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Abstract—Although well established in the aviation
community, low-cost and vehicle-independent “black-box”
technology for accident analysis, adapted to mass-market
ground-based vehicles, is an emerging technology with
growing importance. Whilst several products suited for
cars are available on the market, almost no devices adapted
for motorcycles exist. Due mainly to their particular dynam-
ics and lack of space for installing any external device,
the design of a data-recorder technology for motorcy-
cles is nontrival. This becomes even more challenging if
the technology has to be independent of the motorcycle
type, low-cost, easy and fast to mount, and not based
on GNSS technology (for autonomy and privacy issues).
Motorcycle speed is an essential information for analyz-
ing the driver’s behavior at pre-crash phase. Based on
inertial data delivered from an autarkic low-cost, MEMS-
based inertial measurement unit (IMU) and voltage ripple
signals taken from the motorcycles battery, we reconstruct
forward velocity of a motorcycle respecting 5% error bars
over a wide velocity range. The off-line reconstruction
is based on a strapdown navigation algorithm combined
with an autonomous (i.e. without GNSS) aiding via an
extended Kalman filter. To stabilize the growth of inertial
error the filter uses as the external measurements the
residual periodic voltage fluctuations of the motorcycle’s
generator – the residual AC ripple – together with available
information on vehicle transmission and its geometry.
Despite the structural simplicity of the algorithm and the
relatively low performance of the IMU, we experimentally
demonstrate that the proposed off-line estimator delivers
accurate autarkic speed estimates for a large class of
motorcycles.
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I. INTRODUCTION

Gaining objective insight into the actual driving be-
havior of vehicular traffic system users is a crucial issue
for many private and governmental economic partners.
One of the most important partners, the Automotive In-
dustry, started such activities more than 40 years ago
using Event Data Recorders (EDRs). Experimental EDR
technologies for cars were developed with limited capac-
ities as early as 1974. Apparent early uses of the data
obtained from these technologies were for accident inves-
tigations related to research initiatives and subsequently,
product performance and liability claims. However, this
EDR information was and is often only accessible by
hardware and software that is proprietary to the automo-
bile manufacturer and access to this information requires
the manufacturer’s involvement. General Motors was the
first manufacturer in 1994 to allow the general public to
access and retrieve EDR information using the Vetronix
Crash Data Retrieval System. Ford followed only in 2002
with pre- and post-crash recorders in their more popular
models. Needless to say that these data recorders have
considerable impacts to the auto-insurance industry as
they can provide objective information regarding time,
speed and tracking factors preceding an accident [1]. Due
to the important and ongoing growth of the number of
vehicles using EDR, the auto-insurance industry has and
will profoundly improve claim processes and decision-
making.

For powered two wheelers, no open-access EDR-
technology is available which respects to both (i) the



error bounds on forward speed imposed by classical
accident reconstruction and (ii) the financial constraints
of mass technologies. The main reason for this absence
is the much more involved dynamics of single track ve-
hicles compared to car-dynamics [2]. This gap prompted
our choice of topic and the exposed results constitute
a first step towards commercial development of EDR-
technology for motorcycles.

The EDR technology for traffic vehicles and its use as
a tool for accident reconstruction is reminiscent of the air-
craft’s flight data recorder. However, important differences
exist. Firstly, if we downscale on a pro-rata basis the price
of a data recorder for airplanes to the price of an EDR
for motorcycles, we obtain production constraints on the
production cost below 50 Euros – a prize the market will
not allow. This makes MEMS-based low-cost solutions
inevitable. A second important conceptual difference to
aircraft flight data recorder concerns the sensitivity of
individual car drivers and motorists to the (over-)control of
their privacy. This is – besides GNSS unavailability – the
main reason why EDR solutions using global positioning
systems (see e.g. [3]) should be excluded. GNSS solu-
tions are indeed able to record global information (such as
where and when someone drives) which do have privacy
rights. However, in order to use and transmit recorded
information without special care, the EDR should gather
only local data such as speed, braking activities, changes
in acceleration, etc.

Accordingly, low-cost EDR-technology for motorists
should be GNSS-free and MEMS-IMU based. Given
these constraints, we focus hereafter on the reconstruc-
tion of motorcycle forward speed – the most significant
state variable for accident reconstruction. This piece of
information is computed from measurements of a com-
mercially available, low-cost 6-axes MEMS-IMU (3 spe-
cific force and 3 angular rates sensors). A preliminary
investigation with reduced accuracy constraints shows
that the very same setting allows easily to reconstruct
other variables such as cornering- and tracking states [4].

