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Abstract

Real-time optimization (RTO) methods use measurementdf¢etadhe effect of uncer-
tainty and drive the plant to optimality. RTO schemes diffethe way measurements are
incorporated in the optimization framework. Explicit RTEhemes solve a static optimization
problem repeatedly, with each iteration requiring tramisggperation of the plant to steady state.
In contrast, implicit RTO methods use transient measurésrterbring the plant to steady-state
optimality in a single iteration, provided the set of actiamstraints is known. This paper con-
siders the explicit RTO scheme “modifier adaptation” (MApgroposes a framework that
allows using transient measurements for the purpose a\ststate optimization. It is shown
that convergence to the plant optimum can be achieved irgéedirmansient operation provided
the plant gradients can be estimated accurately. The agpisdllustrated through the simu-
lated example of a continuous stirred-tank reactor. The tieeded for convergence is of the
order of the plant settling time, while more than five itesat to steady state are required with
conventional (static) MA. In other words, MA using trangiémformation is able to compete

in performance with RTO schemes based on gradient contith, the additional ability to
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handle plant constraints.
Keywords : Real-time optimization, Modifier adaptation, Plant-mod@bmatch, Gradient

estimation, Gradient control.

Introduction

Optimal operation of chemical processes is key for meetnoglyctivity, quality, safety and en-
vironmental objectives. Both model-based and data-drbatremes are used to compute optimal
operating conditions. The model-based techniques aréiuwat@and widespread, but they suffer
from the presence of plant-model mismatch. Furthermorenevith an accurate plant model,
the presence of disturbances generally leads to a driftebfitimal operating conditions, and
adaptation based on measurements is needed to maintaiptanality. On the other hand, data-
driven optimization techniques rely exclusively on measuents to adjust the optimal inputs in
real time. Consequently, real-time measurements arediyiesed to help achieve plant optimal-
ity. This field, which is labeled real-time optimization (], has received growing attention in
recent years.

Explicit RTO schemesolve the optimization problem repeatedly. For example,ttfo-step
approach uses (i) measurements to update the model paraifiieée is, to refine the plant model),
and (i) the updated model to perform the optimizatioit has also been proposed to update the
model differently. Instead of adjusting the model paramsetene updates input-affine correction
terms that are added to the cost and constraint functionseobptimization problem. The tech-
nique, labeled modifier adaptation (MA), forces the modelest and constraints to match the
plant value$®. The main advantage of MA lies in its proven ability to comesto the plant
optimum, even in the presence of structural plant-modehmaish, a case where the two-step ap-
proach will generally fail. Hence, MA is also capable of a#itay the correct set of active plant
constraints without additional assumptions. MA is a stagitmization method, which means that

its application to a continuous plant requires waiting fiasly state before taking measurements,



updating the correction terms and repeating the numerg#@naation. Thus, several iterations
are generally required to achieve convergence.

In contrastjmplicit RTO schemesuch as self-optimizing contrband NCO trackin§, pro-
pose to adjust the inputs on-line in a control-inspired neantn the absence of constraints, or
when assumptions can be made regarding the set of plantraimstthat are active at the opti-
mum, implicit RTO methods reduce to gradient control, asdbgrees or freedom are adjusted
in real time to drive the plant cost gradient to zero. The nuifficulty lies in the estimation of
the steady-state plant gradient, a task that can be achisieg either measurements or, better,
measurements together with a plant mdddmplicit RTO is much more challenging when the
set of active constraints is unknown, as not only the coslligra has to be inferred from the
measurements but also the set of active constraints an@tiséraint gradients.

This paper proposes a framework for using MA during the ieamgphase toward steady state,
thereby attempting to reach optimality in a single itenatio steady state. For this, two features
are required: (i) the model-based optimization problemdsee be solved online in real time,
which is made easier by the use of convex approximatfyrend (i) the modifiers are computed
using transient measurements. Since there is no conceifteaence between estimating the
cost gradient and the constraint gradients, we proposek&itspiration from gradient control
and extend some of the related unconstrained mefhimdsiake them fit the MA framework. In
particular, both the linearization-based gradient-estion method associated with neighboring
extremals (NE) and the multiple-unit method (MU) are exthtb fit the proposed MA scheme
using transient information.

The paper is organized as follows. The problem formulatimhthe static MA formulation are
presented in Section 2. Section 3 introduces both the framefor using MA during transient
operation and a way of estimating the modifiers. The apjdinaif the proposed methodology is
illustrated through a simulated 2-input 6-constraint CSmfSection 5, and Section 6 concludes

the paper.



Problem Formulation

The problem of optimizing the plant performance at steadjestn the presence of constraints,

can be formulated mathematically as a nonlinear prograniP{NL

u, = arg rﬁln(pp(u)

s.t. Gp(u) <0, 1)

whereu is theny-dimensional vector of input§, is theng-dimensional vector of plant constraints
and g, (u) is the scalar cost function. Here, the subscfipg indicates a quantity related to the

plant.

The necessary conditions of optimality for the plant are:

Dup (Up) +Vp DuGp (up) = . @

wherev, is theng-dimensional vector of Lagrange multipliers.
In practice, the functiong, andGp are unknown. A steady-state plant model is used to con-

struct the following model-based NLP:

ut o= argmuincp(u,y,e)
s.t. X=F(u,X,0)=0

y="h(u,x,0) 3)

whereg is the model cost functiork; then-dimensional vector function representing the dynamic
model, g the ng-dimensional vector of constraint functiornsthe n-dimensional state vector at

steady statey the p-dimensional vector of outputs at steady stdtethe g-dimensional vector



of uncertain model parameters. For the sake of simplicigy,assume that there exist explicit

functionsy = H (u, 8), which allows reformulating Problem (3) as follows:

*

ut = argrﬁin(p(u,e)

st. G(u,08)<0, (4)

where ¢ and G represent the models of the cost and constraint functi@sperctively. These
models require the identification of the model paramefersVe will assume in this paper that

andG are twice differentiable. The model NCO read:

G, 08)<0, vi>0, v G(U,0) = 0

Ou@(u, 8)+v* O,G(u*,8) = O. (5)

Measurement-Based Real-Time Optimization

If the model matches the plant perfectly, solving the mdabded optimization problem solves
Problem (1). Unfortunately, this is rarely the case, andallgw™ # us. Real-time optimization
encompasses a family of methods for which plant measurenaeatused to update in order to
approachuy,. We will review next two such methods, namely, explicit RTi@ modifier adaptation

and implicit RTO using gradient control.

