

v ‖We,v‖.

Corollary 5.3.8. For any ε> 0, there is C (ε) depending only on ε s.t.

Mv (e) ≤C (ε)q v(π′)/4+ε
v q−dv /2

v ‖We,v‖.

5.3.4 At v such that Tv = 0, πv unramified, π′
v unramified

If v ∉ {
v1, v ′

1, v2, v ′
2

}
then ev is spherical and we have

Lemma 5.3.9. For v ∉ {
v1, v ′

1, v2, v ′
2

}
, we have

Mv (e) = ‖We,v‖√
L(1/2,π′

v × π̄′
v )

.

Note that almost all v are in this category.

If v ∈ {
v1, v ′

1, v2, v ′
2

}
, then we apply (5.3.5) and (5.3.6) to get

Lemma 5.3.10. For v ∈ {
v1, v ′

1, v2, v ′
2

}
, there is a constant C (θ,ε) depending only on θ and ε,

Mv (e) ≤C (θ,ε)dim(K ∗
v ev )1/2‖We,v‖
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5.4 Estimation of the Eisenstein Contribution

The goal of this section is to establish Lemma 3.1.7. First we rewrite

SEi s(v1, v ′
1, v2, v ′

2) = ∑
ξ∈áF×\A(1)

∑
Φ∈B(π(ξ,ξ−1))

∫ ∞

−∞
< a(

$v1

$v ′
1

)ϕ0a(
$v2

$v ′
2

)ϕ0,E(Φ, iτ) > ·

l h(n(T )(E(Φ, iτ)−EN (Φ, iτ)))dτ.

The treatment of l h(n(T )(E(Φ, iτ)−EN (Φ, iτ))) is similar to that of l h(n(T )e) in the previous

section, except that we can take θ = 0. One starts with

l h(n(T )(E(Φ, iτ)−EN (Φ, iτ))) =
∫
ℜ(s)À1

M (h)(−s)l |·|
s
(n(T )(E(Φ, iτ)−EN (Φ, iτ)))

d s

2πi

with

l |·|
s
(n(T )(E(Φ, iτ)−EN (Φ, iτ))) = Λ(s + iτ+1/2,ξ)Λ(s − iτ+1/2,ξ−1)

Λ(1+2iτ,ξ2)
(5.4.1)

·∏
v

L(1+2iτ,ξ2
v )l |·|

s
(n(Tv )WΦiτ,v )

L(s + iτ+1/2,ξv )L(s − iτ+1/2,ξ−1
v )

where Λ(·,ξ) is the completed (GL1) L-function. (5.4.1) has an analytic continuation and

admits simple poles at s = 1/2± iτ only when ξ= 1 is the trivial character and τ 6= 0.

If ξ= 1, we shift the integral into ℜs = 1/2+ε. The local factors for which Tv 6= 0 are bounded

by using (4.3.1), (4.3.2). For those for which v ∈ {
v1, v ′

1, v2, v ′
2

}
,Tv = 0, we use instead

|l |·|s (WΦiτ,v )| ≤ ‖WΦiτ,v‖
∫

suppWΦiτ ,v

|y |1+2εd×y.

Together with (5.1.2), we deduce that they are of size Oε(Q
(κ−1)/2+εE).

We then shift the contour to ℜs = 0 if ξ 6= 1, and the estimation is just as in the cuspidal case:

In order to bound the contribution on the line ℜ(s) = 0, we use the bound

|l |·|s (n(Tv )WΦiτ,v )|2 ≤ dim(Kv WΦiτ,v )‖WΦiτ,v‖2
∫

F×
v

Ξv (n(−Tv )a(y)n(Tv ))d×y.

Since Ξv is a matrix coefficient, one always has Ξv ≤ 1, so Ξv ≤Ξ1−ε
v for any ε> 0. We get

|l |·|s (n(Tv )WΦiτ,v )|¿ε (1+|Tv |)−1/2+ε(dim(Kv WΦiτ,v ))1/2‖WΦiτ,v‖.

