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Abstract

Real-time optimization (RTO) methods use measurements to offset the effect of uncer-

tainty and drive the plant to optimality. RTO schemes differin the way measurements are

incorporated in the optimization framework. Explicit RTO schemes solve a static optimization

problem repeatedly, with each iteration requiring transient operation of the plant to steady state.

In contrast, implicit RTO methods use transient measurements to bring the plant to steady-state

optimality in a single iteration, provided the set of activeconstraints is known. This paper con-

siders the explicit RTO scheme “modifier adaptation” (MA) and proposes a framework that

allows using transient measurements for the purpose of steady-state optimization. It is shown

that convergence to the plant optimum can be achieved in a single transient operation provided

the plant gradients can be estimated accurately. The approach is illustrated through the simu-

lated example of a continuous stirred-tank reactor. The time needed for convergence is of the

order of the plant settling time, while more than five iterations to steady state are required with

conventional (static) MA. In other words, MA using transient information is able to compete

in performance with RTO schemes based on gradient control, with the additional ability to
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handle plant constraints.

Keywords : Real-time optimization, Modifier adaptation, Plant-modelmismatch, Gradient

estimation, Gradient control.

Introduction

Optimal operation of chemical processes is key for meeting productivity, quality, safety and en-

vironmental objectives. Both model-based and data-drivenschemes are used to compute optimal

operating conditions. The model-based techniques are intuitive and widespread, but they suffer

from the presence of plant-model mismatch. Furthermore, even with an accurate plant model,

the presence of disturbances generally leads to a drift of the optimal operating conditions, and

adaptation based on measurements is needed to maintain plant optimality. On the other hand, data-

driven optimization techniques rely exclusively on measurements to adjust the optimal inputs in

real time. Consequently, real-time measurements are typically used to help achieve plant optimal-

ity. This field, which is labeled real-time optimization (RTO), has received growing attention in

recent years.

Explicit RTO schemessolve the optimization problem repeatedly. For example, the two-step

approach uses (i) measurements to update the model parameters (that is, to refine the plant model),

and (ii) the updated model to perform the optimization1. It has also been proposed to update the

model differently. Instead of adjusting the model parameters, one updates input-affine correction

terms that are added to the cost and constraint functions of the optimization problem. The tech-

nique, labeled modifier adaptation (MA), forces the modeledcost and constraints to match the

plant values2–6. The main advantage of MA lies in its proven ability to converge to the plant

optimum, even in the presence of structural plant-model mismatch, a case where the two-step ap-

proach will generally fail. Hence, MA is also capable of detecting the correct set of active plant

constraints without additional assumptions. MA is a staticoptimization method, which means that

its application to a continuous plant requires waiting for steady state before taking measurements,

2



updating the correction terms and repeating the numerical optimization. Thus, several iterations

are generally required to achieve convergence.

In contrast,implicit RTO schemes, such as self-optimizing control7 and NCO tracking8, pro-

pose to adjust the inputs on-line in a control-inspired manner. In the absence of constraints, or

when assumptions can be made regarding the set of plant constraints that are active at the opti-

mum, implicit RTO methods reduce to gradient control, as thedegrees or freedom are adjusted

in real time to drive the plant cost gradient to zero. The maindifficulty lies in the estimation of

the steady-state plant gradient, a task that can be achievedusing either measurements or, better,

measurements together with a plant model9. Implicit RTO is much more challenging when the

set of active constraints is unknown, as not only the cost gradient has to be inferred from the

measurements but also the set of active constraints and the constraint gradients.

This paper proposes a framework for using MA during the transient phase toward steady state,

thereby attempting to reach optimality in a single iteration to steady state. For this, two features

are required: (i) the model-based optimization problem needs to be solved online in real time,

which is made easier by the use of convex approximations10, and (ii) the modifiers are computed

using transient measurements. Since there is no conceptualdifference between estimating the

cost gradient and the constraint gradients, we propose to take inspiration from gradient control

and extend some of the related unconstrained methods9 to make them fit the MA framework. In

particular, both the linearization-based gradient-estimation method associated with neighboring

extremals (NE) and the multiple-unit method (MU) are extended to fit the proposed MA scheme

using transient information.

The paper is organized as follows. The problem formulation and the static MA formulation are

presented in Section 2. Section 3 introduces both the framework for using MA during transient

operation and a way of estimating the modifiers. The application of the proposed methodology is

illustrated through a simulated 2-input 6-constraint CSTRin Section 5, and Section 6 concludes

the paper.
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Problem Formulation

The problem of optimizing the plant performance at steady state, in the presence of constraints,

can be formulated mathematically as a nonlinear program (NLP):

u∗
p := argmin

u
φp(u)

s.t. Gp(u) ≤ 0, (1)

whereu is thenu-dimensional vector of inputs,Gp is thenG-dimensional vector of plant constraints

andφp(u) is the scalar cost function. Here, the subscript(·)p indicates a quantity related to the

plant.

The necessary conditions of optimality for the plant are:

Gp
(
u∗

p

)
≤ 0, ν∗

p ≥ 0, ν∗T

p Gp
(
u∗

p

)
= 0

∇uφp
(
u∗

p

)
+ν∗T

p ∇uGp
(
u∗

p

)
= 0, (2)

whereν p is thenG-dimensional vector of Lagrange multipliers.

In practice, the functionsφp andGp are unknown. A steady-state plant model is used to con-

struct the following model-based NLP:

u∗ := argmin
u

ϕ (u, y,θ)

s.t. ẋ = F(u, x,θ) = 0

y = h(u, x,θ) (3)

g(u, y,θ) ≤ 0,

whereϕ is the model cost function,F then-dimensional vector function representing the dynamic

model,g the nG-dimensional vector of constraint functions,x the n-dimensional state vector at

steady state,y the p-dimensional vector of outputs at steady state,θ the q-dimensional vector
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of uncertain model parameters. For the sake of simplicity, we assume that there exist explicit

functionsy = H (u, θ), which allows reformulating Problem (3) as follows:

u∗ = argmin
u

φ (u, θ)

s.t. G(u, θ ) ≤ 0, (4)

whereφ and G represent the models of the cost and constraint functions, respectively. These

models require the identification of the model parametersθ . We will assume in this paper thatφ

andG are twice differentiable. The model NCO read:

G(u∗
, θ) ≤ 0, ν∗ ≥ 0, ν∗T

G(u∗
, θ ) = 0

∇uφ (u∗
, θ)+ν∗T

∇uG(u∗
, θ ) = 0. (5)

Measurement-Based Real-Time Optimization

If the model matches the plant perfectly, solving the model-based optimization problem solves

Problem (1). Unfortunately, this is rarely the case, and usually u∗ 6= u∗
p. Real-time optimization

encompasses a family of methods for which plant measurements are used to updateu∗ in order to

approachu∗
p. We will review next two such methods, namely, explicit RTO via modifier adaptation

and implicit RTO using gradient control.

