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Abstract 

Mathematical modeling is an essential tool for a comprehensive understanding of cell 

metabolism and its interactions with the environmental and process conditions. Recent 

developments in the construction and analysis of stoichiometric models made it possible 

to define limits on steady-state metabolic behavior using flux balance analysis. However, 

detailed information about enzyme kinetics and enzyme regulation is needed to 

formulate kinetic models that can accurately capture the dynamic metabolic responses. 

The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the 

kinetic properties of enzymes. Therefore, the majority of recent works consider only the 

mass action kinetics for the reactions in the metabolic networks. In this work, we 

applied the ORACLE framework and constructed a large-scale, mechanistic kinetic 

model of optimally grown E. coli. We investigated the complex interplay between 

stoichiometry, thermodynamics, and kinetics in determining the flexibility and 

capabilities of metabolism. Our results indicate that enzyme saturation is a necessary 

consideration in modeling metabolic networks and it extends the feasible ranges of the 

metabolic fluxes and metabolite concentrations. Our results further suggest that the 

enzymes in metabolic networks have evolved to function at different saturation states to 

ensure greater flexibility and robustness of the cellular metabolism. 
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Abbreviations: 

ORACLE – Optimization and Risk Analysis of Complex Living Entities 

TFBA – Thermodynamic Flux Balance Analysis 

MA – Mass Action 

FDPA – Flux Directionality Profile Analysis 

PC – Principal Component 

PCA – Principal Component Analysis 

TCA – Tri Carboxylic Cycle 

CV - Coefficient of Variation 
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1   Introduction 

The rational metabolic engineering of microorganisms for the production of fuels and 

commodity chemicals requires reliable metabolic network models. These models allow 

for the interpretation and integration of the biological knowledge and experimental data 

in the form of mathematical expressions that can be used to identify rate-limiting steps 

and guide the engineering of carbon, energy, and redox flows in metabolic networks [1]. 

Furthermore, we can use these models to predict and optimize the dynamic behavior of 

cells in culture [2].  Nowadays, well-curated genome-scale metabolic reconstructions are 

available for an ever-growing number of organisms [3-6]. However, these models are 

primarily used for constraint-based analyses under steady state conditions and the 

capability to transform them into kinetic models is still being perfected [7-9].  

Constraints imposed during modeling must relate to biologically relevant 

phenotypes. The process of identification and analysis of these constraints itself can 

enhance our understanding of evolution and capabilities of the modeled organisms. 

Although there has been significant progress in the field of development of large and 

genome scale kinetic models recently [9-14], these efforts are hindered by incomplete or 

missing information about the kinetic properties of enzymes. To overcome this difficulty, 

some recent studies utilize approximations of kinetic mechanisms by considering only 

the mass action (MA) term in their model formulation [10, 15]. 
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In a seminal paper by Varma and Palsson, they postulate that it is possible to 

define limits on metabolic behavior using flux balances, but for more detailed 

description of metabolic responses, information about enzyme kinetics and their 

regulation is needed [16]. Motivated by this postulate, we investigated how 

thermodynamics and kinetics can constrain the space of feasible metabolic behavior, 

represented through feasible metabolic flux and concentration profiles. For example, the 

space of metabolite concentrations can be constrained by imposing physiological bounds 

determined by experimental methods	
   [17]. By virtue of the second law of 

thermodynamics [18-20], which states that a reaction can only take place if the Gibbs 

free energy of the reaction is negative, there is thermodynamic coupling between the 

metabolite concentrations that further reduces the allowable space. As an additional 

level of information, we incorporated knowledge about enzyme kinetics. By considering 

only the mass action term in modeling of the kinetic mechanisms, we show that the 

effects of enzyme saturation as observed in biological systems cannot be captured. In 

order to address this issue and explain possible pitfalls in considering only the mass 

action term, we performed our analyses by considering kinetic models with both: i) 

simple mass action rate laws and ii) rate laws that consider also the detailed enzyme 

mechanisms.  

Theoretical derivations provided in this study allowed us to compare the 

differences between mass action and mechanistic enzyme kinetics. We performed this 

comparison by evaluating the feasible consistent concentration profiles with two types of 
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kinetics for a representative flux state of the metabolic network. This was followed by a 

thorough statistical comparison of these two cases for the entire metabolic flux and 

concentration space. Our results demonstrated that enzyme saturation is an important 

and necessary consideration in modeling metabolic networks. Our analysis further 

suggests that the kinetic mechanisms that determine the enzyme saturations have 

evolved to support higher flexibility and robustness of the cell metabolism and 

physiology. Though in the current study we used a large-scale E. coli model, the 

presented methodology is readily scalable to genome-scale models of metabolism.  

