
Sharing Data and Work Across Concurrent
Analytical Queries

Iraklis Psaroudakis
École Polytechnique Fédérale

de Lausanne
iraklis.psaroudakis@epfl.ch

Manos Athanassoulis
École Polytechnique Fédérale

de Lausanne
manos.athanassoulis@epfl.ch

Anastasia Ailamaki
École Polytechnique Fédérale

de Lausanne
anastasia.ailamaki@epfl.ch

ABSTRACT
Today’s data deluge enables organizations to collect massive data,
and analyze it with an ever-increasing number of concurrent queries.
Traditional data warehouses (DW) face a challenging problem in
executing this task, due to their query-centric model: each query is
optimized and executed independently. This model results in high
contention for resources. Thus, modern DW depart from the query-
centric model to execution models involving sharing of common
data and work. Our goal is to show when and how a DW should
employ sharing. We evaluate experimentally two sharing method-
ologies, based on their original prototype systems, that exploit work
sharing opportunities among concurrent queries at run-time: Si-
multaneous Pipelining (SP), which shares intermediate results of
common sub-plans, and Global Query Plans (GQP), which build
and evaluate a single query plan with shared operators.

First, after a short review of sharing methodologies, we show
that SP and GQP are orthogonal techniques. SP can be applied to
shared operators of a GQP, reducing response times by 20%-48% in
workloads with numerous common sub-plans. Second, we corrob-
orate previous results on the negative impact of SP on performance
for cases of low concurrency. We attribute this behavior to a bot-
tleneck caused by the push-based communication model of SP. We
show that pull-based communication for SP eliminates the over-
head of sharing altogether for low concurrency, and scales better on
multi-core machines than push-based SP, further reducing response
times by 82%-86% for high concurrency. Third, we perform an ex-
perimental analysis of SP, GQP and their combination, and show
when each one is beneficial. We identify a trade-off between low
and high concurrency. In the former case, traditional query-centric
operators with SP perform better, while in the latter case, GQP with
shared operators enhanced by SP give the best results.

1. INTRODUCTION
Data warehouses (DW) are databases specialized for servicing

on-line analytical processing (OLAP) workloads. OLAP work-
loads consist mostly of ad-hoc, long running, scan-heavy queries
over relatively static data (new data is periodically loaded). Today,
in the era of data deluge, organizations collect massive data for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 9
Copyright 2013 VLDB Endowment 2150-8097/13/07... $ 10.00.

analysis. The increase of processing power and the growing appli-
cations’ needs have led to increased requirements for both through-
put and latency of analytical queries over ever-growing datasets.

According to a recent study of the DW market [26], more than
half of DW have less than 50 concurrent users. Almost 40%, how-
ever, of the companies using DW project that in 3 years they will
have 200-1000 concurrent users. General-purpose DW, however,
cannot easily handle analytical workloads over big data with such
concurrency [3]. A limiting factor is their typical query-centric
model: DW optimize and execute each query independently. Con-
current queries, however, often exhibit overlapping data accesses or
computations. The query-centric model misses the opportunities of
sharing work and data, and results in performance degradation due
to the contention of concurrent queries for I/O, CPU and RAM.

1.1 Methodologies for sharing data and work
A variety of ideas have been proposed to exploit sharing, in-

cluding buffer pool management techniques, materialized views,
caching and multi-query optimization (see Section 2). More re-
cently, DW started sharing data at the I/O layer using shared scans
(with variants also known as circular scans, cooperative scans or
clock scan) [7, 8, 23, 29, 30]. In this paper, we evaluate work shar-
ing techniques at the level of the execution engine. We distinguish
two predominant methodologies: (a) Simultaneous pipelining (SP)
[13], and (b) Global query plans (GQP) [2, 3, 4, 11].

Simultaneous pipelining (SP) is introduced in QPipe [13], an
operator-centric execution engine, where each relational operator
is encapsulated into a self-contained module called a stage. Each
stage detects common sub-plans among concurrent queries, evalu-
ates only one and pipelines the results to the rest when possible (see
Sections 2.2 and 2.3). Global query plans (GQP) with shared op-
erators are introduced in the CJOIN operator [3, 4]. A single shared
operator is able to evaluate multiple concurrent queries. CJOIN
uses a GQP, consisting of shared hash-join operators that evaluate
the joins of multiple concurrent queries simultaneously. More re-
cent research prototypes extend the logic to additional operators
and to more general cases [2, 11] (see Sections 2.4 and 2.5).

Figure 1 illustrates how a query-centric model, shared scans, SP,
and a GQP operate through a simple example of three concurrent
queries which perform natural joins without selection predicates
and are submitted at the same time. The last two queries have a
common plan, which subsumes the plan of the first. We note that
shared scans are typically used with both SP and GQP.

1.2 Integrating Simultaneous Pipelining and
Global Query Plans

In order to perform our analysis and experimental evaluation of
SP vs. GQP, we integrate the original research prototypes that in-

(a) Query-centric model (c) Simult. Pipelining

A B C

Q1 Q2 Q3

(d) Global Query Plan

A B C

⋈

Q3

⋈

A B C

⋈

Q2

⋈

A B

Q1

⋈

Q1: A ⋈ B

Q2: A ⋈ B ⋈ C

Q3: A ⋈ B ⋈ C

Concurrent
Queries (b) Shared Scans

⋈

Q2

⋈

A B C

Q3

Q1

⋈ ⋈ ⋈

⋈

A B C

Q2

Q3

Q1, Q2, Q3⋈

Q2, Q3⋈⋈ Q1

Figure 1: Evaluation of three concurrent queries using (a) a query-centric model, (b) shared scans, (c) SP, and (d) a GQP.

troduced them into one system: we integrate the CJOIN operator as
an additional stage of the QPipe execution engine (see Section 3).
Thus, we can dynamically decide whether to evaluate multiple con-
current queries with the standard query-centric relational operators
of QPipe, with or without SP, or the GQP offered by CJOIN.

Furthermore, this integration allows us to combine the two shar-
ing techniques, showing that they are in fact orthogonal. As shown
in Figure 1d, the GQP misses the opportunity of sharing common
sub-plans, and redundantly evaluates both Q2 and Q3. SP can be
applied to shared operators to complement a GQP with the addi-
tional capability of sharing common sub-plans (see Section 3).

1.3 Optimizing Simultaneous Pipelining
For the specific case of SP, it is shown in the literature [14, 23]

that if there is a serialization point, enforcing aggressive sharing
does not always improve performance. In cases of low concurrency
and sufficient available resources, it is shown that the system should
first parallelize with a query-centric model before sharing.

To calculate the turning point where sharing becomes beneficial,
a prediction model is proposed [14] for determining at run-time
whether SP is beneficial. In this paper, however, we show that
the serialization point is due to the push-based communication em-
ployed by SP [13, 14]. We show that pull-based communication
can drastically minimize the impact of the serialization point, and
is better suited for sharing common results on machines with multi-
core processors.

We introduce Shared Pages Lists (SPL), a pull-based sharing ap-
proach that eliminates the serialization point caused by push-based
sharing during SP. SPL are data structures that store the intermedi-
ate results of relational operators, and allow for a single producer
and multiple consumers. SPL make sharing with SP always ben-
eficial and reduce response times by 82%-86% in cases of high
concurrency, compared to the original push-based SP design and
implementation [13, 14] (see Section 4).

1.4 Simultaneous Pipelining vs. Global
Query Plans

Having optimized SP, and having integrated the CJOIN operator
in the QPipe execution engine, we proceed to perform an exten-
sive analysis and experimental evaluation of SP vs. GQP (see Sec-
tion 5). Our work answers two fundamental questions: when and
how an execution engine should share in order to improve perfor-
mance of analytical workloads.

Sharing in the execution engine. We identify a performance trade-
off between using a query-centric model and sharing. For a high
number of concurrent queries, the execution engine should share,
as it reduces contention for resources and improves performance in
comparison to a query-centric model. For low concurrency, how-
ever, sharing is not always beneficial.

With respect to SP, we corroborate previous related work [14,
23], that if SP entails a serialization point, then enforcing aggres-
sive sharing does not always improve performance in cases of low
concurrency. Our newly optimized SP with SPL, however, elimi-
nates the serialization point, making SP beneficial in cases of both
low and high concurrency.

With respect to GQP, we corroborate previous work [2, 3, 4, 11]
that shared operators are efficient in reducing contention for re-
sources and in improving performance for high concurrency (see
Section 5.2.1). The design of a shared operator, however, inher-
ently increases bookkeeping in comparison to the typical operators
of a query-centric model. Thus, for low concurrency, we show that
shared operators result in worse performance than the traditional
query-centric operators (see Section 5.2.2).

Moreover, we show that SP can be applied to shared operators
of a GQP, in order to get the best out of the two worlds. SP can
reduce the response time of a GQP by 20%-48% for workloads
with common sub-plans (see Section 5.2.3).

