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Where do cache misses come from in major OLTP components?
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ABSTRACT

For several decades, online transaction processing has been
one of the main applications that drives innovations in the
data management ecosystem, and in turn the database and
computer architecture communities. Despite the novel ap-
proaches from industry and various research proposals from
academia, recent studies emphasize that OLTP workloads
still cannot exploit the full capability of modern processors.

To better integrate OLTP and hardware in future sys-
tems, we perform a detailed analysis of instruction and data
misses, the main causes of memory stalls. We demonstrate
which operations and components of a typical storage man-
ager cause the majority of different types of misses in each
level of the memory hierarchy on a configuration that closely
represents modern commodity hardware. We also observe
the impact of data working set size on these misses.

According to our experimental results, L1 instruction
misses are an extensive cause of the overall stall time for
OLTP even for data working set sizes as large as 100GB as
long as the data fits in memory. Capacity misses coming
from the index probe operation are the dominant cause of
the instruction and data stalls when running typical OLTP
workloads. During index probe (one of the most common
operations in OLTP), the B-tree, lock, and buffer man-
agement components of a storage manager are responsible
for more than half of the total misses.

1. INTRODUCTION

Online transaction processing (OLTP) is one of the most
important data management applications. As a result, it
leads fundamental new research and system development ef-
forts in both computer architecture and data management
communities [11, 19].

Despite recent advances in transaction processing and com-
puter architecture, previous studies [2, 6, 16, 24, 26, 28] an-
alyzing the micro-architectural behavior of OLTP workloads
on modern hardware emphasize that OLTP exploits modern
micro-architectural resources very poorly. Most of the exe-
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cution time (~80%) goes to memory stalls [6]; as a result, on
processors that have the ability to execute four instructions
in a cycle, which is the most common on modern commod-
ity hardware, OLTP achieves around one instruction per cy-
cle (IPC) [28]. Such under-utilization of micro-architectural
features is a great waste of hardware resources.

Several proposals have been made to reduce memory stalls
through increasing cache hit rates. These range from cache-
conscious data structures and algorithms [4, 8] to sophisti-
cated data partitioning and thread scheduling [22] for data,
and from compilation optimizations [23], advanced prefetch-
ing [7], to computation spreading [1, 3] for instructions. Al-
though these techniques reduce data or instruction misses to
a great extent, some aiming specifically for OLTP workloads
and some for more general applications, none of them has
detailed insights on why misses in OLTP happen and where
they come from within the storage manager.

In this work, we thoroughly analyze the data and instruc-
tion misses of an OLTP system to answer the following ques-
tions: (1) What types of database operations; scan, index
probe etc., and which parts of a storage manager; locking,
logging etc., are responsible for various kinds of misses? (2)
How sensitive are the results to the data working set size
of the workloads? Our aim is to give insights and hints
to researchers and developers trying to optimize their code,
data, or utilization of the hardware resources for minimizing
memory stalls while running OLTP.

Using Pin [17], we extract instruction, data, and func-
tion traces from the Shore-MT storage manager [14] while
running the OLTP benchmarks standardized by the Trans-
action Processing Performance Council (TPC) [29]. We re-
play the traces on a cache configuration that is typical for
modern commodity hardware and give miss rates, types, and
breakdowns for the main storage manager components. Our
contributions are listed below:

o We show that the L1 instruction cache misses account
for a significant part (40-80%) of the overall stall time
even when the memory-resident data working set size
increases (from 0.1GB to 100GB).

e We demonstrate that the capacity misses are the single
dominant factor in stalls since the cache associativities
of typical modern hardware is sufficient to minimize the
conflict misses for both data and instructions.

e We identify the index probe operation as the leading
component of the cache misses. We also highlight the B-
tree, lock, and buffer managers as the storage manager



parts that contribute to most of the instruction (~55%)
and data (~60%) misses during an index probe.

The rest of the paper is organized as follows: Section 2
surveys related work in more detail. Section 3 describes our
experimental methodology. Section 4 presents a sensitiv-
ity analysis on the data size. Section 5, first classifies the
most problematic misses into conflict, capacity, and compul-
sory ones, and then, associates various instruction and data
misses into storage manager operations and components. Fi-
nally, Section 6 concludes the paper by summarizing the re-
sults and discussing possible solutions to minimize stalls.

