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Abstract

Cortical circuits are highly recurrently connected, with a globally balanced mix of excitatory

(E) and inhibitory (I) synaptic transmission. These E and I interactions among neurons are

apparently strong enough to allow the selective amplification of certain patterns of inputs

(e.g. sensory inputs from the thalamus) by the collective dynamics of the neurons. Even in

the absence of a direct sensory stimulation, amplification is noticeable in the spontaneous

formation of non-random activity patterns.

Recurrent amplification raises three fundamental puzzles. First, how do cortical circuits per-

form such amplification? Second, how can such amplification occur on timescales as fast

as those reported during ongoing and stimulus-evoked activities in sensory cortices? Third,

how is amplification compatible with the stability of the network dynamics? Strongly re-

current networks are indeed easily prone to dynamical instabilities. This is because some

patterns of network activity may be fed back onto themselves by passage through the recur-

rent connections. This self-feedback may readily be so strong as to cause run-away neuronal

activity.

We use a combination of theory and simulations to address these issues. We find the

solutions to the three above questions to be one and the same. Stability, amplification,

and fast dynamics are simultaneously accounted for in models of cortical circuits in which

inhibition is finely tuned to the details of the excitatory pathways. Such networks are shown

to exhibit a fine temporal balance between the E and I inputs to single cells, in line with

experimental measurements. We also find that the same principles account qualitatively for

the dynamics of motor and pre-motor cortical populations during arm-reaching movements

in the monkey. Finally, we relate the dynamics of inhibition-stabilized networks to a wider

class of dynamical systems known as “nonnormal” in modern physics. This yields a set of

theoretical tools with which the behavior of sensory cortical circuits may be conveniently

analysed in future studies.

Keywords Cortex, excitation/inhibition balance, nonnormal dynamical systems, stability,

amplification, synaptic plasticity.





Résumé

Le cortex forme un réseau de neurones connectés de manière récurrente, où chaque neu-

rone est simultanément excité et inhibé par ses pairs. L’équilibre global entre excitation et

inhibition est régulé dynamiquement. Ces interactions sont suffisament fortes pour perme-

ttre l’amplification, dans le cortex, de stimuli sensoriels relayés par le thalamus. Une telle

amplification se manifeste même par l’apparition spontanée de motifs d’activité corticale en

l’absence de stimuli sensoriels.

L’amplification récurrente pose trois énigmes d’un point de vue théorique. Premièrement, par

quel mechanisme le cortex est-il capable d’amplifier? Deuxièmement, comment se fait-il que

l’amplification se fasse aussi rapidement qu’observé dans les expériences? Enfin, comment

se fait-il qu’amplification et stabilité coexistent si harmonieusement? C’est surprenant car

les systèmes physiques récurrents sont facilement déstabilisables en général, certains motifs

d’activité pouvant être si puissamment renforcés par la dynamique récurrente qu’ils finissent

par déstabiliser le système.

Ma thèse approche ces énigmes à travers une combinaison de méthodes théoriques et de

simulations sur ordinateur. Il se trouve qu’un seul et même phénomène les explique toutes

les trois. Stabilité et amplification sur courte échelle de temps sont simultanément ex-

pliquées par des modèles de connectivité corticale dans lesquels les synapses inhibitrices ont

été précisément ajustées aux synapses excitatrices. Dans de tels réseaux, les fluctuations

temporelles des conductances excitatrices et inhibitrices sont fortement corrélées, en accord

avec les mesures expérimentales. Je montre aussi que les mêmes principes semblent gou-

verner la dynamique collective des neurones du cortex moteur et pré-moteur chez le singe.

Enfin, je relie la dynamique des réseaux stabilisés par une inhibition adéquate à une classe plus

large de systèmes dits “non-normaux” en physique moderne. Cela me permet de dégager

des outils théoriques applicables à l’étude future des circuits corticaux.

Mots clés Cortex, équilibre entre excitation et inhibition, systèmes dynamiques non-normaux,

stabilité, amplification, plasticité synaptique.
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Foreword

The work presented in this thesis is the fruit of five years of research carried out at the

Laboratory of Computational Neuroscience (LCN), EPFL, from October 2007 to October

2012.

I started out with a project on Spike Timing-Dependent Plasticity (STDP), a research topic

that had been running in the lab since Wulfram Gerstner started it in the mid-1990s. In

collaboration with Wulfram Gerstner and Jean-Pascal Pfister, I attempted to bridge two

classes of plasticity rules that they had previously developed with Taro Toyoizumi at EPFL.

The first class of rules aims at capturing the phenomenology of plasticity with minimal

complexity, that is, fitting as much experimental data as possible using simple building blocks.

The other approach postulates a functional objective for plasticity and derives the form that

activity-dependent synaptic modifications must take to achieve that function. While the first

approach does not directly address the functional relevance of synaptic plasticity, the second

one threatens to generate mathematical models with no experimental support. The goal of

the project was to look for conditions under which both approaches would in fact be the

two sides of a same coin. The work led to the publication of a journal article in Frontiers in

Computational Neuroscience, and appears as chapter 6 in this thesis.

By the end of 2010, my research interests had shifted significantly towards the study of

balanced network dynamics. A pair of seminal papers had been published in 2008/9 that

introduced the concept of “nonnormal” dynamical systems – of which a theory had originally

been developed to explain some phenomena in fluid dynamics – into the field of computational

neuroscience. These studies found that nonnormal dynamics could explain two seemingly

unrelated cortical phenomena: the fast waxing and waning of non-random activity patterns

during ongoing activity in the visual cortex, and the generation of persistent activity in the

prefrontal cortex during short-term memory tasks. Picking up on this trend, I explored

the extent to which nonnormal effects contribute to the dynamics of randomly connected

network, the de facto model of microcircuit wiring in theoretical neuroscience. My analysis of

nonnormal amplification in random balanced networks has been published in Physical Review

E, and appears as chapter 2 in this thesis.

Just as I started developing this new research interest, Tim Vogels arrived at the EPFL

as a postdoctoral fellow. Tim is an expert in the computational aspects of a physiological
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phenomenon called the “detailed excitation/inhibition balance”, which denotes the exquisite

match between synaptic excitation and inhibition that has been reported fairly recently by

a series of experiments. After a few months of collaboration it became clear to us that

nonnormal dynamics and the detailed balance were tightly related through inhibitory synaptic

plasticity. In chapter 3, I elaborate on this link. In the context of inhibitory-stabilized

microcircuits, I establish a relationship between the detailed E/I balance, network stability,

and transient amplification, a hallmark of nonnormal dynamical systems. In chapter 4, I

further relate optimal stabilization – derived from control-theoretic principles – to the simple

inhibitory plasticity rule developed in Vogels et al. (2011). In chapter 5, I study the inhibitory

stabilization of cortical networks at a larger, macroscopic scale, and find that a simple and

robust solution exists that consists in keeping inhibition local.

Finally, chapter 1 is a general introduction to previous models of cortical dynamics and am-

plification, and brings up the concepts of nonnormal dynamics, stability, and the excitation-

inhibition balance from a mathematical, computational and experimental viewpoint.

Lausanne, October 1st, 2012

G.H.
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CHAPTER 1

Introduction

Isaac Newton famously witnessed the fall of an apple from a tree, which prompted him to

write down a set of universal laws to describe the interactions of bodies with mass. These

were written in four dimensions, three dimensions for space and one for time. Modern

physicists now understand the fall of the apple (and a huge lot of other physics phenomena)

with the help of many additional dimensions.

If the fall of the apple is now well understood, we still do not understand the first thing about

how Newton and colleagues managed to understand it. Let alone Nobel-winning cognition of

that sort, much remains to be understood regarding how brains generate simple behaviour,

from simple perception to simple decision-making to simple action-taking. What the brain

“does” to generate these multiple facets of behaviour is usually referred to more abstractly

as “brain computation”. The research presented here hopes to contribute to a scientific field

called “computational neuroscience”, which seeks to describe the “computations” the brain

performs using the same sort of mathematical tools that physicists use to understand how

apples fall.

The field has been very successful so far in finding equations that describe how the brain

compute at some of the lowest levels, for example how neurons integrate information and

communicate with one another. Several excellent textbooks are available on this topic (Dayan

and Abbott (2001); Gerstner and Kistler (2002b); Izhikevich (2006), and see also Gerstner

and Naud (2009)). Animal and human behaviour being incredibly complex, one naturally
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faces the question Newton and colleagues had to answer for their own field: how many

dimensions do we need to properly understand brain computations? What can a single

neuron achieve? How about two of them? What is gained by making a thousand neurons

work together?

A single cubic millimeter of the mammalian neocortex is host to several thousand neurons.

Tightly packed, neurons interact in several ways: chemical, molecular, and electrical. This

can be considered a hint that isolated neurons cannot do much on their own, and that

neurons are wired together for a reason. Computational neuroscience has a long tradition

of theoretical work on “neuronal network” dynamics, and the present thesis builds on such

theories. Again several neuroscience textbooks are available that summarize over 40 years

of research in dynamic network theory (Dayan and Abbott (2001); Gerstner and Kistler

(2002b); see also Vogels et al. (2005)).

In section section 1.1 I review the models of network dynamics that are used throughout

the thesis. In particular, I highlight the problem of dynamical stability and the mathematical

framework in which to study it. I then go on describing the phenomenon of cortical amplifi-

cation and related models (section 1.2), before introducing “nonnormal” dynamical systems

from both mathematical and neuroscientific perspectives (section 1.3). Throughout this in-

troduction, I have tried to limit the information content to only slightly above the minimum

prescribed by what the thesis covers. A lot more can be found in the various textbooks

mentioned above; www.scholarpedia.org is also a remarkable mine of information.

1.1 Cortical dynamics

1.1.1 Neurons and their time constants

Neurons in the cortex can be seen as tiny electrical devices. As such they have a “voltage”

that varies in time and reflects the constant flow (in and out) of charged ions through a

cellular membrane that features both resistance and capacitance. Membranes are character-

ized by a resting voltage, that is, the amount (and types) of ions present inside the cell is

dynamically regulated so as to sustain a certain equilibrium potential. Now, imagine injecting

into the cell a certain number of positively charged ions (say, sodium ions), infinitely quickly1.

This will instantaneously elevate the membrane voltage, which then will have to return to

its equilibrium value because the membrane wants so2. How long is the relaxation process

1. . . but gently enough not to physically damage the cell - the two are probably incompatible, but here we

only imagine.
2Technically, the equilibrium expresses an interplay of forces onto the ions, one due to voltage differences,

the other due to concentration differences maintained by ion pumps

www.scholarpedia.org
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going to take? It is going to take about three times a duration that is usually referred to

as the “membrane time constant”, which is in the 10 − 50 millisecond range for a typical

cortical neuron. It is the product of the membrane’s resistance and capacitance. This time

constant is denoted by τ in this thesis.

We shall remember two important facts about τ for now. One, that τ is roughly comparable

to the speed at which natural sensory stimuli vary in many modalities (vision, tactile sensation,

audition, . . . ). And two, that τ is almost two orders of magnitude smaller than the typical

timescale of cognitive processes (several seconds). What these two issues imply for neural

processing will be discussed shortly.

Let us already write down an equation for the membrane voltage V (t). Since the membrane

has both resistive and capacitive properties (in parallel), we can directly use the voltage

differential equation for a standard R-C circuit, which reads

τ
dV

dt
= −V (t) + Vr + RI(t) (1.1)

where Vr is the cell’s resting potential, R is the resistance of the membrane, and I is the

total input current. I comprises all the movements of ions through the membrane that are

not already included in the Vr term, as well as the current injected by the experimentalist via

an electrode. Equation 1.1 happens to provide a good quantitative description of neuronal

responses to input currents, so long as currents are delivered close enough to the soma (main

cell body) and do not lead to the generation of “action potentials”3 (see below). As we shall

see later, a large fraction of the inputs is actually delivered quite far away from the soma, a

situation for which Equation 1.1 may no longer be accurate. In any event, Equation 1.1 has

the key advantage of being simple enough as to allow for a mathematical analysis of network

dynamics, as detailed in section 1.2.

Neurons receive inputs from other neurons, mainly through chemical synapses. A synapse

is a localized site of close proximity between the membranes of two neurons, usually betwen

the axon of the “sender” neuron and a dendrite of the “receiver” neuron. Synapses are

equipped with the molecular machinery needed to transmit signals from one side to the

next. Classically, the signal from the sender arrives on the pre-synaptic side as a very brief

and very large pulse of voltage, which triggers the release of chemicals unsurprisingly called

neurotransmitters. These travel to the postsynaptic side where they bind to “receptors”. As

bindings occurs, the receptors give a certain type of ions a chance to either leave the cell

or come in through the membrane, effectively modifying the local membrane conductance.

Ions accept or reject the offer, depending on how close the membrane voltage is to their own

3If spikes are triggered, Equation 1.1 must be augmented with nonlinear terms, and take into account

spike-triggered adaptation currents.
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“reversal potential”. If ion movement does occur, the net effect on the postsynaptic side

will be a depolarizing (excitatory) or hyperpolarizing (inhibitory) current, again depending on

the type of ion, which itself depends on the neurotransmitter.

I wish to highlight two important facts about synaptic transmission. First, the window

of opportunity given to the ions usually lasts for only a few milliseconds to a few tens of

milliseconds, which is at most on the same order as the membrane time constant τ . This

yields transient currents with roughly this (absolute) shape:

5ms

Second, only a single type of neurotransmitter may be released from the pre-synaptic site,

and it is the same for all the synapses formed by the presynaptic partner onto other neurons.

In particular, this implies that a neuron cannot excite one cell while simultaneously inhibiting

another one. This naturally defines two categories of neurons: excitatory (E) cells and

inhibitory (I) cells4. We will return to this distinction later on, as it turns out to be critical

for network dynamics.

Other molecular processes contribute to shaping the “temporal identity” of single neurons.

For example, neurons adapt to their inputs on the 100-500ms timescale, through a dynamic

regulation of their “excitability”, both intrinsic (e.g. chapter 6) and synaptic (“short-term

synaptic plasticity”). The two remarks made above regarding τ apply similarly to these

additional time constants: they are both neutral w.r.t. sensory inputs and surprisingly short

from the point of view of cognitive tasks.

1.1.2 Neuronal integration: from input to output

If neurons receive signals from other neurons, it must be that they also sometimes send

some. I have introduced synaptic transmission above as being triggered by a “very brief and

very large pulse of voltage” produced on the presynaptic side. Such a binary event is called

an action potential, or “spike”. How does it come about?

As multiple synaptic inputs are being delivered to the cell, their local effects on the postsy-

naptic voltages are “integrated” into a compound effect at the soma, where their further

processing is reasonably well described by Equation 1.1. However, experiments have shown

4E and I cells happen to differ in many other respects, e.g. morphology and electrical properties. However,

each category embeds sub-categories that also differ in these respects, so the type of neurotransmitter they

carry is more defining.
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that the input integration itself can be highly nonlinear, depending on the cell’s morphology

and on where the synapses are placed on the dendritic tree. This is where a drastic ap-

proximation is usually made that consists in neglecting any sort of spatial effect altogether.

This is called the “point-neuron” approximation: the neuron is thought of as a single point in

space, where all synaptic inputs are delivered and merely summed up. One can then continue

using Equation 1.1, and I(t) is now the total synaptic input current.

The details on action potential generation are largely irrelevant here. Only two aspects must

be mentioned. First, a spike is triggered roughly whenever the cell voltage becomes higher

than some threshold. Second, the voltage is approximately reset below threshold following a

spike5. The spike itself is usually considered a stereo-typical pulse of voltage that is actively

generated by the specific transient opening/closing of ion channels, and is usually less than

a millisecond long. The spike propagates down the axon to eventually reach all the synapses

to which the neuron is a presynaptic partner, which closes the loop. These observations are

straightforwardaly expressed in a model of input filtering and spike emission, which produces

voltage traces that typically look like this:

500ms

10mV
Here the input current was taken

to be fluctuating with a certain

mean and variance, chosen such

that the voltage itself fluctuates

widely below threshold, yielding occasional action potential firing. This situation is close to

the operating regime of cortical networks, as we shall see below.

What we have seen so far is the essence of a family of single-neuron models known as

“leaky integrate-and-fire” (LIF) models. Having modeled the behaviour of a single isolated

neuron, it is (conceptually) straightforward to carry on and simulate a large pool of such

neurons. One only needs to specify their connectivity (and assign values to a great deal of

parameters!). This is by now a very standard way of modeling neuronal networks (Vogels

et al., 2005). We use just this type of “low-level” modeling in chapter 6, though not in the

context of recurrent network dynamics.

Networks of LIF neurons have historically led to a deeper understanding of cortical dynamics.

LIF networks can indeed account for various experimentally observed dynamical regimes

that range from synchronous firing across the population and rythmicity in single cells, to

asynchronous and irregular firing. The latter is thought to be the dynamical regime of cortical

microcircuits under “normal” operating conditions. I expand on this regime in the coming

5“Roughly” and “approximately” are used on purpose here: the existence of an absolute firing threshold

is not clear, and the voltage reset is already a modeling assumption that mimicks the effect of a large and

hyperpolarizing spike-triggered intrinsic current.
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200ms

5Hz
?