Sharing in the I/O layer. Though our work primarily studies shar-
ing inside the execution engine, our experimental results also cor-
roborate previous work relating to shared scans. The simple case of
a circular scan per table is able to improve performance of typical
analytical workloads both in cases of low and high concurrency. In
highly concurrent cases, response times are reduced by 80%-97%
in comparison to independent table scans (see Section 5.2.1).

Rules of thumb. Putting all our observations together, we deduce
a few rules of thumb for sharing, presented in Table 1. Our rules
of thumb apply for the case of typical OLAP workloads involving
ad-hoc, long running, scan-heavy queries over relatively static data.

When How to share in the
Execution Engine I/O Layer

Low concurrency Query-centric operators + SP Shared ScansHigh concurrency GQP (shared operators) + SP

Table 1: Rules of thumb for when and how to share data and
work across typical concurrent analytical queries in DW.

1.5 Contributions
We perform an experimental analysis of two work sharing method-

ologies, (a) Simultaneous Pipelining (SP), and (b) Global Query
Plans (GQP), based on the original research prototypes that intro-
duce them. Our analysis answers two fundamental questions: when
and how an execution engine should employ sharing in order to im-
prove performance of typical analytical workloads. We categorize
different sharing techniques for relational databases, and identify
SP and GQP as two state-of-the-art sharing methodologies (Sec-
tion 2). Next, our work makes the following main contributions:

• Integration of SP and GQP: We show that SP and GQP are
orthogonal, and can be combined to take the best of the two
worlds (Section 3). In our experiments, we show that SP can
further improve the performance of a GQP by 20%-48% for
workloads that expose common sub-plans.

• Pull-based SP: We introduce Shared Pages Lists (SPL), a
pull-based approach for SP that eliminates the sharing over-
head of push-based SP. Pull-based SP is better suited for mul-
ticores than push-based SP, is beneficial for cases of both low
and high concurrency, and further reduces response times by
82%-86% for high concurrency (Section 4).

• Evaluation of SP vs. GQP: We analyze the trade-offs of
SP, GQP and their combination, and we detail through an ex-
tensive sensitivity analysis when each one is beneficial (Sec-
tion 5). We show that query-centric operators combined with
SP result in better performance for cases of low concurrency,
while GQP with shared operators enhanced by SP are better
suited for cases of high concurrency.

Paper Organization. This paper is organized as follows. Section
2 consists of a review of sharing methodologies, SP, and GQP. Sec-
tion 3 describes our implementation for integrating SP and GQP.
Section 4 presents shared pages lists, our pull-based solution for
sharing common results during SP. Section 5 includes our exper-
imental evaluation. Section 6 includes a short discussion. We
present our conclusions in Section 7.

2. WORK SHARING TECHNIQUES
In this section, we provide the necessary background of sharing

techniques in the literature. We start by shortly reviewing related
work, and continue to extensively review work related to SP and
GQP, which compose our main area of interest. In Table 2, we
summarize the sharing methodologies used by traditional query-
centric systems and the research prototypes we examine.

2.1 Related Work
Sharing in the I/O layer. By sharing data, we refer to techniques
that coordinate and share the accesses of queries in the I/O layer.
The typical query-centric database management system (DBMS)
incorporates a buffer pool and employs eviction policies [5, 16, 19,
22]. Queries, however, communicate with the buffer pool manager
on a per-page basis, thus it is difficult to analyze their access pat-
terns. Additionally, if multiple queries start scanning the same table
at different times, scanned pages may not be re-used.

For this reason, shared scans have been proposed. Circular scans
[7, 8, 13] are a form of shared scans. They can handle numerous
concurrent scan-heavy analytical queries as they reduce buffer pool
contention and they avoid unnecessary I/O accesses to the underly-
ing storage devices. Furthermore, more elaborate shared scans can
be developed for servicing different fragments of the same table or
different groups of queries depending on their speed [18, 30], and
for main-memory scans [23].

Shared scans can be used to handle a large number of concurrent
updates as well. The Crescando [29] storage manager performs
a circular scan over memory-resident table partitions, interleaving
the reads and the updates of a batch of queries along the way. The
scan first executes the update requests of the batch for a scanned
tuple in their arrival order, and then the read requests.

Shared scans, however, are not immediately translated to a fast
linear scan of a disk. The DataPath system [2], which uses a disk
array as secondary storage, stores relations column-by-column by

hashing pages to the disks at random. During execution, it reads
pages from the disks asynchronously but sequentially, thus aggre-
gating the throughput of a sequential scan on every disk of the array.

Sharing in the execution engine. By sharing work among queries,
we refer to techniques that avoid redundant computations inside the
execution engine. A traditional query-centric DBMS typically uses
query caching [28] and materialized views [24]. Both, however, do
not exploit sharing opportunities among in-progress queries.

Multi-Query Optimization (MQO) techniques [25, 27] are an
important step towards more sophisticated sharing methodologies.
MQO detects and re-uses common sub-expressions among queries.
There are two main disadvantages of classic MQO: (i) it operates
on batches of queries only during the optimization phase, and (ii)
it depends on materializing shared intermediate results, at the ex-
pense of memory. This cost can be alleviated by using pipelin-
ing [9], which additionally exploits the parallelization provided by
multi-core processors. The query plan is divided into sub-plans and
operators are evaluated in parallel.

Both SP and GQP leverage forms of pipelined execution and
sharing methodologies which bear some superficial similarities with
MQO. These techniques, however, provide deeper and more dy-
namic forms of sharing at run-time. In the rest of this section, we
provide an overview of SP and GQP, the systems that introduce
them, and more recent research prototypes that advanced GQP.

2.2 Simultaneous Pipelining
SP identifies identical sub-plans among concurrent queries at

run-time, evaluates only one and pipelines the results to the rest
simultaneously [13]. Figure 2a depicts an example of two queries
that share a common sub-plan below the join operator (along with
any selection and join predicates), but have a different aggrega-
tion operator above the join. SP evaluates only one of them, and
pipelines the results to the other aggregation operator.

Fully sharing common sub-plans is possible if the queries arrive
at the same time. Else, sharing opportunities may be restricted.
The amount of results that a newly submitted Q2 can re-use from
the pivot operator (the top operator of the common sub-plan) of the
in-progress Q1, depends on the type of the pivot operator and the
arrival of Q2 during Q1’s execution. This relation is expressed as
a Window of Opportunity (WoP) for each relational operator (fol-
lowing the original acronym [13]). Figure 2b depicts two common
WoP, a step and a linear WoP.

A step WoP expresses that Q2 can re-use the full results of Q1
if it arrives before the first output tuple of the pivot operator. Joins
and aggregations have a step WoP. A linear WoP signifies that Q2
can re-use the results of Q1 from the moment it arrives up until the
pivot operator finishes. Then, Q2 needs to re-issue the operation in
order to compute the results that it missed before it arrived. Sorts
and table scans have a linear WoP. In fact, the linear WoP of the
table scan operator is translated into a circular scan of each table.

100%

100%0%

Q1 progress

Q2 gain

100%

100%0%

Q1 progress

Q2 gain

Α

Q1

⋈

Σ

Β Α

Q2

⋈

Σ

Β

Re-use
results

(a) (b)

Cancel
identical
sub-plan

Figure 2: (a) SP example with two queries having a common
sub-plan below the join operator. (b) A step and a linear WoP.

System Traditional
query-centric model QPipe CJOIN DataPath SharedDB

Sharing in the
execution engine

Query Caching,
Materialized Views, MQO

Simultaneous
Pipelining

Global Query Plan
(joins of Star Queries) Global Query Plan Global Query Plan

(with Batched Execution)
Sharing in the

I/O layer
Buffer pool

management techniques
Circular scan of

each table
Circular scan of

the fact table
Asynchronous linear

scan of each disk
Circular scan of in-memory

table partitions

Storage Manager Any Any Any Special I/O Subsystem
(read-only requests)

Crescando
(read and update requests)

Table 2: Sharing methodologies employed by a query-centric model and the research prototypes we examine.

2.3 The QPipe execution engine
QPipe [13] is a relational execution engine that supports SP at ex-

ecution time. QPipe is based on the paradigms of staged databases
[12]. Each relational operator is encapsulated into a self-contained
module called a stage. Each stage has a queue for work requests
and employs a local thread pool for processing the requests.

An incoming query execution plan is converted to a series of
inter-dependent packets. Each packet is dispatched to the relevant
stage for evaluation. Data flow between packets is implemented
through FIFO (first-in, first-out) buffers and page-based exchange,
following a push-only model with pipelined execution. The buffers
also regulate differently-paced actors: a parent packet may need to
wait for incoming pages of a child and, conversely, a child packet
may wait for a parent packet to consume its pages.

This design allows each stage to monitor only its packets for
detecting sharing opportunities efficiently. If it finds an identical
packet, and their interarrival delay is inside the WoP of the pivot
operator, it attaches the new packet (satellite packet) to it (host
packet). While it evaluates the host packet, SP copies the results
of the host packet to the output FIFO buffer of the satellite packet.