Explicit RTO via Modifier Adaptation

With modifier adaptation, plant measurements are used to iteratively modify the model-based op-

timization problem (4) in such a way that, upon convergence,the NCO of themodifiedproblem

match those of the plant. This is made possible by using modifiers that, at each iteration, corre-

spond to the differences between the predicted and measuredvalues of the constraints and between

the predicted and measured cost and constraint gradients. These modifiers are used to add input-
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affine corrections to the model cost and constraint functions, according to the intuitive observation

that first-order corrections are required to achieve matched first-order optimality conditions. At

the kth iteration, the optimal inputs computed using the modified problem are applied to the plant,

and the resulting values of the plant constraints and of the plant cost and constraint gradients are

compared to the model-based predictions. Then, the following optimization problem is solved to

determine the next inputs:

u∗
k+1 := argmin

u
φm(u, θ) := φ (u, θ )+ εφ

k +ΛφT

k (u−u∗
k) (6)

s.t. Gm(u, θ) := G(u, θ)+ εG
k +ΛGT

k (u−u∗
k) ≤ 0 (7)

with εφ
k := φp(u∗

k)−φ (u∗
k, θ) (8)

εG
k := Gp(u∗

k)−G(u∗
k, θ) (9)

ΛφT

k := ∇uφp(u∗
k)−∇uφ (u∗

k, θ) (10)

ΛGT

k := ∇uGp(u∗
k)−∇uG(u∗

k, θ ) , (11)

where the scalarεφ
k and thenG-dimensional vectorεG

k are the zeroth-order modifiers, and thenu-

dimensional row vectorΛφT

k and the (nG×nu) matrixΛGT

k represent the first-order modifiers.

As seen from Eqns (6)-(11), MA is a static optimization method that, at iterationk, requires

application of the constant input valuesu∗
k until the plant reaches steady state. Once this occurs, the

modifiers are updated and used for the subsequent iteration,as illustrated in Figure 1. In practice

MA is implemented with exponential filtering of the modifiers, that is, the filtered modifiers are

obtained asΛ f ,k = K Λk +(I −K)Λ f ,k−1, with the(nu+1)(nG+1)-dimensional modifier vector

ΛT
k =

[
εφ

k , εG1
k , · · · ,εGnG

k , ΛφT

k ΛG1
T

k , · · · ,Λ
GnG

T

k

]
. (12)

Exponential filtering both prevents abrupt modifications ofthe optimization problem between two

consecutive iterations and reduces the impact of measurement noise. Also, exponential filtering

preserves the properties of RTO-MA upon convergence and provides degrees of freedom (by means
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of the filter gain matrixK) that can be used for enforcing convergence6. For the sake of simplicity,

we will implicitly assume the presence of this filter and not distinguish between raw and filtered

modifiers hereafter.

Dynamic Plant
u

k
(t)

Transient behavior to steady state

MA

Static Model

 u*
k

Computation

of Modifiers

k := k+1

εG

k
, εφ

k

Λφ
k
, ΛG

k

 u*
k+1

G
p
(u*

k
)G

p,k
(t)

 φ
p,k

(t)

G(u*
k
),  φ(u*

k
)

φ
p
(u*

k
)

Figure 1: Basic scheme for steady-state plant optimizationvia MA.

The advantage of the modifier-adaptation scheme (6)-(11) lies in its ability to converge to a

KKT point of the plant6. Eqns (7) and (9) show that, upon convergence atu∗
∞, one has:

Gm(u∗
∞, θ ) = G(u∗

∞, θ)+ εG
∞ = Gp(u∗

∞) ≤ 0. (13)

Hence, the zeroth-order modifiersεG
k allow enforcing the feasibility conditionsGp(u∗

∞)≤ 0. Note

that the correction termεφ
k simply shifts the cost function up or down, without changingthe loca-

tion of its minimizer, and thus is generally discarded.

Similarly, upon differentiating Eqns (6) and (7) with respect tou and using Eqns (10) and (11),

one obtains upon convergence:

∇uφm(u∗
∞, θ ) = ∇uφ (u∗

∞, θ)+ΛφT

∞ = ∇uφp(u∗
∞) (14)

∇uGm(u∗
∞, θ ) = ∇uG(u∗

∞, θ )+ΛGT

∞ = ∇uGp(u∗
∞) . (15)

Hence, the first-order correction terms in the cost and constraint functions (with slopesΛφT

k and
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ΛGT

k ) modify the model gradients to force them to match the corresponding plant gradients. Note

that the zeroth- and first-order corrections also lead to matched Lagrange multipliers upon con-

vergence, thus ensuring the correct set of active constraints. In other words, modifier adaptation

forces the NCO of the model-based optimization problem (4) to match those of the plant optimiza-

tion problem (1).

Implicit RTO using Gradient Control

Implicit RTO schemes recast Problem (1) as a control problem, whose controlled variables are the

NCO (2), with the associated setpoints being zero. In the absence of constraints, gradient control

can be implemented straightforwardly since the NCO (2) reduce to∇uφp
(
u∗

p

)
= 0. For example,

the following control law can drive the plant gradient to zero in real time:

u̇(t) = −κ P−1Γφ (t) , u(0) = u0 , (16)

whereκ is the controller gain matrix,P an estimate of the Hessian of the plant cost,Γφ (t) a

time-dependent signal that estimates the plant cost gradient at steady state. Several methods exist

for implementing the control law (16), which mainly differ in the wayΓφ (t) is obtained. Three

model-based and three data-driven methods have been discussed and compared9. This article fo-

cuses on two of these methods, one data-driven (multiple units) and one model-based (neighboring

extremals), which are presented next.