 

2   Materials and Methods 

2.1   The ORACLE methodology: Workflow 

The systematic development of thermodynamically feasible kinetic models using 

ORACLE [21] consists of the following steps (as outlined in Fig. 1): 

1. The first step is to define the stoichiometry using information from genome-

scale reconstructions [4-6] and the thermodynamic constraints based on the available 

information on the Gibbs free energies of reactions [22-24]. We further incorporate the 

available fluxomics and metabolomics data [25-30]. After integrating the above-

mentioned information, we apply Thermodynamic Flux Balance Analysis (TFBA) in 

order to compute the thermodynamically feasible flux profiles [19, 20, 31, 32]. A 

thermodynamically feasible flux profile is characterized by a unique directionality for 
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each reaction within a metabolic network. This profile is contained within a convex hull 

defined by the flux solution space. We sample this convex space and derive a population 

of thermodynamically feasible flux profiles. We perform the principal component 

analysis on the obtained samples to find a representative flux, repv , of the studied flux 

profile [33, 34]. 

2. Next, we sample the space of metabolite concentrations consistent with the 

flux directionalities computed in Step 1, without violating thermodynamic and 

directionality constraints. If available, estimates of metabolite concentration ranges 

obtained from experiments under similar physiological conditions are used as the bounds 

for the computational sampling of the metabolite levels [35]. We then compute the 

displacement of the enzymatic reactions from the thermodynamic equilibrium, which 

are consistent with the metabolite levels and flux profiles from Step 1. 

3. Next, we integrate kinetic properties of enzymes from the literature or 

databases [36, 37]. For those enzymes with incomplete or missing information, we 

sample either the enzyme states [38], or the degree of the saturation of the enzyme 

active site [39]. 

4. We reject/prune samples that are either inconsistent to the experimentally 

measured responses of the metabolic network to gene perturbations and those that do 

not pass stability test [39].  
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5. We compute the populations of control (sensitivity) coefficients (log-linear, 

MCA models) [39, 40] of the accepted samples. The control coefficients quantify the 

sensitivity of the metabolic fluxes and intracellular metabolite concentrations to the 

activities of each enzyme in the network, to the concentrations of extracellular 

metabolites or to other parameters. 

6. We analyze the populations of control coefficients from Step 5 in order to 

postulate hypotheses about the possible responses of engineered metabolic networks, the 

couplings within the network, and to identify alternative metabolic engineering 

strategies. 

 

2.2   The ORACLE methodology: Components 

Sampling of the thermodynamically feasible metabolite space 

The metabolite concentration space can be defined by the constraints imposed by 

experimentally measured metabolite concentration levels [27, 30, 41, 42]. However, with 

additional constraints stemming from the thermodynamic coupling within metabolic 

network, the allowable metabolite space is further confined. This guarantees the 

consistency of the metabolite concentrations levels with values of the Gibbs free energy 

GΔ  and with the directionality of the reactions. To illustrate this, consider the example 

of a simple metabolic network shown in Fig. 2, Panel A. We assumed that the 
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concentrations of intracellular metabolites, A, B and C, were constrained within the 

ranges observed in the cell [17, 19]:  

 ,<<<<<< ClnCCBlnBBAlnAA  (1) 

where the underbars and overbars denote lower and upper bounds on the logarithms of 

the concentration levels, respectively. Thermodynamics also imposes relations (i) 

between the concentration levels of the intracellular metabolites A, B and C, and of the 

extracellular metabolites eS , eE  and eL ,  

 
RT
GlnLlnC

RT
GlnElnB

RT
GlnSlnA eee


531 <>< Δ+Δ+Δ−  (2) 

and (ii) between the concentration levels of intracellular metabolites  

 
RT
GlnClnA

RT
GlnBlnA


42 >> Δ+Δ+  (3) 

where 
iGΔ  denotes the standard Gibbs free energy of reactions i  ( 51= i ). The 

resulting metabolite space was thus reduced to a great extent as compared to the one 

defined in Eq. 1 (Fig. 2, Panel B). Furthermore, given the fixed directionality of the 

metabolic fluxes, the constraints imposed by thermodynamics are convex in the 

logarithmic space of metabolite concentrations, and therefore, the allowable metabolite 

concentration space remains convex. The convexity of this space allowed us to use the 

Artificial-Centering Hit-and-Run sampler in the COBRA Toolbox for the efficient 

sampling of concentrations within this space [43, 44]. 
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Modeling and Simulation of Enzyme Kinetics  

In the current study, we assessed the feasibility of metabolic states by verifying the 

stability of their corresponding kinetic models. As the type of employed kinetic laws 

affects the shape and the volume of the feasible space of metabolite concentrations and 

metabolic fluxes, we implemented two general types of kinetics laws: (i) a mass action 

rate law [9, 45-48]; and (ii) mechanistic enzyme kinetics, which considers mass action 

rate law for each elementary step, and it results in saturation kinetics [36, 47-49]. The 

employed mechanistic kinetics laws comprised reversible Michaelis-Menten kinetics, 

ordered Bi-Bi, Bi-Ter, and Ter-Bi, etc. [49]. For more complex reaction mechanisms we 

used generalized approximations of enzymatic mechanisms such as generalized reversible 

Hill [50], or convenience kinetics [51].	
  	