200ms
10mVmembrane

voltage

excitatory conductance

inhibitory conductance

Figure 1.1: Networks of leaky integrate-and-fire neurons in the balanced state. A network

of 105 neurons (80% exc., 20% inh.) with random sparse connectivity generates asynchronous and

irregular activity. (Top) Timecourse of the momentary overall population firing rate, over 2 seconds.

The network was wired at time t = 500ms (star). Before wiring, all synaptic inputs to each cell were

independent Poisson processes at 5Hz. Most of these artificial inputs were then suddenly replaced by

actual network synapses. (Middle) Raster plot of single spikes for 500 randomly chosen cells. Each

line represents the emission of spikes by one of these cells; dots denote spikes. (Bottom) Sample

traces of the membrane potential (black), and compound excitatory (red) and inhibitory (blue) input

conductances for a single cell.

section, which eventually motivates the reduction of the LIF model to a much simpler form

of dynamics that provide the basis for the theoretical analyses of this thesis.

1.1.3 Balanced networks of spiking neurons

As mentioned in subsection 1.1.1, synaptic transmission primarily takes two distinct forms:

excitatory and inhibitory. A single cortical neuron receives hundreds of excitatory (E) inputs,

which happen to be balanced by hundreds of inhibitory (I) inputs. The E/I balance can

be tuned such that the mean compound current and its fluctuations produce subthreshold

voltage fluctuations in the postsynaptic cell (Figure 1.1). The net result is a sparse emission

of action potentials, which essentially occur whenever the E conductance happens to be

greater than average while at the same time the I conductance is lower than average.

As it turns out, such a global balance of E and I inputs can be dynamically regulated in large

networks of randomly connected neurons (van Vreeswijk and Sompolinsky, 1996; Brunel,

2000; Vogels et al., 2005; Kumar et al., 2008; Renart et al., 2010). This is illustrated in

Figure 1.1. Randomly connected networks can generate asynchronous and irregular spiking
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activity with relatively low average firing rates. To understand intuitively how this can be

achieved, let us make a simple self-consistency argument (Kumar et al., 2008). Let us

imagine that the network is entirely unconnected, and that every neuron receives “artificial”

inputs from E and I “shadow” cells, each of which firing irregularly at some constant rate

r0. One may then choose a reasonable value for the strength of the E synapses, and tune

the strength of the I synapses so that every network neuron fires irregularly at the very same

rate r0
6. Now the network cells are statistically indistinguishable from their “shadow” inputs.

We may as well replace these shadow inputs by real network neurons, that is, we may wire

up the network.

By construction, r0 is a fixed point of the mean population firing rate in the connected

network. Whether it is a stable fixed point depends on several parameters. Stability is easily

checked numerically by looking at how a small perturbation ∆ of the firing rate r0 of the

shadow cells affects the firing rate of the (unconnected) network neurons. If the network

neurons are caused to deviate from r0 by more than ∆, perturbations of the population

firing rate in the connected network are bound to be recurrently amplified, yielding unstable

dynamics. In the opposite case, perturbations are suppressed, leading to a stable regime

of firing at rate r0. This situation is made possible if inhibitory feedback is stronger than

excitatory feedback. Analytical approaches to the calculation of the steady-state responses

exist too for several variants of the leaky integrate-and-fire model (e.g. Richardson (2009);

Richardson and Swarbrick (2010)).

Two properties of this balanced state are going to motivate the reduction of the LIF model

to a simpler formalism. First, neurons in the balanced state have largely unpredictible spike

timings. If their average firing rate is well predicted by theoretical analyses similar in spirit to

the self-consistency argument made above7, the precise times of occurence of single spikes

are considerably chaotic (van Vreeswijk and Sompolinsky, 1996). It may therefore make sense

to forget about spikes and focus on spike rates instead, which are more reliable quantities.

Second, networks of spiking neurons in the balanced state (asynchronous and irregular)

behave more linearly than their constituents. Isolated single cells have a highly nonlinear

steady-state reponse r = f (I) to a constant input current I. When the cell is embedded in a

balanced network, its “f-I” curve smoothens considerably and becomes approximately linear

over a broad range of input currents.

6The strength of the E synapses is not entirely free though, as it must be large enough to allow for

irregular firing when considered in conjunction with the I inputs.
7Their expected momentary probability of emitting a spike may also be characterized as a function of a

time-varying input, see e.g. Ledoux and Brunel (2011).
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1.1.4 Reduction to rate dynamics

Although the quality of a neuron model depends mainly on its ability to faithfully capture

the responses to arbitrary stimuli (Gerstner and Naud (2009)), a good neuron model must

also be amenable to a theoretical analysis of how neurons behave collectively. As outlined

in the previous section, several methods for analyzing the dynamics of large networks of

integrate-and-fire neurons have been developed during the past 25 years (van Vreeswijk and

Sompolinsky, 1996; Gerstner, 2000; Brunel, 2000; Kumar et al., 2008; Renart et al., 2010).

However, these mean-field techniques usually assume random wiring (but see Lerchner et al.

(2006)) and are limited to the description of macroscopic quantities such as the average spike

rate of the neurons and the distribution of pairwise correlations. Analysing the phenomena of

stability, patterned amplification, and plasticity that this thesis touches upon requires going

beyond the mean-field picture.

I now introduce a much simpler model of network dynamics that no longer operates on the

level of single spikes, but on spike rates. I am going to use this model in the next two

chapters of the thesis, for essentially three reasons. The first one is pragmatic: the reduced

model is definitely a good one, according the second sense of “good” mentioned above.

Indeed, it considerably eases the analysis of the phenomena I am going to present. Second,

making the underlying simplifying assumptions may not be sacrificing too much on the side

of biological plausibility. Perhaps the insights we will have gained by using the simplified

model may actually extend to more realistic, lower-level models of cortical dynamics. The

ultimate check is of course the validation of the results predicted by the simplified model by

extensive large-scale simulations of networks of LIF neurons. The third reason is somewhat

deeper: chapter 2 and chapter 3 are primarily concerned with the impact of connectivity

on network dynamics. In essence, the network connectivity is a set of weighted links that

specifies whether any two neurons are connected, in which direction, and how strongly. Such

characteristics are naturally summarized in a connectivity matrix, which means that the linear

algebra machinery for matrix analysis is going to be useful. The linear version of the model

I am about to introduce can be seen as the simplest form of the dynamics that makes the

use of such matrix techniques possible.

There are various ways of deriving rate equations from LIF models or similar (it started with

Wilson and Cowan (1972)). They all involve figuring out how the total synaptic input current

for some neuron i depends on the firing rates of its presynaptic partners, and how neuron

i converts the total input current into a firing rate. A simple and intuitive derivation can

be found in the appendix of Miller and Fumarola (2011) – but see also Ermentrout (1994);

Shriki et al. (2003); Aviel and Gerstner (2006); Ostojic and Brunel (2011). We have seen

in subsection 1.1.3 that the balanced state is characterized by fluctuations of single neuron
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activities ri(t) around a mean firing rate r0 (e.g. 5Hz). The rate equation introduced below

must be interpreted as an approximate description of these fluctuations around this mean

network activity state. Let us write the “effective” firing rate of neuron i as the momentary

deviation from mean, i.e. yi(t) = ri(t)− r0. The rate equation we will use reads

τ
dx

dt
= −x(t) +Wg [x(t)] + I(t) (1.2)

Equation 1.2 governs the time-evolution of a vector x(t) = (x1(t), x2(t), . . . , xN(t))T of

intermediate variables which are related to the effective firing rates yi(t) through yi(t) =

g [xi(t)]. Function g(·) reflects (but is not equal to) the “smoooth f-I curve” mentioned

in passing at the end of subsection 1.1.3 (see below). Matrix W encodes (mostly) the

synaptic connections. τ is a “single-neuron time constant”, which roughly compares to the

membrane time constant mentioned in subsection 1.1.1, although it also depends on various

other parameters such as synaptic timescales. Vector I(t) denotes time-varying inputs that

are not a priori part of the network dynamics but which we introduce here in anticipation of

later sections.

In the balanced state, the effective impact of neuron j onto neuron i may be either positive

or negative, depending on whether neuron j fires momentarily above or below its average r0.

Thus z 7→ g(z) must assume both negative and positive values. Note also that g(z) cannot

be less than −r0, expressing the fact that firing rates cannot be negative. Finally, we must

have g(0) = 0, because in the limit of small perturbations of the presynaptic partners from

their mean rate r0, the postsynaptic firing rate is equal to r0 too, that is, yi = 0. Without

loss of generality we may also assume g′(0) = 1 (the slope may be absorbed in the weight

matrix).

When one is not concerned with matching g(·) to a particular spiking neuron model, one

may choose g heuristically so long as it satisfies the properties listed above. A reasonable

choice could be for example the following curve (see e.g. Rajan et al. (2010)):

0
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The analyses carried out in chapter 2 and chapter 3 further assume a linear gain function in

Equation 1.2, yielding the following linear differential equation:

τ
dx

dt
= −x(t) +Wx(t) + I(t) (1.3)

In this case, x(t) directly encodes the momentary deviations of the firing rates from their

means, and we shall refer to x as “firing rate” for simplicity. As we shall see, even a linear

model supports interesting phenomena.

1.1.5 Stability

In subsection 1.1.3 we have outlined the notion of stability of the population activity in the

spiking network: if one perturbs the momentary overall population rate and let the recurrent

dynamics relax, is the perturbation going to grow or to decay? If the perturbation decays,

then the ground state is stable: the population as a whole tends to remain in its regime of

asynchronous and irregular firing at rate r0.

The same question of overall stability can be asked in the reduced dynamics of Equation 1.3.

The overall population activity is the projection of the vector x(t) of momentary activity

onto the uniform pattern u = (1, 1, 1, . . . , 1)/N, where N is the number of neurons in the

network. Mathematically, µ(t) = uT · x(t). Let us assume that at time t = 0−, we have

µ(0−) = 0. In the spiking network that would mean that the average momentary firing rate

across the full network is r0, though individual variations are allowed. Let us now perturb the

network along u at time t = 0+, i.e. add to each neuron the same constant ∆ > 0 so that

the mean µ(t) becomes ∆. Right after this positive perturbation, is µ going to decrease

or to increase? Let us take the dot product of Equation 1.3 with uT , and receive at time

t = 0+

τ
dµ

dt

∣∣∣∣
t=0+

= −µ(0+) + uTW
(
x(0−) + ∆u

)
(1.4)

= ∆
(
uTWu − 1

)
+ uTWx(0−) (1.5)

The sign of the right-hand side determines the initial reaction of µ(t) to the perturbation.

Now, let us make two simplifying arguments. First, let us remember that we required x(0−)

to be a zero-mean pattern. Since it does not have, a priori, a good reason to correlate with

the entries in W , and assuming W is a large matrix (N � 1), we may assume that Wx(0−)

is close to zero, and discard it for now. Second, the term Wu is a vector in which the i th

element sums up all the presynaptic weights of neuron i . A priori, this is not a small vector.

However, if the statistics of the presynaptic weights are roughly the same across postsynaptic

neurons, then all the entries in Wu are roughly equal. This can be written as Wu ' λu
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where λ is the expected sum of presynaptic weights per neuron. Thus, Equation 1.5 can be

simplified to yield to following stability condition for the overall population activity µ:

λ < 1 (1.6)

We thus expect the fluctuations of the overall population activity around zero to remain

stable, provided each neuron receives no more than one unit worth of presynaptic weight.

Here the “unit” is arbitrary, but can be related to the units of synaptic conductances in the

full spiking model if one derives Equation 1.2 properly. A typical example where this condition

is met is a balanced network in which inhibition dominates. In such a network, we even have

λ < 0. Toward the end of chapter 2, we discuss further implications of this global balance

condition.

The above arguments, though instructive, are partly incomplete. Indeed, the uniform per-

turbation ∆Nu is not the only network perturbation that affects µ this way. Any vector

that averages to ∆ would do. Moreover, one might be able to find such a perturbation u′

that is also mapped onto itself through W , with a different proportionality constant λ′. The

stability condition for µ(t) would then need to take into account the existence of such a

pattern. Finally, we have looked only at the initial growth or decay rate of the perturbation.

In principle, even if a perturbation decays initially, it could still end up growing unchecked

after a while.

There is a principled way of taking into account all such alternatives. In the language of

mathematics, the above observation that W maps vector u onto itself translates into: “u is

an eigenvector of W”. The proportionality constant λ is the associated eigenvalue. Except

in very specific cases8, W has N linearly independent eigenvectors (u1, u2, . . . , uN) with their

associated eigenvalues (λ1, λ2, . . . , λN) (some of them may be identifcal). Thus, the network

activity x(t) can at any time be written as a weighted sum of these eigenvectors:

x(t) =

N∑

k=1

ak(t)uk (1.7)

Note that, in general, the ak coefficient is not necessarily equal to the projection of x(t)

onto uk . The dynamics of the ak(t) fully decouple in Equation 1.3, yielding

τ
dak
dt

= −(1− λk)ak(t) (1.8)

Here I assume I(t) = 0 to focus on the network evolution following some initial condition.

The timecourse of each ak coefficient has a simple solution:

ak(t) = ak(0) exp

(
−
t(1− λk)

τ

)
(1.9)

8(for defective W )
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In general, the ak coefficient as well as the λk eigenvalues can be complex numbers. In any

case, the norm ‖ak‖ decays exponentially following any initial condition, provided the real

part of λk is smaller than one. In the reverse case, it explodes exponentially.

We may now return to the question of stability of the overall population activity: for µ(t) to

display stable dynamics, the ak coefficients must decay for all those eigenvectors that have

some non-zero overlap with u ∝ (1, 1, . . . , 1). Accordingly, all the corresponding Re(λk)

must be smaller than unity.

Beyond the overall population activity represented by pattern u ∝ (1, 1, . . . , 1), we may ask

whether single neuronal activities are stable too. Let us focus on the first neuron, of which

the activity is given by

x1(t) = (1, 0, 0, . . . , 0)T · x(t) (1.10)

We may expand this according to Equation 1.7:

x1(t) =

N∑

k=1

ak(t)
[
(1, 0, . . . , 0)Tuk

]
(1.11)

A sufficient condition for x1(t) to remain bounded is that all those eigenvectors of W in

which the first entry is nonzero are stable (the uk ’s for which the term inside square brackets

is non-zero).

“Network stability” in this thesis is defined more broadly as the stability of all possible

patterns of activity (equivalent to the stability of all the neurons taken separately). Such

general stability is obtained if and only if W has no eigenvalue with real part greater than

one.

Important note Linear stability of the network is different from the mere boundedness

of the firing rates. Indeed, in the nonlinear rate model of Equation 1.2, the saturating

nonlinearity g(·) may automatically prevent run-away activity, but this does not mean the

network is “stable” in the linear stability sense. An example of such scenario is given in the

next section.

1.1.6 Chaos in rate models of random balanced neuronal networks

How linearly stable are random balanced networks (the focus of chapter 2)? Random bal-

anced networks are broadly defined as networks made of split populations of excitatory and

inhibitory neurons, among which connections are drawn at random. Rajan and Abbott (2006)

have shown that the eigenvalues of such connectivity matrices are randomly (though not
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Figure 1.2: Chaotic fluctuations in linearly unstable bal-

anced neuronal networks. (Top) Eigenvalue spectrum of a

random balanced neuronal network, where inhibition is four

times as strong as excitation on average. The eigenvalue

associated with the “DC” mode is shown in red. (Bottom)

Five sample single-neuron activity traces. The network was

initialized in a random firing state of unit standard deviation.

Show here are the first 2 seconds of dynamics according to

Equation 1.2 with no additional external input. The aver-

age activity across the population (same for all five traces)

is shown in red. It fluctuates much less.

necessarily uniformly) scattered inside a disk of radius R centered around the origin in the

complex plane (Figure 1.2, black dots, R = 2). The radius R depends on the distribution of

synaptic efficacies. As we have seen in subsection 1.1.5, there is one additional real eigen-

value associated with the uniform mode of activity (1, 1, . . . , 1) (Figure 1.2, red dot). This

eigenvalue quantifies the absolute difference between the mean excitatory weight and the

mean inhibitory weight.

Because the main bulk of eigenvalues is centered around zero, half of them have positive

real parts. Thus, for sufficiently strong weights, some of these real parts will exceed one,

causing the network to become linearly unstable. When the growth of activity caused by such

instabilities is kept in check by the saturation of a nonlinear gain function g(·) (Equation 1.2),

an interesting phenomenon emerges: chaotic activity that self-sustains (Sompolinsky et al.,

1988; Rajan et al., 2010). Initializing the network in a random state and providing no further

external input causes neuronal activities to keep fluctuating asynchronously (Figure 1.2,

bottom). Despite the individual fluctuations in the single neurons, the population as a whole

shows only little fluctuations (Figure 1.2, bottom, red lines). This is because the overall

population activity is associated with the large negative eigenvalue mentioned above.