Gradient from multiple units (MU):This data-driven method assumes the availability of multi-

ple similar units, as in the case of fuel cell stacks or large array of microreactors. The inputs to the

various units differ by an offset, and the gradient is estimated delay-free from the difference in the

measured costs11. The input offset represents the excitation needed to estimate the plant gradient.

For the single-input case, two units are needed, which are labeled ’a’ and ’b’. It follows:

ua(t) = u(t), ub(t) = u(t)+∆, Γφ (t) =
φp,b(t)−φp,a(t)

∆
, (17)
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where∆ represents the input offset. For the multivariable case, the typical configuration is to work

with nu+1 units. Only one input direction is perturbed for each of thefirst nu units, while the last

unit has no input offset. The gradient is computed in thenu directions by comparing the cost of

each of the firstnu units to the cost of the last one, as in the one-dimensional case. Note that only

the cost needs to be measured online and that the gradient canbe computed easily without delay.

Gradient from neighboring extremals (NE):Uncertainty causes the optimal inputs and outputs

as well as the gradient to deviate from their nominal values.For the unconstrained case, NE

proposes to estimate the gradient on the basis of a variational analysis around thenominaloperating

point u∗
0 obtained by solving Problem (4) – without constraints – for the nominal parameter values

θ0, for which the nominal gradient∇uφ
(
u∗

0, θ0
)

= 0.12

Fromy = H (u, θ), the variation of the steady-state outputs can be expressedas:

δy = ∇uH δu+∇θ H δθ , (18)

with δy := y−y∗0, δu := u−u∗
0 andδθ := θ −θ 0, wherey∗0 = H

(
u∗

0, θ
)
. For p≥ q, the variation

of the uncertain parameters can be estimated from Eq. (18) using input and output measurements:

δθ = (∇θ H)+ [δy−∇uHδu] . (19)

Similarly, the gradient can be written as:

∇uφ = ∇2
uuφ δu+∇2

uθ φ δθ , (20)

which, with Eq. (19), allows writing the gradient in terms ofδy andδu:

∇uφ = ∇2
uθ φ (∇θ H)+ δy+

(
∇2

uuφ −∇2
uθ φ (∇θ H)+ ∇uH

)
δu . (21)

It follows that upon:
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• assuming that thep model outputs can be measured online for the plant, that is,yp(t) is

available,

• definingδyp(t) = yp(t)−y∗0 andδu(t) = u(t)−u∗
0,

the following expression for the gradient estimateΓφ (t) and the control law can be obtained:9,12

Γφ (t) = ∇2
uθ φ (∇θ H)+ δyp(t)+

(
∇2

uuφ −∇2
uθ φ (∇θ H)+ ∇uH

)
δu(t) , (22)

δ u̇(t) = −κ P−1Γφ (t) , δu(0) = 0. (23)

Unit a

+

Controller

Unit b

Δ

φ
p, a

(t)

φ
p, b

(t)
1/Δ

u
b
(t)

u(t)

Gradient  Γ
φ
(t)

Gradient 

setpoint = 0
-

-

Plant

NE-based

gradient

estimation

δu(t)

Gradient 

setpoint = 0

Gradient  Γ
φ
(t)

δy
p
(t)

Controller

Figure 2: Gradient control for the single-input case. Use ofMU (right-hand side) and NE (left-hand
side) to compute the gradient.

Remarks

1. The two gradient-control methods discussed above are depicted in Figure 2 for the single-

input case. These two methods were originally introduced asRTO methods11,12, although

their originality lies more in the way the gradient is estimated than in the way control is

performed. For instance, it is obvious that the novelty of the MU method is in gradient

computation and not in the use of integral control. Regarding the NE method, although the

approach was proposed to compute the input update that is required to offset the effect of

δθ on optimality, this input update was shown to correspond to the deadbeat control of a

first-order approximation of the gradient12.
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2. NE relies on the assumption that the uncertainty is of parametric nature, while MU does

not. As shown by Eq. (21), NE can be used to estimate the steady-state cost gradient using

steady-state measurements12. In contrast, Eq. (22) proposes to usetransientmeasurements

to compute online an estimate of the steady-state cost gradient. This approach has been

shown to be similar to self-optimizing control based on the null-space method9,13. Schemat-

ically, Eq. (22) uses the inputs and the measured outputs as if the plant were at steady state.

It turns out that, if the plant reaches steady state, the steady-state gradient is estimated accu-

rately.

3. With MU, the excitation required to estimate the gradientis obtained by perturbing the inputs

to the various units, while no excitation is necessary with NE since additional information is

available in the form of output measurements and a nominal model.

4. In the presence of constraints, assumptions have to be made regarding the constraints that are

active at the plant optimum8. As a consequence, the control law (16) pushes thereduced gra-

dientsto zero, with the gradient terms estimated using for examplethe two aforementioned

techniques.

5. Direct use of the dual feasibility condition (the 2nd row of Eq. 5) as a control law has also

been considered14,15. However, these approaches have only been investigated forthe case of

perfect modeling or for the numerical optimization of analytical functions, that is, with no

model error.

6. Extremum-seeking control techniques can be used to drivea dynamic plant to steady-state

optimality using transient measurements16–18. However, these techniques require multi-

ple time-scale separations, which strongly penalizes the convergence time9. This is even

more acute when the number of inputs increases. Hence, in thepresence of uncertainty and

constraints, there are no implicit RTO techniques capable of driving a plant to steady-state

optimality with a convergence time of the order of the plant settling time.

11



Modifier Adaptation using Transient Measurements

Basic Idea

Modifier adaptation has two main features, namely, convergence to the plant optimum even in the

presence of structural plant-model mismatch and the possibility of handling constraints explicitly.

In this subsection, we propose a MA framework that usestransient measurementsto estimate the

steady-statevalues of the modifiers, thus allowing convergence to the steady-state plant optimum

within a single iteration. For this purpose, measurements at each re-optimization instant (during

the transient) are used to estimate the modifiers of the optimization problem, the solution of which

provides the new set of constant inputs to be applied to the plant until the next re-optimization

instant.