2.4 Global Query Plans with shared operators
SP is limited to common sub-plans. If two queries have similar

sub-plans but with different selection predicates for the involved
tables, SP is not able to share them. Nevertheless, the two queries
still share a similar plan that exposes sharing opportunities. It is
possible to employ shared operators, where a single shared opera-
tor can evaluate both queries simultaneously. The basic technique
for enabling them is sharing tuples among queries and correlating
each tuple to the queries, e.g. by annotating tuples with a bitmap,
whose bits signify if the tuple is relevant to one of the queries.

The simplest shared operator is a shared selection, that can eval-
uate multiple queries that select tuples from the same relation. For
each received tuple, it toggles the bits of its attached bitmap accord-
ing to the selection predicates of the queries. A hash-join can also
be easily shared by queries that share the same equi-join predicate
(more relaxed requirements are also possible [2]). Figure 3 shows a
conceptual example of how a single shared hash-join is able to eval-

⋈

Α

8 16 11 23 “a” 018

Q1: SELECT A.c2, B.c2 FROM A, B
WHERE A.c1 = B.c1

AND A.c2 > 10 AND B.c2 < 5

Q2: SELECT Β.c3 FROM A, B
WHERE A.c1 = B.c1

AND A.c1 < 12 AND B.c2 > 3

+ bitwise ANDσ Β σ

A.c1 A.c2 B.c1 B.c2 B.c3

8 16 23 “a” 018

buildprobe

bitmap

Figure 3: Example of shared selection and hash-join operators.

uate two queries. It starts with the build phase by receiving tuples
from the shared selection operator of the inner relation. Then, the
probe phase begins by receiving tuples from the shared selection
operator of the outer relation. The hash-join proceeds as normal,
by additionally performing a bitwise AND operation between the
bitmaps of the joined tuples.

The most significant advantage is that a single shared operator
can evaluate many similar queries. For example, a shared hash-
join can evaluate queries having the same equi-join predicate, and
possibly different selection predicates. In the worst case, the union
of the selection predicates may force it to join the whole two re-
lations. The disadvantage of a shared operator in comparison to a
query-centric one is that it entails increased bookkeeping. For ex-
ample, a shared hash-join maintains a hash table for the union of the
tuples of the inner relation selected by all queries, and performs bit-
wise operations between the bitmaps of the joined tuples. For low
concurrency, as shown by our experiments (see Section 5), query-
centric operators outperform shared operators. A similar tradeoff is
found for the specific case of shared aggregations on CMP [6].

By using shared scans and shared operators, a GQP can be built
for evaluating all concurrent queries. GQP are introduced by CJOIN
[3, 4], an operator based on shared selections and shared hash-joins
for evaluating the joins of star queries [17]. GQP are advanced by
the DataPath system [2] for more general schemas, by tackling the
issues of routing and optimizing the GQP for a newly incoming
query. DataPath also adds support for a shared aggregate operator,
that calculates a running sum for each group and query.

Both CJOIN and DataPath handle new queries immediately when
they arrive. This is feasible due to the nature of the supported
shared operators: selections, hash-joins and aggregates. Some op-
erators, however, cannot be easily shared. For example, a sort op-
erator cannot easily handle new queries that select more tuples than
the ones being sorted [2]. To overcome this limitation, SharedDB
[11] batches queries for every shared operator. Batching allows
standard algorithms to be easily extended to support shared opera-
tors, as they work on a fixed set of tuples and queries. SharedDB
supports shared sorts and various shared join algorithms, not be-
ing restricted only to equi-joins. Nevertheless, batched execution
has drawbacks: a new query may suffer increased latency, and the
latency of a batch is dominated by the longest-running query.

2.5 The CJOIN operator
The selection of CJOIN [3, 4] for our analysis, is based on the

facts that it introduced GQP, and that it is optimized for the sim-
ple case of star queries. Without loss of generality, we restrict our
evaluation to star schemas, and correlate our observations to more
general schemas (used, e.g., by DataPath [2] or SharedDB [11]).

Star schemas are very common for organizing data in relational
DW. They allow for numerous performance enhancements [17].
A star schema consists of a large fact table, that stores the mea-
sured information, and is linked through foreign-key constraints to

F

D1

Q1: σ(D1)
Q2: σ’(D1)

σ

Q1: F ⋈ D1

Q2: F ⋈ D1
⋈ Q2: (F ⋈ D1) ⋈ D2⋈

Q1

Q2

Q1: SELECT A, B, … FROM F, D1
WHERE F ⋈ D1 AND σ(D1)

Q2: SELECT A, B, … FROM F, D1, D2
WHERE F ⋈ D1 ⋈ D2 AND σ’(D1) AND σ’(D2)

D2

Q2: σ’(D2)σ

Filter Filter Distributor

Q1 Q2

Preprocessor

GQP of
CJOIN

Evaluation of
GQP with a
single pipeline

F

Figure 4: CJOIN evaluates a GQP for star queries.

smaller dimension tables. A star query is an analytical query over
a star schema. It typically joins the fact table with several dimen-
sion tables and performs operations such as aggregations or sorts.

CJOIN evaluates the joins of all concurrent star queries, using
a GQP with shared scans, shared selections and shared hash-joins.
Figure 4 shows the GQP that CJOIN evaluates for two star queries.
CJOIN adapts the GQP with every new star query. If a new star
query references already existing dimension tables, the existing
GQP can evaluate it. If a new star query joins the fact table with a
new dimension table, the GQP is extended with a new shared se-
lection and hash-join. Due to the semantics of star schemas, the
directed acyclic graph of the GQP takes the form of a chain.

CJOIN exploits this form to facilitate the evaluation of the GQP.
It materializes the small dimension tables and stores in-memory the
selected dimension tuples in the hash tables of the corresponding
shared hash-joins. Practically, for each dimension table, it groups
the shared scan, selection and hash-join operators into an entity
called filter. When a new star query is admitted, CJOIN pauses,
adds newly referenced filters, updates already existing filters, aug-
ments the bitmaps of dimension tuples according to the selection
predicates of the new star query, and then continues. Parts of the
admission phase, such as the scan of the involved dimension tables,
can be done asynchronously while CJOIN is running [4].

Consequently, CJOIN is able to evaluate the GQP using a sin-
gle pipeline: the preprocessor uses a circular scan of the fact table,
and flows fact tuples through the pipeline. The data flow in the
pipeline is regulated by intermediate buffers, similar to QPipe. The
filters in-between are actually the shared hash-joins that join the
fact tuples with the corresponding dimension tuples and addition-
ally perform a bitwise AND between their bitmaps. At the end
of the pipeline, the distributor examines the bitmaps of the joined
tuples and forwards them to the relevant queries. For every new
query, the preprocessor admits it, marking its point of entry on the
circular scan of the fact table and signifies its completion when it
wraps around to its point of entry on the circular scan.

3. INTEGRATING SP AND GQP
By integrating SP and GQP, we can exploit the advantages of

both forms of sharing. In Section 3.1, we describe how SP can
conceptually improve the performance of shared operators in the
presence of common sub-plans, using several examples. These ob-
servations apply to general GQP, and are applicable to the research
prototypes we mention in Section 2.4. We continue in Sections 3.2
and 3.3 to describe our implementation based on CJOIN and QPipe.

3.1 Benefits of applying SP to GQP
Identical queries. If a new query is completely identical with an
ongoing query, SP takes care to re-use the final results of the on-

going query for the new query. If we assume that the top-most
operators in a query plan have a full step WoP (e.g. when final re-
sults are buffered and given wholly to the client instead of being
pipelined), the new query does not need to participate at all in the
GQP, independent of its time of arrival during the ongoing query’s
evaluation. This is the case where the integration of SP and GQP
offers the maximum performance benefits. Additionally, admission
costs are completely avoided, the tuples’ bitmaps do not need to be
extended to accommodate the new query (translating to fewer bit-
wise operations), and the latency of the new query is decreased to
the latency of the remaining part of the ongoing query.

Shared selections. If a new query has the same selection predicate
as an ongoing query, SP allows to avoid the redundant evaluation
of the same selection predicate from the moment the new query
arrives until the end of evaluation of the ongoing query (a selection
operator has a linear WoP). For each tuple, SP copies the resulting
bit of the shared selection operator for the ongoing query, to the
position in the tuple’s bitmap that corresponds to the new query.

Shared joins. If a new query has a common sub-plan with an ongo-
ing query under a shared join operator, and arrives within the step
WoP, SP can avoid extending tuples’ bitmaps with one more bit for
the new query for the sub-plan. The join still needs to be evaluated,
but the number of bitwise operations can be decreased.

Shared aggregations. If a new query has a common sub-plan with
an ongoing query under a shared aggregation operator, and arrives
within the step WoP, SP avoids calculating a redundant sum. It
copies the final result from the ongoing query.

Admission costs. For every new query submitted to a GQP, an
admission phase is required that possibly re-adjusts the GQP to ac-
commodate it. In case of common sub-plans, SP can avoid part of
the admission costs. The cost depends on the implementation.