Chaotic networks have attracted a lot of attention from the 1990s. The firing rate fluctua-

tions that chaotic networks produce (Figure 1.2) closely resemble the temporal patterns of

activity that the cortex spontaneously generates. From a functional viewpoint, networks that

operate in the weakly chaotic regime (spectral radius not too far above 1) are able to buffer

their inputs for periods of time that exceed the single-neuron time constant τ (which I set to

20ms in Figure 1.2). In other words, information about an input given at time t can be ex-
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tracted from the momentary network state at a time t+Cτ with C � 1. Thus, on the edge

of chaos, a chaotic network can be used as a dynamical substrate for solving complex com-

putations that require some amount of short-term memory (Maass et al., 2002; Bertschinger

and Natschläger, 2004; Buonomano and Maass, 2009; Sussillo and Abbott, 2009). Other

studies have focused on the possibility of forcing such systems out of chaos with appropriate

spatiotemporal patterns of inputs (Molgedey et al., 1992; Sussillo and Abbott, 2009; Ra-

jan et al., 2010), somewhat anticipating the recent discovery that the variability of cortical

responses is strongly reduced by the onset of sensory stimuli (Churchland et al., 2010b).

This thesis explores an alternative hypothesis to explain the structure of spontaneous joint

firing rate fluctuations in cortical circuits. Here, the large fluctuations observed in ongoing

cortical activity are thought to reflect the propagation and amplification of noisy inputs

through the recurrent circuitry, and the underlying connectivity matrix is hypothesized to be

linearly stable. Unlike the chaos hypothesis, this view explains the spatially structured nature

of ongoing activity in sensory cortices, as well as the speed of its fluctuations (Murphy and

Miller, 2009). In chapter 3, we link this hypothesis to a few physiological phenomena that

so far have not been accounted for in models.

In the coming section, I introduce the phenomenon of cortical amplication and existing models

thereof.

1.2 Cortical amplification

Amplification of thalamic inputs by the cortical circuitry is the major motivation for the

work presented in chapter 2 and chapter 3. Due to the predominance of cortico-cortical

connections over feedforward thalamic inputs, the cortex has long been hypothesized to act

as an amplifier of those inputs (Douglas et al., 1995). The cortical representation of sensory

stimulus is thought to be dynamically formed by the recurrent dynamics (Fiser et al., 2004).

In particular, sharp feature selectivity (a prominent characteristic of sensory neurons in all

modalities) can be achieved in models of cortical amplification in which the thalamic input is

only weakly tuned (Ben-Yishai et al., 1995; Somers et al., 1995; Sompolinsky and Shapley,

1997; Goldberg et al., 2004).

Even in the absence of an external sensory stimulus, sensory cortices in awake mammals do

not remain idle but display ongoing (or “spontaneous”) activity fluctuations (Kenet et al.,

2003; Fiser et al., 2004; Ferezou et al., 2007; Poulet and Petersen, 2008; Luczak et al.,

2009; Gentet et al., 2010; Berkes et al., 2011). In the cat primary visual cortex, those

fluctuations occur predominantly along spatial modes of activity that bear a striking resem-
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spont. evokedavg. evoked
Figure 1.3: Spontaneous patterned amplification in

the visual cortex. (Left) Average map of optically

recorded activity in the cat visual cortex, in response to

vertically oriented full-field gratings. (Middle) Sample

activity map (single-frame) during spontaneous activity.

(Right) Sample activity map (single-frame) of evoked

activity, again for full-field vertical gratings. Adapted

from Kenet et al. (2003).

blance to sensory-evoked responses (Kenet et al. (2003), Figure 1.3). Similarly, in the rat

primary auditory and somatosensory cortices, spontaneous and sensory-evoked activities are

statistically similar, both temporally in the order in which neurons tend to fire, and spatially

in the joint statistics of spike counts (Luczak et al., 2009).

For the sake of this introduction, let us focus on vision, which as of now is perhaps the

sensory modality that has been most theorized about. The data of Kenet et al. (2003)

mentioned above are illustrated in Figure 1.3. In the primary visual cortex (V1), neurons

are sensitive to the presence of oriented edges in their receptive fields, and each neuron

responds preferentially to one given orientation (at least for the so-called “simple cells”). The

visual cortex is arranged topologically such that neighbouring neurons have similar preferred

orientations. The spatial arrangement of orientation preference can be estimated from optical

imaging during sensory-evoked activity. Figure 1.3 (left) shows a typical average pattern of

V1 activity in response to vertically oriented gratings. A single frame is shown in Figure 1.3

(right). More surprinsingly, single frames of spontaneous activity could often be observed that

resembled such gratings-evoked activity maps (Figure 1.3, middle). The non-randomness of

such occurences was significant.

Can network dynamics similar to Equation 1.2 generate patterned amplification, the way V1

seems to be able to?

1.2.1 Amplification by slowing – attractor dynamics

Equation 1.9 on page 11 suggests one way in which the recurrent circuitry could amplify

unspecific noisy inputs into specific patterns of network activity. Following some initial con-

dition, each eigenvector uk of W , initially present with some intensity ak(0), disappears pro-

gressively with a time constant τ/[1−Re(λk)] that depends on the corresponding eigenvalue

λk . The closer the eigenvalue is from instability (Re(λk)→ 1), the longer the corresponding

eigenvector will subsist. Now, imagine that I(t) in Equation 1.3 is a vector of independent
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time-varying noisy inputs (say, Gaussian white noise). The network integrates those fluc-

tuating inputs along each eigenvector of W , and the intensity of the resulting fluctuations

depends on the decay rate imposed by the recurrent dynamics along that eigenmode. For

Re(λk)→ 1, the mode decays slowly so the noise has time to accumulate, yielding slow and

large fluctuations of activity pattern uk .

Thus, if one can engineer a connectivity matrix W for which the spatial pattern of evoked

V1 activity shown in Figure 1.3 (left) is an eigenvector with large eigenvalue real part, and of

which no other eigenvalue is significantly close to 1, then we would expect the spontaneous

dynamics to produce activity maps similar to that of Figure 1.3 (middle).

This is the essence of the “ring” model of V1 (Ben-Yishai et al., 1995), and indeed Goldberg

et al. (2004) subsequently showed that this mechanism accounts for the data of Kenet et al.

(2003) in most respects. A similar principle has been shown recently to account for the

dynamics of attention and decision-making in the monkey lateral intraparietal area (Ganguli

et al., 2008a).

Amplification-by-slowing makes a strong assumption regarding the speed of the activity fluc-

tuations, both in ongoing and sensory-evoked activities: they must be slow, or at least much

slower than the single-neuron time constant τ . However, the data of Kenet et al. (2003)

does not appear to show much slowing. Similarly, cortical responses to brief sensory stimuli

are often restricted to brief transients.

Can amplification be accounted for by a different mechanism that does not rely on slowing?

1.2.2 Transient amplification

The mechanism of amplification-by-slowing, although often complemented by a nonlinear

neuronal gain function to turn the spontaneous regime into full attractor dynamics (Goldberg

et al., 2004), is essentially a linear mechanism (I used only Equation 1.3 to introduce it).

Interestingly, it is not the only linear mechanism that can account for amplification. Murphy

and Miller (2009) have indeed provided an alternative linear model of V1 that also explains

the data of Kenet et al. (2003) without having to rely on dynamical slowing. It is also

more plausible in that is exploits the presence of split populations of excitatory and inhibitory

neurons and their balanced interactions.

Amplification somehow must rely on strong interactions among activity patterns. In the case

of slowing, the feedback that certain activity modes exert on themselves is strong, and this is

what underlies the elongation of the decay rate and amplification thereof. The fundamental

observation that Murphy and Miller (2009) made is that strong feedback is not necessary for
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amplification, and can be replaced by strong feedforward interactions. Along with Murphy

and Miller (2009) in the same issue of Neuron, Goldman (2009) argued that networks that

are fully recurrent in terms of neuronal interactions could in fact be purely feedforward (no

feedback) in the way they link activity patterns with one another. In their V1 study, Murphy

and Miller (2009) realised that the highly spatially organized balanced connectivity of V1,

of which they built a model, yields a connectivity matrix W of this feedforward type. In

particular, W embeds a strong feedforward link from a certain pattern d to a certain pattern

p, with the following spatial structures (adapted from Murphy and Miller (2009)):

exc. exc.inh. inh.

d p

low

activity

high

Here the maps of excitatory (E) and inhibitory (I) network activity are represented separately.

This shows that d is a pattern of spatial imbalance (a “difference mode”), in which the

maps of E and I activity are spatially opposite to each other. In contrast, p is a spatially

balanced pattern of E and I activities (a “sum mode”). Given this feedforward link, how

does amplification occur during spontaneous activity in the model? The noisy drive given to

each neuron independently provokes random stimulations of pattern d , which the recurrent

circuitry transforms and amplifies (strong link!) into pattern p. As it turns out, p also

resembles the map of evoked activity for a specific orientation. Finally, in the model W has

no large positive eigenvalue, so that no dynamical slowing would occur.

Both Murphy and Miller (2009) and Goldman (2009) (and one year earlier, Ganguli et al.

(2008b)) connected the presence of strong feedforward pathways in W to a more general

property of matrices called “nonnormality”. I give a short introduction to nonnormal matrices

in the following, and the properties of the linear dynamical systems they support.

1.3 Non-normal dynamical systems

To introduce the concept of nonnormality, let us look at a toy two-neuron example network,

wired following either of two scenarios:



18 CHAPTER 1

x1−1 x2 -1

1

1

scenario 1

x14 x2 -6

-4

6

scenario 2

In the first scenario, neuron x1 is both excitatory and inhibitory, and so is neuron x2. In the

second scenario, x1 is purely excitatory, and x2 is purely inhibitory. The collective dynamics are

given by Equation 1.3. How do both systems react to some initial conditions? I constructed

both systems to have the same eigenvalue spectrum: in both scenarios the 2×2 connectivity

matrix W has two real eigenvalues: λu = 0 and λv = −2. Since none of those eigenvalues

are close to 1, we expect no dynamical slowing. It is interesting to note that, for the very

same eigenspectrum, synaptic weights in the second scenario assume much larger values than

in the first scenario. Figure 1.4 (left) shows the trajectories of (x1(t), x2(t)) in each scenario,

following either of two different initial conditions. In scenario 1, the length of vector x(t)

can only decay following any initial condition. We will see why in a moment. In scenario 2,

both initial conditions are transiently amplified, as seen from the transient growth of ‖x(t)‖
(Figure 1.4, right).

The connectivity matrix W1 corresponding to the first scenario is symmetric. A well known

property of symmetric matrices is that their eigenvectors are orthogonal to one another. Let

-1

0

1

-1 0 1

x 2
(t
)
[a
.u
.]

x1(t) [a.u.]

0

1

‖x
(t
)‖

0

1

0 20 40 60

‖x
(t
)‖

time [ms]

scenario 1
scenario 2

Figure 1.4: Neural trajectories in our two toy scenarios. (Left) Two initial conditions (x1(t =

0), x2(t = 0)) (empty circles) were chosen in the space of neuronal activities in our toy two-neuron

networks. In scenario 1, the length of the activity vector decays following the initial conditions,

returning to rest (black dot) after about 3τ . In scenario 2, activities increase transiently (in absolute

magnitude) before returning to rest within about the same duration. (Right) Time evolution of the

norm ‖x(t)‖ of the firing rate vector, for the same trajectories.
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u1 and v1 denote the two orthogonal eigenvectors of W1. Let us rewrite Equation 1.7 as:

x(t) = au(t)u1 + av (t)v1 (1.12)

We have seen that, for any matrix W , the timecourses of au and av in absolute values are

exponential decays with time constant λu and λv respectively. In eigenvector coordinates, the

squared norm evolves as ‖(au(t), av (t))‖2 = a2
u(t) + a2

v (t) = exp(−2t/λu) + exp(−2t/λv ).

Now, because u1 and v1 are orthogonal, au(t) = x(t)T ·u1 and av (t) = x(t)T ·v1. Therefore,

the squared norm expressed above is also the squared norm ‖x(t)‖2 of the vector of firing

rates. Thus, the only way for a network with symmetric connectivity matrix to amplify its

inputs is through large positive eigenvalues, so that the rate of the exponential decay slows

down. No transient amplification such as the one discovered by Murphy and Miller (2009)

can occur.

Symmetry is only a special case of a type of connectivity matrices for which the above

also holds true. Any matrix that commutes with its transpose, W TW = WW T has an

orthonal eigenbasis, and therefore behaves in the same way as in our first scenario. Any

matrix for which the commutation does not hold is called “nonnormal”. Such matrices may

have eigenbases with strongly overlapping eigenvectors, such that the decay of the activity

in eigenvector coordinates can hide transient growth of activity in the neurons themselves

Murphy and Miller (2009). This is what happens in the second scenario (Figure 1.4). This

also relates to the fact that the sum of squares in eigenvector coordinates may have little

to do with the sum of squares in the basis of neuronal firing rates (which is the one that is

ultimately relevant for amplification).

Important note As the name suggests, “nonnormal” matrices are defined by what they

are not: they are not normal. The extent to which transients such as the ones that arise

in scenario 2 contribute to the dynamics of a neuronal network depends on how strongly

nonnormal the connectivity matrix is. Quantifying the degree of nonnormality is not a simple

issue, and the paper presented in chapter 2 attempts to achieve precisely such quantification

in the case of randomly connected balanced neuronal networks. See also Trefethen and

Embree (2005).

Further insights can be obtained from expressing the connectivity matrix W2 in a proper

basis of orthogonal activity modes. Matrix W2 is originally expressed in the basis of neurons

(vectors (1, 0) and (0, 1)). Let us choose another orthogonal basis, made of the following

two vectors

d =
1√
2

(
1

−1

)
and p =

1√
2

(
1

1

)
(1.13)
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which form the rows of a matrix we call B. Note that B−1 = BT . In this basis, matrix W2

becomes

BW2B
T =

(
0 0

10 −2

)
≡ T (1.14)

This matrix describes the functional links between p and d that originally “hide” in W2.

For example, p exerts a negative feedback onto itself, with strength −2 (corresponding to

λv ). However, it receives a very strong feedforward link from pattern d , with strength 10.

The transient activity growth that we saw in scenario 2 originates from this link. The initial

condition were in fact purposely chosen roughly along pattern d . Interestingly, p does not

feed anything back to d .

Such a coordinate transform can be generalized to the case of large networks of size N, and is

called a “Schur decomposition” (Ganguli et al., 2008b; Goldman, 2009; Murphy and Miller,

2009; Hennequin et al., 2012). In general, a Schur decomposition seeks an orthogonal basis

in which W is made triangular, effectively revealing the hidden feedforward connectivity in

W . The eigenvalues of W line up on the diagonal, and determine the decay rates of each of

the Schur modes (d and p here). For normal matrices, importantly, the resulting T matrix

is in fact fully diagonal. This means there can be no feedforward links, that is, no transient

growth.

The existence of nonnormal matrices has be known for centuries, but it is only recently that

the mathematical tools to understand their behaviour have been developed. The primary

motivation was to explain some turbulence phenomena in fluid dynamics that could not

be explained by standard eigenvalue stability analysis (Trefethen et al., 1993). A book is

available that nicely summarizes 20 years of research in related areas of mathematics and

physics (Trefethen and Embree, 2005). Of particular interest for this thesis are parts I

(introduction to nonnormality and pseudospectra), IV (nonnormal transient effects), VIII

(random matrices), IX (computation of pseudospectra) and X (further mathematical issues)

of that textbook. In the Supplemental Data of chapter 3 I give further details regarding some

of the mathematical tools that help understanding the transient behaviour of nonnormal

neural dynamical systems.

1.3.1 Is nonnormality of interest for neural circuits?

The reader may have noticed that the Schur vectors mentioned above have the same spatial

structure as the “difference” and “sum” modes mentioned in subsection 1.2.2 (in the V1

model of Murphy and Miller (2009)). In fact, balanced matrices in which columns are either

fully positive or fully negative are bound to be nonnormal to some degree Murphy and Miller
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(2009), so the dynamics of balanced cortical circuits could in principle be dominated by

nonnormal effects. This is definitely the case in the above V1 model.

One of the aims of this thesis is to further understand how such dynamics could contribute to

the functioning of neural systems. In chapter 2, we clarify the situation for random balanced

neuronal networks, a canonical model for cortical microcircuitry at the columnar level. It

is found that nonnormality only modestly affect the dynamics. In chapter 3, however, we

find that nonnormal dynamics in such microcircuits where inhibition has been finely tuned i)

contributes very much and ii) explains further aspects of the cortical physiology that so far

have not been explained in other models.





CHAPTER 2

Non-normal amplification in random balanced neuronal networks

This chapter presents the following article:

Non-normal amplification in random balanced neuronal networks

G. Hennequin, T. P. Vogels and W. Gerstner (2012)

Physical Review E, 86:011909

How nonnormal are random balanced matrices? This question, primarily of a mathematical

nature, originates from a problem posed by neuroscience and the study of brain dynamics. In

2009, a series of two papers published simultaneously in Neuron have highlighted the impor-

tance of the nonnormality of neural connectivity matrices in shaping the collective dynamics

of neuronal ensembles. Both studies have been reviewed in depth in chapter 1, but let us

recall the findings of interest for this chapter. Murphy and Miller (2009) demonstrated that

nonnormal amplification is a major contributor to the macroscopic dynamics of the visual

cortex. The authors further argued that, more generally, nonnormality should play a key

role in the dynamics of balanced neural networks made of split populations of excitatory

and inhibitory cells. Most importantly, nonnormal networks are able to selectively amplify

certain patterns of inputs without resorting to traditional slowing mechanisms such as at-

tractor dynamics. The nonnormal model of Murphy and Miller (2009) was thus shown to

account for the fast spontaneous fluctuations of the V1 population along non-random activity

modes that resemble maps of network activity evoked by oriented visual stimuli. In parallel,



24 CHAPTER 2

Goldman (2009) showed that the typical patterns of persistent activity routinely observed in

prefrontal cortex during short-term memory tasks were also captured by a suitable type of

nonnormal dynamics. Goldman argued that networks that look recurrently connected could

well be feedforward in disguise, with virtually no feedback connections. Provided the “hidden

feedforward connectivity” involves long chains of activity patterns, the network as a whole

may generate activity that far outlasts the typically fast time constant τ (� 200ms) of its

single neurons, i.e. activity that persists for several seconds.