The philosophy behind this framework is inspired from gradient-control techniques, which use

transient information for steady-state optimization – despite the fact that, strictly speaking, plant

gradients are only defined at steady state. For the unconstrained case, the estimated signalΓφ (t)

is controlled to zero using integral control as given by Eq. (16). This is justified since, with this

control law, the plant reaches steady state whenu̇ = 0, i.e. whenΓφ = 0. If the estimated signal

Γφ (t) represents the true gradient, the plant will reach a steady state that satisfies the NCO. This

paper proposes to implement MA like gradient control, that is, online use of an estimated value

of the steady-state gradient. The main difference is that the control update is not obtained by

computing a control law, but rather by solving a (modified) optimization problem.

At each re-optimization instant during transient operation, denoted here by the indexj, the

scheme determines the constant inputsu∗
j+1 that are applied until the next re-optimization instant.
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The optimization problem for computingu∗
j+1 reads:

u∗
j+1 := argmin

u
φm(u, θ) := φ (u, θ)+ ε̂φ

j + Λ̂φT

j

(
u−u∗

j

)
(24)

s.t. Gm(u, θ) := G(u, θ )+ ε̂G
j + Λ̂GT

j

(
u−u∗

j

)
≤ 0 (25)

with ε̂φ
j := φ̂p

(
u∗

j

)
−φ

(
u∗

j , θ
)

(26)

ε̂G
j := Ĝp

(
u∗

j

)
−G

(
u∗

j , θ
)

(27)

Λ̂φT

j := ∇̂uφp
(
u∗

j

)
−∇uφ

(
u∗

j , θ
)

(28)

Λ̂GT

j := ∇̂uGp
(
u∗

j

)
−∇uG

(
u∗

j , θ
)

, (29)

where the notation̂(.) indicates an estimatedsteady-state valuecorresponding to the current inputs

u∗
j . Again, it is necessary here to estimate the steady-state values of the modifiers since, strictly

speaking, the modifiers are only defined at steady state. The conditions ensuring that the point

reached upon convergence is optimal for the plant are given in the following theorem.

Theorem 1

Consider the MA problem that uses transient measurements with the inputs computed iteratively

as the solution to the optimization problem(24)-(29). If the controlled plant reaches steady state

and the estimateŝφp, Ĝp, ∇̂uφp and∇̂uGp converge to their true values, then the plant will satisfy

the NCO (2).

Proof: Let start by making the obvious remark that the plant reaching steady state implies con-

vergence of the iterative scheme (24)-(29) since, otherwise, the inputs will change, thereby pre-

venting the plant to reach steady state. The conditionsφ̂p(u∗
∞) = φp(u∗

∞), Ĝp(u∗
∞) = Gp(u∗

∞),

∇̂uφp(u∗
∞) = ∇uφp(u∗

∞) and ∇̂uGp(u∗
∞) = ∇uGp(u∗

∞) imply ε̂φ
∞ = εφ

∞, ε̂G
∞ = εG

∞, Λ̂φ
∞ = Λφ

∞ and

Λ̂G
∞ = ΛG

∞, and thus the plant satisfies the NCO (2).

Remarks

1. The conditions of Theorem 1 are very similar to those for applying gradient control. In the

unconstrained case, for the gradient control law to converge to a KKT point of the plant, it
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is required that (i) the plant reaches steady state, and (ii)the gradient estimates tend to the

steady-state plant gradients.

2. The choice of a very low re-optimization frequency corresponds to static MA. In other words,

if one waits long enough before re-optimization, steady-state will eventually be reached, and

the proposed scheme corresponds formally to static MA.

3. Similarly to static MA, it is advantageous to exponentially filter the estimated modifiers,

with the filtered modifiers being obtained asΛ̂ f , j = K Λ̂ j +(I −K)Λ̂ f , j−1. Filtering helps in

the presence of measurement noise, but also when the plant dynamics are particularly tricky

as in the case of unstable internal dynamics.

Estimation of Static Modifier Terms

The key requirement in Theorem 1 is the ability to estimate, during transient, the values that the

modifiers would have if the plant would stabilize at the steady state corresponding to the current

inputsu∗
j . This section proposes several schemes for performing thisestimation. The schemes rely

on the validity of some assumptions:

• A1: All process variables needed to calculate the constraints are avalaible on-line or, alter-

natively, the plant constraints are measured online, that is, thesignalsGp(t) are available.

• A2: All process variables needed to calculate the plant costare avalaible on-line or, alterna-

tively, the plant cost is measured online, that is, thesignalφp(t) is available.

• A3: The plant outputs are measured online, that is, thesignalsyp(t) are available. There are

p independent output measurements, withp≥ q.

Assumption A1 will be required for computing the zeroth-order modifiersε̂G
j associated with

the constraints, whereas either A1 and A2 or A3 will be used for estimating the first-order modi-

fiers.
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These assumptions are often met in practice when the plant iscomposed of a single or a few

units. However, for large plants encompassing several units, certain constraints cannot be measured

online. In fact, since the cost and constraints functions are inherited from the steady-state problem

formulation, their running values might not even be available during transient operation, or might

only be available at low frequency. The latter case implies that the re-optimization frequency

is limited. If some of these measurements are only availableat steady state, an alternative is to

estimate the missing running cost and constraint values from available output measurements.

Another important remark concerns the computational burden of the proposed framework for

large plants. In the presence of numerous constraints and manipulated variables, the online solution

of the modified optimization problem can be difficult. Fortunately, the plant model can be replaced

by a convex response-surface approximation10, thus allowing the use of fast and reliable convex

optimization methods while preserving the ability of RTO-MA to converge to the plant optimum.

Estimation of the zeroth-order modifiers

If A1 holds, the following scheme can be used for estimatingε̂G
j :

ε̂G
j = Gp

(
t j
)
−G

(
u∗

j , θ
)
. (30)

In other words,̂εG
j is estimated at the time instantt j as the difference between themeasured(or

estimated from measurements) constraintsGp
(
t j
)

and the values that themodeledconstraints

would have at the steady state corresponding tou∗
j . This choice is motivated by the fact that, when

t j → t∞, u∗
j → u∗

∞ andGp(t∞) will be the plant constraintsGp(u∗
∞) associated with the converged

inputsu∗
∞.