For CJOIN [3, 4], the admission cost of a new query includes (a)
scanning all involved dimension tables, (b) evaluating its selection
predicates, (c) extending the bitmaps attached to tuples, (d) increas-
ing the size of hash tables of the shared hash-joins to accommodate
newly selected dimension tuples (if needed), and (e) stalling the
pipeline to re-adjust filters [3, 4]. For identical queries, SP can
avoid these costs completely. For queries with common sub-plans,
SP can avoid parts of these costs, such as avoiding scanning dimen-
sion tables for which selection predicates are identical.

For DataPath [2], SP can decrease the optimization time of the
GQP if it assumes that the common sub-plan of a new query can
use the same part of the current GQP as the ongoing query. For
SharedDB [11], SP can help start a new query before the next batch
at any operator, if it has a common sub-plan with an ongoing query
and has arrived within the corresponding WoP of the operator.

3.2 CJOIN as a QPipe stage
We integrate the original CJOIN operator into the QPipe execu-

tion engine as a new stage, using Shore-MT [15] as the underlying
storage manager. In Figure 5, we depict the new stage that encap-
sulates the CJOIN pipeline.

The CJOIN stage accepts incoming QPipe packets that contain
the necessary information to formulate a star query: (a) the pro-
jections for the fact table and the dimension tables to be joined,
and (b) the selection predicates. The CJOIN operator does not sup-
port selection predicates for the fact table [3], as these would slow
the preprocessor significantly. We have ran experiments with the
preprocessor evaluating fact table selection predicates, but in most
cases the cost of a slower pipeline defeated the purpose of poten-
tially flowing fewer fact tuples in the pipeline. To respect space

Preprocessor Distributor

F D1 Shore-MT
QPipe

packets

Distributor
Part

Distributor
Part

...

...

Filters

Q1: CJOIN
F ⋈ D1 ⋈ D2

Q2: CJOIN
F ⋈ D2

Q3: CJOIN
F ⋈ D1 ⋈ D3

CJOIN stage

Figure 5: Integration scheme of CJOIN as a QPipe stage.

limitations, we do not include these experiments. Fact table predi-
cates are evaluated on the output tuples of CJOIN.

To improve admission costs we use batching, following the origi-
nal CJOIN proposal [4]. In one pause of the pipeline, the admission
phase adapts the filters for all queries in the batch. During the ex-
ecution of each batch, additional new queries form a new batch to
be subsequently admitted.

With respect to threads, there is a number of threads assigned
to filters (we assume the horizontal configuration of CJOIN [3,
4]), each one taking a fact tuple from the preprocessor, passing it
through the filters up to the distributor. The original CJOIN uses
a single-threaded distributor which slows the pipeline significantly.
To address this bottleneck, we augment the distributor with sev-
eral distributor parts. Every distributor part takes a tuple from the
distributor, examines its bitmap, and determines relevant CJOIN
packets. For each relevant packet, it performs the projection of the
star query and forwards the tuple to the output buffer of the packet.

CJOIN supports only shared hash-joins. Subsequent operators
in a query plan, e.g. aggregations or sorts, are query-centric. Nev-
ertheless, our evaluation gives us insight on the general behavior
of shared operators in a GQP, as joins typically comprise the most
expensive part of a star query.

3.3 SP for the CJOIN stage
We enable SP for the CJOIN stage with a step WoP. Evaluat-

ing the identical queries Q2 and Q3 of Figure 1d employing SP,
requires only one packet entering the CJOIN stage. The second
satellite packet re-uses the results.

CJOIN is itself an operator, and we integrate it as a new stage in
QPipe. As with any other QPipe stage, SP is applied on the overall
CJOIN stage. Conceptually, our implementation applies SP for the
whole series of shared hash-joins in the GQP. Our analysis, how-
ever, gives insight on the benefits of applying SP to fine-grained
shared hash-joins as well. This is due to the fact that a redundant
CJOIN packet involves all redundant costs we mentioned in Sec-
tion 3.1 for admission, shared selections operators and shared hash-
joins. Our experiments show that the cost of a redundant CJOIN
packet is significant, and SP decreases it considerably.

4. SHARED PAGES LISTS FOR SP
In this section, we present design and implementation issues of

sharing using SP, and how to address them. Contrary to intuition, it
is shown in the literature that work sharing is not always beneficial:
if there is a serialization point during SP, then sharing common re-
sults aggressively can lead to worse performance, compared to a
query-centric model that implicitly exploits parallelism [14, 23].
When the producer (host packet) forwards results to consumers
(satellite packets), it is in the critical path of the evaluation of the
remaining nodes of the query plans of all involved queries. For-
warding results can cause a significant serialization point. In this
case, the DBMS should first attempt to exploit available resources

(a)Host packet

Satellite
packet

Satellite
packet

Satellite
packet

forward results
FIFO buffer

Host packet

Satellite
packet

Satellite
packet

Satellite
packet

(b)

Figure 7: Sharing identical results during SP with: (a) push-
only model and (b) a SPL.

and parallelize as much as possible with a query-centric model, be-
fore sharing. A prediction model is proposed [14] for determining
at run-time whether sharing is beneficial. In this section, however,
we show that SP is possible without a serialization point, thus ren-
dering SP always beneficial.

The serialization point is caused by strictly employing push-only
communication. Pipelined execution with push-only communica-
tion typically uses FIFO buffers to exchange results between oper-
ators [13]. This allows to decouple query plans and have a distinct
separation between queries, similar to a query-centric design. Dur-
ing SP, this forces the single thread of the pivot operator of the host
packet to forward results to all satellite packets sequentially (see
Figure 7a), which creates a serialization point.

This serialization point is reflected in the prediction model [14],
where the total work of the pivot operator includes a cost for for-
warding results to all satellite packets. By using copying to forward
results [14], the serialization point becomes significant and delays
subsequent operators in the plans of the host and satellite packets.
This creates a trade-off between sharing and parallelism, where in
the latter case a query-centric model without sharing is used.

Sharing vs. Parallelism. We demonstrate this trade-off with the
following experiment, similar to the experiment of [14], which eval-
uates SP for the table scan stage with a memory-resident database.
Though the trade-off applies for disk-resident databases and other
stages as well, it is more pronounced in this case. Our experimental
configuration can be found in Section 5. We evaluate two configu-
rations of the QPipe execution engine: (a) No SP (FIFO), which
evaluates query plans independently without any sharing, and (b)
CS (FIFO), with SP enabled only for the table scan stage, thus
supporting circular scans (CS). FIFO buffers are used for pipelined
execution and copying is used to forward pages during SP, follow-
ing the original push-only design [13, 14]. We evaluate identical
TPC-H [1] Q1 queries, submitted at the same time, with a database
of scale factor 1. Figure 6a shows the response times of the config-
urations, while varying the number of concurrent queries.

For low concurrency, No SP (FIFO) efficiently uses available
CPU resources. Starting with as few as 32 queries, however, there
is contention for CPU resources and response times grow quickly,
due to the fact that our server has 24 available cores and the query-
centric model evaluates queries independently. For 64 queries, it
uses all cores at their maximum, resulting in excessive and unpre-
dictable response times, with a standard deviation up to 30%.

CS (FIFO) suffers from low utilization of CPU resources, due
to the aforementioned serialization point of SP. The critical path
increases with the number of concurrent queries. For 64 queries, it
uses an average of 3.1 of available cores. In this experiment, the
proposed prediction model [14] would not share in cases of low
concurrency, essentially falling back to the line of No SP (FIFO),
and would share in cases of high concurrency.

Nevertheless, the impact of the serialization point of SP can be
minimized. Simply copying tuples in a multi-threaded way would
not solve the problem, due to synchronization overhead and in-
creased required CPU resources. A solution would be to forward

0

20

40

60

80

100

120

1 2 4 8 16 32 64

R
es

p
o

n
se

 t
im

e
(s

ec
)

Number of concurrent queries

No SP (FIFO)

CS (FIFO)

60sec
3.1 CPU

0

20

40

60

80

100

120

1 2 4 8 16 32 64

R
es

p
o

n
se

 t
im

e
(s

ec
)

Number of concurrent queries

No SP (SPL)

CS (SPL)

8sec
19.1 CPU

0

0,5

1

1,5

2

0 2 4 6 8 10 12 14 16 18Sp
ee

d
u

p

Number of concurrent queries

(No SP / CS) with FIFO

(No SP / CS) with SPL

Figure 6: Evaluating multiple identical TPC-H Q1 queries (a) with a push-only model during SP (FIFO), and (b) with a pull-based
model during SP (SPL). In (c), we show the corresponding speedups of the two methods of SP, over not sharing, for low concurrency.

tuples via pointers, a possibility not considered by the original sys-
tem. We can, however, avoid unnecessary pointer chasing; by em-
ploying pull-based communication, we can share the results and
eliminate forwarding altogether. In essence, we transfer the respon-
sibility of sharing the results from the producer to the consumers.
Thus, the total work of the producer does not include any forward-
ing cost. Our pull-based communication model is adapted for SP
for any stage with a step or linear WoP.

The serialization point of push-based SP was not a visible bottle-
neck in the original implementation of QPipe, due to experiments
being ran on a uni-processor [13]. On machines with multi-core
processors its impact grows as the available parallelism increases,
and the aforementioned prediction model [14] was proposed to de-
cide at run-time whether (push-based) sharing should be employed.
Our pull-based communication model for SP, however, eliminates
the serialization point, leading to better scaling on machines with
modern multi-core processors with virtually no sharing overhead.

