Accelerating Spatial Range Queries

Alexandros Stougiannis, Farhan Tauheed, Thomas Heinis, Anastasia Ailamaki

Spatial Analysis

Blue Brain Project: simulates brain tissue by building massive neural spatial models.

Analyzing Neuron Models require Efficient Spatial Range **Query** Execution

Dataset: Rat Neocortex

Model Size: 1692 Neurons Dataset Size: 12.5 GB

GOAL: Simulate Human Brain

Model Size: 86 Billion Neurons Expected Dataset Size: 606 PB

State of the Art

Increase in Spatial Data Density => More Overlap

Point Query Analysis:

R-Tree variants do not scale with data density

FLAT Algorithm

Two Phase Query Execution

1) **SEEDING**: Find any one object arbitrarily inside the query region. 2) CRAWLING: Retrieve remaining results by traversing the neighbors.

SEEDING PHASE: Use R-Tree

Range Query: Find ALL objects inside query Seed Query: Find ANY ONE objects inside query

Seeding requires I/O equal to height of tree.

CRAWLING PHASE: recursive graph traversal

starting from the seed partition

- → Linear complexity in terms of graph edges and vertices
- → Performance depends on the selectivity rather than density

Index Construction

- 1) Partitioning: Recursive tiling to group spatial close objects together.
- 2) Linking: Connect neighboring partitions together.

FLAT Performance

Scalability:

Range Queries: Morty-Noty Cell Query Measure: Query Execution Time as a function of dataset density