Similarly, if needed, the zeroth-order modifiers associated with the cost can be estimated as:

ε̂φ
j = φp

(
t j
)
−φ

(
u∗

j , θ
)
, (31)

provided Assumption A2 holds.
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Estimation of the first-order modifiers

The computation of the first-order modifiers requires the estimation of plant gradients, for which

several methods are available9. Two methods are presented next to illustrate (i) the use of only

cost and constraint measurements (via multiple units), and(ii) the use of input and output mea-

surements1 (via the neighboring-extremal approach).

Gradients from multiple units (MU):When Assumptions A1 and A2 hold, it is possible to es-

timate the first-order modifiers associated with the cost andthe constraints similarly to the way

Γφ (t) is estimated in Eq. (17) for the gradient-control case. We assume the existence ofnu + 1

identical units, for which the cost and the constraints are measured. One of these units is labeled the

main unit, indexed with the subscripta, while thenu remaining units are indexed withi ∈ [1; nu].

At the time instantt j , u∗
j is applied to the main unit, while the ith unit of thenu remaining units

is presented with

u∗
j ,i =

[
u∗j ,1 . . . u∗j , i−1 u∗j , i +∆ u∗j , i+1 . . . u∗j ,m

]T
, that is, with theith coordinate ofu∗

j offset by∆.

Denoting byφp,a
(
t j
)

andGp,a
(
t j
)

the measured values of the cost and constraints for the main

unit at the time instantt j , and byφp,i
(
t j
)

andGp,i
(
t j
)

the corresponding quantities for each unit

i ∈ [1; nu], the elements of the first-order modifiers are estimated as the finite differencesbetween

units:

Γφi (t j) = ∇̂ui φp
(
u∗

j

)
=

φp,i
(
t j
)
−φp,a

(
t j
)

∆
(32)

ΓGh
i
(t j) = ∇̂ui G

h
p

(
u∗

j

)
=

Gh
p,i

(
t j
)
−Gh

p,a

(
t j
)

∆
, (33)

where∇̂ui φp

(
u∗

j

)
is theith coordinate of the vector̂∇uφp

(
u∗

j

)
, h∈ [1; nG] is the counter for the

constraints, and̂∇ui G
h
p

(
u∗

j

)
is the(h, i)th element of the matrix̂∇uGp

(
u∗

j

)
.

Eqns (32) and (33) describe the estimation of the cost and constraint gradients with the MU

method in the multi-dimensional case11. Note that the same excitation can be used to estimate

both the cost and the constraint gradients, which confirms the observation that the complexity of

1If available, the cost and constraint measurements can be considered as elements of the output vector.
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the MU method grows only with the number of inputs9, also in the presence of constraints.

Gradients from neighboring extremals (NE):When Assumption A3 holds, additional informa-

tion is available through the outputs, which allows estimating the gradient terms without input

excitation9. We exploit here the wayΓφ (t) is estimated in Eq. (22). A variational analysis at

steady state gives:

∇uφ (u, θ) = ∇uφ (u∗
0, θ)+∇2

uθ φ (∇θ H)+ δy

+
(

∇2
uuφ −∇2

uθ φ (∇θ H)+ ∇uH
)

δu (34)

∇uG(u, θ) = ∇uG(u∗
0, θ)+∇2

uθ G(∇θ H)+ δy

+
(

∇2
uuG−∇2

uθ G(∇θ H)+ ∇uH
)

δu , (35)

with δy = y− y∗0 andδu = u− u∗
0 the output and input deviations from the nominal operating

point. Note that the cost gradient∇uφ
(
u∗

0, θ
)

and constraint gradients∇uG
(
u∗

0, θ
)

do not always

vanish in the constrained case.

We propose to use the output measurementsδyp(t j) = yp(t j)−y∗0 and the current values of the

inputsδu∗(t j) = u∗
j −u∗

0 to estimate the gradients:

Γφ (t j) = ∇̂uφp

(
u∗

j

)
= ∇uφ (u∗

0, θ)+∇2
uθ φ (∇θ H)+ δyp(t j)

+
(

∇2
uuφ −∇2

uθ φ (∇θ H)+ ∇uH
)

δu∗(t j) (36)

ΓG(t j) = ∇̂uGp

(
u∗

j

)
= ∇uG(u∗

0, θ)+∇2
uθ G(∇θ H)+ δyp(t j)

+
(

∇2
uuG−∇2

uθ G(∇θ H)+ ∇uH
)

δu∗(t j) . (37)

Hence, the way gradients are estimated online with NE is similar to the way they would be esti-

mated at steady state, but for the fact that we propose to use running instead of steady-state values

of the measured outputs. This is consistent with standard NEin that, when the plant reaches steady

state, the incrementsδyp(t j) andδu∗(t j) correspond to the standard valuesδy andδu. This has

already been proposed and successfully tested in simulation in the unconstrained case9. Note that
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the model used for estimating the gradients with NE can differ from the model used at the opti-

mization layer: one can use a detailed model for estimating the gradients and a simplified model

for optimization purposes. This is indeed how RTO-MA will beimplemented in the illustrative

example, i.e. using (i) a convex approximation of the model in the optimization layer (for fast so-

lution and enforcement of the model adequacy conditions that are necessary for convergence6,10),

and (ii) the detailed model for NE.
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Figure 3: MA using transient information and either MU (right-hand side) or NE (left-hand side)
to estimate the plant gradients.

Remarks

1. Figure 3 illustrates the way MA using transient information is combined with the two pro-

posed gradient-estimation schemes. For each method, only the gradient-estimation step is

outlined in the figure, as RTO is performed using MA as given byEqns (24)-(29). This rein-

forces the idea that, in most RTO schemes, gradient estimation can be kept separate from the

control/optimization step, as virtually any controller can be used to perform gradient control

given a gradient estimate. Conversely, any gradient-estimation method can in principle be

used by any measurement-based optimization technique thatuses gradients.

2. The estimated modifiers are consistent in the sense that they tend to their static counter-

parts when the plant reaches steady state. For example, withthe MU method, the gradient

estimates tend to the values estimated using finite differences. With NE, the gradient esti-
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mates tend to the values obtained when static MA is applied using static NE to estimate the

gradients12.