Although each of these two papers brilliantly illustrated their respective points, they did so

with rather specific connectivity matrices. One used a model of V1 connectivity (spatially

structured and locally dense), the other one used strictly triangular random matrices, which

we will see later are definitely abnormally nonnormal, and are not plausible in the sense

that neurons may excite some neurons while simultaneously inhibitit some others. These

limitations prompted me to look at the nonnormality of random, sparse balanced connectivity

matrices, which constitute the de facto model of synaptic wiring in cortical microcircuits

(Brunel, 2000; Renart et al., 2010). Could nonnormal effects have been overlooked in

previous mean-field analyses of such networks?

On the mathematical side, one defining aspect of nonnormal matrices should be recalled

here: their eigenvalues do not speak much (Trefethen et al., 1993). Eigenvalue spectra are

a common theme in random matrix theory, and the spectral properties of random balanced

matrices for neuronal networks have already been studied by Rajan and Abbott (2006).

However, should it be true that such matrices are significantly nonnormal, the eigenvalues

could well show no sign of it. To investigate nonnormal effects on network dynamics, one

therefore has to apply a different mathematical framework of which I lay down the bases in

this paper.

Let me actually give away the main message. In the end, the results confirm a known result

in random matrix theory, namely that random matrices are only weakly nonnormal. This

has been shown through several theorems that each used a different approach to quantifying

nonnormality (see section 35 in Trefethen and Embree (2005)). By interpreting those ma-

trices as connectivity matrices for neural networks, and by focusing on the impact of their

“nonnormal part” on the intensity of spontaneous activity fluctuations, the paper presented

in this chapter ends up providing one more theorem of this type. However, the approach

we take here allows us to assess the nonnormal contribution to the dynamics in situations

where the network would actually be unstable (but not due to nonnormal effects!). Here

the findings confirm another series of theorems that demonstrate extreme nonnormality for

strictly triangular matrices (section 38 in Trefethen and Embree (2005)). The nonnormal

contribution to amplification that we calculate here grows extremely fast indeed in this un-
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stable regime. This result turns out to provide one of the main mathematical motivations

for studying the inhibitory-stabilization of unstable random networks in the paper presented

in chapter 3.

Finally, the results of this paper provide a mechanistic understanding of the chaotic regime

of nonlinear random networks with large spectral radii and asymmetric (e.g. balanced)

connectivity matrices (c.f. chapter 1). In such networks, activity self-sustains (no need

for additional network input), and I now believe this is mostly due to the combination of

two ingredients. First, unstable random networks embed long chains of strong feedforward

interactions among orthogonal activity patterns (the basis for the study of this chapter). And

second, they must be simulated with a saturating nonlinearity to prevent runaway activity,

and this nonlinearity is likely to incidentally transfer some of the energy accumulated in units

that are late in the chain, back to activity modes that are closer to the source. This provides

the minimal feedback mechanism for the activity not to die out. If these chains of feedforward

interactions are necessary for self-sustained chaotic activity, then normal matrices would not

exhibit any. And indeed, simulations of the nonlinear dynamics of a random network of

which the connectivity matrix has been symmetrized1 shows no chaotic activity whatsoever

(results not shown). Instead, the network settles in either of a collection of attractor states,

depending on the initial condition2.

There is one more point I would like to clarify as a final comment in this lengthy introduction,

as I think it did not come across very clearly in the article. The reader may choose to skip

this and return to it after reading the paper, but I believe the following should rather be kept

in mind while reading the paper. Throughout the article, we talk about the “normal part”

and “nonnormal part” of a matrix W, which we define respectively as the diagonal Λ and the

strictly upper-triangular part T of its Schur decomposition. Does it make sense to “split” a

matrix this way, especially when the purpose it to study the nonnormality of W? It should be

noted that, although Λ and T superpose linearly to reconstruct the full Schur triangle, and

therefore the connectivity matrix, their respective separate contributions to amplification do

not add up linearly by any means. In fact, we will see an example in chapter 3 of a matrix

in which the eigenvalues interact very strongly with the strict Schur triangle to reduce the

strength of amplification.

1Symmetric matrices are normal matrices
2Of course, symmetric matrices are by no means the only type of normal matrices, so to be more conclusive

we would need to simulate the dynamics of a much richer set of normal connectivity operators, including e.g.

orthogonal networks – which I haven’t had time to do.
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Abstract

In dynamical models of cortical networks, the recurrent connectivity can amplify the

input given to the network in two distinct ways. One is induced by the presence of

near-critical eigenvalues in the connectivity matrix W , producing large but slow activity

fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies

on W being nonnormal, which allows the network activity to make large but fast ex-

cursions along specific directions. Here we investigate the tradeoff between nonnormal

amplification and dynamical slowing in the spontaneous activity of large random neuronal

networks composed of excitatory and inhibitory neurons. We use a Schur decomposi-

tion of W to separate the two amplification mechanisms. Assuming linear stochastic

dynamics, we derive an exact expression for the expected amount of purely nonnormal

amplification. We find that amplification is very limited if dynamical slowing must be kept

weak. We conclude that, to achieve strong transient amplification with little slowing,

the connectivity must be structured. We show that unidirectional connections between

neurons of the same type together with reciprocal connections between neurons of dif-

ferent types, allow for amplification already in the fast dynamical regime. Finally, our

results also shed light on the differences between balanced networks in which inhibition

exactly cancels excitation, and those where inhibition dominates.

2.1 Introduction

A puzzling feature of cortical dynamics is the presence of structure in spontaneously gen-

erated activity states. For example, activity in cat primary visual cortex fluctuates along

some non-random spatial patterns even when recordings are performed in complete darkness

(Tsodyks et al., 1999; Kenet et al., 2003). Similarly, spontaneously generated patterns of

firing rates in rat sensory cortices occupy only part of the total space of theoretically possible

patterns (Luczak et al., 2009). As the constraints that govern these dynamics cannot be

attributed to external stimuli, they are thought to originate from the patterns of synaptic

connectivity within the network (Goldberg et al., 2004; Murphy and Miller, 2009). This

phenomenon is called patterned amplification.

Patterned amplification can also be observed in simulated neuronal networks, in which spon-

taneous activity can be modeled as the response to unspecific, noisy inputs delivered to each

neuron individually. Propagated through recurrent connections, these noisy inputs may cause

the activity of some neurons to transiently deviate from their average more strongly than

could be expected from the variability of the external inputs. We thus define amplification

here as the strength of these additional, connectivity-induced fluctuations.
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Let us consider the following simple linear model for stochastic network dynamics:

dx =
dt

τ
(W − 1) x + σξdξ (2.1)

where τ is the neuronal time constant, x ∈ RN is the deviation of momentary network activity

with respect to a constant mean firing rate, W is an N × N synaptic connectivity matrix, 1

is the identity matrix, and dξ is a noise term modeled as a Wiener process. The fluctuations

of xi(t) around zero (i.e. around the mean firing rate of neuron i) are caused by the noisy

input and the recurrent drive. Starting from arbitrary initial conditions, the network activity

x converges to a stationary Gaussian process with covariance matrix Σ =
{
σi j
}

(at zero

time lag), provided no eigenvalue of W has a real part greater than unity. This covariance

matrix has a baseline component Σunc. = σ2
ξτ1/2 that corresponds to the covariance matrix

in the absence of network connections (“unconnected”). Wiring up the network yields addi-

tional correlations and potentially gives rise to larger fluctuations of the activity of individual

units. We define this amplification A as the ratio [Tr(Σ)− Tr(Σunc.)] /Tr(Σunc.). In other

words, A measures the relative gain in mean variance that can be attributed to the recurrent

connections. That is,

A (W )
def
=

[
2

τσ2
ξN

N∑

i=1

σi i

]
− 1 (2.2)

Under linear dynamics like that of Equation 2.1, amplification can originate from two sepa-

rate mechanisms. A first, “normal” type of amplification can arise from eigenvalues of W

with real parts close to (but smaller than) 1. The noise accumulates along the associated

eigenvectors more than in other directions, giving rise to larger activity fluctuations and sub-

stantial dynamical slowing along those axes. If the synaptic connectivity is normal in the

mathematical sense (WW † = W †W ), it is the only mechanism through which the network

can amplify its input (Murphy and Miller, 2009). Indeed, if W is normal, its eigenvectors

form an orthonormal basis. The sum of variances in this eigenbasis is therefore equal to the

sum of variances of the neuronal activities in the original equations. Since linear stability

imposes that every eigenvalue of W has a real part less than one, the activity along the

eigenvectors can only decay following some initial perturbation. In other words, a stable

normal linear system is contractive: no initial condition can transiently be amplified. If the

matrix W is not normal (WW † 6= W †W ), another, nonnormal type of amplification can also

contribute (Murphy and Miller, 2009; Ganguli et al., 2008b; Goldman, 2009; Trefethen and

Embree, 2005). The eigenvectors are no longer orthogonal to each other, and the apparent

decay of the activity in the eigenbasis can hide a transient growth of activity in the neurons

themselves. Such growth can only be transient, for stability requirements still demand that

the activity decay asymptotically in time.
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+(exc) -(inh)

Figure 2.1: Teasing apart

normal and nonnormal am-

plification in random net-

works of excitatory and in-

hibitory neurons. (a) Ex-

ample sparse neural connec-

tivity matrix W (left, 50 exc.

columns and 50 inh. columns,

thinned out to 30×30 for bet-

ter visibility), a schematics of

an associated Schur basis U

(center), and the correspond-

ing abstract network of Schur

modes, in which the interac-

tions are feedforward from top

to bottom (right). The Schur

vectors in U (center), orthog-

onal to one another, represent

patterns of neuronal activity in

the original network. The last

Schur vector is explicitly cho-

sen to be the uniform “DC”

mode v = (1, 1, · · · , 1)/
√
N

and is represented here in green at the bottom. (b) Amplification via dynamical slowing (“normal”

amplification) is described by the set of eigenvalues Λ = (λ1, . . . , λN) of W , which for a random

network lie inside a disk centered around zero in the complex plane. These eigenvalues determine

the decay rates of the Schur patterns. (c) Nonnormal amplification arises from the strictly lower-

triangular matrix T which describes the purely feedforward part of the interactions between the Schur

patterns. The first non-zero entry in the upper left corner of T is t21 and represents the “forward”

coupling from the first Schur mode onto the second. The last row (tN1, tN2, . . . , tN(N−1)), zoomed-in

at the bottom, is the coupling from the first N − 1 Schur modes onto the last (uniform) Schur

mode v . (d) For a fixed large matrix W , the non-zero entries ti j in matrix T are approximately

normally distributed with zero mean and variance given by Equation 2.9 (black (narrow) histogram,

for j < i < N). The entries in the last row have larger variance given by Equation 2.8 (i = N, green

(wider) histogram). (e) Moreover, the variance
〈
t2
i j

〉
across many realisations of W is the same for

all j < i < N (black histogram, left). Similarly,
〈
t2
Nj

〉
is the same for all j < N (green histogram,

right). (f) The correlations 〈ti j tk`〉 (for i 6= k or j 6= `) are negligible, as seen from a comparison

of their empirical distribution (black) with surrogate data from triangular matrices in which non-zero

entries are all drawn i.i.d. (grey, barely visible under the black curve). The data for panels (d–f) was

acquired by Schur-transforming 5,000 random weight matrices of size N = 100, drawn as described

in section 2.3 with connection density p = 0.1 and spectral radius R = 1.

Purely nonnormal amplification that does not rely on dynamical slowing may be ideally suited

for sensory cortices that need to track inputs varying on fast timescales (possibly of order

τ). It has also been identified as a key mechanism for short-term memory of past inputs,

for in certain circumstances, hidden feedforward dynamics enables the network to retain

information about a transient stimulus for a duration of order Nτ (Goldman, 2009). The
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presence of noise as in Equation 2.1 could limit this memory duration to
√
Nτ (Ganguli et al.,

2008b; Ganguli and Latham, 2009), but this is still much longer than the time τ in which

individual neurons forget their inputs.

The above considerations apply to purposely structured networks (Ganguli et al., 2008b;

Goldman, 2009; Murphy and Miller, 2009). It is not clear, however, how much of this

beneficial kind of amplification can be expected to arise in randomly connected networks of

excitatory and inhibitory neurons, a ubiquitous model of cortical networks. Murphy and Miller

(Murphy and Miller, 2009) convincingly argued that nonnormal amplification should generally

be a key player in the dynamics of balanced networks, i.e. when strong excitation interacts

with equally strong inhibition and when neurons can be only excitatory or inhibitory but not

of a mixed type. When the connectivity is dense, or at least locally dense, weak patterns of

imbalance between excitation and inhibition can indeed be quickly converted into patterns in

which neurons of both types strongly deviate from their mean firing rates. Here, we revisit

nonnormal amplification in the context of random balanced networks. We derive an analytical

expression for the purely nonnormal contribution to amplification in such networks. The

analysis reveals a strong tradeoff between amplification and dynamical slowing, suggesting

that the connectivity must be appropriately shaped for a network to simultaneously exhibit

fast dynamics and patterned amplification.

2.2 Separating the effects of normal and nonnormal

amplification

In the Introduction, we distinguished normal from nonnormal amplification. The Schur de-

composition (Figure 2.1) – a tool from linear algebra – offers a direct way to assess the

contributions of both mechanisms to the overall amount of amplification A(W ). Any matrix

W can be written as U† (Λ+ T )U where U = {ui j} is unitary, Λ is a diagonal matrix that

contains the eigenvalues λk of W , and T = {ti j} is strictly lower-triangular3 (Figure 2.1a–c).

The lines of U are called the Schur vectors (or Schur modes) and are all orthogonal to each

other. If this decomposition is to avoid complex numbers, Λ is only block-diagonal, with

2 × 2 blocks containing the real and imaginary parts of complex conjugate pairs of eigen-

values, and 1 × 1 blocks containing the real eigenvalues. Importantly, because the Schur

basis U is orthonormal, the sum of variances in the basis of the Schur vectors is equal to

the sum of the single neuron activity variances. Thus, in order to compute A(W ), one can

instead focus on the activity fluctuations in an abstract network whose units correspond to

3Upper, not lower, -triangular T is more common in the literature, but we prefer to keep the flow of

information forward (from the 1st to the Nth Schur mode) for notational convenience in our calculations.
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spatial patterns of neuronal activity (the Schur vectors) and interact with a connectivity

matrix Λ+T (Figure 2.1a, right). This matrix is lower-triangular, so the abstract network is

effectively feedforward. In the Schur network, unit i receives its input from all previous units

j < i according to the i th row of T . Without input, the activity of unit i decays at a speed

governed by eigenvalue λi .

A network with a normal connectivity matrix would have only self-feedbacks (T = 0), thus

being equivalent to a set of disconnected units with a variety of individual effective time

constants, reflecting dynamical slowing or acceleration. Amplification-by-slowing therefore

arises from Λ (Figure 2.1b), which summarizes all the “loopiness” found in the original

connectivity. Conversely, when Λ = 0, all units share a common time constant τ (which is

also the time constant of the actual neurons) and interact in a purely feedforward manner via

matrix T (Figure 2.1c). We refer to this case as “purely nonnormal”, because the network

is then free of the unique dynamical consequence of normality, namely a modification of the

speed of the dynamics4. “Purely nonnormal” amplification therefore arises from matrix T

that reveals the functional feedforward connectivity hidden in W .

The latter situation (Λ = 0) is the focus of this paper. By substituting W with T in

Equation 2.1 and subsequently calculating A(T ) as defined in Equation 2.2, we intend to

reveal the fraction of the total amplification A(W ) in the neuronal network that cannot be

attributed to dynamical slowing, but only to transient growth. This constitutes a functional

measure of nonnormality. We carry out this analysis in a statistical sense, by calculating the

expected amount of purely nonnormal amplification 〈A(T )〉 where the average 〈·〉 is over the

random matrix W . In section 2.3, the ensemble statistics of W are defined, and related to

the statistics of the non-zero entries of T . In section 2.4 and section 2.5, we perform the

calculation of 〈A(T )〉.