Explicit RTO via Modifier Adaptation

With modifier adaptation, plant measurements are usedrttiitely modify the model-based op-
timization problem (4) in such a way that, upon convergetioe NCO of themodifiedproblem
match those of the plant. This is made possible by using nesdlithat, at each iteration, corre-
spond to the differences between the predicted and meagaitess of the constraints and between

the predicted and measured cost and constraint gradieneseTmodifiers are used to add input-



affine corrections to the model cost and constraint funstiancording to the intuitive observation
that first-order corrections are required to achieve matdhst-order optimality conditions. At
the KM iteration, the optimal inputs computed using the modifiezbfgm are applied to the plant,
and the resulting values of the plant constraints and of et gost and constraint gradients are
compared to the model-based predictions. Then, the fatigwptimization problem is solved to

determine the next inputs:

Uy 1= argmingn(u, 8) := (u, 6) +ef+/\|‘fT (u—up) (6)
st Gm(u,8):=G(u,0)+eC+AS (u—uf) <0 7)

with ¢ := @ (U) — @ (Ui, 6) 8)

£ = Gp(U) — G (uj, 0) 9)

A= Dup (U) — Du@(ug, 6) (10)

AZ = 0uGp (ui) — DuG (ui, 0) (12)

where the scalag? and theng-dimensional vectoe$ are the zeroth-order modifiers, and the
dimensional row vectol\l‘fT and the g x ny) matrix /\(k3T represent the first-order modifiers.

As seen from Eqns (6)-(11), MA is a static optimization methloat, at iteratiork, requires
application of the constant input valugsuntil the plant reaches steady state. Once this occurs, the
modifiers are updated and used for the subsequent iterasdhystrated in Figure 1. In practice
MA is implemented with exponential filtering of the modifiethat is, the filtered modifiers are

obtained ag\ x = K A+ (I — K) A 1, with the(ny + 1) (ng + 1)-dimensional modifier vector

Gn T T Gn.T

A = (gl el g N A AT (12)
Exponential filtering both prevents abrupt modificationshef optimization problem between two
consecutive iterations and reduces the impact of measatemése. Also, exponential filtering

preserves the properties of RTO-MA upon convergence anddgeedegrees of freedom (by means



of the filter gain matrix ) that can be used for enforcing convergehdeor the sake of simplicity,
we will implicitly assume the presence of this filter and n@tiiguish between raw and filtered

modifiers hereafter.

Transient behavior to steady state

k:=k+1 = »- - - - | Dynamic Plant |- --'- -

e ereer e s s s s s nnnen »| Computation
—»| of Modifiers

G(u*), ¢p(u*)

Y

Static Model

G

0
sk,ekG
0
AL AS,

k+1

MA [«

Figure 1. Basic scheme for steady-state plant optimizat@MA.

The advantage of the modifier-adaptation scheme (6)-(&%)ii its ability to converge to a

KKT point of the planf. Eqns (7) and (9) show that, upon convergenag:abne has:
Gm(uh, 8) =G (uh, 8) + €5 =Gp(us,) <O. (13)

Hence, the zeroth-order modifies§ allow enforcing the feasibility conditiorG, (uz,) < 0. Note
that the correction terrqf’ simply shifts the cost function up or down, without changihg loca-
tion of its minimizer, and thus is generally discarded.

Similarly, upon differentiating Eqns (6) and (7) with resp® u and using Eqns (10) and (11),

one obtains upon convergence:

Dulin (U, 8) = Dy (Us, 0)+ AL = Dy (U%) (14)

DuGm(us, 6) = OuG(us, 8)+AS = 0,Gp(us). (15)

.
Hence, the first-order correction terms in the cost and caimstfunctions (with slopesxf and



/\ET) modify the model gradients to force them to match the cpoading plant gradients. Note
that the zeroth- and first-order corrections also lead tachsat Lagrange multipliers upon con-
vergence, thus ensuring the correct set of active consdrain other words, modifier adaptation
forces the NCO of the model-based optimization problemd4atch those of the plant optimiza-

tion problem (1).

Implicit RTO using Gradient Control

Implicit RTO schemes recast Problem (1) as a control proplémose controlled variables are the
NCO (2), with the associated setpoints being zero. In theratesof constraints, gradient control
can be implemented straightforwardly since the NCO (2) cedo [, ¢, (u]g) = 0. For example,

the following control law can drive the plant gradient toaer real time:
ut) = —kPy(t), u(0)=up, (16)

wherek is the controller gain matrixP an estimate of the Hessian of the plant cdgj(t) a
time-dependent signal that estimates the plant cost graalisteady stateSeveral methods exist
for implementing the control law (16), which mainly differ the wayr (1) is obtained. Three
model-based and three data-driven methods have been skscasd comparéd This article fo-
cuses on two of these methods, one data-driven (multipte)}emd one model-based (neighboring
extremals), which are presented next.

Gradient from multiple units (MU)This data-driven method assumes the availability of multi-

ple similar units, as in the case of fuel cell stacks or lamgayaof microreactors. The inputs to the
various units differ by an offset, and the gradient is estadalelay-free from the difference in the
measured cost$. The input offset represents the excitation needed to aggithe plant gradient.