3. The estimated first-order modifiers inherit the accuracy of the method used to estimate the

plant gradients. For example, the MU-based gradient-estimation scheme has the (low) ac-

curacy of a finite-difference scheme, while the accuracy of the NE-based estimation scheme

is limited by the accuracy of linearization, which decreases with largerδθ . With NE, it is

possible to reduce the error due to linearization by repeating the linearization around the

converged operating conditions, i.e. updating the matrices in Eqns (34)-(35).

4. The presence of measurement noise is clearly detrimentalto MU since MU relies on a finite-

difference scheme between the units and identical units arerequired, which is rarely the case.

Note however that some progress has been made to reduce the need for exactly identical

units19. NE is less affected by measurement noise since it does not rely on numerical differ-

entiation. Still measurement noise affects the quality of the gradient estimates viaδyp(t j),

but modifiers are typically filtered.

5. Since no assumption is made regarding the structure of theuncertainty, the MU-based esti-

mation scheme is able to perform well even when the source of uncertainty is either unknown

or of non-parametric nature as in the case of plant-model mismatch. In contrast, NE assumes

that the identity of the uncertain parameters is known, but only thenominalparameter values

are used to compute the matrices in Eqns (36)-(37), and neither the values of the model pa-

rameters nor these matrices are updated. The NE-based estimation scheme has been shown

to perform well also when the source of uncertainty is unknown or in the presence of struc-

tural plant-model mismatch9.

6. The MU method is clearly not suited for large industrial plants, where the curse of dimen-

sionality makes the task of estimating plant gradients particularly difficult.
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Real-Time Optimization of a Continuous Stirred-Tank Reactor

Let us consider the continuous stirred-tank reactor described elsewhere9,20.

Reactor Model

The reactionsA+B→C and 2B→ D take place in an isothermal CSTR, withC being the desired

product. The two manipulated variables are the feed rates ofA andB. The reactor mass and heat

balances lead to the following dynamic model:

ċA(t) = −k1 cA(t) cB(t)+
uA(t)

V
cAin−

(uA(t)+uB(t)
V

)
cA(t) (38)

ċB(t) = −k1 cA(t) cB(t)−2 k2 c2
B(t)+

uB(t)
V

cBin −
(uA(t)+uB(t)

V

)
cB(t) (39)

ċC(t) = k1 cA(t) cB(t)−
(uA(t)+uB(t)

V

)
cC(t) (40)

ċD(t) = k2 c2
B(t)−

(uA(t)+uB(t)
V

)
cD(t) (41)

Q(t) = V k1 cA(t) cB(t)(−∆Hr,1)+V k2 c2
B(t)(−∆Hr,2) , (42)

wherecX denotes the concentration of speciesX, V is the reactor volume,uA anduB are the feed

rates ofA andB, Q is the total heat generated,∆Hr,1 and∆Hr,2 are the reaction enthalpies of the

two reactions,cAin andcBin are the inlet concentrations, andk1 andk2 are the rate constants of the

two chemical reactions. The numerical values of the model parameters are given in Table 1.

Optimization Problem

The objective is to optimize the steady-state performance of the reactor by determining the optimal

feed rates ofA andB.
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Problem formulation

The optimization of steady-state performance is formulated mathematically as follows:

max
uA,uB

J :=
c2
C (uA+uB)2

uAcAin
−w(u2

A +u2
B) (43)

s.t. −k1 cA cB +
uA

V
cAin−

(uA+uB

V

)
cA = 0

−k1 cA cB−2 k2 c2
B +

uB

V
cBin−

(uA+uB

V

)
cB = 0

k1 cA cB−
(uA +uB

V

)
cC = 0

k2 c2
B−

(uA +uB

V

)
cD = 0

Q = V k1 cA cB(−∆Hr,1)+V k2 c2
B(−∆Hr,2)

G1 :=
Q

Qmax
−1≤ 0 (44)

G2 :=
D

Dmax
−1≤ 0 (45)

0≤ uA ≤ umax (46)

0≤ uB ≤ umax, (47)

where(.) indicates a steady-state value andD := cD
cA+cB+cC+cD

is the steady-state molar fraction

of the by-productD. Note that this problem differs from the optimization problems in9,20 as

constraints on the maximal heat generation and the molar fraction D are introduced through the

inequalities (44) and (45). The objective functionJ represents the productivity ofC, with a penalty

for control action by means ofw(u2
A +u2

B), w being a weighting parameter. The numerical values

of the weighting parameter and the bounds are given in Table 2.

Optimization problem (43)-(47) can be reformulated as a minimization problem to fit the form

commonly found in the literature, withφ = −J. Furthermore, it may be convenient to perform

MA with a convex approximation to Problem (43)-(47) to enforce theadequacy condition, which

is a necessary condition for MA to converge to the plant optimum6,10. Hence, Problem (43)-(47)
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Table 1: Nominal model parameters

k1 0.75 l
molmin

k2 1.5 l
molmin

cAin 2 mol
l

cBin 1.5 mol
l

V 500 l
(−∆Hr,1) 3.5 kcal

mol
(−∆Hr,2) 1.5 kcal

mol

Table 2: Parameters of the optimization problem

w 0.004 mol min
l2

Qmax 110 kcal
Dmax 0.1 −

umax 50 l
min

is approximated by the following convex optimization problem:

min
u

φc(u) := φ∗ +
[
aφ bφ

]
(u−u∗)+

1
2

(u−u∗)T Qφ (u−u∗) (48)

s.t. G1,c(u) := G1(u∗)+ [aG1 bG1] (u−u∗) ≤ 0 (49)

G2,c(u) := G2(u∗)+ [aG2 bG2] (u−u∗) ≤ 0 (50)

0≤ uA ≤ umax (51)

0≤ uB ≤ umax, (52)

with u = [uA uB]T and whereφc, G1,c andG2,c are constructed as convex response-surface approx-

imations to themodelcost and constraint functions around the nominal steady state corresponding

to u∗
0 by solving three least-squares regression problems forφc, G1,c andG2,c with the scalarsaφ ,

bφ , aG1, bG1, aG2, bG2 and the (2×2) matrixQφ as degrees of freedom. Note that this model is

used for both performing MA and computing the modifiers in Eqns (26)-(29).