  

We examined the local stability of kinetic models by inspecting the eigenvalues of the 

Jacobian matrix of the system [39]. The elasticities, defined as the sensitivity of reaction 

rates to changes in parameters or metabolite concentration levels, are the integral 

component of the Jacobian matrix [39]. Based on this fact, we identified analytically the 

contributions of the mass action and the enzyme saturation components to the 

feasibility of metabolic states as discussed below.  

 

Mass Action and Enzyme Saturation 

The rate law of a reaction can be expressed in the following form [48, 52]:  
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 v =Vmax!"  (4) 

where maxV  is the maximal velocity of the reaction, ! is the mass action component and 

! the saturation component. A partial derivative with respect to a metabolite x , gives 

us: 

 
!v
!x
=Vm

!"
!x

# +Vm"
!#
!x

 (5) 

Scaling Eq. 5 by vx/ , we obtain:  

 
x!v
v!x

= !ln"
!lnx

+ !ln#
!lnx

 (6) 

The left hand side of Eq. 6, i.e., the scaled sensitivity of the enzyme rate, is called 

enzyme elasticity [21, 39, 48] and it quantifies the strength of interaction of the enzyme 

with the corresponding metabolite, x . It can be shown that the magnitude of the 

elasticity corresponds also to enzyme saturation [38, 39], and it approaches a high 

number for low saturation and for most common kinetics, it approaches to a small finite 

number for high saturation. This number depends on the specific mechanism of the 

enzyme kinetics, and it is equal to 1 for the classical case of irreversible Michaelis-

Menten rate law. 

The first term on the right hand side of Eq. 6, 
lnx
ln
∂
∂ ω

, we define as the mass-action 

elasticity, mε , and the second term, 
!ln"
!lnx

, as the saturation elasticity, sε . Thus, the 

elasticity of a reaction, ε , is a simple sum of the mass-action and saturation 

components:  
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 sm εεε +=  (7) 

 

Illustration of calculation of Mass Action and Saturation elasticities 

For a simple Bi-Bi reaction of the form:  

 PSS 21 2⇔+  (8) 

where S1  and 2S  are the substrates, and P  is the product, we can write the 

corresponding rate equation as:  

 
pss
ssVv max
~2~~1

~~)(1=
21

21

+++
Γ−

 (9) 

where,  

 ,=~and,=~,=~

2

2

1

1
mPmSmS K

p
K

s
K

s PSS 21  (10) 

 and 
21SS

P21=
eqK

Γ  denotes the displacement from thermodynamic equilibrium [38, 48]. 

Restructuring Eq. 9 in the form of Eq. 4, and using Eq. 6, we obtain the elasticities with 

respect to 21 SS ,  and P  as:  

 
S1
v

!v
!S1

= 1
(1" #)
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!"#
"
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1+ %s1 + %s2 + 2 %p

! Ps

! "## $##
 (13) 

where !m
S1 , !m

S2  and !m
P   are the mass-action elasticity terms with respect to 21 SS ,  and P , 

respectively, whereas ! s
S1 , ! s

S2  and ! s
P  are the corresponding saturation terms. So, the 

elasticities with respect to metabolites for the mechanistic enzyme kinetics are a 

function of the displacement from thermodynamic equilibrium, the molecularity of 

involved metabolites, and the relative concentration of metabolites with respect to their 

binding affinities (saturation constants). 

 

Enzyme saturation in mechanistic enzyme kinetics 

For most of enzymatic reactions, the degree of the saturation of the enzymes active site, 

A , with the respect of a substrate, S , can be expressed as [39]:  

  (14) 

where operator ][⋅  denotes the concentration value of the corresponding species, TA  the 

total active site concentration, AS  is the enzyme-substrate complex formed with an on-

rate and off-rate constants, onk  and offk , respectively, with onoffm kkK /= , which is also 

called “saturation constant”. The degree of the saturation Aσ  ranges from 0 to 1. So, 

when an enzyme is operating close to 0% of saturation, we have 0≈Aσ , i.e. mKS <<][ . 

m

m

T
A KS

KS
A
AS

]/[1
]/[=][=

+
σ
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In contrast, when an enzyme is operating close to 100% of saturation, we have 1≈Aσ , 

i.e. mKS >>][ . For 0.5=Aσ , an enzyme is operating at 50% of saturation and mKS =][ .  

In general, as we consider complex mechanisms, the exact saturation of the enzymes will 

be described by more complex expressions [38, 48, 49]. In the current study, we used Eq. 

14 to describe the extent of saturation of enzymes by substrates, metabolites, and 

effectors for complex mechanisms as well. 

 

Metabolic network kinetics: Integration of kinetics into metabolic 

stoichiometric models 

For a metabolic network under study, at a steady state we have:  

 0=vN ⋅  (15) 

where N  is the stoichiometric matrix and v  is the rate vector. This is the set of mass 

balance constraints used in the Flux Balance Analysis. The main objective here is to 

identify kinetic models that are consistent with flux profiles that are in turn consistent 

with these mass balance constraints. 