To achieve this, we create an intermediate data structure, the
Shared Pages Lists (SPL). SPL have the same usage as the FIFO
buffers of the push-only model. A SPL, however, allows a single
producer and multiple consumers. A SPL is a linked list of pages,
depicted in Figure 7b. The producer adds pages at the head, and the
consumers read the list from the tail up to the head independently.

In order to show the benefits of SPL, we run the experiment of
Figure 6a, by employing SPL instead of FIFO buffers. When SP
does not take place, a SPL has the same role as a FIFO buffer,
used by one producer and one consumer. Thus, the No SP (SPL)
line has similar behavior with the No SP (FIFO) line. During SP,
however, a single SPL is used to share the results of one producer
with all consumers. Figure 6b shows the response times of the
configurations, while varying the number of concurrent queries.

With SPL, sharing has the same or better performance than not
sharing, for all cases of concurrency. We avoid using a prediction
model altogether, for deciding whether to share or not. Parallelism
is achieved due to the minimization of the serialization point. For
high concurrency, CS (SPL) uses more CPU resources and reduces
response times by 82%-86% in comparison to CS (FIFO).

Additionally, Figure 6c shows the speedup of sharing over not

- List of finishing packets
- Atomic counter of reads
- Data

SPL - Lock
- List of satellite packets and their points of entry
- Maximum sizeHost packet

Satellite packetSatellite packet

Figure 8: Design of a shared pages list.

sharing, for both models. We depict only values for low concur-
rency, as sharing is beneficial for both models in cases of high con-
currency. We corroborate previous results on the negative impact of
sharing with push-only communication [14] for low concurrency,
and show that pull-based sharing is always beneficial.

4.1 Design of a Shared Pages List
Figure 8 depicts a SPL. It points to the head and tail of the linked

list. The host packet adds pages at the head. Satellite packets read
pages from the SPL independently. Due to different concurrent ac-
tors accessing the SPL, we associate a lock with it. Contention for
locking is minimal in all our experiments, mainly due to the gran-
ularity of pages we use (32KB). A lock-free linked list, however,
can also be used to address any scalability problems.

Theoretically, if we allow the SPL to be unbounded, we can
achieve the maximum parallelism possible, even if the producer
and the consumers move at different speeds. There are practical
reasons, however, why the SPL should not be unbounded, similar
to the reasons why a FIFO buffer should not be unbounded, includ-
ing: saving RAM, and regulating differently paced actors.

To investigate the effect of the maximum size, we ran the experi-
ment of Figure 6b, for the case of 8 concurrent queries, varying the
maximum size of SPL up to 512MB. We observed that changing the
maximum size of the SPL does not heavily affect performance. Due
to space limitations, we do not present the relevant graph. Hence,
we chose a maximum size of 256KB for our experiments in Section
5 in order to minimize the memory footprint of SPL.

In order to decrease the size of the SPL, the last consumer is
responsible for deleting the last page. Each page has an atomic
counter with the number of consumers that will read this page.
When a consumer finishes processing a page, he decrements its
counter, deleting the page if he sees a zero counter. In order to
know how many consumers will read a page, the SPL stores a list
of active satellite packets. The producer assigns their number as the
initial value of the atomic counter of each emitted page.

4.2 Linear Window of Opportunity
In order to handle a linear WoP, such as circular scans, the SPL

stores the point of entry of every consumer. When the host packet
finishes processing, the SPL is passed to the next host packet that
handles the processing for re-producing missed results.

When the host packet emits a page, it checks for consumers
whose point of entry is this page, and will need to finish when
they reach it. The emitted page has attached to it a list of these
finishing packets, which are removed from the active packets of the
SPL (they do not participate in the atomic counter of subsequently
emitted pages). When a consumer (packet) reads a page, it checks
whether it is a finishing packet, in which case, it exits the SPL.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Methodology
We compare five configurations of the QPipe execution engine:

• QPipe, without SP, which is similar to a typical query-centric
model that evaluates query plans separately with pipelining,
without any sharing. This serves as our baseline.

• QPipe-CS, supporting SP only for the table scan stage, i.e.
circular scans (CS). It improves performance over QPipe by
reducing contention for CPU resources, the buffer pool and
the underlying storage device.

• QPipe-SP, supporting SP additionally for the join stage. It
improves performance over QPipe-CS, in cases of high sim-
ilarity, i.e. common sub-plans. In cases of low similarity, it
behaves similar to QPipe-CS.

• CJOIN, without SP, which is the result of our integration of
CJOIN into QPipe, hence the joins in star queries are evalu-
ated with a GQP of shared hash-joins. We remind that CJOIN
only supports shared hash-joins, thus subsequent operators
are query-centric. Nevertheless, this configuration allows
us to compare shared hash-joins with the query-centric ones
used by the previous configurations, giving us insight on the
performance characteristics of general shared operators.

• CJOIN-SP, which additionally supports SP for the CJOIN
stage (see Section 3.3). We use this configuration to evaluate
the benefits of combining SP with a GQP. It behaves similar
to CJOIN in cases of low similarity in the query mix.

In all our experiments, SP for the aggregation and sorting stages
is off. This is done on purpose to isolate the benefits of SP for joins
only, so as to better compare QPipe-SP and CJOIN-SP.

We use the Star Schema Benchmark [21] and Shore-MT [15]
as the storage manager. SSB is a simplified version of TPC-H [1]
where the tables lineitem and order have been merged into lineorder
and there are four dimension tables: date, supplier, customer and
part. Shore-MT is an open-source multi-threaded storage manager
developed to achieve scalability on multi-core platforms.

Our server is a Sun Fire X4470 server with four hexa-core pro-
cessors Intel Xeon E7530 at 1.86 Ghz, with hyper-threading dis-
abled and 64 GB of RAM. Each core has a 32KB L1 instructions
cache, a 32KB L1 data cache, and a 256KB L2 cache. Each proces-
sor has a 12MB L3 cache, shared by all its cores. For storage, we
use two 146 GB 10kRPM SAS 2.5” disks, configured as a RAID-0.
The O/S is a 64-bit SMP Linux (Red Hat), with a 2.6.32 kernel.

We clear the file system caches before every measurement. All
configurations use a large buffer pool that fits datasets of scale fac-
tors up to 30 (scanning all tables reads 21GB of data from disk).
SPL are used for exchanging results among packets. We use 32KB
pages and a maximum size of 256KB for a SPL (see Section 4).

Unless stated otherwise, every data point is the average of mul-
tiple iterations with standard deviation less or equal to 10%. In
some cases, contention for resources results in higher deviations.
Furthermore, we mention the average CPU usage and I/O through-
put of representative iterations (averaged only over their activity
period), to gain insight on the performance of the configurations.

Our sensitivity analysis is presented in Section 5.2. We vary
(a) the number of concurrent queries, (b) whether the database is
memory-resident or disk-resident, (c) the selectivity of fact tuples,
(e) the scale factor, and (d) the query similarity which is modeled
in our experiments by the number of possible different submitted

F D1

D2⋈

⋈ D3

⋈

A

SSELECT c_city, s_city, d_year,
 SUM(lo_revenue) as revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_orderdate = d_datekey
 AND c_nation = [NationCustomer]
 AND s_nation = [NationSupplier]
 AND d_year >= [YearLow]
 AND d_year <= [YearHigh]
GROUP BY c_city, s_city, d_year
ORDER BY d_year ASC, revenue DESC supplier

customer

date

Figure 9: The SSB Q3.2 SQL template and the query plan.

query plans. Queries are submitted at the same time, and are all
evaluated concurrently. This single batch for all queries allows us
to minimize query admission overheads for CJOIN, and addition-
ally allows us to show the effects of SP, as all queries with common
sub-plans arrive surely inside the WoP of their pivot operators. We
note that variable interarrival delays can decrease sharing opportu-
nities for SP, and refer the interested reader to the original QPipe
paper [13] to review the effects of interarrival delays for different
cases of pivot operators and WoP.

Finally, in Section 5.3, we evaluate QPipe-SP, CJOIN-SP, and
Postgres with a mix of SSB queries and a scale factor 30. We use
PostgreSQL 9.1.4 as another example of a query-centric execution
engine that does not share among concurrent queries. We configure
PostgreSQL to make the comparison with QPipe as fair as possible.
We use 32KB pages, large shared buffers that fit the database, en-
sure that it never spills to the disk and that the query execution plans
are the same. We disable query caching, which does not execute a
previously seen query at all. We do not want to compare caching
of previously executed queries, but the efficiency of sharing among
in-progress queries.

5.2 Sensitivity Analysis
In this section, we measure performance by evaluating multiple

concurrent instances of SSB Q3.2. It is a typical star query that
joins three of the four dimension tables with the fact table. The
SQL template and the execution plan are shown in Figure 9. We
select a single query template for our sensitivity analysis because
we can adjust the similarity of the query mix to gain insight on
the benefits of SP, and also, the GQP of CJOIN is the same for all
experiments, with the same 3 shared hash-joins for all star queries.