Eqns (49) and (50) show that the constraints are approximated by linear functions. This is

motivated by the fact thatG1 tends to exhibit a concave behavior in the region of interest, whileG2

22



is globally neither concave nor convex. Hence, it is simplerto model them as linear functions and

enforce strict convexity for the cost functionφc
10. The diagonal elements ofQφ are determined

(together withaφ , bφ ) to forceφc to be strictly convex, with the additional constraints thatQφ be

symmetric and the eigenvalues ofQφ be greater than user-specified strictly positive values, here

chosen both equal to 0.08. Conceptually, only the signs of these eigenvalues matter since strictly

positive values guarantee the positive definiteness ofQφ . In practice, however, these values may

affect the convergence rate and should be chosen with care. Note that sinceφc is designed to fit the

modeledcost functionφ , no experiment is required. The results of the aforementioned constrained

least-squares regression are given in Table 3.

Table 3: Parameters of the convex approximations

aφ −0.8305 bφ −0.9121
aG1 0.0051 bG1 0.0126
aG2 −0.0643 bG2 0.0857

Qφ =

[
0.08 0

0 0.08

]

Nominal vs. plant optimum

Both the plant and the model are described by Eqns (38)-(42).Uncertainty in some of the parame-

ters is considered, with the model parameters given in Table1 and the plant parameters being the

same except forcAin,p = 2.5 mol
l , k1,p = 1.4 l

molmin andk2,p = 0.4 l
molmin. Structural uncertainty

is not introduced as it will automatically occur upon constructing the convex approximations toφ ,

G1 andG2.

The optimal solutions for the plant (which is assumed to be unknown and thus will not be

used thereafter) and the model are given in Table 4. It is seenthat, not only does the parametric

uncertainty lead to different optimal input values, but also to a different set of active constraints,

with G1 active andG2 inactive in the plant, whereas the model predicts the opposite.
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Table 4: Solutions to the model and plant optimization problems

Model optimal solution Plant optimal solution
u∗A 14.52 l

min u∗A,p 17.20 l
min

u∗B 14.90 l
min u∗B,p 30.30 l

min
J(u∗) = −φ∗ 4.51 mol

min Jp
(
u∗

p

)
= −φ∗

p 15.42 mol
min

G1(u∗) = Q∗

Qmax
−1 −0.48 − G1,p

(
u∗

p

)
=

Q∗
p

Qmax
−1 0 −

G2(u∗) = D∗

Dmax
−1 0 − G2,p

(
u∗

p

)
=

D∗
p

Dmax
−1 −0.19 −

RTO Using Steady-State Information

Static MA given by Eqns (6)-(11) is implemented with exponential filtering of the modifiers. In

the ideal noise-free case with true plant gradients, convergence to the plant optimum is achieved

as follows (Figure 4):

• after 4 steady-state iterations when the convex approximation to the plant model is used,

with a diagonal gain matrixK = kI tuned to the values where damped oscillations around

u∗
p start to occur (k = 0.8),

• after 6 steady-state iterations when the plant model is used, with a diagonal gain matrix

K = kI tuned to the values where damped oscillations aroundu∗
p start to occur (k = 0.4).

RTO Using Transient Information

MA using transient information and true plant gradients

We start this subsection by illustrating the effect of the choice of the RTO period, denotedτRTO,

in the ideal case of true plant gradients. The plant is initialized at the steady state corresponding

to the nominal operating point, and MA is performed using a convex approximation to the plant

model.

Performing MA everyτRTO = 60 min, which is a good approximation of the plant settling

time, leads to results that are similar to those obtained using static MA (Figure 5). The scheme
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Figure 4: Evolution of the plant cost using static MA with both the plant model and a convex
approximation.
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Figure 5: Evolution of the plant cost using MA with transientinformation, a filter gain of 0.8,
τRTO= 60 min and true plant gradients.

takes 4 iterations (or 240 min) to converge to the plant optimum. Note that the cost values during

transient can be larger than the optimal cost, which is defined at steady state. Figure 6 depicts

25



0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

time [min]

P
la
n
t 
C
o
n
s
tr
a
in
ts

 

 

G
1, p

(t)

G
2, p

(t)

G
1, p

*

G
2, p

*

Figure 6: Evolution of the plant constraints using MA with transient information, a filter gain of
0.8, τRTO= 60 min and true plant gradients.
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Figure 7: Evolution of the plant cost using MA with transientinformation, a filter gain of 0.8,
τRTO= 30 min and true plant gradients.
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Figure 8: Evolution of the plant cost using MA with transientinformation, a filter gain of 0.8,
τRTO= 5 min and true plant gradients.

Figure 9: Evolution of the plant cost using MA with transientinformation, a filter gain of 0.8,
τRTO= 1 min and true plant gradients.

the corresponding behavior of the plant constraints and illustrates that the correct set of active

constraints is determined.
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With τRTO= 30 min andτRTO= 5 min, the convergence time reduces to 120 min (Figure 7)

and 70 min (Figure 8), respectively. Finally, withτRTO= 1 min, the convergence time of 60 min

is of the order of the plant settling time, which means that the steady-state optimum is reached in

the time it takes to reach steady state. The discontinuitiesobserved in the measured cost are due to

the abrupt changes in the inputs that occur every time the RTOproblem is solved, as illustrated in

Figure 10.
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Figure 10: Evolution of the inputs using MA with transient information, a filter gain of 0.8,τRTO=
60 min and true plant gradients.

MA using transient information and NE-based gradients

This section investigates the use of NE-based estimated gradients. We still use the convex approx-

imation to the plant model and Eq. (27) for estimatingε̂G
j , but we push the illustration one step

further and use the steady-state plant model given by Eq. (43) to construct the matrices required

by Eqns (36)-(37) to estimate the first-order modifiers. We also add 2%-noise to the output mea-

surements, consisting here of the four concentrations. With 4 outputs and 3 uncertain parameters,

i.e. p > q, the conditions for gradient estimation using NE are satisfied. Convergence to the plant
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optimum, although theoretically possible, depends on the quality of the linearization-based method

for estimating the gradients, as illustrated in the following figures.