2. RELATED WORK

There is a large body of related work that analyzes var-
ious OLTP workloads from low-level hardware-side anal-
ysis, e.g. workload characterization studies, to high-level
software-side ones, e.g. time breakdowns.

Previous work on workload characterization investigates
OLTP workloads at the micro-architectural level. Barrosso
et al. [2] study the memory system behavior of OLTP. Ran-
ganathan et al. [24] and Keeton et. al. [16] focus on the
effectiveness of out-of-order execution on SMPs for OLTP
workloads by using a simulation environment and a real
machine, respectively. They all conclude that OLTP can-
not exploit aggressive micro-architectural features, wasting
most of its time in memory stalls and exhibiting low IPC.

More recent workload characterization studies [6, 28] ex-
amine the behavior of OLTP workloads on modern commod-
ity hardware. They show the same high-level conclusions
with the older workload characterization studies demonstrat-
ing that, after almost 15 years, OLTP still cannot fully
exploit the micro-architectural resources of the most com-
monly used hardware types today, despite the advances in
both the database and computer architecture communities.
Even though these studies highlight the lower level problems
of OLTP on modern hardware, there is no clear attribution
of the hardware-side problems to the software-side compo-
nents of a typical OLTP system.

Johnson et al. [13, 15] and Pandis et al. [20, 21] pro-
vide time breakdowns for typical OLTP benchmarks show-
ing where they spend the most of their execution time in the
storage manager. Their primary goal is to identify compo-
nents that are scalability bottlenecks on modern hardware
and propose alternative design decisions to remove those
bottlenecks. We provide similar breakdowns to spot the
storage manager components that are responsible for the
majority of data and instruction stalls.

Harizopoulos et. al. [9] detail where the time goes within
the storage manager during a single threaded execution in
an OLTP system. They demonstrate that logging, latching,
locking, and buffer pool altogether take 75% of the total ex-
ecution time. VoltDB [30], the commercial version of the
H-Store system [27], is designed based on these findings.
H-Store specifically aims to increase performance by elimi-
nating all four problematic components with an in-memory
shared-nothing system design where each partition only has
a single worker thread. This paper provides similarly valu-
able insights that complement this previous work by map-
ping cache misses to storage manager components, thereby
guiding future software and hardware system designs on how
to minimize memory stalls.

Table 1: Server Parameters

Processor Intel Xeon E5-2660
#Sockets 2
#Cores per Socket 8 (000)
#HW Contexts 32
Clock Speed 2.2GHz
125GB
Memory 167-cycle access latency
(avg. of remote and local)
L3/LLC 20-way 20MB
(shared) 19-cycle access latency
L2 8-way 256 KB
(per core) 8-cycle access latency
L1 8-way 32KB, split I/D
(per core) 4-cycle access latency
Core width 4-wide retire and issue

3. SETUP AND METHODOLOGY

We perform a trace simulation study rather than working
with hardware counters on real hardware. This allows us
to (1) change some of the hardware parameters (like in Sec-
tion 5.1), and (2) have the detailed function call information
to map the various cache misses to software components.

Simulator. We build a custom trace simulator to replay
the traces and calculate miss rates on various cache config-
urations. For this study, we model the memory hierarchy of
an Intel Xeon E5-2660 server, see Table 1 for details [12].

Traces. The data, instruction, and function name traces
are collected from Shore-MT using Pin [17], which can in-
strument x86 binaries. Pin is only able to instrument appli-
cation level code; therefore, the Pin traces do not include the
system-level instructions. To measure the effect of different
storage manager components on cache misses, however, the
application level trace contains all the necessary informa-
tion. Moreover, since the data working set size is memory-
resident throughout the experiments, the system time is very
low (application time is 200X more than the system time).