For the single-input case, two units are needed, which aeddd 'a’ and 'b’. It follows:

_ Po,p(t) — Ppalt)

Ua(t) = u(t), Up(t)=u(t)+4, Ty(t) A ,

(17)



whereA represents the input offset. For the multivariable casetytpical configuration is to work
with ny + 1 units. Only one input direction is perturbed for each offtrst n, units, while the last
unit has no input offset. The gradient is computed inrhelirections by comparing the cost of
each of the firshy units to the cost of the last one, as in the one-dimensiorsa. ddote that only
the cost needs to be measured online and that the gradiebecmputed easily without delay.

Gradient from neighboring extremals (NE)ncertainty causes the optimal inputs and outputs

as well as the gradient to deviate from their nominal valuEer the unconstrained case, NE
proposes to estimate the gradient on the basis of a varétmalysis around theominaloperating
point ug obtained by solving Problem (4) — without constraints — farmominal parameter values
6o, for which the nominal gradiertf, ¢ (ug, 6o) = 0.2

Fromy = H (u, 8), the variation of the steady-state outputs can be expressed
oy = [yH du+[gH 386, (18)

with 0y :=y —¥5, 8u :=u—ufandd6 := 6 — 6o, whereyy = H (ug, 8). Forp > q, the variation

of the uncertain parameters can be estimated from Eq. (118} urgout and output measurements:
50 = (OgH) ™" [8y — OyHbU] . (19)
Similarly, the gradient can be written as:
Oue = O2,00u+02,056, (20)
which, with Eqg. (19), allows writing the gradient in termsa@f anddu:
0u = 0809 (Do) 8y + (06,0 — 009 (DH) " CuH ) Su. (21)

It follows that upon:



e assuming that th@ model outputs can be measured online for the plant, that,($) is

available,
e definingdy,(t) = yp(t) —Yp anddu(t) = u(t) — ug,

the following expression for the gradient estimBigt) and the control law can be obtainéd?

Folt) = D2a@(DoH)" 8yp(t) + (TR0~ DRe@(TgH) OuH ) Suft), (22)
su(t) = —kP Iy, du(0) =0. (23)
Gradient
setpoint = 0
Gradient l
setpoint = 0 u(t) q)p,n(t)‘ Gradient F¢(t)

—»@—P Controller »| Unit a »1 Controller
Unit b Y NE-based du(t)

u, () t
b @0 1/A gradient <
A estimation

A

Gradient T ¢(t)

Plant

dy, (1)

Figure 2: Gradient control for the single-input case. Usd0f(right-hand side) and NE (left-hand
side) to compute the gradient.

Remarks

1. The two gradient-control methods discussed above aretddpn Figure 2 for the single-
input case. These two methods were originally introduceB®® method$!12 although
their originality lies more in the way the gradient is estigththan in the way control is
performed. For instance, it is obvious that the novelty & U method is in gradient
computation and not in the use of integral control. Regardire NE method, although the
approach was proposed to compute the input update thatugeddo offset the effect of
06 on optimality, this input update was shown to corresponchodeadbeat control of a

first-order approximation of the gradiéft

10



. NE relies on the assumption that the uncertainty is ofrpatac nature, while MU does
not. As shown by Eq. (21), NE can be used to estimate the st&atly cost gradient using
steady-state measuremelitsin contrast, Eq. (22) proposes to usgnsientmeasurements
to compute online an estimate of the steady-state costegradiThis approach has been
shown to be similar to self-optimizing control based on th#-space methoti'®. Schemat-
ically, Eq. (22) uses the inputs and the measured outpufdfas plant were at steady state.
It turns out that, if the plant reaches steady state, thelgtstate gradient is estimated accu-

rately.

. With MU, the excitation required to estimate the gradiswbtained by perturbing the inputs
to the various units, while no excitation is necessary withdihce additional information is

available in the form of output measurements and a nomindiino

. In the presence of constraints, assumptions have to be regdrding the constraints that are
active at the plant optimufn As a consequence, the control law (16) pushesdtieced gra-
dientsto zero, with the gradient terms estimated using for exartii@eéwo aforementioned

techniques.

. Direct use of the dual feasibility condition (the 2nd rofrEg). 5) as a control law has also
been consideréd®> However, these approaches have only been investigatéusfease of
perfect modeling or for the numerical optimization of anigigl functions, that is, with no

model error.

. Extremum-seeking control techniques can be used to droygamic plant to steady-state
optimality using transient measuremef§3® However, these techniques require multi-
ple time-scale separations, which strongly penalizes timwargence tim& This is even
more acute when the number of inputs increases. Hence, préisence of uncertainty and
constraints, there are no implicit RTO techniques capabtiieing a plant to steady-state

optimality with a convergence time of the order of the plattlgg time.

11



Modifier Adaptation using Transient Measurements

Basic Idea

Modifier adaptation has two main features, namely, convergéo the plant optimum even in the
presence of structural plant-model mismatch and the pidigsiif handling constraints explicitly.
In this subsection, we propose a MA framework that usmssient measurements estimate the
steady-stat@alues of the modifiers, thus allowing convergence to thadstestate plant optimum
within a single iteration. For this purpose, measuremenéaeh re-optimization instant (during
the transient) are used to estimate the modifiers of the dg#tan problem, the solution of which
provides the new set of constant inputs to be applied to thetpintil the next re-optimization
instant.

The philosophy behind this framework is inspired from gesdicontrol techniques, which use
transient information for steady-state optimization —piesthe fact that, strictly speaking, plant
gradients are only defined at steady state. For the uncorestraase, the estimated signgj(t)
is controlled to zero using integral control as given by Hd)( This is justified since, with this
control law, the plant reaches steady state wien0, i.e. whenl", = 0. If the estimated signal
o (t) represents the true gradient, the plant will reach a stetady that satisfies the NCO. This
paper proposes to implement MA like gradient control, tkabnline use of an estimated value
of the steady-state gradient. The main difference is thatctintrol update is not obtained by
computing a control law, but rather by solving a (modifiedjiimization problem.