2.3 Schur representation of neural connectivity matrices

Prior to calculating the nonnormal contribution to amplification in realistic neural connectivity

matrices, we first analyze the statistical properties of the Schur triangle T derived from a

neuronal network where every pair of neurons has a certain probability of being connected

in either direction. Specifically, we consider networks of N/2 excitatory and N/2 inhibitory

4Note that quantifying nonnormality can be done in a variety of ways, e.g. through several measures of

“departure from normality” (Trefethen and Embree, 2005). Our concept of “pure nonnormality” is therefore

more specific to our particular purpose, in that it expresses the absence of normal effects on the dynamics of

the neurons.
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neurons, with connectivity matrices W drawn as follows5 (Figure 2.1a):

wi j =
1√
N
·





+w0 if j ≤ N/2

−w0 if j > N/2

]
with proba. p

0 with proba. (1− p)

(2.3)

Excitation and inhibition are thus globally balanced. The 1/
√
N scaling ensures that in the

limit of large N, the eigenvalues {λk} of W become uniformly distributed inside the disk of

radius

R = w0

√
p(1− p) (2.4)

and centered around zero in the complex plane (Figure 2.1b), with the exception of a few

outliers (Rajan and Abbott, 2006). To push the outliers inside the disk, we enforce that

excitatory and inhibitory synapses cancel each other precisely for each receiving neuron, i.e.

Wv = 0 with v = (1, 1, · · · , 1)/
√
N (Rajan and Abbott, 2006; Tao, 2011). This constraint

is also essential to the identification of the ensemble statistics of T as detailed below. Such

a “global balance” can be achieved by a Hebbian form of synaptic plasticity at inhibitory

synapses in random spiking networks (Vogels et al., 2011). Here we enforce it by subtracting

the row average (a small number) from every row (which accounts for the barely visible

horizontal stripes in W of Figure 2.1a).

The main point in relating the statistics of T to that of W is to note that the Schur basis is

unitary, so that the sum of squares in W is also equal to the sum of squares in Λ+ T . Thus

∑

1≤i ,j≤N
w2
i j =

∑

1≤k≤N
|λk |2 +

∑

i>j

t2
i j (2.5)

From our choice of the weights wi j (Equation 2.3) and assuming that N is large enough, we

can derive
∑
w2
i j ' Npw2

0 . Furthermore, knowing that the eigenvalues lie uniformly inside

the disk of radius R, we can write
∑
|λk |2 ' NR2/2 which is also valid for large N. We

replace these sums in Equation 2.5, simplify the result using Equation 2.4, and obtain the

overall empirical variance of the non-zero entries in T , to leading order in N:

2

N(N − 1)

∑

i>j

t2
i j '

R2

N
·

1 + p

1− p (2.6)

Note that this empirical variance is not necessarily equal to the ensemble variance
〈
t2
i j

〉
−

〈
ti j
〉2

for fixed i and j . In fact, we have observed that if the non-unique Schur basis is

chosen arbitrarily,
〈
t2
i j

〉
computed over many realisations of W is not uniform across rows,

but rather tends to increase with row index i . This heterogeneity is difficult to characterise,

5It is straightforward to allow for any distribution of non-zero weights; as it turns out, this Dirac delta

distribution achieves maximum nonnormal amplification.
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and undermines the calculation of amplification developed in the next section. Fortunately,

we can circumvent this problem by choosing the uniform eigenvector v of W as the last

Schur vector: uNk = 1/
√
N for all k6. Coefficient ti j then becomes distributed with the

same zero mean and variance ζ2 for all j < i < N, with the exception of the tNj coefficients

which have higher variance ζ2
0 (black and green lines in Figure 2.1d and Figure 2.1e, empirical

observation). Note also that the ensemble pairwise correlations between coupling strengths

ti j and tk` with i 6= j or j 6= ` seem negligible ( Figure 2.1f).

We now proceed in two steps. First, we focus on the variance of the elements in the last row

of the Schur matrix T , and then we turn to all the other non-zero components. To calculate

variance ζ2
0 =

〈
t2
Nj

〉
we use the definition of T and write for j < N

tNj =

N∑

`=1

N∑

k=1

uNkwk`uj`

=
1√
N

N∑

`=1

(
N∑

k=1

wk`

)
uj`

(2.7)

To leading order in N we can write
∑
k wk` = ±pw0

√
N where the ± sign depends on `

being smaller than N/2 (+, excitatory) or greater (−, inhibitory) – see Figure 2.1a. For

j < N, the j th Schur vector Uj is orthogonal to the last Schur vector v ∝ (1, 1, . . . , 1), so

its components strictly sum to zero:
∑
` uj` = 0. Moreover, because of the normalization,∑

` u
2
j` = 1. We can therefore approximate uj` by a stochastic process with zero mean and

variance 1/N. Assuming the uj` are uncorrelated, the variance of tNj is thus simply w2
0 p

2 to

leading order, which according to Equation 2.4 is also

〈
t2
Nj

〉
≡ ζ2

0 =
R2p

1− p (2.8)

Notably, the variance ζ2
0 in the last row of coupling matrix T is of order 1, and depends

super-linearly on the connectivity density p (Figure 2.2, green lines).

We now turn to the other rows i < N of the Schur matrix T . Because all components ti j

for j < i < N seem to come from the same distribution and look uncorrelated (Figure 2.1d–

f), the empirical estimate of their variance 2
∑
j<i<N t

2
i j/(N − 1)(N − 2) coincides with

the ensemble variance ζ2 ≡
〈
t2
Nj

〉
so long as N is large enough. Similarly, we can write∑

j t
2
Nj/(N−1) = ζ2

0 . Thus, the l.h.s. of Equation 2.6 becomes ζ2 + 2ζ2
0/N to leading order

in N. Using Equation 2.6 and Equation 2.8 we conclude

〈
t2
i j

〉
≡ ζ2 =

R2

N
(2.9)

6This is always possible, since a Schur basis can be constructed through Gram-Schmidt orthonormalisation

of the eigenbasis of W , so choosing v to enter the process first results in v being the last vector in a basis

that makes W lower -triangular
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Figure 2.2: Linking the Schur triangle to

the parameters of the neural connectivity

matrix. (a) The variance of the entries in

the strict lower triangle T scales linearly with

the square of the spectral radius R2 of the

original weight matrix W. For the last row

of T, the slope of ζ2
0 depends on the con-

nection probability p (top plot). For the rest

of T, ζ2 depends only on R2 (bottom plot).

Each point was obtained by empirically esti-

mating ζ2 and ζ2
0 from 10 different Schur-

transformed random neural weight matrices

of size N = 400. Lines denote the analytical

expressions in Equation 2.8 and Equation 2.9.

(b) ζ2
0 in the last row of T scales super-linearly

with the connection density p (top plot). In

contrast, ζ2 does not depend on p (bottom

plot). (c) In the last row of T, the vari-

ance is network size-independent (green (up-

per) line). In the rest of T, the variance is in-

versely proportional to N (black (lower) line,

note the log-log scale).

Figure 2.2 shows that Equation 2.8 and Equation 2.9 provide a good match to numerical

results.

At this point we can already draw a few conclusions. Suppose each unit in our Schur network

receives external input of variance 1. First, since the uniform mode v receives network input

from the remaining N−1 Schur patterns with coupling coefficients of order 1 (Equation 2.8),

we expect the global (“DC”) population activity x · v to fluctuate macroscopically, i.e. with

a variance of order N. In contrast, the rest of the Schur modes should display fluctuations

of order 1. Second, we directly see that making the network denser (i.e. increasing p) can

only result in larger DC fluctuations, but no further amplification of the other (zero-mean)

Schur patterns. This is because ζ2
0 , but not ζ2, depends on p. Third, it is easy to see where

these large DC fluctuations would originate from. Imagine breaking the overall exc.-inh.

balance in the network activity by a small amount, e.g. by initialising the network state x to

d = (1, . . . , 1,−1, . . . ,−1)/
√
N, where we emphasize the scaling in 1/

√
N. According to

Equation 2.1, the transient response to this perturbation is roughly Wd , which to leading

order in N equals

Wd ' pw0(1, 1, · · · , 1) (2.10)
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We note that the 1/
√
N scaling is gone. Thus, the network responds to a microscopic global

balance disruption – a state in which the deviation between the excitatory and inhibitory

population firing rates is of order 1/
√
N – by an excursion of order 1 in the combined firing

rate of both populations (see (Murphy and Miller, 2009) for a more in-depth discussion of

this effect). Finally, it is instructive to see what happens when the functional feedforward

link from d to
√
N · v – expressed in Equation 2.10 – is removed from W . This can be

achieved by transforming W into W ′ given by

W ′ = W −
pw0√
N

(1, · · · , 1)†(1, · · · , 1,−1, · · · ,−1) (2.11)

It is easy to see that W ′d = 0. In this case, calculations similar to Equation 2.5–Equation 2.8

yield ζ2
0 = ζ2 = R2/N so that the DC fluctuations are back to order 1: the amplification

along the DC mode becomes comparable in magnitude to the amplification that occurs along

any other Schur directions. Note that the operation in Equation 2.11 effectively shifts the

mean excitatory (resp. inhibitory) weight from pw0/
√
N (resp. −pw0/

√
N) to zero. We

now substantiate these preliminary conclusions through a direct calculation of nonnormal

amplification.

2.4 Amplification in random strictly triangular networks

We have seen in the preceding two sections that a randomly coupled network of excitatory

and inhibitory neurons can be transformed via a unitary Schur basis into a different network

where the couplings between units are given by a lower triangular matrix (Figure 2.1a).

Furthermore, the “purely nonnormal” part of the amplification of the external noisy input in

the original network of neurons corresponds to the activity fluctuations in the new feedforward

network where all self-couplings are neglected (Figure 2.1c). Finally, we have also seen that

it is possible to constrain the Schur basis such that the couplings between the first N − 1

units in the feedforward network are independently distributed with the same zero-mean and

a variance given by the parameters of the original synaptic weights (Equation 2.9). In this

section, we therefore study this “canonical” case, starting directly from a strictly lower-

triangular matrix T and ignoring – for the moment – the transformation that gave rise to

T .

We want to solve for the expected variances of N � 1 Ornstein-Uhlenbeck processes (as

in Equation 2.1) coupled by a strictly lower-triangular weight matrix T (therefore describing

a purely feedforward network, see inset in Figure 2.3a). We assume all non-zero coupling

strengths to be sampled i.i.d. from some common distribution with zero mean and variance

α2/N. Due to the coupling matrix, the fluctuations that the external input causes in the
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first unit feed and augment those it causes in unit 2. The third unit in turn fluctuates due

to the external input and the activities of units 1 and 2, and so on. We therefore expect the

activity variance σi i in unit i to increase with index i . In appendix section 2.A, we show that

in the limit of large N and for some fixed 0 ≤ x ≤ 1, the relative expected variance of the

activity in unit i = xN is g(i/N) ≡ 2 〈σi i〉 /τσ2
ξ where the function g(x) is lower-bounded in

closed form by

gLB (x) =
1

3 +
√

3
exp

(
1−
√

3

4
α2x

)

+
2 +
√

3

3 +
√

3
exp

(
1 +
√

3

4
α2x

) (2.12)

(Figure 2.3, dashed blue curves). We also derive the exact solution as a power series

g(x) = lim
K→∞

K∑

k=0

βkx
k (2.13)

with the βk coefficients defined recursively as

β0 = 1

βk =
α2

2k!

k−1∑

`=0

(2`)! (k − `− 1)!

`! (`+ 1)!

(
α2

4

)`
βk−`−1

(2.14)

The overall amplification A0(α2) in the network is subsequently obtained by integrating this

variance profile g(x) from 0 to 1, which corresponds to taking Equation 2.2 to its N → ∞
limit:

A0(α2) =

(
lim
K→∞

K∑

k=0

βk
k + 1

)
− 1 (2.15)

Figure 2.3 shows that Equation 2.13 and Equation 2.15 indeed converge to the empirical

mean variance profile and mean amplification as the cut-off parameter K of the power series

becomes large (red lines, K = 10). Figure 2.3b furthermore shows how amplification explodes

with the variance α2/N of the feedforward couplings in the network.

2.5 Amplification in random balanced networks

Using the canonical result of the previous section that is restricted to homogeneous random

lower-triangular matrices, we now calculate A(R, p) ≡ 〈A(T )〉 with T originating from the

Schur decomposition of a neuronal connectivity matrix as in section 2.3, with connection

density p and spectral radius R. Equation 2.13 can directly be applied with α2/N = ζ2 =

R2/N (see Equation 2.9) to describe the activity fluctuations of the first N−1 Schur modes.
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Figure 2.3: Analytical result for a feed-

forward network of N Ornstein-Uhlenbeck

processes coupled via a random strictly

lower-triangular matrix (inset). (a) The

expected activity variance 〈σi i 〉 accumulates

super-linearly from the first unit to the last

down the feedforward chain. Dashed blue

lines depict the closed-form lower-bound of

Equation 2.12. Solid red lines denote the

exact solution given in Equation 2.13, trun-

cated to K = 10. Open circles repre-

sent the numerical solution of Equation 2.1

– or more exactly, the numerical solution of

Equation 2.20 given in the appendix – av-

eraged over 20 randomly generated matrices

of size N = 500. Each matrix T is charac-

terised by the variance α2/N of the coupling

coefficients ti j with j < i . The strength of

the external noise driving each unit indepen-

dently is set to σ2
ξ = 2/τ so that all activity

variances in the network would be 1 should

the couplings ti j be set to 0. (b) The total

amplification (the area under the curves in (a), minus 1) explodes with increasing variance α2/N in

the triangular connectivity matrix. Points and lines have the same meaning as in (a).

The last Schur unit, however, receives feedforward input with couplings of variance ζ2
0 6= ζ2

( Equation 2.8). Consequently, the expected variance 〈σNN〉 of its temporal fluctuations has

to be treated separately. In appendix section 2.B, we show that

lim
N→∞

〈σNN〉
N

=
σ2
ξτ

2
·

p

1− p [g (1)− 1] (2.16)

where g is given by Equation 2.13 and Equation 2.14, here with α = R. Gathering the

contributions of all Schur modes, we obtain the expected overall amount of purely nonnormal

amplification in W :

A(R, p) = A0(R2) +
p

1− p [g (1)− 1] (2.17)

with A0(R2) given by Equation 2.15.

Figure 2.4a shows that the nonnormal contribution to amplification in the neuronal network

explodes with the spectral radius R of the connectivity matrix W . This is because the

amplification of the first N−1 Schur units explodes with the variance ζ2 of their feedforward

interactions (Figure 2.3b) and that ζ2 is directly related to R (Equation 2.9). Note that

for R > 1 (to the right of the dashed vertical line in Figure 2.4a), the network of neurons

is unstable. Although the concept of amplification in an unstable network is ill-defined, the

“purely nonnormal” part of the total (infinite) amplification remains bounded. Indeed, the
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Figure 2.4: Nonnormal amplification in

random neuronal networks. (a) The mean

amount of purely nonnormal amplification

〈A(T)〉 ≡ A(R, p) is reported as a function

of the spectral radius R of W. Open cir-

cles denote the numerical solution of Equa-

tion 2.20 averaged over 20 randomly drawn

connectivity matrices with connection density

p = 0.1 and size N = 500. Errorbars denote

the standard deviation over all trials. The red

(upper) curve depicts the exact solution in

Equation 2.17. The dashed grey (lower) curve

and grey circles indicate the mean removal of

Equation 2.11 applied to W , which effectively

removes the global macroscopic fluctuations

of the entire population (labelled “no DC”).

The dashed vertical line represents the limit

of linear stability, beyond which the nonnor-

mal part of amplification is still well-defined.

(b) Same as in (a), now as a function of the

connection density p for a fixed R = 1. In

both (a) and (b), parameters p and R fully de-

termined the value ±w0/
√
N of the nonzero

synaptic weights as w0 = R/
√
p(1− p) (cf.

Equation 2.4).

purely feedforward network T derived from the Schur decomposition of W is itself always

stable, since zero is the only eigenvalue of T . The instability in W arises from purely normal

effects, when the real part of one eigenvalue of W exceeds unity so that dynamical slowing

becomes infinite.

Equation 2.16 confirms what we had previously discussed at the end of section 2.3: the

last Schur unit has temporal fluctuations v · x(t) of variance O(N). Those fluctuations

thus make up for a finite fraction of the total nonnormal amplification (the last term in

Equation 2.17) as N →∞. Because the last Schur vector is the normalised uniform spatial

pattern (1, . . . , 1)/
√
N, the variance of the overall population activity µ(t) ≡

∑
xi(t)/N =√

N(x ·v(t)) is of order 1. As we had foreseen in section 2.3, one can restore the 1/N scaling

of the these “DC” fluctuations
〈
µ2(t)

〉
by performing the operation of Equation 2.11 on

the connectivity matrix W , i.e. subtracting a common constant from all excitatory weights

(including zero weights) to make sure that they average to zero, and adding the same

constant to all inhibitory weights with the same purpose. This situation is depicted by the

grey curves in Figure 2.4. Figure 2.4b shows that only these DC fluctuations depend on the

connectivity density p.
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Overall, Figure 2.4a allows us to draw two important conclusions. On the one hand, if the

level of dynamical slowing is to be kept low (R� 1), only modest levels of amplification can

be achieved (see the small amount of nonnormal amplification on the l.h.s. of the dashed

vertical line). For example, if no mode is to decay with more than twice the single neuron

time constant (Re(λ) < 1/2), the average variance cannot exceed that of a disconnected

network by more than 10%. On the other hand, the nonnormal contribution to amplification

explodes with increasing R, i.e. with increasing synaptic strengths if the connection density

is taken fixed. This suggests that strong transient amplification without dynamical slowing

can only be achieved in structured, “less random” networks. The structure must allow the

synaptic couplings to assume larger values without causing the eigenvalue spectrum of W to

reach instability.