While the principles of GNSS and GNSS/inertial nav-
igation are well understood, the challenge when working
with low cost MEMS instruments and without the recep-
tion of satellite signals is to develop a robust navigation
aid that can deal with the rather large instrument errors
and – crucially in view of a potential commercialization
– without exceeding the financial constraints. In our ap-
proach the motorcycle’s battery plays a central role for the
low-cost inertial navigation-aid solution. Indeed, besides
mechanical support and power supply, the battery also
provides – indirectly via the voltage ripple delivered from
the generator after diode rectification – an external speed
signal from the motor, which enables to master the poor
performance of MEMS-IMUs with minimum additional
cost. The extra measurements – well known in the realm
of automotive speed and RPM measurements [5] – are
simple to perform. Hence the associated off-line event
analyzer only needs two types of parameters that depend
on the motorcycle: the (dynamic) rear wheel radius rdyn
and the transmission rate settings of the motorcycle.
The information on both parameters is freely available

for a large class of motorcycles. Moreover, the whole
instrumentation does not need to employ any of visible
rotary- or visual-odometric measurements and can thus
respond to demanding esthetic arguments of motorists.

As for the analytic approach for the inertial navigation
solution, we will use expectation optimization algorithms,
namely an Extended Kalman Filter (EKF) and a Hidden
Markov Model (HMM) in feedback configuration. The
crucial point is that, based on the EKF output and the
spin signal from the motor, the HMM estimates the actual
gear speed and delivers, using the known transmission
ratios and the rear wheel radius of the motorcycle, a drift
free speed signal. This quantity forms the navigation aid
and re-enters the EKF – thereby considerably improving
the quality of the state estimation.

Besides its low-cost nature, this HMM-based navi-
gation aid has mainly two advantages: firstly and most
importantly, it changes the nature of the speed estimation
problem from a continuous state to a finite- and even
low-dimensional state problem1. Secondly, the HMM also
delivers an effective state dependent error model for
the motorcycle forward speed which is crucial for the
convergence – and hence the successful implementation
of the EKF.

We organize the paper as follows. In Sec II, we provide
an overall view on the offline data analysis concept. In
Sec III we briefly describe the Inertial Navigation System
(INS) and EKF equations. Sec. IV recalls the concept of
HMMs and introduces the used variables. Sec. V follows
with the description of the experimental setup. In Sec.
VI we present measurement results before concluding in
Sec. VII.

II. OFF-LINE DATA ANALYSIS

The inertial observations delivered by an IMU consist
of specific force and angular rate signals provided by
usually three orthogonally mounted accelerometers and
gyroscopes, respectively. These observations enter the
off-line analysis software. The software implements a
strapdown inertial navigation computer which is used to
derive the velocity in the vehicle’s longitudinal axis x,
defined as the vehicle speed at time t v(t) (see Sec.
III). However, due to the dead-reckoning nature of inertial
navigation, the errors corrupting the inertial sensors will
also be integrated, resulting in a rapidly growing error in
the final navigation (velocity) solution. Therefore – and
especially for low cost IMUs – the drift must be bounded
by repeatedly re-calibrating the inertial-based solution
with measurements provided by an external device (usu-
ally GNSS receivers). The fusion of the inertial and the
external data is commonly achieved by Bayesian methods
such as the EKF (see e.g. [6] for a recent account and
[7] for low cost IMUs). As stated in the introduction,
the (strong) economic, legal and ergonomic constraints
bounded to the EDR design severely limits the choice of
the external aiding (i.e. no GNSS).

1Estimating forward speed v ≥ 0 is replaced by estimating gear speed
x ∈ {0, ..., 6}.



In this research, external aiding is achieved by using
motor speed estimates which are derived from voltage
ripples measured at the terminal of motorcycle’s bat-
tery. The motor speed nm (measured e.g. in rounds per
minute, RPM) enter, together with the vehicle speed v
from the INS, the HMM as observations (see Sec. IV),
from where we compute the rear wheel speed, vw, using
the mechanical transmission ratios of the motorcycle’s
drive train ix (x stands for the estimated gear number)
and the dynamic radius rdyn of the rear wheel (both
pieces of information are known from commercial avail-
able data sheets).

The architecture of the offline signal processing is
depicted in Fig.(3) and further details in the following two
sections.