At each re-optimization instant during transient operatidenoted here by the indgx the

scheme determines the constant inp;q*g_sl that are applied until the next re-optimization instant.

12



The optimization problem for computirtq+l reads:

Uja = argmingn(u, 8) := @(u, 6) +éj”+/A\§pT (u—u}) (24)
s.t. Gm(u,0):=G(u, 9)+§?+/\?T (u—uj) <0 (25)

with &7 :=q (u) —o(ui, 6) (26)
£8:=Gp(uj) -G (u},0) (27)

A = Bugp (u]) - Dup (U}, ©) 29)

AS" = TuGp (u}) — 0LG (U, ) , (29)

—~

where the notatiof.) indicates an estimatexfeady-state valueorresponding to the current inputs
uj. Again, it is necessary here to estimate the steady-statesaf the modifiers since, strictly
speaking, the modifiers are only defined at steady state. dinditcons ensuring that the point
reached upon convergence is optimal for the plant are givéme following theorem.

Theorem 1

Consider the MA problem that uses transient measuremettisthng inputs computed iteratively
as the solution to the optimization problg@n)-(29). If the controlled plant reaches steady state

and the estimatafsp, ép, D/Ua, andlyGp converge to their true values, then the plant will satisfy

the NCO (2).

Proof: Let start by making the obvious remark that the plant reagBieady state implies con-
vergence of the iterative scheme (24)-(29) since, othervitee inputs will change, thereby pre-
venting the plant to reach steady state. The condit'@{(sljo) = @p(uy), ép(uj;) = Gp(uz),

G

O~ ® G

D/uap(u;fo) = Ougp(uz) and 0,Gp (uh) = O0uGp(uf) imply &8 = &f, e85 = ¢ A? = A? and

/\S = A8, and thus the plant satisfies the NCO (2).

Remarks

1. The conditions of Theorem 1 are very similar to those fglypg gradient control. In the

unconstrained case, for the gradient control law to coreverga KKT point of the plant, it

13



is required that (i) the plant reaches steady state, anth@iradient estimates tend to the

steady-state plant gradients.

2. The choice of a very low re-optimization frequency cgpagls to static MA. In other words,
if one waits long enough before re-optimization, steadyeswill eventually be reached, and

the proposed scheme corresponds formally to static MA.

3. Similarly to static MA, it is advantageous to exponemyidilter the estimated modifiers,
with the filtered modifiers being obtained&s j = K A} + (I —K) A j_1. Filtering helps in
the presence of measurement noise, but also when the plaatnilys are particularly tricky

as in the case of unstable internal dynamics.

Estimation of Static Modifier Terms

The key requirement in Theorem 1 is the ability to estimateing) transient, the values that the
modifiers would have if the plant would stabilize at the syesihte corresponding to the current
inputsuT. This section proposes several schemes for performing#tiimation. The schemes rely

on the validity of some assumptions:

e Al: All process variables needed to calculate the condtrare avalaible on-line or, alter-

natively, the plant constraints are measured online, thahésignalsGp (t) are available.

e A2: All process variables needed to calculate the plantaesavalaible on-line or, alterna-

tively, the plant cost is measured online, that is,slgmal ¢, (t) is available.

e A3: The plant outputs are measured online, that issthealsy, (t) are available. There are

p independent output measurements, vath g.

Assumption Al will be required for computing the zeroth@rmodifierséje associated with

the constraints, whereas either A1 and A2 or A3 will be used&timating the first-order modi-

fiers.

14



These assumptions are often met in practice when the plaoniposed of a single or a few
units. However, for large plants encompassing severasd upgttain constraints cannot be measured
online. In fact, since the cost and constraints functioesranerited from the steady-state problem
formulation, their running values might not even be avaddaturing transient operation, or might
only be available at low frequency. The latter case implieg the re-optimization frequency
is limited. If some of these measurements are only availabkteady state, an alternative is to
estimate the missing running cost and constraint values &eailable output measurements.

Another important remark concerns the computational buafehe proposed framework for
large plants. In the presence of numerous constraints angbalated variables, the online solution
of the modified optimization problem can be difficult. Forabely, the plant model can be replaced
by a convex response-surface approximatfothus allowing the use of fast and reliable convex

optimization methods while preserving the ability of RTOAND converge to the plant optimum.

Estimation of the zeroth-order modifiers

If A1 holds, the following scheme can be used for estimaﬁﬁg
£ = Gp(tj)—G(ui, ). (30)

In other words,é(j3 is estimated at the time instafjtas the difference between theeasuredor
estimated from measurements) constrai@ts(tj) and the values that theodeledconstraints
would have at the steady state correspondinq*toThis choice is motivated by the fact that, when
tj — to, U] — Ug, andGp () Will be the plant constraint&, (ug,) associated with the converged
inputsu,.

Similarly, if needed, the zeroth-order modifiers assodiateh the cost can be estimated as:
& = a()-o(uj0), (31)

provided Assumption A2 holds.

15



Estimation of the first-order modifiers

The computation of the first-order modifiers requires thevestion of plant gradients, for which
several methods are availaBleTwo methods are presented next to illustrate (i) the usenbyf o
cost and constraint measurements (via multiple units),(Bnthe use of input and output mea-
surements(via the neighboring-extremal approach).