Similarly to the previous section, using the convexity bounds for GL1 L-functions, the contri-

bution on the line ℜ(s) = 0 is bounded by Oε,F,π,κ,h0 (E 2Q−1/2+ε). This completes the proof of

Lemma 3.1.7.
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6.1 The Truncation Process

We use a truncation process slightly more general than the one in the section 5 of [20]. We’ll

assume the knowledge of that paper and use the results of that section implicitly in the sequel.

Recall the height function H(g ) defined by

g ∈
(

1 x

0 1

)(
a 0

0 b

)
K 7→ H(g ) = |a

b
|.

Definition 6.1.1. A function f : B(F )\G(A) → C is an admissible truncator if its support is

contained in {g : H(g ) ≥ c} for some c > 0 and transforms under Z (A) as a Hecke character ω.

This character is called the central character of f .

Definition 6.1.2. Given an admissible truncator f , the associated truncation operator Λ( f ) is

defined by

Λ( f )(ϕ)(g ) =ϕ(g )− ∑
γ∈B(F )\G(F )

f (γg ),

where ϕ : G(F )\G(A) →C has the same central character as f . The sum over γ is finite.

If ϕ is continuous, and ϕ− f is rapidly decaying in any Siegel domain, then Λ( f )(ϕ) is rapidly

decaying in any Siegel domain, thus lies in L2(G(F )\G(A),ω). Let u ∈C∞(R) be real valued and

satisfy

suppu ⊂ [1,∞),u |[2,∞)= 1,0 ≤ u ≤ 1.

If ϕ is a unitary Eisenstein series constructed from a smooth vector in the induced model,

then f (g ) =ϕN (g )u(H(g )/c) is an admissible truncator for any c > 0, and Λ( f )(ϕ) is rapidly

decaying in any Siegel domain. Similarly, if ϕ=
r∏

i=1
ϕi is a finite product of Eisenstein series

constructed from smooth vectors in the induced model, then f (g ) = u(H (g )/c)
r∏

i=1
ϕi

N (g ) is an
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admissible truncator. We make the convention

Λ(c,u)(ϕ) =Λ( f )(ϕ)

for the above defined f when there is no confusion.

Consider X =
d∏

i=1
Ei , where ∀Ei∃v |∞ s.t. Ei is in some fixed basis of gv . We call d the degree

of X . For any σ ∈ {0,1}d , we write Xσ =
d∏

i=1
Eσ(i )

i , where E 0
i = 1 is the identity in the universal

enveloping algebra. Suppose c > 1.

If H(g ) > 2c, then

X .Λ(c,u)(ϕ)(g ) = X .ϕ(g )−X .(
r∏

i=1
ϕi

N )(g ) = ∑
σi∈{0,1}d ,

∑
i σi=(1,··· ,1)

(
r∏

i=1
Xσi .ϕi (g )−

r∏
i=1

Xσi .ϕi
N (g )

)
.

But it is easy to see

r∏
i=1

Xσi .ϕi −
r∏

i=1
Xσi .ϕi

N =
r∑

j=1
(Xσ j .ϕ j −Xσ j .ϕ j

N )
∏
i< j

Xσi .ϕi
N

∏
i> j

Xσi .ϕi .

Since Xσi .ϕi −Xσi .ϕi
N is rapidly decaying, X .Λ(c,u)(ϕ) is, too. Corollary 2.3.3 gives

X .Λ(c,u)(ϕ)(g ) ¿F,N
∏

i
SInd

l (ϕi )H(g )−N .

Here l depends on the degree of F /Q, d = deg X and N .

If H(g ) ≤ 2c, then

X .Λ(c,u)(ϕ)(g ) = X .ϕ(g )− ∑
σi∈{0,1}d ,

∑
i σi=(1,··· ,1)

Xσ0 .(u(H(g )/c))
r∏

i=1
Xσi .ϕi

N (g )

Lemma 6.1.3. For any X as above, we have

X .H(g ) ¿d H(g ),

where d is the degree of X .

Corollary 6.1.4. We write |σ0| =
d∑

j=1
σ0( j ), then

Xσ0 .(u(H(g )/c)) ¿u,|σ0| 1.