5.2.1 Impact of concurrency
We start with an experiment that does not involve I/O accesses to

study the computational behavior of the configurations. We store
our database in a RAM drive. We evaluate multiple concurrent SSB
Q3.2 instances for a scale factor 1. The predicates of the queries are
chosen randomly, keeping a low similarity factor among queries
and the selectivity of fact tuples varies from 0.02% to 0.16% per
query. Figure 10 (left) shows the response times of the configura-
tions, while varying the number of concurrent queries.

For low concurrency, QPipe successfully uses available CPU
resources. Starting with as few as 32 concurrent queries, there is
contention for CPU resources, due to the fact that our server has
24 cores and QPipe evaluates queries separately. Response times
grow quickly and unpredictability results in standard deviations up
to 50%. For 256 queries it uses all cores at their maximum.

The circular scans of QPipe-CS reduce contention for CPU re-
sources and the buffer pool, improving performance. For high con-
currency, however, there are more threads than available hardware
contexts, thus increasing response time.

2381.6

2389.6

2392.6

2380.6

2392.6

2389.6

2385.6

2387.6

2392.6

2380.6

2392.6

2387.6

2385.6

2390.6

2389.6

2385.6

2387.6

2393.6

2380.6

2393.6

2387.6

2385.6

2389.6

2391.6

2381.6

2391.6

2392.6

2380.6

2392.6

2388.6

2384.6

2388.6

2392.6

2382.6

2390.6

SF
=1

,
D

B
 in

 m
em

o
ry

, R
an

d
o

m
 S

el
ec

ti
vi

ty

1

10

100

1000

10000

1 2 4 8 16 32 64 128256

Number of concurrent queries

Disk-resident database

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256

R
e

sp
o

n
se

 t
im

e
 (

se
c)

Number of concurrent queries

QPipe

QPipe-CS

QPipe-SP

CJOIN

Memory-resident database

Measurement \Configur. QPipe QPipe-CS QPipe-SP CJOIN
Experiment with memory-resident database

Avg. # Cores Used 23.91 19.72 18.75 3.47
Experiment with disk-resident database

Avg. # Cores Used 23.86 19.84 17.06 3.49
Avg. Read Rate (MB/s) 1.88 74.47 97.67 156.11

Figure 10: Experiment with memory-resident (left) and disk-
resident (right) database of SF=1. The table includes measure-
ments for the case of 256 concurrent queries.

QPipe-CS misses several sharing opportunities at higher opera-
tors in the query plans. QPipe-SP can exploit them. Even though
we use random predicates, the ranges of variables of the SSB Q3.2
template allows QPipe-SP to share the first hash-join 126 times,
the second hash-join 17 times, and the third hash-join 1 time, on
average for 256 queries. Thus, it saves more CPU resources, and
results in lower response time than the circular scans alone.

The shared operators of CJOIN offer the best performance, as
they are the most efficient in saving resources. CJOIN has an ini-
tialization overhead in comparison to the other configurations, at-
tributed to its admission phase, which has a large part that pauses
the pipeline (see Section 3.1). The shared hash-joins in the GQP
can effortlessly evaluate many instances of SSB Q3.2. Neverthe-
less, admission and evaluation costs accumulate for an increasing
number of queries, thus the CJOIN line also starts to degrade.

We do not depict CJOIN-SP, as it has the same behavior as
CJOIN. As we noted in Section 3.3, our implementation of CJOIN-
SP supports sharing CJOIN packets with all predicates identical.
This is rare due to this experiment’s random selection predicates.

Our observations apply also for the same experiment with the
database on disk, shown in Figure 10 (right). QPipe suffers from
CPU contention, which de-schedules scanner threads regularly re-
sulting in low I/O throughput. Additionally, scanner threads com-
pete for bringing pages into the buffer pool. Response times for
low concurrency have increased, but not significantly for high con-
currency because the workload becomes CPU-bound. QPipe-CS
improves performance (by 80%-97% for high concurrency) by re-
ducing contention for resources and the buffer pool. QPipe-SP
further improves performance by eliminating common sub-plans.
The shared operators of CJOIN still prevail for high concurrency.
Furthermore, the overhead of the admission phase of CJOIN, that
we observed for a memory-resident database, is masked by file sys-
tem caches for disk-resident databases. We explore this effect in a
next experiment, where we vary the scale factor.

Implications. Shared scans improve performance by reducing con-
tention for resources, the buffer pool and the underlying storage de-
vices. SP is able to eliminate common sub-plans. Shared operators
in a GQP are more efficient in evaluating a high number of queries,
in comparison to standard query-centric operators.

0
.1

1
.0

1
0

.0

2
0

.0

3
0

.0

CJOIN

0

20

40

60

80

100

120

140

0 10 20 30

R
e

sp
o

n
se

 t
im

e
 (

se
c)

Selectivity (%)

CJOIN Admission
CJOIN
QPipe-SP

1

10

100

1000

10000

0
.1

1
.0

1
0

.0

2
0

.0

3
0

.0

C
P

U
 t

im
e

 (
se

c)

Selectivity (%)

Misc (#6) Locks (#5)
Scans (#4) Aggreg. (#3)
Joins (#2) Hashing (#1)

QPipe-SP

Measurement \Configuration QPipe-SP CJOIN
Avg. # Cores Used 17.79 18.86

Figure 11: 8 queries with a memory-resident database of
SF=10. The table includes measurements for 30% selectivity.

5.2.2 Impact of data size
In this section, we study the behavior of the configurations by

varying the amount of data they handle. We perform two experi-
ments: In the first, we vary the selectivity of fact tuples of queries,
and in the second, the scale factor.

Impact of selectivity. We use a memory-resident database with
scale factor 10. The query mix consists of 8 concurrent queries
which are different instances of a modified SSB Q3.2 template. For
the modified template, we select the maximum possible range for
the year. Moreover, we extend the WHERE clause of the query
template by adding more options for both customer and supplier
nation attributes. For example, if we use a disjunction of 2 nations
for customers and 3 nations for suppliers, we achieve a selectivity
of 2

25
3
25
≈ 1% of fact tuples. Nations are selected randomly over

all 25 possible values and are unique in every disjunction, keeping
a minimal similarity factor. The results are shown in Figure 11. In
this experiment, there is no contention for resources and no com-
mon sub-plans. Thus, we do not depict QPipe and QPipe-CS, as
they have the same behavior as QPipe-SP, and we do not depict
CJOIN-SP, as it has the same behavior as CJOIN.

Our selectivity experiments provide more insight on the general
behavior of the configurations. For this reason, we also include
the time of the admission phase of CJOIN, and performance break-
down graphs. The latter show the CPU time of all cores, as mea-
sured with Intel VTune Amplifier 2011, for different parts of the
query evaluation. We compare the effect of sharing on the CPU
time of hash-joins rather than analyze the bottlenecks of QPipe
and CJOIN, which are largely dependent on implementation de-
tails. We further break down the CPU time of hash-joins to two
categories. The first, shown as “Hashing”, includes the total CPU
time of the hash() and equal() functions, which are the heart
of the building and probing phases, and allow us to compare the
effect of sharing between the configurations, without strong side-
effects from implementation details. The remaining CPU time of
the hash-joins is shown as “Joins”.

Both QPipe-SP and CJOIN show a degradation in performance
as selectivity increases, due to the increasing amount of data they
need to handle. CJOIN, however, is always worse than QPipe-
SP. This is due to three reasons mainly. Firstly, the cost of the
admission phase of CJOIN is increased, as more tuples are selected
for referencing in the hash tables of the filters.

Secondly, the shared operators inherently entail a bookkeeping
overhead, in comparison to standard query-centric operators. In our
case, the additional cost of shared hash-joins includes the mainte-

0

500

1000

1500

2000

16 32 64 128 256

R
e

sp
o

n
se

 t
im

e
 (

se
c)

Number of Concurrent Queries

CJOIN Admission

CJOIN

QPipe-SP

1
6

3
2

6
4

1
2

8

CJOIN
1

10

100

1000

10000

100000

1
6

3
2

6
4

1
2

8

C
P

U
 t

im
e

 (
se

c)

Number of Concurrent Queries

Misc Locks
Scans Aggreg.
Joins Hashing

QPipe-SP

Measurement \Configuration QPipe-SP CJOIN
Avg. # Cores Used 22.86 17.73

Figure 12: Memory-resident database of SF=10 and 30% selec-
tivity. The table includes measurements for 256 queries.

nance of larger hash tables for the union of the selected dimension
tuples of all concurrent queries, and bitwise AND operations be-
tween the bitmaps of tuples. Query-centric operators do not entail
these costs, and maintain a hash table for one query. The increased
bookkeeping costs are reflected in the CPU time of the area un-
der Joins of CJOIN, which is more expensive than QPipe-SP for
all cases of selectivity. As the selectivity increases, the hashing
CPU time of QPipe-SP increases faster than CJOIN, as it does
not share parts of the hash-joins of the concurrent queries. We note
that the bookkeeping overhead can be decreased significantly with
careful implementation choices. DataPath [2] uses a single large
hash table for all shared hash-joins, and techniques to decrease the
maintenance and access costs for the hash table.