Gradients from multiple units (MU}Vhen Assumptions A1 and A2 hold, it is possible to es-

timate the first-order modifiers associated with the costthedconstraints similarly to the way
My (t) is estimated in Eq. (17) for the gradient-control case. Véeia® the existence of, + 1
identical units, for which the cost and the constraints aegasared. One of these units is labeled the
main unit indexed with the subscripi while then, remaining units are indexed witke [1; ny).
At the time instant;, uj is applied to the main unit, while th&iunit of then, remaining units
is presented with
uji= [u]—il Uiy U D U u}:m]T, that is, with the" coordinate ot} offset byA.
Denoting by a (tj) andGpa (tj) the measured values of the cost and constraints for the main
unit at the time instart;, and bygy,; (tj) andGy; (t;j) the corresponding quantities for each unit

i € [1; ny], the elements of the first-order modifiers are estimatedeafiritie differencebetween

units
Fat) = Tap(u) = 2 (ti);(l’p,a(ti) @2)
— Gh . (t: _Gha t
Fep(ty) = OuGh(uj) = m(l)A P (J), (33)

whereD/uiap (u]k) is thei'" coordinate of the vectdﬁ/uap (u]‘) h € [1; ng| is the counter for the

L —

constraints, andl GB (u]‘) is the(h, i)th element of the matriiﬂ/uG\p (u]‘)
Eqgns (32) and (33) describe the estimation of the cost ansti@nt gradients with the MU
method in the multi-dimensional cadde Note that the same excitation can be used to estimate

both the cost and the constraint gradients, which confirm®bservation that the complexity of

Lif available, the cost and constraint measurements canrmidared as elements of the output vector.

16



the MU method grows only with the number of inpitalso in the presence of constraints.

Gradients from neighboring extremals (NEYhen Assumption A3 holds, additional informa-

tion is available through the outputs, which allows estintathe gradient terms without input
excitatior?. We exploit here the way ,(t) is estimated in Eq. (22). A variational analysis at

steady state gives:

Ou@(u, 8) = Oup(us, 0)+02g0(0gH) " 8y
+ (0800~ D29 (TgH) " DuH ) Su (34)
OuG(u,8) = OuG(ug, 8)+02,G (OgH) " 3y

+(02,6 — D266 (TgH) 0 ) 3u, (35)

with dy =y — Y and du = u — ug the output and input deviations from the nominal operating
point. Note that the cost gradieif, ¢ (ug, 6) and constraint gradients,G (ug, 8) do not always
vanish in the constrained case.

We propose to use the output measureméwgst;) = yp(tj) —Yp and the current values of the

inputsdu*(tj) = uj — ug to estimate the gradients:

Fo(t) = Dugp(u7) = Due(us, )+ DZ@(TH) " Yyt

+ (02,0 - D269 (DH)  OuH ) U (1) (36)
Fo(t) = DuGp(uj) =0uG (up, 6)+ 026G (DgH) " dyp(t))

+ (03,6 — 026G (DgH) " DuH ) 8u (1) (37)

Hence, the way gradients are estimated online with NE islairto the way they would be esti-
mated at steady state, but for the fact that we propose taunséng instead of steady-state values
of the measured outputs. This is consistent with standarohXtiat, when the plant reaches steady
state, the incrementy(tj) anddu*(tj) correspond to the standard valugsanddu. This has

already been proposed and successfully tested in simuiiatitne unconstrained caseNote that

17



the model used for estimating the gradients with NE can dfffam the model used at the opti-
mization layer: one can use a detailed model for estimatieggradients and a simplified model
for optimization purposes. This is indeed how RTO-MA will implemented in the illustrative

example, i.e. using (i) a convex approximation of the modéehe optimization layer (for fast so-

lution and enforcement of the model adequacy conditionsatteanecessary for convergefidd),

and (ii) the detailed model for NE.

r¢(tj) to Steady-state G(u*.,ﬁ)l
< i —1  model
L(t)
Y * G
u* (t) 4,5 G, (1)
[oa HG =i F——{ Unita —
A
NE-based du(t) Steady-state| G(U*;:0)
gradient |~ > iti
= model Unit i 4
estimation 9,.(t): G, () A
A Y WA V7
- Plant >
éyp(tj) Gp(tj) rGi(tj) r‘”i(lj)

Figure 3: MA using transient information and either MU (rigtand side) or NE (left-hand side)
to estimate the plant gradients.

Remarks

1. Figure 3 illustrates the way MA using transient inforroatis combined with the two pro-
posed gradient-estimation schemes. For each method, lealgradient-estimation step is
outlined in the figure, as RTO is performed using MA as giverelgps (24)-(29). This rein-
forces the idea that, in most RTO schemes, gradient estmeain be kept separate from the
control/optimization step, as virtually any controllendae used to perform gradient control
given a gradient estimate. Conversely, any gradient-esitom method can in principle be

used by any measurement-based optimization techniqueagbkatgradients.

2. The estimated modifiers are consistent in the sense tewattéimd to their static counter-
parts when the plant reaches steady state. For exampletheitlU method, the gradient

estimates tend to the values estimated using finite diftm®nWith NE, the gradient esti-
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mates tend to the values obtained when static MA is appliedjsdatic NE to estimate the

gradients?.

. The estimated first-order modifiers inherit the accurddyh® method used to estimate the
plant gradients. For example, the MU-based gradient-esitom scheme has the (low) ac-
curacy of a finite-difference scheme, while the accurachefNE-based estimation scheme
is limited by the accuracy of linearization, which decreasgth largerd6. With NE, it is
possible to reduce the error due to linearization by repgatie linearization around the

converged operating conditions, i.e. updating the magiic&qgns (34)-(35).

. The presence of measurement noise is clearly detrim@en¥l since MU relies on a finite-
difference scheme between the units and identical uniteegrered, which is rarely the case.
Note however that some progress has been made to reduceetthdanesxactly identical
units'®. NE is less affected by measurement noise since it does Iyaina@umerical differ-
entiation. Still measurement noise affects the qualityhefgradient estimates vy ,(t;),

but modifiers are typically filtered.