From Eq. 15, the Jacobian, J , for the metabolic system can be derived as follows [53-

55]: 

 

 

J = N !v
!x
= NVV "1 !v

!x
X

E
! "## $##

X "1  (16) 
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where V  and X  are diagonal matrices of the reaction rates and the metabolic 

concentrations. In Eq. 16, the X
x
vV

∂
∂−1  term is defined as the elasticity matrix E . From 

Eq. 7, E  can be expressed into the sum of two matrices with the mass-action and the 

saturation components of the individual reactions: 
sm
EEE += . Hence, Eq. 16 becomes:  

 11= −− + XEVNXEVNJ
sm

 (17) 

Therefore, in assessing the stability of kinetic models, we are able to evaluate the 

stability of the models with the mass action kinetics only as well as the models with 

mechanistic enzyme kinetics, i.e. the ones that also include saturation components.  

The stability test is one of the most important components in the ORACLE workflow. 

Since we start with a flux profile that is consistent with the mass balance constraints, 

we implicitly assume that this flux profile is dynamically stable and at a steady state. 

This means the flux values do not change over time for the time range of observation. 

Therefore, any set of kinetic parameters that is consistent with the metabolic flux 

profiles and concentration values must also be asymptotically stable [48, 56, 57]. 

 

Stability scores and bining 

The ORACLE methodology as outlined earlier provides us with thermodynamically 

feasible flux profiles and metabolite concentration samples consistent with the flux 

profiles. We randomly generated 1000 flux profiles and 1000 metabolite concentration 

samples for our further analysis. When simulating the case of pure mass action kinetics, 
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the stability of the kinetic models is evaluated over all the combinations of 

concentration and flux samples, resulting in an evaluation of 1 million cases. In the case 

of mass action kinetics, the information of flux distribution and metabolites alone are 

enough to estimate the stability for different flux and metabolite concentration profiles. 

In the case of the mechanistic enzyme kinetics, for each of aforementioned 1 million 

cases it was necessary to evaluate the stability for different realizations of enzyme 

saturations in order to ensure unbiased sampling of the kinetic space. In the results 

section, for each of performed analyses we discussed how many enzyme saturation 

samples are tested per one flux-concentration combination. 

In order to evaluate the stability of such a complex and multidimensional flux-

concentration space, we defined the following scores of stability:   

C-score: Given a flux sample, we evaluated the stability of the kinetic models 

across all concentration samples (Concentration dependent -score). For example, if 55% 

of all concentration samples generate stable kinetic models, then the C-score of the 

analyzed flux sample is 55%. In the case of mechanistic enzyme kinetics, each 

combination flux-concentration is evaluated across all concentration samples and for a 

number of different realizations of enzyme saturations. In these cases, we reported either 

mean C-score, i.e. C-score averaged over the realizations of enzyme saturations, or 

maximal C-score, i.e. the maximal attained C-score by any of the realizations of enzyme 

saturations.  
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V-score: Given a concentration sample, we evaluated the stability of the kinetic 

models across all flux samples (Flux (V) dependent -score). The V-score, mean V-score 

and maximal V-score are defined analogously to the C-score, mean C-score and maximal 

C-score. For example, if 40% of all flux samples give stable kinetic models for a given 

concentration sample, then the V-score of the analyzed concentration sample would be 

40%.  

We further categorized the aforementioned flux samples into 10 regions (as #V1, 

#V2 ,…, #V10), based on the 2L  norm of the distance from the representative flux, 

repv  , in order to analyze specific regions in the flux and concentration space during 

subsequent studies. The order of the classification was such that region 1#V  denoted the 

hyper-sphere with the radius HR , enclosing the space surrounding the representative 

flux sample. Region 2#V  was a hyper-layer surrounding region 1#V , with the radius 

2HR , and so on, with region 10#V , with the radius 10HR , being the farthest from the 

representative flux sample and surrounding region 9#V  (Fig. 3A). Similar categorization 

into 10 regions was performed for the concentration level samples, based on the 2L  norm 

of the distance from the representative concentration, repC , computed in an analogous 

manner as repv , with the categorized regions denoted, in the order of distance from repC , 

as 1#C , 2#C ,..., 10#C . The number of flux samples in each region #V1, #V2 ,…, 

#V10 were not necessarily the same. The same held true for the concentration samples 

in each region #C1, #C2 ,…, #C10. In the flux-concentration space, a combination of 
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flux samples from any of regions 10#1# VV −  with concentration samples from any of 

regions 10#1# CC −  defines a flux-concentration bin. For example, Bin 26## CV  contains 

the flux samples from region 6#V  and the concentration samples from 2#C . In fact, the 

studied flux-concentration space is split into 100 bins.   

B-score: We evaluate the stability for all combinations of the concentration and 

flux samples contained within a bin (Bin-score). For the models with mass action 

kinetics, B-score represents a percentage of aforementioned combinations giving stable 

kinetic models. For the models with mechanistic enzyme kinetics, mean B-score 

represents a percentage of the combinations concentrations-fluxes contained within a bin 

giving stable kinetic models averaged over the different realizations of enzyme 

saturations.  