III. THE INTEGRATED INERTIAL NAVIGATION SYSTEM

The IMU data (i.e. the specific forces and angu-
lar rates) are processed through the strapdown inertial
mechanization algorithms (see e.g., [8]). Therefore the
(3 × 1) gyro measurements vector ωbib – expressing
angular rates of the body (b-) frame with respect to a
fixed inertial (i-) frame expressed in the b-frame – are
numerically integrated in order to transform the (3 × 1)
specific force vector f b from the b-frame into a local (l-)
frame. The latter point is used to free the specific-force
measurements f b from gravity. In the reference frame we
use ~gl = (0, 0, 9.81)T as a simple (and position indepen-
dent) gravity model and subtract it from the specific force
measurements. The resulting dynamic accelerations ~al

are numerically integrated to velocity, from which the
vehicle’s longitudinal component is defined as the vehicle
speed v.

A. Filter Equations

Let rle be the (3 × 1) position vector containing the
latitude φ, longitude λ and height h, and δvle the (3 × 1)
vector containing velocities expressed in the l-frame. The
filter EKF navigation states are:

x =
[
δrle δvle εl δf b δωbib

]T (1)

where εl is a (3 × 1) vector containing misalignment
errors due to the transformation errors between the b-
and l-frames. The δf b and δωbib terms represent the
accelerometer and gyroscope biases, respectively. They
are usually modeled using stochastic processes (e.g.
first-order Gauss-Markov process, random constant). The
position error model is:

δṙle = −ωlel × δrle + δθ × vle + δvle (2)

with δθ a misalignment vector of the estimated l-frame
(also called computer -frame) with respect to (true) l-
frame as a consequence of position error:

δθ = [ δλ cosφ −δφ −δλ sinφ ]
T (3)

where δφ and δλ are errors in latitude and longitude,
respectively. The velocity error model is:

δv̇le = −f l × εl −
(
ωlie + ωlil

)
× δvle

−
(
δωlie + δωlil

)
× vle + Cl

bδf
b + δgl (4)

The attitude error model (also known as the phi-angle
error model, [10]) is:

ε̇l = −ωlil × ε+ δωlil −Cl
bδω

b
ib (5)

B. Extended Kalman Filter

The nonlinear discrete system and measurement re-
lationship of the filter is [9]:

xk = f (xk−1,uk−1) + Γk−1wk−1 (6)
zk = h (xk) + vk (7)

where wk and vk are zero mean Gaussian white noise
sequences with strength Qk and Rk, respectively. Γk
represents the coupling between xk and wk and zk is
the measurement vector. At the estimation time tk, the
system is linearized around the previous state estimate.
The state and conditional covariance matrix P−k+1 are
extrapolated using the transition matrix Φk:

x−k = f
(
x+
k−1uk−1

)
(8)

P−k = Φk−1P
+
k−1Φ

T
k−1 + Γk−1Qk−1Γ

T
k−1 (9)

where Φk =
∂f(x∗

k,uk)
∂x with the approximate x∗k usually

chosen to be f
(
x∗k−1,uk−1

)
. The Kalman gain, state and

covariance update are evaluated:

Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)−1
(10)

P+
k = (I−KkHk) P−k (11)

x+
k = x−k + Kk

[
zk − h

(
x−k

)]
(12)

with Hk =
∂h(x∗

k)
∂x .

C. Filter Initialization

Since an INS is a dead-reckoning system, the initial
roll r, pitch p and yaw y angles at time t0 are to be
either known or determined. The coarse alignment is a
procedure to estimate attitude parameters approximately
[8]. The classical coarse alignment is based on the prin-
ciple that the accelerometers sense only gravity gl, while
the gyroscopes sense only the Earth rate in the b-frame,
ωbie [8]. In low-grade (e.g. MEMS-based) gyroscopes, the
noise level may typically be superior to 0.1 deg/s/

√
Hz and

the residual systematic errors as high as several deg/s.
In such conditions, the Earth rate cannot be sensed.
However, since the absolute position of the vehicle is not
of interest for the given application, the determination of
the initial yaw angle can be neglected and the attitude
initialization problem is resumed to:

r = arcsin(f̄y/(g · cos p)) (13)
p = arcsin(f̄x/g) (14)
y = arbitrary (15)

with g = ‖~gl‖ and fx, fy the x, y components of f b,
respectively. Although it is clear from the previous equa-
tions that the coarse self-alignment could be done at
each epoch tk, more accurate results can be obtained
by averaging the data over detected non-moving period,
while estimating residual systematic errors (fx,y → f̄x,y).
In our implementation initial values for pitch, roll and the



gyro biases are obtained by integrating a short period of
static data at the start of the dataset. The initial accel-
eration biases are set to zero with uncertainty according
to specifications provided by the manufacturer. For initial
velocity estimates the external aid is used:

The initial velocity estimate vle(t0) is one out of seven
different values – one for each gear speed x. With a
given gear speed, the initial ripple measurements allow
estimating forward velocity (using available transmission
settings as explained in the next section). We then per-
form the whole velocity calculations seven times, chang-
ing the initial gear speed, and hence the initial velocity
estimates. From the resulting seven forward speed calcu-
lations, we select the most probable speed trajectory. This
selection uses only elementary expert knowledge such
as excluding trajectories with velocity jumps, unrealistic
gear speeds, negative forward speeds etc., and is further
facilitated by the numerically observed fact that adjacent
trajectories start to converge to each other easily.

Note that in the case of an accident, the final vehicle
velocity will be null and its location is fixed. The inertial
navigation filter can then be run backward in time with a
perfect “initial” velocity fit. Although the absolute position
of the vehicle is not of interest, the initial position rle(t0)
needs be set at least approximatively.

IV. THE HMM APPROACH

The a priori ignorance on both, the motorists handling
actions and the actual road/traffic conditions lead us to
model the motorcycle’s gear speed as a Markov chain.
At every (discrete) sampling point in time tk, k = 1, 2, ...,
we set

Yk = gear speed at time tk

and suppose Yk to be a time homogeneous Markov chain
on the state space2 SY = {0, 1, 2, ..., 6} with 7×7 transition
probability matrix P.

Recall that in a regular Markov model, it is supposed
that the actual state of the process is directly visible to
the observer. Therefore the transition matrix is the only
parameter necessary to fix the statistics of the future
states – given the present state. However, gear speeds
are not directly accessible to us, they are hidden (see [13]
for an overview of the Hidden Markov Model concept). We
only get noisy measurements (observations) denoted Ok,
which are related to the true state Yk through conditional
probabilities (see figure 1).

The complete observation set at time tk, say Õk, includes
ωbib and f b as well as the ripple of the rectified generator’s
voltage UBatt measured at the motorcycle’s battery:

Õk =
(
ωbib, f

b
ib, UBatt

)T ∈ R7.

2The set SY is easily adapted for motorcycles with fewer or more
speeds. The state 0 corresponds to disengaged gear. A real limitation
however are cycles with continuously variable transmissions.
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Figure 1: The hidden state at time tk, Yk, is indirectly
observed through Ok. The arrows in the diagram denote

conditional dependencies. The value of the observed variable
Ok only depends on the value of the hidden variable Yk (both

at time tk).

As exposed in Fig.(3), the inertial measurements are
processed through a complete strap down navigation
solution yielding estimates of forward speed v(t) (mea-
sured in m/s). The rippled voltage signals from the
generator undergo short time Fourier transformations and
are converted into motor spin data nm(t) (measured in
rounds per minutes (RPM)). At successive sampling times
the forward speed v(tk) and the motor spin nm(tk) are
synchronized through a common time stamp tk. Finally,
we work for v(tk) > 0 (hence only when the motorbike
is moving) with the following scalar observation-variable
Ok:

Ok :=
2πrdynnm(t)

60v(tk)
∈ R (16)

that is dimensionless and relates the wheel speed with
the forward speed. This relation represents a basis for
estimating the motorcycle’s overall transmission ratio itot
at time tk. Indeed, in steady straight run conditions, the
rotative speed of the rear wheel is, in good approximation,
given by nm/itot.

The observation Ok is related to the (hidden) gear speed
Yk = x through the relation:

Ok ∼ itot = ipixid (17)

where ip is the known primary transmission ratio, id the
known chain drive transmission ratio and ix the gear ratio
for gear speed x. The strategy to infer motorcycle forward
speed is now the following (compare with Fig. 3):

1) select the gear speed x corresponding to the
most likely transmission ratio ix i.e., realizing

Prob(Yk = x | Ok) = maxy∈SY
{Prob(Yk = y | Ok)}.

2) compute a forward speed estimate v at time tk
through the relation v =

2πrdynnm(tk)
60ipixid

.
3) use the speed estimate v as a navigation aid

measurement entering the EKF to correct the
EKF propagated forward speed estimate.