. Since no assumption is made regarding the structure afrtbertainty, the MU-based esti-
mation scheme is able to perform well even when the sourcea#rtainty is either unknown
or of non-parametric nature as in the case of plant-modehatish. In contrast, NE assumes
that the identity of the uncertain parameters is known, biyt thenominalparameter values
are used to compute the matrices in Eqns (36)-(37), anderdtie values of the model pa-
rameters nor these matrices are updated. The NE-basedtstimcheme has been shown
to perform well also when the source of uncertainty is unkmowin the presence of struc-

tural plant-model mismatch

. The MU method is clearly not suited for large industriamngk, where the curse of dimen-

sionality makes the task of estimating plant gradientsqaerly difficult.
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Real-Time Optimization of a Continuous Stirred-Tank Reacbr

Let us consider the continuous stirred-tank reactor desdrélsewher??,

Reactor Model

The reaction®\+ B — C and B — D take place in an isothermal CSTR, wifhbeing the desired
product. The two manipulated variables are the feed ratésanfdB. The reactor mass and heat

balances lead to the following dynamic model:

at) = ki calt) caft) + gy, — (AUt 6, (38)
Galt) = —kacalt) calt) - 2k202() tett) .—(M)cm) (39)
et = kacalt) caft) - (AT R0 ) (40)
oolt) = k) (* ”*”B”) o) (@1)
Q(t) = Vkyca(t)ca(t) (—AHr1) +V ko GB(t) (—AH; 2), (42)

wherecy denotes the concentration of speckesV/ is the reactor volumeaya andug are the feed
rates ofA andB, Q is the total heat generatefiH, ;1 andAH, > are the reaction enthalpies of the
two reactionsgaj, andcgij, are the inlet concentrations, akgdandk, are the rate constants of the

two chemical reactions. The numerical values of the modelrpaters are given in Table 1.

Optimization Problem

The objective is to optimize the steady-state performahtgeaeactor by determining the optimal

feed rates oA andB.
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Problem formulation

The optimization of steady-state performance is formdlatathematically as follows:

3 2 (Ua+Ug)”

2 2
max : —w(Ua+U 43
G WA ) (43)
~ ~ ,Ua Ua+UB\ _
s.t. —ki Ca CB"’VCAin_ ( v )CAIO
. 2 U Ua+UB\ _
_kchCB_2k20%+VCBin_< Y, )CBZO
Ua+T
k1 CaCg — ( A;i/_ B)CC =0
~ Ua+UBY

kzcé—( AV )CDZO

Q=VkiTaTa(—AHr1) +V ko C3 (—AH )

Gy = Q —-1<0 (44)

max
D
Gy=——-1<0 (45)
Dmax
0 <Ua < Umax (46)
0 <Us < Umax, (47)
where(.) indicates a steady-state value dhd= tmmi% is the steady-state molar fraction

of the by-productD. Note that this problem differs from the optimization pretvis i:2° as
constraints on the maximal heat generation and the moletidraD are introduced through the
inequalities (44) and (45). The objective functibrepresents the productivity & with a penalty
for control action by means (W(Uf\—i—Ué), w being a weighting parameter. The numerical values
of the weighting parameter and the bounds are given in Table 2

Optimization problem (43)-(47) can be reformulated as ammzation problem to fit the form
commonly found in the literature, witp = —J. Furthermore, it may be convenient to perform
MA with a convex approximation to Problem (43)-(47) to en®theadequacy conditionwhich

is a necessary condition for MA to converge to the plant opti'%. Hence, Problem (43)-(47)
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Table 1: Nominal model parameters

ko 15 molmin
Cain 2 mTO|
CBin 15  mol
Y, 500 |
(—OH;1) 35 E%‘I'
(-AHp) 15 @

Table 2: Parameters of the optimization problem

w  0.004 Mormn
Qmax 110 kcal
Bmax Ol -

I

Umax 90 min

is approximated by the following convex optimization pretol:

min ()= ¢ + [ag b] (u—u")+ 5 (u—u) Qplu—u) (@8)
st. Gic(u):=Gy(u")+[ag, bg,](u—u*) <0 (49)
Gac (u) 1= Ga (u) + [86, bey] (u—u) <0 (50
0 < Ua < Umax (51)
0 < Ug < Umax, (52)

with u = [Oa Ug]" and whereg;, G1c andG, ¢ are constructed as convex response-surface approx-
imations to thanodelcost and constraint functions around the nominal steadig staresponding
to ug by solving three least-squares regression problemgfdg; c andG; ¢ with the scalarsy,
by, 8, bg,, ac,, be, and the (2< 2) matrixQ, as degrees of freedom. Note that this model is
used for both performing MA and computing the modifiers in £¢26)-(29).

Egns (49) and (50) show that the constraints are approxdratdinear functions. This is

motivated by the fact tha&b, tends to exhibit a concave behavior in the region of intewesiie G,
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is globally neither concave nor convex. Hence, it is simfeanodel them as linear functions and
enforce strict convexity for the cost functign. The diagonal elements @, are determined
(together withay, by) to force ¢ to be strictly convex, with the additional constraints tQgt be
symmetric and the eigenvalues @f, be greater than user-specified strictly positive valuess he
chosen both equal ta@. Conceptually, only the signs of these eigenvalues msittee strictly
positive values guarantee the positive definitenes3ofIn practice, however, these values may
affect the convergence rate and should be chosen with cate.that sincey. is designed to fit the
modelecdcost functiong, no experiment is required. The results of the aforemeati@onstrained

least-squares regression are given in Table 3.