 

3   Results 

3.1   Thermodynamically feasible model of E. coli 

The stoichiometric model used in this study is a core metabolic model of E. coli. It was 

derived using a model reduction algorithm proposed in the thesis of K. C. Soh [34], and 

based on the latest E. coli genome-scale reconstruction by Orth et al. [58]. The 

reduction algorithm is a consistent and systematic approach to identify the core 

metabolites and reactions around the central carbon metabolism of E. coli. The 

algorithm starts with the core subsystems such as glycolysis, TCA cycle and pentose-
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phosphate pathways and then expands outwards to identify other metabolites and 

reactions that should be taken into consideration as part of central metabolism. The 

biomass reaction is then reformulated accordingly based on this set of core metabolites. 

The resulting core model used in this study, comprised of 146 intracellular reactions 

(including the biomass reaction) and 90 metabolites (Fig. 4). The model was configured 

with a fixed glucose uptake of 10 mmol/gDW-hr with a maximum oxygen uptake rate of 

20 mmol/gDW-hr as specified in Varma and Palsson [16] and the minimum biomass flux 

was set to 80% of the optimal solution. We allowed the product fluxes to be 

redistributed to different byproducts based on sampling of the solution flux space. We 

further integrated the fluxes from experimental data for the optimal growth conditions 

from [27] and the metabolite concentrations (including uncertainty) using 

Thermodynamics-based Flux Balance Analysis (TFBA) [31, 32] (Supporting material, 

excel file, mat files and text files). As both TFBA and flux balance analysis can yield 

alternate optimal solutions, we further applied Flux Directionality Profile Analysis 

(FDPA) to systematically identify the possible flux and corresponding thermodynamic 

profiles [34]. Out of the two flux directionality profiles obtained, differing only in the 

directionality of the fumarase (FUM) reaction, we chose the profile with FUM having 

net flux in the direction of conversion of fumarate and water into malate for subsequent 

analysis. We continued by generating the feasible flux samples for the chosen flux 

directionality profile. Then, we performed the principal component analysis (PCA) on 

the generated set of flux samples to find the representative flux, repv  [33]. The 
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representative flux vector, repv , is collinear with the first principal component (PC1) and 

its magnitude is equal to the mean of magnitudes of sampled flux vectors projections 

onto PC1. The representative flux, repv , was used in the subsequent studies.  

 

3.2   Stability landscapes for pure mass-action and mechanistic enzyme 

kinetics 

First, we investigated the stability properties of the models with mass action kinetics. 

Next, we investigated whether or not the saturation components of the enzymatic 

mechanisms, within metabolic networks, have an impact on the overall stability of the 

resulting large-scale kinetic models. For that purpose, the kinetic mechanisms of the 

reactions in the whole network were modeled using: (i) pure mass-action kinetics; (ii) 

mechanistic enzyme kinetics wherein it was assumed that all enzymes in the network 

operate at 50% of their saturation, referred subsequently as half-saturation (details in 

Materials and Methods). 

We evaluated the proportion of concentration samples out of the 1000 profiles sampled 

(see Materials and Methods) that gave stable kinetic models for the representative flux, 

repv , and for both types of kinetics. In the case of pure mass action kinetics, 410 

concentration samples gave stable kinetic models, i.e. C-score of 41%, whereas in the 

case of mechanistic enzyme kinetics all 1000 concentration samples resulted in stable 

kinetic models, i.e., we obtained a C-score of 100% (see Materials and Methods). This 
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suggests that the saturation kinetics contribute significantly to the stability of certain 

flux realizations.  

We further compared these two sets of models by exploring the stability landscape for 

all one million combinations of 1000 flux and 1000 concentration space samples (see 

Materials and Methods). In the case of mechanistic enzyme kinetics, since all enzymes 

operate at half-saturation, only one sample of enzyme saturation was used in 

simulations. Therefore, we assessed the stability of 1 million models for each of the 

enzyme kinetics cases. We found that for the case of pure mass action, ≈  97% of the 

flux samples had a C-score ≤  5% (Fig. 5, panel A). This implies that for any of the 

approximately 970 flux profiles, we found less than 50 concentration profiles that made 

that flux profile stable. In Fig. 5, we chose two reactions and two metabolite 

concentrations based on their coefficient of variation (CV) values to illustrate the 

findings. The CV values denote a variation of estimates of flux/metabolite samples [59]. 

Each of the chosen flux and concentration samples belonged to the top or the bottom 

quartile of the corresponding CV ranges. More specifically, for the chosen fluxes, CV 

value of fructose-biphosphate aldolase was 0.23, representing a low variation of these 

estimates, whereas it was 0.85 for that of fructose 6-phosphate aldolase, representing a 

high variation of the estimates. Similarly, for the chosen metabolite concentration levels, 

the CV of citrate was 0.02, while CV of fumarate was 0.34 (Supplementary Fig. 1).  