The above strategy is implemented as an HMM using the
freely available Matlab Toolbox “Bayes Net Toolbox” [12].
The HMM is completely given once the transition matrix
P, the initial state probabilities, say Π, and the conditional
densities Ok | Yk are defined.

The transition matrix is not learned, rather its components
are fixed using heuristics and common sense arguments
(in fact learned transition matrices did not outperform
heuristic arguments). The initial state probability vector
Π is uniformly distributed (all gear speeds are likely
probable).

The conditional densities Ok | Yk are supposed to be
independent normal random variables:

Ok | Yk = x ∼ N
(
µ(x);σ2(x)

)
, x ∈ SY = {0, 1, ..., 6}

with µ(x) = ipixid and where the variances σ2(x) are
based on simple standard deviation computations for Ok
using training data. It is noted that these data are obtained
from two different test motorcycles under real (hence
varying) traffic conditions and where, in addition to Ok,
gear speed has been recorded. The main contributions to
the variability of µ(x), however, come from cornering (see
remark (2) in section VI) and acceleration/deceleration
manoeuvres (see remark (3) in section VI) and not from
the use of a different motorcycle.

The HMM being defined, the state analyzer then
computes the most likely sequence of motorcycle state for
a given sequence of observations using standard HMM-
algorithms [14]:

State at time tk = arg max
y∈SY

(
P (Yk = y | Ok)

)
. (18)

To close this section we remark that, despite the
reduced observation space, all six IMU measurements
and the voltage measurements have been used to com-
pute the HMM-observations Ok. Moreover, the above
strategy assumes that at each sampling step, the clutch
is engaged (i.e., Yk is in exactly one of the states defined
by SY and no intermediate clutch states are possible).

V. EXPERIMENTAL SETUP

Fig.(2) shows the onboard data acquisition (hardware,
attached onto the motorcycle) and Fig.(3) shows the off-
line data processing (software).

a) On-Board Data Acquisition: Our test-motorcycle
is equipped with a system for synchronized data acquisi-
tion (see Fig.(2)), including:

1) a low cost 6-axis micro electro-mechanical IMU,
fixed near the center of gravity of the motorcy-
cle.3

3For reasons of data synchronization with the reference GPS, we
currently use the IMU’s raw data from the Mti-G System (XSENS),
whose specifications are comparable to common low cost IMUs.

Figure 2: The schema of on-board data acquisition containing
a 6-axes IMU and the voltage measurement UBatt.

Figure 3: Inertial gyro- and acceleration inputs, together with
the generators’ AC ripple, are post-processed and deliver

objective output sequences including vehicle speed (forward
speed) and qualitative description of driver behaviors (not
discussed here). The set of needed external parameters is

reduced to transmission ratios ip, id and the dynamic radius
rdyn of the rear wheel. Initial conditions IC are estimated from

a short static dataset.

2) a voltage sensing device, basically a shunt over
the battery terminals, to measure the voltage
ripple UBatt of the generator. This signal oscil-
lates with a frequency fg, corresponding to the
generator’s rotational speed. An initial calibration
procedure yields the constant of proportionality
cmg between the motor’s spin frequency fm and
fg. Finally, the motor speed is computed using
the relation nm = (fg · cmg )−1.

3) a portable computer for data storing and syn-
chronization.

4) reference measurement equipments: a GPS-
system yielding the vehicle’s forward speed and
two Hall sensors measuring the front and the rear
wheel spin.

VI. RESULTS

We reconstructed forward speed and qualitative de-
scription of the behavior of a sport motorcycle maneuver-



ing on public roadways.4 Our test-motorcycle is a 1993
Suzuki GSX750 F, propelled by a 748ccm, 4 cylinder four-
stroke engine and weights about 230kg (without rider).
To observe performance of the algorithms we undertook
several out of lab tests and compared the results with
GPS reference data. All the state estimates are remark-
ably accurate if we exclude the (easily detectable) periods
during which gear speed changes or undefined clutch
states are present. A generic trajectory is presented and
evaluated hereafter.

A. Roundabout Maneuver 180o

A complete 180o-turn-around maneuver in the round-
about is analyzed by subdividing the actual trajectory into
nine pieces, according to Fig. (4).

Figure 4: The 180o roundabout maneuver is subdivided in
pieces (1) to (9), with several time- and speed indications.

Figure 5: Vehicle Speed reconstruction for the roundabout
maneuver using forward (blue) and backward (red) filtering.

The reference speed (gray) is based on GPS measurements
and Hall-sensor based wheel speed measurements.