2.6 Different numbers of excitatory and inhibitory neurons

We now consider the biologically more plausible case of different numbers of excitatory and

inhibitory neurons. Typical models of cortex assume f N excitatory neurons and (1 − f )N

inhibitory neurons with f = 0.8 or similar. In this case, the eigenvalues λ are no longer

uniformly scattered inside the disk of radius R in the complex plane7, but become more

concentrated in the middle following a radially symmetric density ρ (|λ|) known analytically

from (Rajan and Abbott, 2006) (Figure 2.5b, insets). As before, we consider the case where

excitatory (resp. inhibitory) synaptic couplings are 0 with probability (1− p), and +wE/
√
N

(resp. −wI/
√
N) otherwise. The global balance condition reads f wE = (1 − f )wI . To

impose a given spectral radius R, we set w2
E = w2

0 (1 − f )/f and w2
I = w2

0 f /(1 − f ) with

w2
0 = R2/p(1− p).

The results of section 2.3 regarding the variances in the Schur triangle have to be adjusted

to accommodate these modifications. The derivation of ζ2
0 is left unchanged, so that the

couplings tNj onto the uniform mode v still have the variance given by Equation 2.8, which

notably does not depend on f . Using Equation 2.5, we can then write down the empirical

variance in the first N − 1 rows of T as

2

N(N − 1)

∑

j<i<N

t2
i j =

2

N

(
R2 −

∫ R

0

rρ(r)dr

)
(2.18)

7Rajan and Abbott showed that this happens when the variances of the excitatory and inhibitory weights

differ (the variances comprise both the zero and non-zero synapses). Decreasing the number of inhibitory

neurons in a balanced network requires the strength of inhibition to be increased. In sparse networks like

ours, this automatically makes the overall variance of the inhibitory synapses larger than that of excitatory

synapses, hence the observed effect on the eigenspectrum.
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simulated, f = 0.8 Figure 2.5: Networks with differ-

ent numbers of excitatory and in-

hibitory neurons. (a) Nonnormal

amplification as a function of the

spectral radius R of W , in sparse

random balanced networks with f N

excitatory and (1 − f )N inhibitory

neurons, for f = 0.5 (black, lower)

and f = 0.8 (red, upper). The

connection density p was set to

0.1. The dashed vertical line rep-

resents the limit of linear stability,

beyond which the nonnormal part

of amplification is still well-defined.

Solid circles were obtained by av-

eraging the numerical solution of

Equation 2.20 for 20 random ma-

trices of size N = 500. Errorbars

denote standard deviation over all

trials. (b) Filled circles show the

scaled variance N
〈
t2
i j

〉
/R2 of the

non-zero Schur couplings in row i

as a function of i/N and for three

different values of f . These vari-

ances were computed by Schur-

transforming 100 matrices of size

N = 200, with R = 1 and p = 0.1. Cyan lines denote the density ρ of eigenvalues λ inside the unit

disk (Rajan and Abbott, 2006), as a function of (1− |λ/R|)2. Insets show the eigenvalue spectra of

three example matrices of size N = 1000.

Unfortunately, the ensemble variance
〈
t2
i j

〉
for fixed i and j is in general different from the

average across matrix elements given by Equation 2.18. Indeed, contrary to the case f = 0.5

considered in section 2.3, the non-zero elements of T no longer have the same ensemble

variance. Instead,
〈
t2
i j

〉
grows with row index i < N, and this profile interestingly matches

the density of eigenvalues ρ 8, according to

N

R2

〈
t2
i j

〉
= ρ

[
R

(
1−

√
i

N

)]
for j < i < N (2.19)

This is depicted in Figure 2.5b.

In a feedforward network like that of Schur units considered here, a good strategy to generate

greater amplification would be to give comparatively more power to the couplings onto

8This happens provided the eigenvectors are sorted in decreasing order of their corresponding eigenvalue

moduli, prior to going through the Gram-Schmidt orthonormalisation process. This results in a unique Schur

basis.
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earlier nodes. This is because amplification builds up superlinearly along the feedforward

chain (Figure 2.3), so that boosting early nodes exacerbates the avalanche effect (see also

(Ganguli et al., 2008b)). Setting f to more than 0.5 does precisely the contrary: couplings

onto early nodes become comparatively smaller in magnitude, as shown by the filled circles

in Figure 2.5b. Therefore, simply replacing α2/N in Equation 2.15 by the empirical variance

of Equation 2.18 yields an over-estimation of the true amplification in the first N − 1 Schur

units (compare the red line with the red circles in Figure 2.5a). We found it difficult to

incorporate this variance profile
〈
t2
i j

〉
into the derivation of appendix section 2.A, so we can

only consider as accurate the results of numerical simulations.

The conclusions reached at the end of section 2.5 do not change significantly under the

more realistic assumption of f = 0.8. Although amplification almost doubles relative to

f = 0.5, it remains very weak in the stable regime (to the left of the dashed vertical line in

Figure 2.5a), confirming that amplification can only come with substantial dynamical slowing

when connections are drawn at random.

2.7 Example of network structure for nonnormal amplification

Here we show that random networks can be minimally structured in such a way that strong

nonnormal amplification occurs already in the fast dynamical regime. We exploit the fact

that correlations in the connectivity matrix can modify the shape of the eigenvalue spectrum.

Symmetrising (or anti-symmetrising) W has been shown to generate elliptical (as opposed

to circular) eigenspectra, in the case of “centered” matrices where the distinction between

excitatory and inhibitory neurons is not made (Sommers et al., 1988). Here we consider a

modification of the sparse neural matrices studied in section 2.3 that achieves this slimming

effect in the case of balanced networks (see the insets in Figure 2.6a). All non-zero entries

assume a value ±w0/
√
N, the sign depending on the excitatory versus inhibitory nature of

the presynaptic neuron. Whether a connection exists (non-zero entry) is decided as follows.

Connection wi j with i ≥ j exists with probability p. If i 6= j , the reciprocal connection wj i

then exists with probability p + ci j(1 − p) if wi j exists too, or with probability p(1 − ci j)
if it does not. In comparison to the random networks considered above (Equation 2.3),

this connectivity scheme preserves the mean weight w̄ ≡
〈
wi j
〉

= ±pw0/
√
N as well as the

weight variance
〈

(wi j − w̄)2
〉

= p(1− p)w2
0 /N while giving full control over their normalized

covariance ci j . Note that ci j can assume positive values as high as cmax = 1, in which

case all connections are bidirectional. However, c cannot go below cmin = −p/(1 − p),

which stems from the sparsity condition that imposes a certain degree of symmetry in W :

because both wi j and wj i are zero with high probability, they will often be null together,



Section 2.7 41

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

sp
ec
tr
al

ab
sc
is
sa

R
′

degree of anticorrelation κ

p = 0.1

p = 0.2

p = 0.5

(a)

(b)

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1 1.2

A
(R

′ ,
p
=

0
.1
)

spectral abscissa R ′

κ = 0

κ = 1

Re

Im

Re

Im

1 sec.

Figure 2.6: Example of a network

structure that favors nonnormal am-

plification: unidirectional vs. bidirec-

tional synaptic connections. (a) We

varied the degree of anticorrelation be-

tween reciprocal weights in the connec-

tivity matrix, as the fraction κ of the

maximum value it can assume, which is

dictated by the connection sparsity (see

text). This caused the eigenspectrum to

stretch more and more along the ver-

tical axis (compare the two insets), ef-

fectively decreasing the spectral abscissa

R′ (black filled circles). Empirical data

was obtained from numerically comput-

ing the eigenvalues of 20 different ma-

trices of size N = 500. Errorbars de-

note standard deviations over all trials.

Gray lines are linear fits. (b) Nonnor-

mal amplification as a function of the

spectral abscissa R′. When all connec-

tions between an excitatory (E) and an

inhibitory (I) cell are made reciprocal,

while all E → E and I → I connections

are kept unidirectional (orange (upper)

curve, corresponding to κ = 1 in (a)),

stronger amplification is obtained in the fast dynamical regime (R′ � 1). The black (lower) curve

is here reproduced from Figure 2.4 (purely random case, κ = 0) for comparison. The inset displays

examples of 4-second snapshots of activity in a disconnected network (left), a random network (mid-

dle, κ = 0), and a maximally (though not fully) antisymmetric network (right, κ = 1). The spectral

abscissa was set to R′ = 0.9. Traces were obtained from a direct simulation of Equation 2.1, and

are shown here only for two randomly chosen neurons.

meaning that they cannot be fully anti-correlated. The limit case c = cmin corresponds

to the complete absence of reciprocal connections. Since we aim at tilting W towards

antisymmetry, we choose ci j = κcmin when neurons i and j are of the same type, and

ci j = κcmax when the two neurons have different types. Thus 0 < κ < 1 parameterises

the degree of antisymmetry in W . As can be seen in Figure 2.6a, increasing κ effectively

decreases the spectral abscissa R′ = maxλ Re(λ), although it is designed not to affect the

overall connectivity “power”
∑
w2
i j which is the relevant quantity for amplification. Thus,

for a fixed level of dynamical slowing (i.e. fixed R′), antisymmetric connectivity matrices can

assume larger weight strengths and thereby yield stronger nonnormal amplification than their

random counterparts, as depicted in Figure 2.6b. Finally, note that a matrix with κ = 1 is

not purely antisymmetric (W † 6= −W ). In fact, neural connectivity matrices can never be

fully antisymmetric, because of the constraint that neurons can be only excitatory or only
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inhibitory. This is an advantageous restriction here, because a fully antisymmetric matrix –

just like a fully symmetric one – is in fact a normal operator that cannot support transient

amplification.

2.8 Discussion

The nonnormal nature of the neuronal connectivity could play a major role in the functional

dynamics of cortical networks. It can allow fast transients to develop along well-defined

activity motifs stored in the pattern of synaptic efficacies. In networks with locally dense

connectivity, the balance between excitation and inhibition has been shown to generate am-

plification of this type, accordingly termed “balanced amplification” (Murphy and Miller,

2009). We have revisited this feature in sparse balanced networks in which any two neurons

are connected randomly with some probability. Random networks had already been stud-

ied in terms of their pseudospectrum (Trefethen and Embree, 2005), which only provides

bounds on amplification. We have chosen a more direct approach and assessed nonnormality

in terms of its functional impact in networks driven by stochastic external input. We have

explicitly calculated the strength of the activity fluctuations that can only be attributed to

the nonnormality of the recurrent connectivity. We found nonnormal amplification to be

very weak, concluding that the only way to obtain large amplification in random networks

is to allow for significant dynamical slowing. If the dynamics are to be kept fast, then the

connectivity needs some structuring, so as to allow synaptic weights to take up larger values

and to discourage the emergence of large positive eigenvalues. We have given an example

of minimal network structure, namely connection antisymmetry, that achieves precisely this.

More adaptive ways of shaping the connectivity, such as synaptic plasticity, could also be

considered. In particular, inhibitory synaptic plasticity has recently been shown to suppress

the attractor dynamics of a few activity motifs embedded in a spiking network, while still

permitting their transient recall (Vogels et al., 2011).

Nonnormal amplification could provide a mechanistic account for the often reported transient

nature of both spontaneous and evoked activity in primary sensory cortices. Moreover, from a

functional viewpoint, amplification without slowing could be a highly relevant feature in areas

involved in the processing of fast-changing signals. If transient amplification by the synaptic

connectivity is meant to allow past experience to be reflected in the responses to sensory

stimuli (see e.g. (Fiser et al., 2010)), then it is quite reassuring that random networks are

poor amplifiers, for it implies that nothing can be amplified that has not been learned.

Here we have focused on spontaneous activity, i.e. on the fluctuations elicited by isotropic

external noise that is totally uninformed of the frozen structure of the connectivity matrix.
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The equivalent triangular form of a nonnormal connectivity matrix suggests that neuronal

networks should be more sensitive along some input directions than along others, so they

could still respond vigorously though transiently to some carefully chosen input patterns

(evoked activity). The first Schur mode, for example, is indeed such a preferred pattern

(Ganguli et al., 2008b). This anisotropy prompts two important questions. First, how many

different (orthogonal?) directions of high sensitivity does a network possess? Similarly, in

how many distinguishable directions can the network amplify those preferred input signals?

These quantities taken together could define the “nonnormal information capacity” of a

network, reminiscent of the concept of memory capacity in attractor networks.

We have assumed here a simple network topology of the Erdős-Rényi type, whereas brain

networks are often more heterogeneous (Sporns, 2011), e.g. small-world and/or scale-free

(Shefi et al., 2002; Egúıluz et al., 2005). The graph topology is known to affect dynamical

properties such as correlations and network synchronisation (Roxin, 2011) or performance

in attractor tasks (de Franciscis et al., 2011). The width of the out-degree distribution

could prove particularly important to the phenomenon we study here, since it modulates

the amount of shared input between cells, and therefore also the magnitude of pairwise

correlations (Pernice et al., 2011) that can in turn source amplification. Although more

complicated topologies fall outside the scope of our study, it would be interesting to see how

they affect the nonnormal contribution to amplification, as opposed to how they dictate the

eigenvalue spectrum of the adjacency matrix (see e.g. (Goh et al., 2001; Grabow et al.,

2012) for spectral analyses).

Finally, our analysis has revealed that the nonnormality of balanced networks is to a large

extent reflected in large “DC” fluctuations. This seems to be a general feature of networks

in which neurons can either be excitatory or inhibitory, but not of a mixed type (Kriener et al.,

2008). It is somewhat disappointing that however strong activity fluctuations are in individual

neurons, they always comprise a finite fraction of common variability. This is because the

variance of the overall population activity is of the same order as the activity variance of

the individual neurons (Equation 2.16). Should computations exploit the fluctuations along

the remaining N − 1 degrees of freedom of the network, complications in decoding the

current network state would most certainly arise from a single dimension dominating the

dynamics. However, we wish to point out that these large DC fluctuations are in fact a

direct consequence of the exact excitation-inhibition balance considered here. We show

in appendix section 2.C that when inhibition dominates over excitation, the variance of the

population activity becomes suddenly inversely proportional to the network size. Furthermore,

the mean pairwise correlation coefficient in the network scales similarly, and thus vanishes in

large networks unless the E-I balance is exact. Note that this phenomenon is not mediated by

a destruction of the strong feedforward link from the global balance disruption d onto the DC
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mode v , as described at the end of section 2.3. Increasing the overall amount of inhibition

does preserve this strong link, but cancels its amplifying effect by imposing an equally strong

negative feedback from the DC mode onto itself (see appendix section 2.C). This dynamic

cancellation of fluctuations and correlations was already shown to arise in balanced networks

of spiking neurons (Renart et al., 2010). Our results obtained for linear networks therefore

suggest it may be a very general feature of inhibition-dominated balanced networks, and that

fine-tuning the balance until it becomes exact (Vogels et al., 2011) may strongly affect the

dynamics of the network and the resulting correlation structure.

2.A Amplification in random triangular networks

In this appendix we derive an exact expression for amplification in random strictly triangular

networks with linear stochastic dynamics as in Equation 2.1, where the non-zero elements of

the coupling matrix T are drawn from an arbitrary distribution with zero mean and variance

α2/N where N is the network size. Though no closed-form solution is known for the zero time

lag covariance matrix Σ, we know from the theory of multidimensional Ornstein-Uhlenbeck

processes that it satisfies the so-called Lyapunov equation (Gardiner, 1985)

(T − 1)Σ +Σ
(
T † − 1

)
= −τσ2

ξ1 (2.20)

Equating component (i , j < i) on both sides of Equation 2.20 yields:

σi j =
1

2

i−1∑

k=1

tikσjk +
1

2

j−1∑

k=1

tjkσik (2.21)

and equating the diagonal term (i , i) on both sides gives the variance of Schur mode i :

σi i =
τσ2

ξ

2
+

i−1∑

j=1

ti jσi j (2.22)

Combining Equation 2.21 and Equation 2.22 yields

σi i =
τσ2

ξ

2
+

1

2

i−1∑

j=1

ti j

(
i−1∑

k=1

tikσjk +

j−1∑

k=1

tjkσik

)
(2.23)

in which σjk and σik are to be recursively obtained from Equation 2.21 with proper replace-

ment of indices. We would like to calculate the expected value over the ti j coefficients,

i.e. over multiple realisations of random matrix T . Explicitly expanding the sums will reveal

cross-terms like
〈
ti j tk`

〉
. Those vanish if i 6= k or j 6= `, because the coupling coefficients
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are taken to be uncorrelated. The only remaining terms will be powers of the variance α2/N.

Here we seek a truncation to order α4/N2. Let us calculate:

〈σi i〉 =
τσ2

ξ

2
+

1

2

i−1∑

j=1

i−1∑

k=1

〈
ti j tikσjk

〉

+
1

2

i−1∑

j=1

j−1∑

k=1

〈
ti j tjkσik

〉
(2.24)

Because the network of Schur modes is purely feedforward, the cross-covariance σjk for

(j, k) < i is independent of the coupling coefficients ti j and tik , thus
〈
ti j tikσjk

〉
=
〈
ti j tik

〉 〈
σjk
〉

.