Workloads. The traces are collected for three trans-
action processing benchmarks standardized by TPC [29];
TPC-B, TPC-C, and TPC-E, while running their workload
mix on Shore-MT storage manager [14, 25]. Except where
indicated in Section 4, we use 100GB databases. The buffer-
pool is set big enough to keep the whole database in memory
and the log is flushed to RAM due to not having a suitably
fast I/O subsystem. Allowing I/O in our analysis would
cause an unreasonable bottleneck considering our infrastruc-
ture, and therefore, lead us to unrealistic micro-architectural
conclusions. To further make sure we run the most optimal
configuration possible, all the logging (Aether [15]) and lock-
ing (SLI [13]) optimizations of Shore-MT are enabled.

We run a single worker thread while executing transac-
tions. Ideally, scalable multi-threaded execution would avoid
most of the data sharing and impose low contention. In turn,
the instruction and data streams would not be extremely
different between single- and multi-threaded execution. For
the instructions, high contention, due to bad initial con-
figuration, would cause threads to spin waiting to acquire
locks. This would artifically increase the instruction cache
hit rate and give misleading micro-architectural results. For
the data, cache coherence related misses would increase un-
der high contention due to extensive data sharing. In this
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Figure 1: Effect of data size on MPKI (left-hand side) and stall time (right-hand side).

study, we would like to focus on the behavior of an optimally
configured storage manager that runs under low contention
on the hardware we simulate.

Experiments. We collect two trace files for each work-
load, where each file contains traces of 1000 different trans-
action instantiations from the workload’s transaction mix.
One of the trace files from the same workload is run initially
to account for cache warm-up. Then, the simulator starts
collecting statistics for cache misses while running the other
trace file. All the simulated caches use a LRU replacement
policy and 64B cache lines.

To calculate the stall cycles due to cache misses, we multi-
ply the number of misses with the expected penalty for that
particular miss as given in Table 1. For LLC misses, we
average the penalty for going to local and remote memory.

In stall time breakdowns, we do not account for the pos-
sible overlaps of different execution components that would
normally happen on a superscalar out-of-order (OoO) pro-
cessor [5], like the one this paper models. Therefore, even
though we draw the stall times on top of each other, some
are actually hidden either by other stalls or useful execu-
tion. For instructions, the decoupled front-end and back-
end of a core would be able to hide some of the stalls. For
data, out-of-order execution can hide some of the data stalls
while prefetching would reduce the effect of some of the
data misses. Nevertheless, although such overlaps can re-
duce the stall time due to misses, the relative breakdown
of the software-side components would be similar even with
more complex models that would account for the overlaps.
Besides, considering the low IPC of the OLTP workloads
[28], we can also assume that not much of the work is over-
lapped.

4. SENSITIVITY TO DATA SIZE

We initially investigate the effect of increasing data size
on the instruction and data misses and stalls coming from
different parts of the cache hierarchy. Figure 1 shows the
misses per 1000 instructions (MPKI) on the left-hand side
and the stall time they cause on the right-hand side for all
the workloads. We pick scaling factors that populate around
0.1GB, 1GB, 10GB, and 100GB data for both TPC-B and
TPC-C. Since a scaling factor of one already creates ~20GB
data for TPC-E, we run TPC-E with 20GB and 100GB data
only.

Looking at the MPKI values in Figure 1, we see that L1
instruction misses dominate the total number of misses re-
gardless of the data size. The domination of the instruction
misses also affects the stall time breakdown as shown in Fig-
ure 1. Even with 100GB data size, on average 50% of the
stalls are because of the L1 instruction misses. On the other
hand, L1 and L2 caches, together, are sufficient to keep most
of the instruction working set of the workloads we evaluate,
keeping the rate of instruction misses from L2 and L3 caches
low (at most 2% of the stalls).

Long-latency data misses from L3 caches are the next sig-
nificant component in the total stall time, even though they
form only ~2% of the total MPKI. As expected, L3 data
misses increase as we increase the data size and for 100GB
data, around 30% of the stalls are due to L3 data misses. On
the other hand, L1 and L2 data misses are not as problematic
and probably can be overlapped by out-of-order execution
with other outstanding data misses or execution of another
instruction.