Estimate of vehicle speed. Fig. (5) shows the vehicle

4An analogous analysis with a 50ccm scooter yielding results of
comparable accuracy has been performed.

speed v based on the proposed algorithm together with
GPS reference. After phases of accelerations (2), (3) and
decelerations (4), the passage of the roundabout between
20s and 30s at roughly constant speed is visible (5), (6).
The acceleration towards the end of phase (6) indicates
leaving the roundabout (7), followed by the deceleration
(8) which indicates the end of the maneuver. With respect
to GPS reference, the vehicle speed estimation v(t) is
excellent and stays within 5% error bounds for v > 5m/s.

Figure 6: A partial HMM output for the roundabout maneuver.
The four graphs show the conditional probabilities of observing

Ot given gear speed x for x = 1, .., 4. The remaining
probabilities for x = 0, 5, 6 are almost identically zero.

Figure 7: The gear speed classifier according to eq.(18)
selects the most probable gear speed (blue). As an ad hoc

measure of classifier uncertainty we us the relative distance to
the second most probable gear speed (red) eq.(19). Values

close to one indicate uncertainty for our gear speed estimate.

HMM output. Fig. (6) shows the conditional probabilities
computed in the framework of the HMM for gear speeds
1, .., 4. Fig. (7) shows the most probable gear speed given
the observations Ot together with an ad hoc measure of



uncertainty U defined by:

U(t) = 1− P1(t)− P2(t)

P1(t)
=
P2(t)

P1(t)
(19)

where P1(t) (resp. P2(t)) is the most (resp. second most)
probable gear speed at time t. Clearly, U takes on values
between 0 and 1 and indicates, with increasing values,
increasing uncertainty whether the most probable gear
speed is really the correct one.

Referring to Fig. (4) and (7) we see that, during the
phases of accelerations (2), (3), the conditional probabil-
ities give convincing evidence for gear speed state (they
are either very close to 1 or close to 0). However, as
indicated by U , periods of uncertain and even wrong gear
speed estimations exist. For example, before entering the
roundabout (17s-20s) and before leaving it (28s-29s), the
gear speed is wrongly estimated (x = 2 would be correct).
The resulting velocity jumps in the HMM output, however,
are completely smoothed away by the EKF.

Remarks.

(1) Below 15km/h, IMU drift and undefined clutch
states (motor idle and clutch disengaged, or
phases of engaging) influence remarkably the
probabilistic estimation of the gear speed and
may lead to erroneous wheel speed estimations.
At the same time the accidents occurring at such
low speeds have usually less serious conse-
quences therefore the larger estimation uncer-
tainty is permissible.

(2) During periods of important cornering, the
road/wheel contact does not take place on the
largest circumference of the wheel. This well
known fact enhances the angular velocity of the
wheel, without increasing forward speed of the
motorcycle. Thanks to an analytic treatment (see
[11], section 4.1.3) as well as the estimation of
motorcycle inclination (r-angle) we can compen-
sate this source of errors.

(3) Another source of differences between the rear
wheel speed and the vehicle’s (true) forward
speed is longitudinal wheel slip. The presence of
rear wheel slip will overestimate forward speed
during acceleration and will underestimate for-
ward speed during periods of rear wheel brak-
ing. For non-critical maneuvers, this error is
clearly below 5%. Note that critical maneuvers
(full braking, sharp cornering or combinations)
are detected by the qualitative output of the
HMM. Therefore the off-line analysis is able to
recognize situations where the wheel speed is
not a faithful piece of information for inferring
forward speed.

VII. CONCLUSION

Despite the fact that the dynamics of single tracked
vehicles are considerably more difficult to describe than

dynamics of double tracked vehicles, an autarkic re-
construction of motorcycle speed is feasible with low-
cost devices. Basically, a low-cost 6 axis inertial mea-
surement unit (IMU), a shunt and a clock together with
a storage device are enough to compose embedded
black-box technology for motorcycles. Power-supply and
the external voltage signal that provides IMU-aiding are
both delivered by the motorcycles battery. With a mini-
mum amount of expert knowledge, an initial calibration
of transmission as well as a few available parameters
related to a motorcycle, we can reconstruct forward speed
with high accuracy. In particular, during phases without
important accelerations and cornering, the forward speed
estimation corresponds to the reference (GPS-derived)
velocities better than 5%. During phases with important
accelerations or cornering, the estimation errors may
grow beyond the 5% error bounds. Such critical situations
are, however, easily detectable and partially removable
through ad hoc considerations.
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