The only non-vanishing term in the first double-sum is therefore obtained for k = j , giving

〈σi i〉 =
τσ2

ξ

2
+
α2

2N

i−1∑

j=1

〈
σj j
〉

+
1

2

i−1∑

j=1

j−1∑

k=1

〈
ti j tjkσik

〉
(2.25)

Let us expand the expression in the second double-sum using Equation 2.21:

〈
ti j tjkσik

〉
=

1

2

i−1∑

`=1

〈
ti j tjkti`σk`

〉

+
1

2

k−1∑

`=1

〈
ti j tjktk`σi`

〉
(2.26)

As above, the first sum vanishes except for ` = j . Should one continue and expand the

second sum, one would receive terms of order α6/N3 and more which are discarded here

(see above). Hence
〈
ti j tjkσik

〉
=
α2

2N

〈
tjkσjk

〉
+ · · · (2.27)

Using similar arguments, we expand
〈
tjkσjk

〉
to order α2/N and receive:

〈
tjkσjk

〉
=
α2

2N
〈σkk〉+ · · · (2.28)

From Equation 2.25 it therefore follows that

〈σi i〉 =
τσ2

ξ

2
+
α2

2N

i−1∑

j=1

〈
σj j
〉

+
α4

8N2

i−1∑

j=1

j−1∑

k=1

〈σkk〉

(2.29)

Defining fi = 2 〈σi i〉 /(σ2
ξτ), we end up with a recursive equation for the build-up of relative

variance down the feedforward network of Schur modes:

fi = 1 +
α2

2N

i−1∑

j=1

fj +
α4

8N2

i−1∑

j=1

j−1∑

k=1

fk (2.30)
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Now we define x = i/N (thus 0 ≤ x ≤ 1) and rewrite Equation 2.30 as

fxN = 1 +
α2x

2i

i−1∑

j=1

g

(
xj

i

)

+
α4x2

8i2

i−1∑

j=1

j−1∑

k=1

g

(
xk

i

) (2.31)

In the limit N → ∞ with constant x = i/N ratio, the sums on the r.h.s. converge to their

corresponding Riemann integrals, endowing fxN with a proper limit g(x):

g (x) = 1 +
α2x

2

∫ 1

0

g (xs) ds

+
α4x2

8

∫ 1

0

ds

∫ 1

0

ds ′Θ
(
s − s ′

)
g
(
xs ′
) (2.32)

where Θ is the Heaviside function. This convergence stems from the 1/N scaling of the

variance α2/N. Using straightforward changes of variables (s 7→ s/x), we end up with

an integral equation for g, the continuous variance profile along the (now infinitely large)

network of Schur patterns:

g (x) = 1 +
α2

2

∫ x

0

g (s) ds +
α4

8

∫ x

0

ds

∫ s

0

ds ′g
(
s ′
)

(2.33)

Differentiating Equation 2.33 twice with respect to x yields a second-order differential equa-

tion for g

g′′ (x) =
α2

2
g′ (x) +

α4

8
g (x) (2.34)

with initial conditions g(0) = 1, g′(0) = α2/2, and g′′(0) = 3α4/8. The solution is

precisely gLB(x) given in Equation 2.12 of the main text. It is only a lower-bound on the

true variance profile g(x) since all the higher-order terms in α2 that we have neglected are

positive. This approximation proves reasonable for α2 < 3 as shown in Figure 2.3a (dashed

blue lines). Further integrating over x yields a lower-bound on nonnormal amplification

A0(α2) ≡
∫ 1

0 g (x) dx − 1 (Figure 2.3b, dashed blue line):

ALB
0

(
α2
)

=
2

α2
√

3
exp

(
−

(
√

3− 1)α2

4

)

×
[

exp

(√
3α2

2

)
− 1

]
− 1

(2.35)

Instead of truncating 〈σi i〉 to order α4, one can also decide to start again from Equation 2.24

and keep all terms up to order n. This requires careful counting, and results in a differential

equation of order n, reading

g(n)(x) =
α2

2

n∑

k=0

Ck

(
α2

4

)k
g(n−k−1)(x) (2.36)
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where Ck = (2k)!/ [k!(k + 1)!] is the k th Catalan number. Assuming g(x) can be written

for 0 ≤ x ≤ 1 as a convergent power series

g(x) = lim
K→∞

K∑

k=0

βkx
k (2.37)

and equating g(k)(0) in both Equation 2.36 and Equation 2.37 yields the results of Equa-

tion 2.13 – Equation 2.15.

2.B Variance of the DC component

The last Schur mode is fed by the activities of all previous Schur vectors, weighted by

couplings with variance ζ2
0/N. The same calculation that led to Equation 2.30 in this case

leads to

fN = 1 +
ζ2

0

2

N−1∑

j=1

fj +
ζ2

0R
2

8N

N−1∑

j=1

j−1∑

k=1

fk + · · · (2.38)

which can be rewritten as

fN
N

=
1

N
+
ζ2

0

R2


R

2

2N

N−1∑

j=1

fj +
R4

8N2

N−1∑

j=1

j−1∑

k=1

fk + · · ·


 (2.39)

where the sums were previously calculated in the limit N → ∞ (Equation 2.30 – Equa-

tion 2.37). We thus recover

lim
N→∞

fN
N

=
ζ2

0

R2
[g (1)− 1] (2.40)

With ζ2
0 given by Equation 2.8 we arrive at Equation 2.16 of the main text.

2.C Exactly balanced vs. inhibition-dominated networks

In this paper, we have considered connectivities in which weights were either zero or±w0/
√
N,

the ± sign depending on the excitatory vs. inhibitory nature of the presynaptic neuron (Equa-

tion 2.3). Furthermore, the number of cells of both types was identical. The total inhibitory

synaptic strength thus exactly matched its excitatory counterpart. In this appendix, we wish

to show that if the non-zero inhibitory weights are stronger, i.e. −γw0/
√
N with γ > 1, the

dynamics of the overall population activity is strongly affected.
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We have seen that the “DC” mode v = (1, . . . , 1)/
√
N is an eigenvector ofW . Let λv denote

the associated eigenvalue, which quantifies the effective decay rate of the DC component

in the network of neurons. If the E-I balance is exact (γ = 1) as assumed throughout the

paper, then λv = 0. More generally, however, one can calculate

λv = −
pw0(γ − 1)

2
·
√
N (2.41)

We see there is an unexpected scaling that the exact balance was hiding : −λv ∼ O(
√
N).

Note that all other eigenvalues are now scattered inside the disk of radius

R = w0

√
(1 + γ2)p(1− p)

2
(2.42)

though no longer uniformly so since the variance of the inhibitory and excitatory weights now

differ by a factor of γ2 (Rajan and Abbott, 2006). Having kept the focus of this paper on

nonnormal effects, we have intentionally set aside the contributions of the eigenvalues to the

overall amplification in the network. When λv = 0 (perfect balance), our prediction that

the average population activity µ(t) ≡
∑
xi(t)/N should have a variance of order O(1) was

justified : the last Schur unit corresponding to this DC indeed receives N−1 contributions of

orderO(1), and its decay time constant is simply τ ∼ O(1), yielding var[µ(t)] ∼ O(1). When

inhibition dominates (γ > 1), the DC component suppresses itself via a negative feedback

that scales with
√
N, yielding a very short decay time constant τ/(1 − λv ) ∼ O(1/

√
N)

whose deviation from τ can no longer be neglected. To see what the implications of this

scaling are for the variance of µ(t), let us reduce the dynamics of the DC to the following

set of N stochastic differential equations:

dyi = −
dt

τ
yi +

√
2

τ
dξi for 1 ≤ i < N

dyN =
dt

τ

(
−(1− λv )yN +

N−1∑

i=1

εixi

)
+

√
2

τ
dξN

(2.43)

Here y1, . . . , yN−1 model the first N − 1 Schur units independently, with the appropriate

noise terms such that they achieve a variance of one (corresponding to the limit of small

amplification). They feed yN – which models the activity of the last Schur unit, i.e. the DC

component µ(t)
√
N – with couplings εi such that

∑
ε2
i /N = ζ2

0 . We calculate the coupling

variance ζ2
0 the same way we did in section 2.3:

ζ2
0 =

p2w2
0 (1 + γ2)

2
(2.44)

The variance var[µ(t)] of the overall neuronal population activity, here modeled by µ(t) ≈
yN(t)/

√
N, is given by standard Ornstein-Uhlenbeck theory:

var(µ(t)) =
1

N(1− λv )

[
1 +

Nζ2
0

2− λv

]
(2.45)
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Figure 2.7: Temporal fluctuations of the overall

population firing rate in a balanced neuronal net-

work. The variance of the average population activ-

ity µ(t) =
∑
xi(t)/N is reported as a function of the

network size N, in logarithmic scale. When inhibition

perfectly balances excitation (γ = 1), the variance is

asymptotically independent of the network size (gray).

When inhibition dominates (γ > 1), it scales with 1/N

(black). The solid lines denote the approximation in

Equation 2.45. The dashed lines indicate the asymp-

totics ( Equation 2.46). Points denote the empirical

variance obtained by simulating Equation 2.1 for 100

seconds, for a neuronal network constructed as speci-

fied in section 2.3 with connectivity density p = 0.1.

The spectral radius was set to R = 0.1 (top plot) and

R = 0.5 (bottom plot).

Although we have neglected amplification and correlations in the first N − 1 Schur units,

Equation 2.45 does provides a good intuition for how the mean population activity µ(t) =

yN(t)/
√
N scales with the network size N, and provides a good qualitative match to numerical

results even for a non-negligible spectral radius R = 0.5 (Figure 2.7).

The asymptotics of var[µ(t)] are given by

var[µ(t)] ∼





p2w2
0

2
if γ = 1

2(1 + γ2)

N(γ − 1)2
if γ > 1

(2.46)

Thus, when inhibition dominates over excitation (γ > 1), the fluctuations of the overall

population activity vanish for large networks, which was already shown in (Renart et al.,

2010) for inhibition-dominated networks of spiking neurons. In contrast, fine tuning the

connectivity such that the balance becomes exact (γ = 1) opens the possibility for these

fluctuations to subsist in arbitrarily large networks. This has profound consequences for the

mean pairwise correlation r̄ ≡
∑
i 6=j cov[xi(t), xj(t)]/N2, as seen from the following identity

r̄ = var[µ(t)]−
1

N2

∑

i

var[xi(t)] (2.47)

We have seen that the average variance var[xi(t)] in the individual neurons (i.e. amplification

as we define it) is O(1). Thus, Equation 2.47 implies that r̄ scales with N in the same way

var[µ(t)] does: either O(1) if the balance is perfect, or O(1/N) if inhibition dominates.





CHAPTER 3

Amplification and rotational dynamics in inhibition-stabilized cortical

circuits

The technical findings of chapter 2 can be summarized as follows. When all the connections

of a random balanced network are strenghtened, the network becomes unstable before the

effect of the synaptic strengthening is felt through nonnormal (transient) amplifying effects

(c.f. Figure 6.4). However, one can abstract away the instability and calculate the amount of

amplification that would be contributed by the hidden feedforward connectivity if one could,

by some magic, anihilate the large unstable eigenvalues of the connectivity matrix and make

the network stable.

In this chapter, we show this is (almost) possible. Possible, because unstable balanced

random networks with large synaptic weights can indeed be stabilized by properly tuned

inhibition. “Almost”, because in doing so, some degree of nonnormality is lost, and the

amplification that survives the stabilization procedure is weaker than expected from our

calculations of chapter 2.

The chapter is organized as a journal article, although it is not yet submitted (but will be

soon). The paper’s core theoretical component is a procedure for optimal fine-tuning of

the inhibitory synapses of an unstable network, with the aim of stabilizing the recurrent dy-

namics. The procedure takes the form of an iterative update rule for the inhibitory synapses,

which is directly inspired from recent advances in control theory. The technical details of

the update rules are postponed to the Supplemental Data, where we also show how it is
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approximated by a class of local plasticity rules.

From the optimization procedure we derive a series of results of relevance to neuroscience

and our understanding of the dynamical regime in which the cortex operates. The main

question is: can the behaviour of inhibition-stabilized networks be related to known

aspects of the cortical neurophysiology?

3.1 Introduction

The generation of motor patterns has been the focus of several recent experimental studies

(Churchland et al., 2010a, 2012). In a typical experiment, sketched in Figure 3.1A, a monkey

is asked to prepare a particular arm movement, but not to initiate it before a go cue is

delivered. Recordings have shown that, during the delay period, motor and pre-motor cortical

areas transition from spontaneous firing activity into a movement-specific “preparatory”

state, in which they remain until the go cue is issued. According to a recent proposal (Shenoy

et al., 2011), motor populations could act as generic dynamical systems that different initial

states would drive into different patterns of collective dynamics. In this view, planning a

movement would require making sure the system arrives at the right initial condition by the

time the movement must be triggered. When released, the population dynamics would then

elicit the correct movement.

The above view, however, does not make any specific claim regarding the type of dynam-

ical system, or neuronal network, suitable for movement generation. To achieve complex

movements, intuitively, one may want the system to produce complex dynamics. In fact,

single-neuron dynamics following the go cue are indeed both spatially and temporally com-

plex, with multiphasic single-cell firing rate responses resembling the toy traces of Figure 3.1B

(Churchland and Shenoy, 2007). Population transients last for only a few hundred millisec-

onds, and are characterized by large deviations from spontaneous firing rates on the single-cell

level (Churchland et al., 2012). This type of dynamics is intriguing: the system is apparently

highly excitable from the initial condition set up by the preparatory period, while also being

stable and able to return to rest after a short while. How cortical networks could gener-

ate complex transient amplification of this sort through recurrent interactions is still poorly

understood.

Here we address the mechanistic underpinnings of such transient collective behavior in rate

models of balanced cortical dynamics, with an emphasis on network connectivity. Randomly

connected balanced networks, though having complex connectivity, do not comply with the

requirements set by the data. Indeed, weakly coupled random networks cannot produce
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the substantial transient departure from background activity observed in the experiments

(Hennequin et al., 2012). Strongly coupled random networks with their inherent chaotic dy-

namics, on the other hand, display complex behavior but do not capture the transient nature

of movement-related activity (Sompolinsky et al., 1988; Rajan et al., 2010). Moreover, in the

scenario underlined above where the initial condition is supposed to dictate the subsequent

evolution of the system, chaotic behavior with high sensitivity to initial perturbations would

seem ill-suited. Ideally, one would need strong and complex recurrent connectivity to coexist

with stable dynamics. Sussillo and Abbott (2009) came up with an elegant solution: chaos

can be controlled through the introduction of an appropriate feedback loop, allowing for the

generation of stable trajectories. While we do not rule out such an attractive possibility,

we explore here an alternative mechanism which also exploits a feedback loop but produces

a different type of dynamics. We hypothesize that motor cortical circuits have strong and

complex excitatory recurrent connectivity, but are stabilized by adequate recurrent inhibition.

We call this new class of balanced networks “cISNs”, or complex Inhibition-Stabilized Net-

works, in analogy with the concept of ISN introduced by Tsodyks et al. (1997) and recently

developed by Ozeki et al. (2009). The goal of our study is not to study how the brain

may learn appropriate inhibitory feedback, e.g. through inhibitory synaptic plasticity (Vogels

et al., 2011; Luz and Shamir, 2012); instead, we provide a principled way of engineering

cISNs with plausible connectivity and focus our study on their dynamical behavior.

As it turns out, cISNs transiently amplify a rich array of network states. The network activity

can be forced to arrive at one of those states by the end of the preparatory period through

the delivery of an appropriate external input. Upon a go cue, the input is withdrawn and

the network is left to evolve freely, eliciting transient single-neuron and collective dynamics

that match the data well. In particular, we reproduce the recently uncovered phenomenon of

rotational ensemble dynamics following the go cue (Churchland et al., 2012). Additionally,

muscle activities may be read out from these noisy transients to yield complex movements.

Interestingly, cISNs connect several previously disparate aspects of balanced cortical dynam-

ics. The mechanism that underlies the generation of large transients here is a more general

form of “Balanced Amplification” (Murphy and Miller, 2009), which was previously discov-

ered in the context of visual cortical dynamics. Furthermore, during spontaneous activity in

inhibition-stabilized networks, a detailed balance of excitatory and inhibitory inputs to sin-

gle cells is established that is much finer than expected from shared population fluctuations

(Vogels and Abbott, 2009; Okun and Lampl, 2008; Cafaro and Rieke, 2010). Overall, our

results demonstrate the possibility for balanced cortical circuits to elicit transients of large

amplitude along many different directions in state space, thus going beyond the transmission

of information through population-averaged firing rates.
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Figure 3.1: Dynamical systems

view of movement planning and ex-

ecution. Typical delayed movement

generation tasks go as sketched in

(A). First comes the instruction of

what movement must be prepared.

The arm must then be held still un-

til the arrival of a go cue, following

which the desired arm movement is

performed. Muscle activities, which

ultimately set the arm in motion,

are thought to be read out from a

population of motor cortical neurons

(“neural dynamical system” in (C)).

