Accelerating Spatial Range Queries

Alexandros Stougiannis, Farhan Tauheed, Thomas Heinis, Anastasia Ailamaki

Spatial Analysis

Blue Brain Project: simulates brain tissue by building massive neural spatial models.

Analyzing Neuron Models require Efficient Spatial Range Query Execution

Dataset: Rat Neocortex
Model Size: 1692 Neurons
Dataset Size: 12.5 GB

GOAL: Simulate Human Brain
Model Size: 86 Billion Neurons
Expected Dataset Size: 606 PB

State of the Art

R-Tree: Hierarchy of Minimum Bounding Rectangles (MBR)

R-Tree Performance (bulk loaded)

Increase in Spatial Data Density => More Overlap

Point Query Analysis:
R -Tree variants do not scale with data density

FLAT Algorithm

Two Phase Query Execution

1) SEEDING: Find any one object arbitrarily inside the query region. 2) CRAWLING: Retrieve remaining results by traversing the neighbors.

Index Construction

1) Partitioning: Recursive tiling to group spatial close objects together.
2) Linking: Connect neighboring partitions together.

SEEDING PHASE: Use R-Tree
Range Query: Find ALL objects inside query Seed Query: Find ANY ONE objects inside query

Seeding requires I/O equal to height of tree.

CRAWLING PHASE: recursive graph traversal
starting from the seed partition

\rightarrow Linear complexity in terms of graph edges and vertices
\rightarrow Performance depends on the selectivity rather than density

FLAT Performance

Scalability:
Range Queries: Morty-Noty Cell Query
Measure: Query Execution Time as a function of dataset density

Blue
Brain
Project