The implicit constant is some Sobolev norm of u of order depending on |σ0|.

In fact, H is the spherical function in IndG
B (1,1), thus if g = znak is the Cartan decomposition
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with k∞ being the infinite part of k,

X .H(g ) = H(g )X .H(k∞).

Then it is routine to check X .H(k∞) ¿d 1 by the compactness of K∞ and the boundedness of

its action on g∞. The corollary follows easily by the chain rule of derivative. We conclude

X .Λ(c,u)(ϕ)(g ) = X .ϕ(g ) ¿F,d ,r

∏
i

SInd
l (ϕi )

(
H(g )1/2 log H(g )

)r
,∀H(g ) ≥ c0.

for some l depending on the degree of F /Q and d = deg X by Corollary 2.3.3.

Proposition 6.1.5. The L2 norm of X .Λ(c,u)(ϕ) satisfies

‖X .Λ(c,u)(ϕ)‖¿ε,F,d ,r

∏
i

SInd
l (ϕi )c(r−1)/2+ε,∀ε> 0.

Where l depends on F,d = deg X ,r .

6.2 Truncation on the Integral

In view of Proposition 2.1.1, we only need to consider the poles of

M (σ∗h0,Q−κ−1 )(−s)lχ|·|
s
(ϕ−ϕN )

at s =−1/2− iτ and 1/2− iτ. Here recall that we are assuming χ(y) = |y |iτ. The residues are

equal to

M (σ∗h0,Q−κ−1 )(1/2+ iτ)ϕN (1)resp.M (σ∗h0,Q−κ−1 )(−1/2+ iτ)ϕN (w),

which, in view of ϕN (g ) =ϕ0,N (g n(T )), (5.1.1) and (5.1.2), are of size

Oε

(
ϕ0,N (1)Q(κ−1)/2+ε)resp.Oε

(
ϕ0,N (wn(T ))Q(κ+1)/2+ε) .

The first one is already absorbed in Oε

(
Q(κ−1)/2+ε). Recall the equation (2.1.3), we deduce that

ϕ0,N (wn(T )) =Oε

(|T |−1+ε)=Oε

(
Q−1+ε) .

Proposition 3.2.2 follows.

6.3 Estimation of the Constant Contribution (Continued)

We extend our result in Section 5.2 to any function ϕ0 which lies not necessarily in one

irreducible cuspidal representation.

Lemma 6.3.1. Let π1,π2 be two generic automorphic representation of Rω, which are unram-
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ified at every finite place. Given ϕ1 ∈ π∞
1 ,ϕ2 ∈ π∞

2 invariant by K f , if at least one of π1,π2 is

cuspidal, then

l h

((
a(
$v1

$v ′
1

)ϕ1a(
$v2

$v ′
2

)ϕ2

)
N

)
¿F,ε κ logQQ(κ+1)ε

·‖ϕ1‖1−ε‖ϕ2‖1−ε‖∆4
∞.ϕ1‖ε‖∆4

∞.ϕ2‖ε

·E−2
∏

v=v1,v ′
1,v2,v ′

2

max(|tr1,v |, |tr2,v |).

If both π1,π2 are (unitary) Eisenstein, then

l h

((
a(
$v1

$v ′
1

)ϕ1a(
$v2

$v ′
2

)ϕ2

)
N

)
¿F,ε κ logQQ(κ+1)εE−2+ε

·‖ϕ1‖1−ε
Eis ‖ϕ2‖1−ε

Eis ‖∆4
∞.ϕ1‖εEis‖∆4

∞.ϕ2‖εEis

+Q1−κ‖ϕ1‖1/4−ε
Eis ‖ϕ2‖1/4−ε

Eis ‖∆∞.ϕ1‖3/4+ε
Eis ‖∆∞.ϕ2‖3/4+ε

Eis .