Table 3: Parameters of the convex approximations

a, | —0.8305] b, | —0.9121
ag, | 0.0051 |bg, | 0.0126
a, | —0.0643| bg, | 0.0857
“[008 0
Q=| 0 oo08

Nominal vs. plant optimum

Both the plant and the model are described by Eqns (38)-Ui)ertainty in some of the parame-
ters is considered, with the model parameters given in Thlaled the plant parameters being the
same except focain p = 2.5 %, ky p = 1.4 —|— andkp p = 0.4 —|—. Structural uncertainty
is not introduced as it will automatically occur upon couosting the convex approximations ¢o
G; andGo.

The optimal solutions for the plant (which is assumed to bkenown and thus will not be
used thereafter) and the model are given in Table 4. It is Hg#nnot only does the parametric

uncertainty lead to different optimal input values, bubaig a different set of active constraints,

with G; active andGs inactive in the plant, whereas the model predicts the opp.osi
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Table 4: Solutions to the model and plant optimization peoid

Model optimal solution Plant optimal solution
uj 1452 | - Ua p 17.20 | -
Uk 14.90 | U5 p 30.30 | -
J(u*)=—¢* | 451 | md Jp(up) =—@ | 1542 mol
Gi(u)=& ~1|-048] — |Gip(up) =gz 1| 0 | -
* D*
Go(U) = g2 — 0 | — |Gop(up) =52 —1|-019| —

RTO Using Steady-State Information

Static MA given by Eqgns (6)-(11) is implemented with expotmerfiltering of the modifiers. In
the ideal noise-free case with true plant gradients, cgearere to the plant optimum is achieved

as follows (Figure 4):

e after 4 steady-state iterations when the convex approiomad the plant model is used,
with a diagonal gain matriKX = kI tuned to the values where damped oscillations around

up, start to occurk = 0.8),

e after 6 steady-state iterations when the plant model is,uséd a diagonal gain matrix

K = kI tuned to the values where damped oscillations aragystart to occurk = 0.4).

RTO Using Transient Information
MA using transient information and true plant gradients

We start this subsection by illustrating the effect of theich of the RTO period, denoteg o,
in the ideal case of true plant gradients. The plant is iluga at the steady state corresponding
to the nominal operating point, and MA is performed using avex approximation to the plant
model.

Performing MA everytrto = 60 min, which is a good approximation of the plant settling

time, leads to results that are similar to those obtainedgusiatic MA (Figure 5). The scheme
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Figure 4: Evolution of the plant cost using static MA with bdhe plant model and a convex
approximation.

Plant cost
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Figure 5: Evolution of the plant cost using MA with transiemtormation, a filter gain of @,
TrTo= 60 min and true plant gradients.

takes 4 iterations (or 240 min) to converge to the plant optmNote that the cost values during

transient can be larger than the optimal cost, which is defatesteady state. Figure 6 depicts
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Figure 6: Evolution of the plant constraints using MA witarnsient information, a filter gain of
0.8, trTo= 60 min and true plant gradients.

20 T T
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Figure 7: Evolution of the plant cost using MA with transiemtormation, a filter gain of (3,
TrTo= 30 min and true plant gradients.
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Figure 8: Evolution of the plant cost using MA with transiemtormation, a filter gain of @,
TrRTo= 5 min and true plant gradients.
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Figure 9: Evolution of the plant cost using MA with transiemtormation, a filter gain of @,
TrRTo= 1 min and true plant gradients.

the corresponding behavior of the plant constraints andtiiates that the correct set of active

constraints is determined.
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With TR0 = 30 min andtrto = 5 min, the convergence time reduces to 120 min (Figure 7)
and 70 min (Figure 8), respectively. Finally, withto= 1 min, the convergence time of 60 min
is of the order of the plant settling time, which means thatsteady-state optimum is reached in
the time it takes to reach steady state. The discontinuwbesrved in the measured cost are due to

the abrupt changes in the inputs that occur every time the i606lem is solved, as illustrated in

Figure 10.
35 a a a a a a a
30 _,‘,_,‘,_,‘,_,‘T,':!L_,,_J:;:L_,‘i,_,,:;,,,,,% ,,,,, : : : ,,,,,,,,,, :,
' #- ' ' ' ' '
1 i
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Figure 10: Evolution of the inputs using MA with transientarmation, a filter gain of B, Trro=
60 min and true plant gradients.

MA using transient information and NE-based gradients

This section investigates the use of NE-based estimateliegta. We still use the convex approx-
imation to the plant model and Eq. (27) for estimatﬁﬁg but we push the illustration one step
further and use the steady-state plant model given by E{.t¢48onstruct the matrices required
by Eqgns (36)-(37) to estimate the first-order modifiers. Vg® aldd 2%-noise to the output mea-
surements, consisting here of the four concentrationsh Wautputs and 3 uncertain parameters,

i.e. p > q, the conditions for gradient estimation using NE are satisfConvergence to the plant
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optimum, although theoretically possible, depends on tiadity of the linearization-based method

for estimating the gradients, as illustrated in the follogvfigures.

35 : ' : 1 : ' :

'
=
@
2
E 1
S ,
) "
L )
10__________.__________._________4_________L_____-___E_ ____________ —UA(t) -
1 I 1 1 E 1 uB(t)
Bl---mmnm-- - _: _________ .: _________ i e ol E_ _________ e uAvP ol
i — uBip
0 1 1 1 1 1 1 :
0 20 40 60 80 100 120 140

time [min]

Figure 11: Evolution of the inputs using MA with transientarmation, a filter gain of ®, Trro=
1 min and NE-based gradients.