Compared to the other workloads, TPC-E observes fewer
data and instruction misses even though the general trends
in different types of misses are very similar for all the work-
loads. This trend corroborates previous results [6, 28] and
can be attributed to increased number of scan operations
from simpler workloads, like TPC-B, to more complex ones,
like TPC-E. During a file or an index scan, the routine even-
tually converges to only fetching the next tuple, which has
lower instruction footprint than an index probe operation
from B-tree root to leaves. Moreover, a file or an index
page is scanned from start to end so almost all the parts of
the cache lines brought from a database page are touched
leading to lower data MPKI.

We also see a decrease in L1 instruction cache MPKI,
especially for TPC-B, as we increase the data size. This
might stem from the short loop statements in some of the
sub-routines of various database operations that needs to
iterate more as there is more data. For example, the loop
statement in the binary search sub-routine within the in-
dex probe operation would have more iterations if there are
more data on a particular index page. As a result, the same
small instruction working set is executed more frequently at
a given time increasing the chances of finding the required
instructions in L1-I and reducing the instruction MPKI.
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S. BREAKDOWN OF MISSES

After examining the total MPKI, this section presents why
the most problematic misses happen and where they come
from within the storage manager. More specifically, we give
breakdowns of the instruction and data misses and stalls for
each level of the cache hierarchy in three different granu-
larities: (1) 8C miss categories (compulsory, capacity, and
conflict), (2) database operations (index probe, tuple update
etc.), and (3) storage manager components (lock manager,
log manager etc.).

5.1 Into Miss Categories

Figure 2 breaks the instruction and data MPKI of the
most problematic misses, which are the L1-I and L3 data
misses as shown in Section 4, into the 3C-categorization
[10]: (1) Compulsory misses are the ones that are missed
even with an infinite cache, (2) Capacity misses are the ex-
tra misses a fully-associative cache observes on top of the
compulsory misses, and (3) Conflict misses are the ones that
happen due to two addresses mapping to the same cache set
and replacing one another due to low cache associativity.

As we can see from Figure 2, L1 and L3 cache associativ-
ities of the architecture we model, which are 8-way and 20-
way, respectively, are sufficient to eliminate all the conflict
misses. This leaves the capacity misses as the single cause of
all the L1 instruction cache misses on this hardware whereas
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Figure 4: Misses breakdown into database opera-
tions at each level of the cache hierarchy.

compulsory data misses dominate the total L3 data misses.
After the warm-up run with 1000 transaction traces, the
infinite instruction cache basically captures all the instruc-
tions needed for these workloads. On the other hand, the
data working set size is a lot more than what is accessed in
1000 transactions since the workloads, mostly randomly, ac-
cess data from a working set of 100GB in our experiments.
This explains why there are still many compulsory misses
for data even after the warm-up run while we observe none
for instructions. If we run longer traces, the percentage of
the compulsory misses would be reduced while the capacity
misses increase for data as well.

Finally, Figure 3 shows the instruction MPKI for an 8-
way L1-I cache as the cache size increases. From Figure 3,
one can naively think that enlarging the L1-I cache should
solve the problem of capacity misses since the instruction
footprint of the workloads we evaluate seems to be around
128KB. However, increasing L.1-I size also increases the time
and energy spent while trying to find an item in the cache.
This, in turn, would affect the clock frequency of a processor.
Therefore, despite the growing sizes of L2 and L3 caches,
today’s typical high-performance processors limit their L1
cache sizes to about 32KB.

5.2 Into Operations

In Figure 4, we see the instruction and data stalls in 1000
instructions coming from the three levels of the cache hi-
erarchy separated into different database operations. Since
there is either none or very few instruction misses coming
from L2 and L3 caches for all the workloads, Figure 4 has
breakdowns only for L1 misses for the instructions.

Figure 4 shows that the majority of the misses happen
during the index probe operations. This is expected since
OLTP workloads do not access many records from a table
in their transactions and, hence, they highly depend on the
index lookups and scans. The index lookups are especially
problematic since the code-path is long and complex. It is
interleaved with the function calls to many different modules
encapsulating code and data from B-tree, lock, and buffer
pool management as Section 5.3 also shows.