Thirdly, the horizontal configuration of CJOIN (all threads in
one “stage” [3]) results in synchronization costs, as threads con-
tend while passing tuples through the pipeline. The synchroniza-
tion costs are a significant reason for the worse trend of CJOIN.
Nevertheless, synchronization costs are highly dependent on imple-
mentation. For example, in CJOIN, the synchronization costs can
be minimized with the vertical (one thread per filter) or hybrid con-
figuration of CJOIN. These configurations, however, do not neces-
sarily provide better performance [3]. In DataPath or SharedDB,
a shared operator in a GQP does not necessarily require multiple
threads. Nevertheless, for low concurrency, the synchronization
costs for a query are higher in a GQP than in the query-centric
model, as a GQP tends to be much larger than the constituent query
plans. For one query in a GQP, tuples not selected by it, but se-
lected by other queries, need to pass through shared operators, and
tuples selected by the query may need to pass by additional shared
operators to accommodate other concurrent queries. This is also a
reason why GQP achieve better throughput for high concurrency,
but may hurt the latency of queries, especially for low concurrency.

We used 8 queries to avoid CPU contention. For higher concur-
rency, shared operators still prevail, due to their efficiency in saving
resources. Figure 12 shows the response times for the case of 30%
selectivity. For high concurrency, the query-centric operators of
QPipe-SP contend for resources. This is also shown in the CPU
times of the break-down graph, which all scale (superlinearly) with
the number of queries. CJOIN is able to save more resources and
outperform the query-centric operators. This is best reflected by
the hashing CPU time, which stays at the same level, irrespective
of the number of queries, as the hashing is shared.

Impact of scale factor. The same trade-off between shared oper-
ators and query-centric operators is observed by varying the scale
factor between 1 to 100. We use disk-resident databases and 8 con-
current queries with randomly varied predicates and selectivity be-

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80 90 100

R
e

sp
o

n
se

 t
im

e
 (

se
c)

Scale Factor

QPipe-SP (Direct I/O)

CJOIN (Direct I/O)

QPipe-SP

CJOIN

 SF Data (GB)
1 0.8

10 7.4
30 21.0
50 37.5

100 66.8

Measur.\Configur. QPipe-SP
(Direct I/O)

CJOIN
(Direct I/O) QPipe-SP CJOIN

Cores Used 5.96 1.68 5.38 2.47
Read Rate (MB/s) 97.16 70.01 215.58 204.71

Figure 13: 8 concurrent queries with disk-resident databases.
The table includes measurements for the case of SF=100.

tween 0.02% and 0.16%. The results are shown in Figure 13. The
response times of QPipe-SP and CJOIN increase linearly. Their
slopes, however, are different. The reasons are the same as in our
selectivity experiment.

We also show the response time of the two configurations by
using direct I/O for accessing the database on disk, to bypass file
system caches. This allows us to isolate the overhead of CJOIN’s
preprocessor. As we have mentioned, the preprocessor is in charge
of the circular scan of the fact table, the admission phase of new
queries, and finalizing queries when they wrap around to their point
of entry. These responsibilities slow down the circular scan signif-
icantly. Without direct I/O, file system caches coalesce contiguous
I/O accesses and read-ahead, achieving high I/O read throughput in
sequential scans, masking the preprocessor’s overhead.

Implications. For low concurrency, a GQP with shared operators
entails a bookkeeping overhead in comparison to query-centric op-
erators. For high concurrency, however, the overhead of shared
operators is amortized.

5.2.3 Impact of Similarity
In this experiment we use a disk-resident database of scale factor

1. We limit the randomness of the predicates of queries to a small
set of values. Specifically, there are 16 possible query plans for in-
stances of Q3.2. The selectivity of fact tuples ranges from 0.02% to
0.05%. In Figure 14, we show the response times of the configura-
tions, varying the number of concurrent queries. We do not depict

SF
=1

0

10

20

30

40

50

1 2 4 8 16 32 64 128 256

R
e

sp
o

n
se

 t
im

e
 (

se
c)

Number of concurrent queries

QPipe-CS

QPipe-SP

CJOIN

CJOIN-SP

50sec

13sec
14sec

12sec

Measur. \Configur. QPipe-CS QPipe-SPCJOIN CJOIN-SP
Avg. # Cores Used 20.32 9.60 2.50 2.34
Avg. Read Rate (MB/s) 74.37 120.20 130.18 130.15

Figure 14: Disk-resident database of SF=1 and 16 possible
plans. The table includes measurements for 256 queries.

256

512

Random

QPipe-SP (FIFO)

SF
=1

0
, 2

5
6

 c
o

n
cu

rr
en

t
q

u
er

ie
s

0

500

1000

1500

2000

2500

1 128 256 512 Random

R
e

sp
o

n
se

 t
im

e
 (

se
c)

Number of possible different plans

QPipe-SP

CJOIN

CJOIN-SP

Differ. plans 1 128 256 512 Random
QPipe-SP 1/0/51018/94/38149/156/287 106/196/188 362/82/5
CJOIN-SP 510 384 287 190 12

Figure 15: Evaluating 512 concurrent queries with a vary-
ing similarity factor, for a SF=100. The table includes the SP
sharing opportunities (average of all iterations), in the format
1st/2nd/3rd hash-join for QPipe-SP.

QPipe, as it does not exploit any sharing and results in increased
contention and high response times for high concurrency.

QPipe-SP evaluates a maximum of 16 different plans and re-
uses results for the rest of similar queries. It shares the second
hash-join 1 time, and the third hash-join 238 times, on average, for
256 queries. This leads to high sharing and minimal contention
for computations. On the other hand, QPipe-CS does not share
operators other than the table scan, resulting in high contention.

Similarly, CJOIN misses exploiting these sharing opportunities
and evaluates identical queries redundantly. In fact, QPipe-SP
outperforms CJOIN. CJOIN-SP, however, is able to exploit them.
For a group of identical star queries, only one is evaluated by the
GQP. CJOIN-SP shares CJOIN packets 239 times on average for
256 queries. Thus, CJOIN-SP outperforms all configurations.

To further magnify the impact of SP, we perform another experi-
ment for 512 concurrent queries, a scale factor of 100 (with a buffer
pool fitting 10% of the database), and varying the number of pos-
sible different query plans. Figure 15 shows the results. CJOIN is
not heavily affected by the number of different plans. For the ex-
treme cases of high similarity, QPipe-SP prevails. For lower sim-
ilarity, the number of different plans it needs to evaluate is larger
and performance is deteriorated due to contention. CJOIN-SP is
able to exploit identical CJOIN packets and improve performance
of CJOIN by 20%-48% for cases with common sub-plans.

Implications. We can combine SP with a GQP to eliminate redun-
dant computations and improve performance of shared operators
for a query mix that exposes common sub-plans.

5.3 SSB query mix evaluation
In this section we evaluate QPipe-SP, CJOIN-SP, and Post-

gres using a mix of three SSB queries (namely Q1.1, Q2.1 and
Q3.2), with a disk-resident database and a scale factor of 30. The
predicates for the queries are selected randomly and the selectivity
of fact tuples is less than 1%. Each query is instantiated from the
three query templates in a round-robin fashion, so all configurations
contain the same number of instances for each query type.

Figure 16 shows the response times of the configurations, while
varying the number of concurrent queries. As Postgres is a more
mature system than the two research prototypes, it attains a bet-
ter performance for low concurrency. Our aim, however, is not to
compare the per-query performance of the configurations, but their

80.8

82.5

82

82.2

81.7

81.1

82.9

82.4

82.7

82.4

82.4

82.3

82

80.3

82.2

80.9

82.5

82.1

82.2

81.4

81.7

82.6

81.2

80.6

81.6

79.3

80.8

80.5

80.8

82.4

80.8

81.1

80.4

82.1

81

SF
=3

0
, B

P
=1

0
%

, Q
u

er
y

M
ix

 (
Q

1
.1

, Q
2

.1
, Q

3
.2

),
 R

an
d

o
m

 p
re

d
ic

at
es

, t
h

ro
u

gh
p

u
t

fo
r

1
h

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256

R
e

sp
o

n
se

 t
im

e
 (

x1
0

0
 s

e
c)

Number of concurrent queries

QPipe-SP

CJOIN-SP

Postgres

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128 256

Th
ro

u
gh

p
u

t
(x

1
0

0
 q

u
e

ri
e

s/
h

)

Number of concurrent clients

Measur. \Configuration Postgres QPipe-SP CJOIN-SP
Response time experiment (256 concurrent queries)

Avg. # Cores Used 18.56 19.07 19.11
Avg. Read Rate (MB/s) 15.93 84.98 110.03

Throughput experiment (256 concurrent clients)
Avg. # Cores Used 18.29 19.59 13.70
Avg. Read Rate (MB/s) 15.94 67.42 79.98

Figure 16: Disk-resident database of SF=30. Response time
(left) and throughput experiment (right), varying the number
of concurrent queries and clients respectively. The table in-
clude measurements for both experiments.

efficiency in sharing among a high number of concurrent queries.
Postgres follows a traditional query-centric model of execution,
and does not share among in-progress queries. For this reason, it
results in contention for resources. QPipe-SP results in a better
performance due to circular scans and the elimination of common
sub-plans. CJOIN-SP attains the best performance, as shared op-
erators are the most efficient in sharing among concurrent queries.