We restrict ourselves to the casgro= 1 min and illustrate the effect of the filter gain. Fig-
ure 11 depicts the input evolution for a filter gain 060while Figures 12 and 13 show the cor-
responding plant cost and constraints. Convergence todighilborhood of the plant optimum is
achieved in 40 min, confirming the results obtained with gmatcontroP, where it was argued
that model-based gradient-estimation techniques showdkeconvergence rates. The small off-
sets observed between the converged values of the inpagsr/aimts and the corresponding optimal
values are due to the inaccuracy of the linearization, whickthe way does not affect much the
converged value of the plant cost. Increased filtering léad$ower convergence, a consequence
of the optimization problem being “less” modified betweencassive iterations (Figure 14). De-
spite the significant amount of filtering, convergence iseaakd in about 55 min, which is slightly
less than the settling time of the CSTR. Finally, note thatdbnvergence times obtained here are

of the same order of magnitude as those observed with gitazetrol.
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Figure 12: Evolution of the plant cost using MA with trandi@mformation, a filter gain of (@,
TrRTo= 1 min and NE-based gradients.

MA using transient information and MU-based gradients

Finally, we proceed in a similar fashion for the case wheeegfadients are estimated using the
MU method. This is the most challenging case since outputsoreanents are not used. No
measurement noise is considered to support the case dfysidentical units. This could be
interpreted as an intrinsic limitation of the MU methodhalagh there have been recent efforts to
overcome this limitatiot®2122 Still, MU is interesting in that it is a purely data-driveragient-
estimation method.

Here againfrtois setto 1 min, and the filter gain is varied betweedBland 002. These very
low gains, which are justified by the necessity of turningéiant measurements into steady-state
information, have already been observed in the unconsilaiase. Figures 15 - 17 show the
evolution of the input profiles for the filter gaind0®, 004 and 002, respectively.

As expected, insufficient filtering leads to oscillation$ii@h penalizes the convergence time,

while more filtering reduces the agressivity of the conti@mges. With “intermediate” filtering, a
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Figure 13: Evolution of the plant constraints using MA withrisient information, a filter gain of
0.6, TrTo= 1 min and NE-based gradients.

convergence time of about 140 min is observed (Figure 16)ewtrong filtering slows down the
convergence rate and leads to an observed convergenceftir@@ min (Figure 17). Interestingly
enough, this convergence time of about three times thérggtiine was also observed in the con-
text of gradient contrdl. With other data-driven gradient-estimation techniqties,convergence
time will be much larger, mainly due to the need for time-ecs#paratiof This further justifies
the choice of the MU for illustrating the potential perforncas of MA with transient measure-
ments and data-driven estimates of the gradients sincpiteés intrinsic limitations in terms of

applicability to real systems, it does not over-penalizedbnvergence time.
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Figure 14: Evolution of the plant cost using MA with trandi@mformation, a filter gain of ,
TrRTo= 1 min and NE-based gradients.

Conclusions

This article has proposed a framework that allows usingsteamt measurements toward the solu-
tion of steady-state RTO via MA, similarly to what is done hwgradient control in the uncon-
strained case. Despite plant-model mismatch, convergenttes plant optimum is possible in a
single iteration to steady state, provided the plant gradiare estimated accurately. Both a NE-
based scheme and an extension of the multiple-unit methadeen proposed to estimate the cost
and constraint gradients in the presence of parametriatamcty and constraints. The MA scheme
using transient information appears to be quite powerfukengby the advantages of model-based
explicit RTO methods (in particular the possibility of hdind plant constraints) can be combined
with the advantages of implicit control-inspired methosp@rticular fast convergence).

The MA methodology using transient information has beerliaggo a simulated CSTR in
the presence of noise, constraints and a large amount ahpéiia uncertainty. The time needed

for convergence to the plant optimum varies from about tvasghto twice the plant settling time
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Figure 15: Evolution of the inputs using MA with transienfarmation, a filter gain of M6,
TrTo= 1 min and MU-based gradients.

depending on the gradient-estimation method used, thafastor 2-6 reduction compared to static
MA under the same uncertain scenafio Note that virtually any gradient-estimation technique
can be used to compute the modifiers. A good source of ingpiret to look at gradient-control
RTO schemes, which include a more or less explicit gradéstithation scheme. The choice of a
scheme may also depend on the number and nature of the plastiraenents (cost and constraints
vs. outputs). Although workable schemes have been proposieid paper, more work is needed to
improve the estimation of plant gradients. For examplegalezization-based method developed
recently could be tailored to estimate plant gradiéhts

Although it has recently been suggested to replace the pladel with a convex approxima-
tion in the MA problem formulatiof®, the plant model can still be used for estimating the plant
gradients. This is what happens with NE, where the gradistimates result from a variational
analysis using the plant model and plant measurements (gee36-37). Another possible com-

bination is MA for optimization and the classical two-stegpeoacH for gradient estimation. The
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Figure 16: Evolution of the inputs using MA with transientarmation, a filter gain of @4,
TrRTo= 1 min and MU-based gradients.

uncertain model parameters can be updated during trargpemation using the differences be-
tween measured and predicted outputs. Then, the updateel imaged to estimate the cost and
constraint gradients at each RTO instgntvhile the convex approximation used for MA remains
unchanged. We did implement it this way, and the results ifrdtided in this article) are very
similar to those of NE, with NE being faster but slightly legsurate. Such an outcome was ex-
pected since (i) the convergence time of the two-step apprisgoenalized by the dynamics of the
parameter update and (ii) the accuracy of the NE is penatigdidearization. Again, this confirms
the fact that virtually any gradient-estimation method barused for estimating the modifiers.
Finally, it is important to ensure that the use of static RbBptimize a dynamic plant does
not preclude its stabilization, which calls for a stabiligalysis. In that context, MA with MU-
based gradients has been applied successfully to a simulB&R involving unstable internal
dynamics (not included here due to space limitation). Theepio pay —slower convergence-— is

not surprising, since the unstable internal dynamics oakither a reduction of the RTO frequency
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Figure 17: Evolution of the inputs using MA with transientarmation, a filter gain of @2,
TrTo= 1 min and MU-based gradients.

or strong filtering (or both).
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