While in instruction stalls, we see other major contribu-
tors, for data, the index probe seems to be the only signif-
icant operation responsible for the stalls. Update, insert,
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and delete operations typically access a single tuple, hence
a single heap page, whereas during an index probe several
index pages are accessed. In the case of index scans, even
though initially there is a probe to find the start point for the
scan, afterward the same index and heap pages are re-used
frequently increasing the hit rates.

TPC-B is an update-heavy workload and has no index
scans. Therefore, updates and inserts are the only opera-
tions causing the stalls for TPC-B after the index probes.
Going from TPC-B to TPC-E, however, index scans form
a bigger portion of the overall stall time as a result of in-
creasing number of scan operations. For TPC-E, we do not
see many misses due to read-write operations like tuple in-
serts, deletes, and updates since majority of the transactions
(77%) in its transaction mix are read-only. The trends in
the breakdowns, on the other hand, do not change much for
different cache levels within each benchmark.

5.3 Into Components

Figure 5 depicts stalls from different types of caches as
does Figure 4, but it classifies them into storage manager
components rather than database operations. Instruction
stalls in L2 and L3 are again omitted since there is either
none or very few of them.

Figure 5 does not identify a single dominant component
as the cause of instruction stalls. B-tree index operations
and lock manager together form ~45% of the instruction
misses on average. Next come the buffer pool and heap
manager with ~23%. For TPC-B, heap manager also takes
a significant time due to update and insert heavy nature of
this workload. These results corroborate with our findings in
Section 5.2, where we show that the index probe operation
is the main cause of the instruction and data stalls. The
index probe traverses a B-tree from root to leaves and this
process is heavily interleaved with the concurrency control
mechanism of databases, which is based on ARIES/IM [18]
by default in Shore-MT.

For the data stalls, we see the B-tree and buffer pool as the
two significant factors, causing more than half of the data
stall time for each of the caches. This result also matches
with our findings in Section 5.2 since the index probe opera-
tion requests many B-tree pages from the buffer pool during
the traversal.
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Figure 6: Misses breakdown into storage manager
components for each database operation.

We also give a breakdown within the basic database op-
erations to see which storage manager components affect
the stall time during these operations. Figure 6 shows this
breakdown for the L1 instruction cache and L3 data stalls
since, in Section 4, we identify them as the leading causes
of the overall stalls. The operations that do not contribute
much to the stall time are omitted for simplicity.

Inside the index probe and scan related stall times, we see
B-tree, lock manager, and buffer pool as the dominant com-
ponents for both L1 instruction and L3 data misses. As we
have also mentioned above, this result is expected for the
index probe operation considering its characteristics. For
the update or insert/delete operations, however, logging be-
comes more significant as well as heap management since
these operations modify the heap pages, and therefore, re-
quire log updates.

6. CONCLUSIONS

Recent studies emphasize that there is still a clear mis-
match between what modern hardware offers and what OLTP
systems need. Memory stalls dominate the overall execution
time, and in turn, OLTP performance deteriorates and the
underlying hardware remains largely under-utilized.

We conduct a detailed trace simulation on instruction and
data misses modeling the memory hierarchy of one of the
most commonly used hardware types. The experimental re-
sults link the most important memory-related stall types
to software components in the storage manager, and quan-
tify the effect of increasing the data size. More specifi-
cally, our results demonstrate that the L1 instruction misses
are the main cause of the stalls even when working with
large memory-resident data sets. The index probe operation,
which is the most frequent routine for OLTP workloads, is
the fundamental cause of both data and instruction misses
coming from different levels of the cache hierarchy. The ca-
pacity misses coming from the B-tree, lock, and buffer pool
management are the essential factor in the misses observed
during an index probe.

To achieve a more graceful integration of hardware and
software for OLTP systems, both of the layers should be-
come more aware of each other. On the software side, re-
ducing code complexity in the components mentioned above
and designing more cache-friendly index structures are cru-



cial.

On the hardware side, dedicating several close-by cores

for specific transaction operations can help reducing the ca-
pacity misses as well as creating opportunities for hardware
specialization.
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