First we consider the case that at least one of π1,π2 is cuspidal. If W1,W2 are the functions in

the Whittaker model of π1,π2 corresponding to ϕ1,ϕ2, then we get, with similar notations as

in Section 5.2,

l |·|
s

((
a(
$v1

$v ′
1

)ϕ1a(
$v2

$v ′
2

)ϕ2

)
N

)
= ∏

v |∞

∫
F×

v

W1,v (a(y))W2,v (a(y))|y |sv d×y ·

L(s +1,π1 × π̄2)

ζF (2s +2)

∏
v<∞

ζv (2s +2)
∫

F×
v

W1,v (a(y)a(uv ))W2,v (a(y)a(u′
v ))|y |sv d×y

L(s +1,π1,v × π̄2,v )
. (6.3.1)

On the line ℜ(s) = ε> 0, similar argument shows, for example for uv =$v ,u′
v = 1

ζv (2s +2)
∫

F×
v

W0,v (a(y)a(uv ))W0,v (a(y)a(u′
v ))|y |sv d×y

L(s +1,πv × π̄v )
= (tr1,v −n1,v tr2,v q−s−1

v )q−1/2
v

1−q−2s−2
v

¿ε

∏
v=v1,v ′

1,v2,v ′
2

q−1/2
v max(|tr1,v |, |tr2,v |), (6.3.2)

where tr1,v (resp. tr2,v ) is the Hecke eigenvalue of ϕ1 (resp.ϕ2) at v . At infinite places, we use

Cauchy-Schwarz to see

∏
v |∞

∫
F×

v

W1,v (a(y))W2,v (a(y))|y |sv d×y ≤ ∏
v |∞

√∫
F×

v

|W1,v (a(y))|2|y |εv d×y
∫

F×
v

|W2,v (a(y))|2|y |εv d×y .

(6.3.3)
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Using Hölder’s inequality and Proposition 1.5.4, we see

∏
v |∞

∫
F×

v

|W1,v (a(y))|2|y |εv d×y ≤ ∏
v |∞

(∫
F×

v

|W1,v (a(y))|2d×y

)1−ε/2 (∫
F×

v

|W1,v (a(y))|2|y |2d×y

)ε/2

¿F
ζF (2)

(discF )1/2L∗(1,π1 × π̄1)
‖ϕ1‖2−ε ·

( ∑
σv∈{1,2}

‖ ∏
vreal

T 1
v

∏
vcomplex

Tσv
v .ϕ1‖2

)ε/2

, (6.3.4)

where T 1
v =

(
0 1

0 0

)
, T 2

v =
(

0 i

0 0

)
are elements in the corresponding Lie algebras. As the proof

of Theorem 1.7.1 shows, we have a bound for a single term

‖ ∏
vreal

T 1
v

∏
vcomplex

Tσv
v .ϕ1‖¿F ‖∆4

∞.ϕ1‖. (6.3.5)

Putting (6.3.2), (6.3.3), (6.3.4) and (6.3.5) into (6.3.1) we get, for ℜ(s) = ε> 0

l |·|
s

((
a(
$v1

$v ′
1

)ϕ1a(
$v2

$v ′
2

)ϕ2

)
N

)
¿F,ε C (π1)εC (π2)ε‖ϕ1‖1−ε/2‖ϕ2‖1−ε/2‖∆4

∞.ϕ1‖ε/2‖∆4
∞.ϕ2‖ε/2

· ∏
v=v1,v ′

1,v2,v ′
2

q−1/2
v max(|tr1,v |, |tr2,v |). (6.3.6)

With (5.1.2) and C (π1)4 ¿F
‖∆4∞.ϕ1‖
‖ϕ1‖

, we obtain the first part of Lemma 6.3.1 from (6.3.6).

We turn to the case when both π1 and π2 are Eisenstein. We assume π1 = π(χ1,ωχ−1
1 ),π2 =

π(χ2,ωχ−1
2 ) with χ1,χ2 two Hecke characters. We have an obvious equality

l h

((
a(
$v1

$v ′
1

)ϕ1a(
$v2

$v ′
2

)ϕ2

)
N

)
= l h

(
a(
$v1

$v ′
1

)ϕ1,N a(
$v2

$v ′
2

)ϕ2,N

)
+

l h

((
a(
$v1

$v ′
1

)ϕ1a(
$v2

$v ′
2

)ϕ2

)
N

−a(
$v1

$v ′
1

)ϕ1,N a(
$v2

$v ′
2

)ϕ2,N

)
.