The C-score quantifies for a flux sample the percentage of stability of the kinetic models 

across all concentration samples (see Materials and Methods). In the case of pure mass 
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action kinetics, the maximal attained C-score of all flux samples was approximately 52%. 

For the kinetic models with mechanistic enzyme kinetics, the stability increased 

considerably and also consistently for each and every flux sample (Fig. 5 B). We found 

that 7% of the flux samples had a C-score ≥  50%, with around 5% of the flux samples 

having a C-score of 100%. 

We further analyzed stability as a function of the concentration level samples. When all 

enzyme kinetics followed pure mass action law, it was observed that all of the 

concentration samples had a V-score ≤  5% (Fig. 5C). This implies that for every 

concentration profile, we found less than 50 stable flux profiles. Similar to our analysis 

of the flux space, when we used mechanistic enzyme kinetics for all enzymes, the 

stability increased for all the concentration samples. Specifically, 100% of the 

concentration samples had a V-score ≥  5%, and 2% of concentration samples had a V-

score above 10%.  

While we observed consistently higher stability scores for both the flux and the 

concentration samples in the case of models with mechanistic enzyme kinetics, we have 

not been able to identify contiguous iso-stability regions (connected regions in the 

concentration or flux space having similar stability scores) by inspecting 2-dimensional 

cross-plots (Fig. 5 A, C). While the main reason for this phenomenon is the high 

dimensionality of the flux and concentration space, in depth future investigation could 

yield significant insights into the function and physiology of the metabolic pathways. 
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To identify the aforementioned iso-stability regions in the high-dimensional flux and/or 

concentration space, we clustered the flux and the concentration samples into 100 bins 

and quantified the stability B-score (details in Materials and Methods). B-score 

quantifies the percent of stability for all combinations of the concentration and flux 

samples contained within a bin of flux and concentrations samples.  Analysis of the 

stability of flux-concentration bins indicated very limited variability of B-scores as a 

function of flux samples as compared to a function of concentration samples (Fig. 3C). 

This observation was true for both types of kinetic models (Fig. 3B, C). More precisely, 

it appears that certain concentration regions had a decisive influence on the stability 

scores. In the case of pure mass action kinetics models, the highest B-scores were 

obtained for bins that involved the concentration region 8#C . Similarly, for the models 

with mechanistic enzyme kinetics, the highest mean B-scores were obtained for bins 

involving the concentration regions 3#C , 6#C  and 7#C . The highest B-score obtained 

for the case of mass action kinetics was always < 2%. In comparison, for mechanistic 

enzyme kinetics models, the mean B-scores obtained were significantly superior with the 

highest one being ≈12%, whereas the lowest one being ≈4%. Once again, these results 

suggest that the saturation kinetics of enzymes contribute to the stability of the system, 

and they allow a wider range of kinetically feasible concentration profiles. 

 

3.3   Relationships between enzyme efficiency and stability 
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We established in the previous section that kinetic models of metabolic networks, with 

all their enzymes operating at half-saturation, had higher stability than the ones with 

the pure mass action. In the following section, we studied the consistency of this 

observation through different degrees of enzyme saturation. We constructed kinetic 

models with enzymes operating in ranges of 0-10%, 10-20%, ..., 90-100% of their 

saturation. Near 100% saturation here represented a case of an enzyme being completely 

saturated and near 0% saturation represented an enzyme operating in the linear range. 

While such extreme cases might not be physiologically meaningful, as enzymatic 

reactions in a biological system generally do not operate within such a narrow range of 

saturation, this analysis provides a theoretical understanding of the effect of enzyme 

saturations on stability. The comparison was performed on the same set of 1000 flux 

samples and 1000 concentration samples as considered previously. Therefore, for the 

mechanistic enzyme kinetics models and for each range of enzyme saturation, one 

hundred enzyme saturation realizations were generated. Therefore, for the mechanistic 

enzyme kinetics models, we analyzed 100 million alternative kinetic models, whereas for 

the mass action kinetics 1 million models were generated and analyzed. 

We observed an increase in stability upon inclusion of enzyme saturation (Fig. 6 and 

Supplementary Fig. 2). Specifically, as the enzyme saturation in the network increased, 

we had a clear and consistent increase in the stability over the entire surface of mean B-

scores. Ultimately, for the range of 90-100% of enzyme saturation, mean B-scores values 

of 30% were attained. This observation is in line with the findings reported by Bennett 
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et. al., where they report that large majority (83%) of enzymes are more than 50% 

saturated for the case of glucose-fed, exponentially growing E. coli [27]. Furthermore, by 

inspecting the contour plots of Fig. 6, we found that, as already observed in Figs. 3B 

and 3C, the stability was dominantly affected by the concentrations as witnessed by the 

contour lines mostly parallel to the flux axis. However, the maxima of the mean B-score 

surfaces were not coinciding, implying that stability is a complex interplay between 

kinetics, concentrations and fluxes. In other words, a precise knowledge about 

metabolite concentrations within the network alone does not necessarily contribute to 

the identification of kinetic models consistent with the data. 