Figure 11: Evolution of the inputs using MA with transient information, a filter gain of 0.6,τRTO=
1 min and NE-based gradients.

We restrict ourselves to the caseτRTO= 1 min and illustrate the effect of the filter gain. Fig-

ure 11 depicts the input evolution for a filter gain of 0.6, while Figures 12 and 13 show the cor-

responding plant cost and constraints. Convergence to the neighborhood of the plant optimum is

achieved in 40 min, confirming the results obtained with gradient control9, where it was argued

that model-based gradient-estimation techniques show thebest convergence rates. The small off-

sets observed between the converged values of the inputs/constraints and the corresponding optimal

values are due to the inaccuracy of the linearization, whichby the way does not affect much the

converged value of the plant cost. Increased filtering leadsto slower convergence, a consequence

of the optimization problem being “less” modified between successive iterations (Figure 14). De-

spite the significant amount of filtering, convergence is achieved in about 55 min, which is slightly

less than the settling time of the CSTR. Finally, note that the convergence times obtained here are

of the same order of magnitude as those observed with gradient control9.
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Figure 12: Evolution of the plant cost using MA with transient information, a filter gain of 0.6,
τRTO= 1 min and NE-based gradients.

MA using transient information and MU-based gradients

Finally, we proceed in a similar fashion for the case where the gradients are estimated using the

MU method. This is the most challenging case since output measurements are not used. No

measurement noise is considered to support the case of strictly identical units. This could be

interpreted as an intrinsic limitation of the MU method, although there have been recent efforts to

overcome this limitation19,21,22. Still, MU is interesting in that it is a purely data-driven gradient-

estimation method.

Here again,τRTO is set to 1 min, and the filter gain is varied between 0.06 and 0.02. These very

low gains, which are justified by the necessity of turning transient measurements into steady-state

information, have already been observed in the unconstrained case9. Figures 15 - 17 show the

evolution of the input profiles for the filter gains 0.06, 0.04 and 0.02, respectively.

As expected, insufficient filtering leads to oscillations, which penalizes the convergence time,

while more filtering reduces the agressivity of the control changes. With “intermediate” filtering, a
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Figure 13: Evolution of the plant constraints using MA with transient information, a filter gain of
0.6, τRTO= 1 min and NE-based gradients.

convergence time of about 140 min is observed (Figure 16), while strong filtering slows down the

convergence rate and leads to an observed convergence time of 180 min (Figure 17). Interestingly

enough, this convergence time of about three times the settling time was also observed in the con-

text of gradient control9. With other data-driven gradient-estimation techniques,the convergence

time will be much larger, mainly due to the need for time-scale separation9. This further justifies

the choice of the MU for illustrating the potential performances of MA with transient measure-

ments and data-driven estimates of the gradients since, despite its intrinsic limitations in terms of

applicability to real systems, it does not over-penalize the convergence time.
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Figure 14: Evolution of the plant cost using MA with transient information, a filter gain of 0.1,
τRTO= 1 min and NE-based gradients.

Conclusions

This article has proposed a framework that allows using transient measurements toward the solu-

tion of steady-state RTO via MA, similarly to what is done with gradient control in the uncon-

strained case. Despite plant-model mismatch, convergenceto the plant optimum is possible in a

single iteration to steady state, provided the plant gradients are estimated accurately. Both a NE-

based scheme and an extension of the multiple-unit method have been proposed to estimate the cost

and constraint gradients in the presence of parametric uncertainty and constraints. The MA scheme

using transient information appears to be quite powerful, whereby the advantages of model-based

explicit RTO methods (in particular the possibility of handling plant constraints) can be combined

with the advantages of implicit control-inspired methods (in particular fast convergence).

The MA methodology using transient information has been applied to a simulated CSTR in

the presence of noise, constraints and a large amount of parametric uncertainty. The time needed

for convergence to the plant optimum varies from about two thirds to twice the plant settling time
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Figure 15: Evolution of the inputs using MA with transient information, a filter gain of 0.06,
τRTO= 1 min and MU-based gradients.

depending on the gradient-estimation method used, that is,a factor 2-6 reduction compared to static

MA under the same uncertain scenario10. Note that virtually any gradient-estimation technique

can be used to compute the modifiers. A good source of inspiration is to look at gradient-control

RTO schemes, which include a more or less explicit gradient-estimation scheme. The choice of a

scheme may also depend on the number and nature of the plant measurements (cost and constraints

vs. outputs). Although workable schemes have been proposedin this paper, more work is needed to

improve the estimation of plant gradients. For example, a regularization-based method developed

recently could be tailored to estimate plant gradients23.

Although it has recently been suggested to replace the plantmodel with a convex approxima-

tion in the MA problem formulation10, the plant model can still be used for estimating the plant

gradients. This is what happens with NE, where the gradient estimates result from a variational

analysis using the plant model and plant measurements (see Eqns 36-37). Another possible com-

bination is MA for optimization and the classical two-step approach1 for gradient estimation. The
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Figure 16: Evolution of the inputs using MA with transient information, a filter gain of 0.04,
τRTO= 1 min and MU-based gradients.

uncertain model parameters can be updated during transientoperation using the differences be-

tween measured and predicted outputs. Then, the updated model is used to estimate the cost and

constraint gradients at each RTO instantt j , while the convex approximation used for MA remains

unchanged. We did implement it this way, and the results (notincluded in this article) are very

similar to those of NE, with NE being faster but slightly lessaccurate. Such an outcome was ex-

pected since (i) the convergence time of the two-step approach is penalized by the dynamics of the

parameter update and (ii) the accuracy of the NE is penalizedby linearization. Again, this confirms

the fact that virtually any gradient-estimation method canbe used for estimating the modifiers.

Finally, it is important to ensure that the use of static RTO to optimize a dynamic plant does

not preclude its stabilization, which calls for a stabilityanalysis. In that context, MA with MU-

based gradients has been applied successfully to a simulated CSTR involving unstable internal

dynamics (not included here due to space limitation). The price to pay –slower convergence– is

not surprising, since the unstable internal dynamics call for either a reduction of the RTO frequency
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Figure 17: Evolution of the inputs using MA with transient information, a filter gain of 0.02,
τRTO= 1 min and MU-based gradients.

or strong filtering (or both).
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