The second term at the right side of the above equation can be treated in the same way as in

the case where at least one of π1,π2 is cuspidal, except that we should use Proposition 1.5.6

instead of Proposition 1.5.4. For the first term, suppose ϕi is constructed from fi (i = 1,2) in

the induced model by the formula (1.5.1). Then we have

ϕi ,N = fi +M( fi ), i = 1,2,
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where M(·) is the intertwining operator. Hence, we are reduced to bound 4 terms like

χ1(
$v1

$v ′
1

)χ2(
$v2

$v ′
2

)|$v1

$v ′
1

|1/2|$v2

$v ′
2

|1/2
∫

F×\A×
χ1(y)χ2(y)|y |h(|y |)d×y · f1(1) f2(1).

It is non zero only if χ1χ2 is trivial on F×\A(1), in which case the integral is bounded by a

constant multiplied by ∫
F×\A×

|y |h(|y |)d×y =OF (Qκ−1).

The restriction of fi to Kv , v |∞ lies in IndKv
Tv

(χi ,ωχ−1
i ), where Tv = Bv ∩Kv is a sub-torus of Kv .

Let f = fi ,v , and decompose it into Kv -isotypic part as

f = ∑
σ∈K̂

aσ( f ) fσ

with

fσ(k) =
√

dσ〈k.v, v0〉, aσ( f ) = 〈 f , fσ〉.
Here v, v0 ∈Vσ are unitary and satisfy

t .v0 = (χi ,ωχ−1
i )(t−1)v0.

We get a Sobolev inequality

| fσ(k)| ≤ ∑
σ∈K̂

|aσ( f )
√

dσ|¿v,ε ‖C σv+ε
Kv

. f ‖ ≤ ‖ f ‖1−σv−ε‖CKv . f ‖σv+ε,∀ε> 0

where σv = 1/2 if v is real and σv = 3/4 if v is complex. We have used results from Section 2.2,

especially (2.2.5), and Hölder’s inequality in the last inequalities. We conclude by noticing

‖CKv . f ‖¿v ‖∆v . f ‖ that

l h

(
a(
$v1

$v ′
1

)ϕ1,N a(
$v2

$v ′
2

)ϕ2,N

)
¿F,ε ‖ϕ1‖1/4−ε

Eis ‖ϕ2‖1/4−ε
Eis ‖∆∞.ϕ1‖3/4+ε

Eis ‖∆∞.ϕ2‖3/4+ε
Eis Qκ−1.

Corollary 6.3.2. Letϕ1,ϕ2 ∈ R∞
ω be K f -invariant, without one dimensional part in the spectral

decomposition in the sense of Theorem 1.6.1. Then

1

M 4
E

∑
v1,v ′

1,v2,v ′
2∈IE

χ(
$v1

$v ′
1

)χ−1(
$v2

$v ′
2

)l h

((
a(
$v1

$v ′
1

)ϕ1a(
$v2

$v ′
2

)ϕ2

)
N

)
¿F,ε

κ logQQ(κ+1)εE−2+ε · ‖ϕ1‖1/2−ε‖ϕ2‖1/2−ε‖∆∞.ϕ1‖1/2+ε‖∆∞.ϕ2‖1/2+ε

+Qκ−1 · ‖ϕ1‖3/8−ε‖ϕ2‖3/8−ε‖∆2
∞.ϕ1‖5/8+ε‖∆2

∞.ϕ2‖5/8+ε.

In fact, since the decomposition in Theorem 1.6.1 converges uniformly and absolutely on
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any compact, the operator
1

M 4
E

∑
v1,v ′

1,v2,v ′
2∈IE

χ(
$v1

$v ′
1

)χ−1(
$v2

$v ′
2

)l h commutes with the spectral

decomposition of ϕ1,ϕ2. We then apply the above lemma to each term after the spectral

decomposition.
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