 

3.4   Stability of enzymes operating through the entire range of saturation 

In nature, enzymes can operate in a wide range of regimes, ranging from the linear 

phase to the one with enzyme being completely saturated. In the subsequent analysis, 

we generated randomly 1,000 vectors of enzyme saturation regimes for the entire system.  

For each enzyme saturation vector, we computed the stability for 1 million 

combinations of flux and concentration samples, i.e., in total we analyzed 1 billion 

kinetic models. For all the flux samples, maximal C-scores of ≥  95% were attained 

(Supplementary Fig. 3). On an average, stability of the flux space increased 

considerably when enzymes operated through the entire range of saturation. This 

observation was based on the fact that 40% of flux samples had a C-score of ≥  30%, as 



 26	
  

compared to the case with pure mass action laws, where 0.8% of flux samples had a C-

score of ≥  30%  (compare Fig. 7A and Fig. 5A).  

Overall, we obtained significantly higher stability for the entire concentration space 

upon inclusion of full range of enzyme saturation states (compare Fig. 7C and Fig. 5C). 

We obtained 12% of concentration samples, with a mean V-score of ≥  30% averaged 

over 1,000 enzyme saturation regimes, as compared to none for the mass action. This 

implies that, for each of the 12% of the concentration profiles, we could find more than 

300 kinetic models for the whole network that could explain/realize the corresponding 

concentration and flux profiles. In comparison, none of these profiles could be explained 

using mass action laws for each enzyme. Even more striking, the minimum observed V-

score in the case of mechanistic enzyme kinetics was 10% over the entire set of 1 million 

combinations of concentration and flux profiles, as compared to maximum observed V-

score of 5% in case of pure mass action.  

Upon the inclusion of full range of enzyme saturations, the stability increased 

significantly within individual bins/ranges of flux and concentration profiles, with B-

scores reaching above 70% (Fig. 7D). The maximal stability scores (B-scores) were 

obtained for Bins 74## CV , and 76## CV , 86## CV  with the values of 72%, 73.4% and 

73.3% respectively. This observation suggests that certain combinations of fluxes and 

metabolites are more probable to appear in this biological system. Their high stability 

ranking implies that there exist wider ranges of kinetic parameters that could realize 

these fluxes and concentrations.  



 27	
  

 

3.5   Consideration of experimental kinetic information improves stability 

statistics 

The ORACLE methodology allows us to incorporate experimentally available kinetic 

information of enzymes from literature databases such as BRENDA. We integrated the 

available Michaelis constants, mK , from BRENDA and for the enzymes whose 

information was missing, we sampled the corresponding enzyme saturation space (see 

Materials and Methods). While we observed several samples with low stability scores, in 

general the stability scores of the flux and concentration samples increased compared to 

the case without inclusion of available kinetic data (Fig. 7B). For approximately 2% of 

the flux samples, we obtained a mean C-score of ≥  40% and for almost 100% of the flux 

samples, a maximum C-score of 100% was obtained. This is an important observation, 

as it suggests that enzymes might have evolved to operate within a broad range of 

stable concentration and flux profiles. This flexibility can be achieved with the proper 

tuning of the enzyme activities through genetic regulation. 

 

4   Discussion 

Varma and Palsson suggested in their work that, in addition to flux balances, kinetic 

information was needed to determine feasible metabolic capabilities that a cell possesses 

[16]. In this study, we present for the first time an approach to determine the metabolic 
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capabilities defined by kinetic properties, using our large-scale kinetic models that take 

into account all the stoichiometric and thermodynamic constraints of the flux balance 

models. We further investigated, whether or not there are clear boundaries between 

feasible and infeasible metabolic states, using concepts of nonlinear systems stability.  

We studied the kinetic properties of metabolic networks, using metabolic modeling 

which accounts for all the stoichiometric and thermodynamic constraints of metabolic 

networks, without imposing any simplifying assumption that could involve reduction in 

the number of reactions and metabolites, and that would violate thermodynamic 

constraints. We used our modeling framework ORACLE that allowed us to efficiently 

and consistently explore a vast range of concentration and flux profiles, and consider 

every possible kinetic mechanism for the enzymes in the metabolic network. 

We found that using kinetic models with mass action kinetics not only makes a rough 

approximation of real kinetic mechanisms, but in addition it results in a very low 

incidence of stability, which could potentially lead to erroneous conclusions. This implies 

that assessing the feasibility of concentration and flux profiles using mass action kinetics, 

can lead to overly conservative assessments thus neglecting concentration and flux 

profiles that are likely to correspond to a physiological condition of the system. On the 

contrary, we observed that upon incorporation of enzyme saturation terms, the 

feasibility region in the flux and concentration space of resulting kinetic models was 

consistently bigger. Moreover, these stable regions included the concentration and flux 

profiles that were found to be feasible with the pure mass action kinetics as well. In 
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addition, upon inclusion of experimentally measured Michaelis constants, mK , the region 

of the flux-concentration space providing stable kinetic models was consistently bigger 

as well. The fact that enzyme saturation terms and inclusion of experimentally observed 

kinetic data consistently increased the stability of the kinetic models, i.e. their feasible 

space of fluxes and concentrations increased, indicates that enzymes have evolved in a 

way to increase the flexibility and thus the viability and adaptability of living organisms.  