Figure 16 also shows the throughput of the three configurations,
by varying the number of concurrent clients. Each client initially
submits a query, and when it finishes, the next one is submitted.
The shared operators of a GQP are able to handle new queries with
minimal additional resources. Thus, the throughput of CJOIN-SP
continues to increase. The throughput of the query-centric oper-
ators of Postgres and QPipe-SP, however, ultimately degrades
with an increasing number of clients, due to resources contention.

6. DISCUSSION
Shared scans and SPL. Pull-based models, similar to SPL, have
been proposed for shared scans that are specialized for efficient
buffer pool management and are based on the fact that all data is
available for accessing (see Section 2.1). SPL differ because they
are generic and can be used during SP at any operator which may be
producing results at run-time. It is possible, as well, to use shared
scans for table scans, and use SPL during SP for other operators.

Prediction model for sharing with a GQP. Shared operators of a
GQP are not beneficial for low concurrency, in comparison to the
query-centric model, because they entail an increased bookkeeping
overhead (see Section 5.2.2). The turning point, however, when
shared operators become beneficial needs to be pinpointed. A sim-
ple heuristic is the point when resources become saturated (see Ta-
ble 1). An exact solution would be a prediction model, similar to
[14]. This model, however, targets only sharing identical results
during SP (see Section 4). Shared operators in a GQP do not share
identical results, but part of their evaluation among possibly dif-
ferent queries. A potential prediction model for a GQP needs to
consider the bookkeeping overhead, and the cost of optimizing the
GQP, for the current query mix and resources.

Distributed environments. This work focuses on scaling up rather
than out. Following prior work [2, 3, 11, 13], we consider scal-
ing up as a base case, because it is a standard means of increasing
throughput in DBMS. Further research in parallel DBMS [20] and
other distributed data systems [10] will have interesting implica-
tions. For example, we can improve global scheduling in parallel
DBMS by considering sharing: each replica node can employ a
separate GQP, and a new query should be dispatched to the node
which incurs the minimum estimated marginal cost for evaluation.

7. CONCLUSIONS
In this paper we perform an experimental study to answer when

and how an execution engine should share data and work across
concurrent analytical queries. We review work sharing methodolo-
gies and we study Simultaneous Pipelining (SP) and Global Query
Plans with shared operators (GQP) as two state-of-the-art sharing
techniques. We perform an extensive evaluation of SP and GQP,
based on their original research prototype systems.

Work sharing is typically beneficial for high concurrency be-
cause the opportunities for common work increase, and it reduces
contention for resources. For low concurrency, however, there is
a trade-off between sharing and parallelism, particularly when the
sharing overhead is significant. We show that GQP are not ben-
eficial for low concurrency as shared operators inherently involve
a bookkeeping overhead compared to query-centric ones. For SP,
however, we show that it can be beneficial for low concurrency as
well, if the appropriate communication model is employed: we in-
troduce SPL, a pull-based approach that scales better on machines
with modern multi-core processors than push-based SP. SPL is a
data structure that promotes parallelism by shifting the responsibil-
ity of sharing common results from the producer to the consumers.

Furthermore, we show that SP and GQP are two orthogonal shar-
ing techniques and their integration allows to share operators and
handle a high number of concurrent queries, while also sharing any
common sub-plans presented in the query mix. In conclusion, an-
alytical query engines should dynamically choose between query-
centric operators with SP for low concurrency and GQP with shared
operators enhanced by SP for high concurrency.

Acknowledgments. The authors would like to thank the anony-
mous reviewers for their helpful comments, Alkis Polyzotis and
George Candea for their insights and providing access to the orig-
inal source code of the CJOIN operator, and Ryan Johnson for our
helpful discussions about the QPipe engine. This work was sup-
ported by the FP7 project BIGFOOT (grant n. 317858).

8. REFERENCES
[1] TPC-H Benchmark: Standard Specification, Revision 2.14.3.
[2] S. Arumugam et al. The DataPath system: a data-centric

analytic processing engine for large data warehouses. In
Proc. of the 2010 ACM SIGMOD Int’l Conf. on Management
of Data, pages 519–530, 2010.

[3] G. Candea et al. A scalable, predictable join operator for
highly concurrent data warehouses. Proc. of the VLDB
Endowment, 2(1):277–288, 2009.

[4] G. Candea et al. Predictable performance and high query
concurrency for data analytics. The Int’l Journal on Very
Large Data Bases, 20(2):227–248, 2011.

[5] H.-T. Chou et al. An evaluation of buffer management
strategies for relational database systems. In Proc. of the 11th
Int’l Conf. on Very Large Data Bases, pages 127–141, 1985.

[6] J. Cieslewicz et al. Adaptive aggregation on chip
multiprocessors. In Proc. of the 33rd Int’l Conf. on Very
Large Data Bases, pages 339–350, 2007.

[7] L. Colby et al. Red brick vistaTM : aggregate computation
and management. In Proc. of the 14th Int’l Conf. on Data
Engineering, pages 174–177, 1998.

[8] C. Cook. Database Architecture: The Storage Engine, 2001.
http://msdn.microsoft.com/library/aa902689(v=sql.80).aspx.

[9] N. N. Dalvi et al. Pipelining in multi-query optimization. In
Proc. of the 20th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Databases, pages 59–70, 2001.

[10] J. Dean et al. MapReduce: Simplified data processing on
large clusters. Communications ACM, 51(1):107–113, 2008.

[11] G. Giannikis et al. SharedDB: killing one thousand queries
with one stone. Proc. of the VLDB Endowment,
5(6):526–537, 2012.

[12] S. Harizopoulos et al. A case for staged database systems. In
Proc. of the 2003 Conf. on Innovative Data Systems
Research, 2003.

[13] S. Harizopoulos et al. QPipe: a simultaneously pipelined
relational query engine. In Proc. of the 2005 ACM SIGMOD
Int’l Conf. on Management of Data, pages 383–394, 2005.

[14] R. Johnson et al. To share or not to share? In Proc. of the
33rd Int’l Conf. on Very Large Data Bases, pages 351–362,
2007.

[15] R. Johnson et al. Shore-MT: a scalable storage manager for
the multicore era. In Proc. of the 12th Int’l Conf. on
Extending Database Technology: Advances in Database
Technology, pages 24–35, 2009.

[16] T. Johnson et al. 2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm. In Proc. of the
20th Int’l Conf. on Very Large Data Bases, pages 439–450,
1994.

[17] R. Kimball et al. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling. John Wiley & Sons, Inc.,
2nd edition, 2002.

[18] C. Lang et al. Increasing Buffer-Locality for Multiple
Relational Table Scans through Grouping and Throttling. In
Proc. of the 23rd Int’l Conf. on Data Engineering, pages
1136–1145, 2007.

[19] N. Megiddo et al. ARC: A Self-Tuning, Low Overhead
Replacement Cache. In Proc. of the 2nd USENIX Conf. on
File and Storage Technologies, pages 115–130, 2003.

[20] M. Mehta et al. Batch Scheduling in Parallel Database
Systems. In Proc. of the 9th Int’l Conf. on Data Engineering,
pages 400–410, 1993.

[21] P. O. Neil et al. Star Schema Benchmark. 2009.
[22] E. J. O’Neil et al. The LRU-K page replacement algorithm

for database disk buffering. In Proc. of the 1993 ACM
SIGMOD Int’l Conf. on Management of Data, pages
297–306, 1993.

[23] L. Qiao et al. Main-memory scan sharing for multi-core
cpus. Proc. of the VLDB Endowment, 1(1):610–621, 2008.

[24] N. Roussopoulos. View indexing in relational databases.
ACM Trans. Database Syst., 7(2):258–290, 1982.

[25] P. Roy et al. Efficient and extensible algorithms for multi
query optimization. In Proc. of the 2000 ACM SIGMOD Int’l
Conf. on Management of Data, pages 249–260, 2000.

[26] P. Russom. High-Performance Data Warehousing. TDWI,
2012. http://tdwi.org/research/2012/10/tdwi-best-practices-
report-high-performance-data-warehousing.aspx.

[27] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, 1988.

[28] J. Shim et al. Dynamic Caching of Query Results for
Decision Support Systems. In Proc. of the 11th Int’l Conf. on
Scientific and Statistical Database Management, pages
254–263, 1999.

[29] P. Unterbrunner et al. Predictable performance for
unpredictable workloads. Proc. of the VLDB Endowment,
2(1):706–717, 2009.

[30] M. Zukowski et al. Cooperative scans: dynamic bandwidth
sharing in a DBMS. In Proc. of the 33rd Int’l Conf. on Very
Large Data Bases, pages 723–734, 2007.