We further examined whether or not there were clear boundaries between feasible and 

infeasible metabolic states, and we investigated if we could transition continuously 

within flux and concentration spaces through stable states. Although we were unable to 

find any distinct iso-stability regions in the flux or the concentration space, we found 

smaller continuous regions of concentration and fluxes with a higher probability of 

having high stability scores. For example, the region enclosed by Bin 74## CV  or Bin 

76## CV  in Fig. 7D is likely to have a high stability score.  

Different incidence of stability throughout the flux-concentration space, as witnessed by 

the different B-scores in the defined bins, indicated that there might exist subspaces, 

not necessarily enclosed by the categorized flux and concentrations regions that have a 

high stability score. Identification of these regions will require the use of methods for 

parameter continuation [60]  and nonlinear optimization [61]. As a first attempt, in the 

current study, we split the flux/concentration space using hyper-planes and assessed the 

stability scores of the resulting sub-regions to uncover these subspaces (Fig. 8). We 

identified one sub-region with a very high stability score. Using this technique of cutting 
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planes it could be possible to narrow down the regions having a high probability of high 

stability. Having information about regions in the flux-concentration space which are 

more stable, i.e. the ones that might have a higher probability of being experimentally 

observed, would allow us to postulate and test hypotheses about the physiology of the 

studied metabolic networks. 

The work presented here, is the first attempt to systematically explore the kinetic space 

of large-scale and genome-scale metabolic networks, without any simplifying 

assumptions that omit metabolic stoichiometry and thermodynamic constraints. Our 

results demonstrated that such exploration is possible using the ORACLE methodology 

and high-performance computations. The studies presented here represent the first 

building block of a method for the development of large-scale nonlinear metabolic 

models. Such models will allow us to analyze metabolic networks without sacrificing 

accuracy in their representation, and it will enable us to design metabolic engineering 

strategies based on the analysis of the responses of metabolism to large changes in 

enzyme activities.  
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Figures 

 

Fig.  1: Workflow of the computational procedure for uncertainty analysis of metabolic 

networks within the ORACLE framework. Light gray boxes denote the integration of 
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available experimental and literature data, whereas the dark gray boxes denote the 

computational procedures. 

 

 

Fig.  2: Effects of integrating the thermodynamic constraints on the space of allowable 

metabolite concentrations. (A) Branched pathway model where Se, Ee, and Le denote the 

external metabolites, while A, B, and C denote the internal metabolites. (B) Space of 

metabolite concentrations within bounds experimentally observed under different 

physiological conditions  (dashed line), and within thermodynamically feasible bounds 

(solid line).  
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Fig.  3: (A) Bining of flux convex space. (B) Bar graph of the B-score showing the 

stability in the flux and concentration space for the case of pure mass action. (C) Bar 

graph of the B-score showing the stability in the flux and concentration space for 

enzyme kinetics with 50% saturation.  
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Fig.  4: Metabolic pathways of the consistently reduced E. coli network. The network 

includes 146 reactions and 90 metabolites, and it is fully balanced even with respect to 

the small molecules such as CO2, NH3, and PO4, and with respect to protons and 

electrons.  
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Fig.  5: Stability landscape of fluxes and concentrations in case of pure mass action and 

50% enzyme saturation case: (A) Cross-plots of flux samples of fructose-biphosphate 

aldolase (FBA) versus fructose 6-phosphate aldolase (F6PA). (B) There is a consistent 

increase in stability for all flux samples for enzyme kinetics with 50% saturation. (C) 

Cross-plot of concentration samples of citrate (Cit) versus fumarate (Fum).   
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Fig.  6: Stability surfaces and the corresponding contour plots in the flux and 

concentration space for: (A) pure mass action, (B) 40-50% enzyme saturation levels and 

(C) 90-100% enzyme saturation levels.  
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Fig.  7: Stability landscape of flux and concentration samples in case of full range of 

enzyme saturation levels (0-1). (A) Mean C-score cross-plot of flux samples of FBA 

versus F6PA calculated over 1,000 concentration samples and over 1,000 saturation 

samples, and without inclusion of any experimental/database Km  measurements. (B) 

Mean C-score cross-plot of the flux samples, with experimental/database kinetic 

information of Km measurements incorporated. (C) V-scores cross-plot of concentration 

samples for citrate versus fumarate. (D) Stability surface, and the corresponding contour 

plot, of the flux and concentration space. 
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Fig.  8: Partitioning of the flux/concentration space using hyper planes to identify sub-

regions within the flux/concentration space with higher probability of stability scores. 
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