Thus, to generate a certain move-

ment, the dynamical system must

produce a specific transient pattern

of joint firing activity (see movement-

related neuron and muscle activities

in (B). The goal of the preparatory

period is to initialize the neural popu-

lation in a state that elicits the right

population transient. Here, we pos-

tulate the existence of movement-

specific populations ((C), green) that slowly activate following the instruction, and shut off very

quickly after the go cue ((B), green). These pools feed the motor cortex population through specific

sets of weights, such that it is brought to the optimal initial state by the end of the preparatory period

((B), black).

3.2 Results

To model the “neural dynamical system” shown in the schematics of Figure 3.1C, we use a

conventional network of N interconnected neurons (Dayan and Abbott, 2001; Gerstner and

Kistler, 2002b; Miller and Fumarola, 2011), described by a vector x(t) of activation variables

which evolve through time according to

τ
dx

dt
= −x(t) +W g [x(t)] + ξ(t) +

∑

mvt k

rk(t)Ik (3.1)

Here g [x(t)] denotes the point-wise application of a saturating nonlinearity, reminiscent of

the effective single-neuron f-I curve in a balanced network operating in the asynchronous

and irregular firing regime (Methods). Thus, g [xi(t)] denotes the momentary firing rate

of neuron i , relative to a baseline rate r0 = 5Hz. In Equation 3.1, τ summarizes the time

constants of the single neurons and synaptic dynamics and is set to 200ms to match the

dominant timescale in the data of Churchland et al. (2012) (Discussion). ξ(t) is a vector of
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N independent, time-varying noisy inputs, and W is the matrix of synaptic connectivity (see

below), which plays a dominant role in shaping the dynamics of the network.

In the data of Churchland et al. (2012), firing rates were obtained by averaging spiking activity

across many trials for each movement condition. Here, we may think of each “neuron” in

our network as a small cluster of neurons that all behave in a similar way, so that g [xi(t)] can

readily be interpreted as a trial-averaged firing rate. Consequently, the level of noise (strength

of ξ(t)) is taken to be relatively low, so that firing rate fluctuations during spontaneous

activity (before target onset) be as small as they appear in the trial-averaged data (Methods).

To model the preparatory period, we assume that for each instructed movement (movement

A, movement B, . . . ), there is a pool of prefrontal cortical neurons that becomes progressively

active during the delay period (Fuster and Alexander, 1971; Amit and Brunel, 1997; Wang,

1999), and feeds the motor network through a fixed set of input weights (IA, IB, . . .) (Fig-

ure 3.1C). This input is therefore modelled in Equation 3.1 by the last term
∑

mvt k rk(t)Ik ,

where rk(t) denotes the temporal activation profile of pool k : either zero if movement k is

not to be performed, or the ramp sketched in green in Figure 3.1B if movement k is to be

prepared and executed (see also Methods). Thus, during movement preparation, the corre-

sponding “command” pool activates, and brings the system to a steady state from which it

is left to evolve freely as the go cue shuts off the command pool. For the preparatory period

to initialize the system in state Vk , the input weight vector Ik must be set to Vk −Wg [Vk ].

3.2.1 Complex inhibition-stabilized networks (cISNs)

For the network to produce complex patterns of transient firing following the go cue, its

connectivity must presumably be equally complex. In situations where the actual network

connectivity is not known, random networks are often the default assumption for local micro-

circuit wiring. Connecting a network randomly does establish complex recurrent pathways,

but random networks suffer from the following dilemna: if synaptic efficacies take on weak

values, any initial condition Vk will decay roughly exponentially following the go cue, and

very little transient amplification is to be expected (Hennequin et al., 2012). If, on the other

hand, synaptic connections are strong, such networks exhibit never-ending chaotic activity

of large amplitude (Sompolinsky et al., 1988), and the transient aspect of the data is lost

(but see Discussion). In the chaotic regime, the mechanism by which the preparatory period

could force the system into a desired initial condition is not even clear, and assuming it

were possible, the network would not respond reliably to such initial condition in the face of

ongoing noise.

We reason that, if there were a way of stabilizing strong random connectivity while preserving
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the connection strengths, then reliable transient amplification of well-chosen inputs would

become possible. Such networks could then support the generation of fast and complex

movements. To test this idea, we engineer connectivity matrices in which the excitatory

subnetwork is randomly wired with strong synaptic efficacies, while stability is rescued by an

adequate inhibitory feedback loop (Figure 3.2A). We call the result a “complex inhibition-

stabilized network”, or cISN. Here stability is understood as the local stability of small firing

rate fluctuations in the vicinity of the baseline r0. Therefore, stability is measured by the

spectral abscissa α(W ) of the connectivity matrix. For the network dynamics to be stable

around the background state, α(W ) must be smaller than one.

Technically, cISNs are obtained here from strongly coupled random balanced networks, of

which the inhibitory synapses are progressively refined to restore dynamical stability (Fig-

ure 3.2). Inhibitory tuning is done following the procedure outlined below and described

in more details in the Methods. Briefly, the stabilization procedure implements a gradient

descent on the smoothed spectral abscissa (Vanbiervliet et al., 2009), an upper bound on

α(W ) of which the derivatives with respect to the inhibitory synaptic weights can be com-

puted efficiently. The gradient descent operates under three constraints. First, inhibitory

weights must remain negative, that is, inhibitory neurons must remain inhibitory. Second, for

reasons discussed below, we enforce a global balance of excitation and inhibition by keeping

the average inhibitory weight at three times its excitatory counterpart. Finally, to increase the

plausibility of the resulting connectivity, the density of inhibitory connections is constrained

to a maximum of 40% (Methods). Importantly, although this procedure could perhaps be

approximated by a biologically feasible inhibitory plasticity rule (Vogels et al., 2011; Luz and

Shamir, 2012), we consider it more conservatively as a principled way of engineering cISNs

under constraints, yielding functional circuits that we can further analyze and confront to

experimental data. Thus, it is implicitly assumed that the exact procedure by which one (or

the brain) arrives at a cISN does not really matter, in other words, that any network that

qualifies as a cISN would behave in similar ways as the networks we obtain here (Discussion).

We illustrate the above stabilization procedure on a randomly connected balanced network

of size N = 200 (100 exc. neurons, 100 inh. neurons) with strong synaptic weights, shown

in Figure 3.2C. All connections are initially formed at random with probability p = 0.1,

non-zero synapses assuming a value of either +w0/
√
N or −3w0/

√
N depending on the

nature of the presynaptic partner. The weight strength w0 is chosen so as to yield strongly

unstable dynamics, with an initial spectral abscissa of 10 (Figure 3.2B). Perhaps surprisingly,

stability in such random balanced networks cannot be rescued by merely increasing the overall

relative strength of inhibition (Rajan and Abbott, 2006), reflecting the complexity of the

recurrent pathways induced by random wiring. Thus, inhibition must be finely tuned in order

to stabilize the circuit, which is successfully achieved by our inhibitory tuning procedure
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Figure 3.2: Complex inhibition-

stabilized networks (cISNs)

match the dynamical behavior of

motor populations qualitatively.

(A) Schematics of our approach.

A population of excitatory neurons

is recurrently connected through

strong and intricate pathways.

This population alone would

be dynamically unstable, but is

stabilized by fine-tuned inhibitory

feedback. (B) Eigenvalue spectra

of the unstable random balanced

network from which the cISN

derives (gray), and of the obtained

cISN (black). Stability requires all

the eigenvalues to lie to the left

of the dashed vertical line. Note

the large negative real eigenvalue,

which corresponds to the spatially

uniform activity pattern (the “DC”

mode). (C) Matrices of synaptic

connectivity before (unstable) and

after (cISN) stability optimization

through inhibitory tuning. Matrices

were thinned out to 40 × 40 (in-

stead of 200×200) for visualization

purposes. The bottom row shows

the magnitude of all the inhibitory

input synapses to a single sample

neuron, in the unstable network

(gray) and in the corresponding cISN (black). (D) Distribution of inhibitory synaptic weights in

the unstable network (10% connection density, gray peak at wi j ' −3.18) and in the stabilized

version (40% connection density, black). The mean inhibitory weight is the same before and after

optimization (' −0.318, gray and black triangle marks). (E) Experimental data, adapted from

Churchland et al. (2012). Each trace denotes the trial-average firing rate of a single cell (two

sample cells are shown here) during a delayed reaching task. Each trace corresponds to one of 27

different reach types (target position / reach curvature). Vertical scale bars denote 20 spikes/sec.

The go cue is not explicitly marked here, but occurs about 200ms before movement onset. (F)

Time-varying firing rates of two neurons in the cISN, for 27 “conditions”, each characterized by a

different collective steady state of preparatory activity (see text). (G) Experimental data adapted

from Churchland et al. (2012), showing the first 200ms of movement-related population activity

projected onto the top jPC plane. Each trajectory corresponds to one of the 27 conditions mentioned

in (E). (H) Same analysis as in (G), for the cISN.

(Figure 3.2B). The constrained gradient descent converges, and the spectral abscissa reaches

a final value of about 0.18� 1, indicating that feedback inhibition is properly tuned against

the distabilizing effects of the strong excitatory recurrence. The distribution of inhibitory
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synaptic strengths in the resulting cISN is wide (Figure 3.2D), and the connectivity looks

random in most respects, essentially because the unstable excitatory connectivity is random

in the first place (Figure 3.2C). However, shuffling the inhibitory weights destroys stability

entirely (not shown).

In the following, we report on this single cISN, but we found it was always possible to stabilize

strongly recurrent excitatory networks, provided the feedback loop was given enough “degrees

of freedom”, i.e. provided there were enough inhibitory synapses to optimize (number of

inhibitory neurons, multiplied by the prescribed maximum density of inhibitory connections).

Similarly, all cISNs we built operated in a qualitatively similar dynamical regime as the one

we are about to report. We also note that the optimization of the connections made by the

inhibitory population onto itself is as crucial to stability as the optimization of the connections

made onto excitatory cells (something already pointed out by Tsodyks et al. (1997) in their

analysis of simpler, 2-dimensional ISNs).

3.2.2 cISNs exhibit complex transient amplification

Now that we know how to build cISNs, we may ask whether they can indeed produce the

kind of complex transient behavior that is seen in the data of Churchland and Shenoy (2007)

and Churchland et al. (2012) (Figure 3.2E). We find that, provided the preparatory period

leaves the system in an appropriate initial condition by the time the go cue arrives, cISNs

evoke strong and multiphasic transient firing patterns that match the data qualitatively

(Figure 3.2F). In Churchland et al. (2012), the data was obtained by recording the activity

of populations of neurons in the motor and premotor cortical areas while a monkey was

performing delayed arm movements in a setting similar to the one sketched in Figure 3.1A.

For their data shown in Figure 3.2E, there were 27 different reach conditions, defined by

various combinations of target position and instructed reach curvature. To implement this

task in our model (Figure 3.2F), we assume the presence of a command pool for each of 27

virtual conditions, each pool projecting to the cISN with its own set of input weights. Input

weights are chosen so that the preparatory period for each movement initializes the cISN in

a state different across conditions but from which large transients are invariably triggered

(see below, and Methods).

How must the network be “prepared” for large transients to be elicited as observed in the

data? To find the preferred initial conditions of the cISN, we rephrase the problem of

collective input tuning as one of energy maximization. We introduce the notion of “evoked

energy” E(a), defined as the integrated squared length of the activity vector as the network
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evolves freely without input noise from some initial condition x(t = 0) ≡ a:

E(a) =
2

τ ‖a‖

∫ ∞

0

‖g[x(t)]‖2 dt. (3.2)

Here 2/τ ‖a‖ is a normalizing factor such that E = 1 for an unconnected network (W = 0)

irrespective of the initial condition a. Thus, the energy E(a) measures both the amplitude

and duration of the collective transient evoked by initial condition a. The problem of finding

the initial condition a that evokes maximum energy turns out to have a simple solution in

the linear regime, i.e. in situations where the firing rates of the neurons vary in a range

over which the slope of their gain function g[·] does not change greatly (Methods). We

can even compute a complete basis {a1, a2, . . . , aN} of N preferred network states, each

of which is successively defined as the initial condition that evokes maximum energy with

the constraint that it must be orthogonal to all previous ones. This analysis reveals that, in

the linear regime, our cISN transiently amplifies a large set of orthogonal initial conditions

(Figure 3.3A). Following initialization in its top preferred initial state a1, the energy it evokes

is almost 25 times greater than expected from a mere exponential decay of the initial condition

(the default behavior of the individual neurons taken in isolation). The length of the activity

vector grows transiently to almost four times its initial length, after which the network

returns to a state of baseline firing (Figure 3.3C, top). The return to rest occurs within

a time ' 3τ , where τ is the intrinsic time constant of a single cell. Note that some cells

become transiently more active than baseline, some become less active, and some display

multiphasic firing rate patterns. Overall, the population-averaged firing rate remains roughly

constant during the transient (red line in Figure 3.3C, middle). A similar behavior, though

progressively attenuated, is observed for the top ∼ 100 preferred initial states (top ten are

shown in Figure 3.3C, upper plot). An equally large number of initial conditions are on the

contrary actively suppressed by the recurrent dynamics (Figure 3.3A). For such initializations,

the network goes back to baseline firing in a time much shorter than τ , and no transient

amplification occurs along the way (Figure 3.3C, bottom). Amplification in the cISN is

selective, in the sense that only the first 17 initial states (out of 200 possible orthogonal

states) are amplified by a factor greater than 3E0 ' 11.25, where E0 is the energy that a

random initial condition is expected to evoke (the average of the energy curve in Figure 3.3A,

see the black triangular mark).

The above analysis of the cISN’s preferred initial states holds in the linear regime. Clearly,

some aspects of the data of Churchland et al. (2012) reveal nonlinear phenomena: for

example, many cells see their firing rates quickly decrease down to zero following the go

cue, which therefore triggers the lower saturation of their f-I curve (Figure 3.2E). The linear

assumption does not hold in the model either, as soon as firing rates during the preparatory

period spread over a realistic range. This is precisely because the preferred initial conditions
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Figure 3.3: Transient amplification in cISNs – (A) The energy E evoked by N = 200 orthogonal

initial conditions {a1, a2, . . . , aN} as the network evolves linearly (g(x) = x) with no further input

(ξ(t) = 0) according to Equation 3.1. The energy (Equation 3.2) is normalized such that is equals

one for an unconnected network (W = 0) irrespective of the initial condition (dashed horizontal

line). Each successive initial condition ai is defined as the one that evokes maximum energy, within

the subspace orthogonal to all previous input patterns aj<i (Methods). The black triangular mark

indicates the mean E0, or the expected evoked energy when the neurons are initialized in random

and independent activity states. (B) Single-unit input-output nonlinearity (g[·] in Equation 3.1). (C)

Dynamics of the cISN in the linear regime (g[x ] = x). Top: time-evolution of the norm ‖x(t)‖
of the network activity as the dynamics unfold from either of the 10 best or 10 worst initial states

(same color code as in panel (A)). The dashed gray line shows exp(−t/τ), i.e. the behavior of an

unconnected pool of neurons. Bottom: sample firing rate responses of 10 randomly chosen neurons

following initialization in state a1 or a199. The red line indicates the momentary population-averaged

firing rate. (D,E) Same as in (C), now with the nonlinear gain function shown in (B). Unlike in the

linear case, the dynamics now depend on the spread σi of the initial firing rates across the network

(1.5Hz in (D), 2Hz in (E)). The larger this spread, the longer the duration of the population transient.

When σi > 3, the network initiates self-sustained (chaotic) activity (not shown).

that we search for are indeed amplified, so that some neurons would in principle like to

decrease their firing rates by more than the baseline r0 following the go cue, which is not

allowed by the saturating nonlinear gain function (Figure 3.3B). Nevertheless, the onset

of amplification is a linear phenomenon, so the above linear analysis of collective tuning

provides a very good guess of the network’s preferred input patterns in the nonlinear regime

(Figure 3.3D and 3.3E).

By design, stability in the cISN is achieved only in the vicinity of the background state,

i.e. for relatively small firing rate fluctuations around r0. When the spread σi of the initial

firing rates reached by the end of preparatory period is large enough, the network initiates

a collective transient similar to what is observed for smaller initial states, but the transient

then goes on for much longer durations (Figure 3.3E). In fact, for large initial conditions
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(σi > 3), the network is apparently able to sustain activity indefinitely, just like an untuned

chaotic network would. This dynamical behavior is beyond the scope of this study. Here we

calibrate the projection weights of the movement command pools such that, by the end of

the preparatory period, the firing rates in the cISN reach a standard deviation of σi = 1.5Hz.

In this case, provided the initial state spans the network’s top 10 initial conditions or so,

complex transient dynamics unfold over only a second or so, which is of the same order as

the duration of the movements we consider later.

3.2.3 Rotational collective dynamics in cISNs

Churchland and colleagues reported another important aspect of the transient collective

dynamics in motor and premotor cortical areas following the go cue: the complexity of

the single-neuron multiphasic responses is in fact hiding orderly rotational dynamics on the

population level. That is, they were able to find a plane of projection in which the vector of

population firing activity (corresponding to g [x(t)] in our model) would start rotating after

the go cue, and rotating consistently in the same direction for all target locations and reach

curvatures (Figure 3.2G). This plane was found by applying a dynamical variant of principal

component analysis called jPCA to the data (Churchland et al. (2012) – see also Methods

and subsection 3.5.3). Surprisingly, such an oscillatory collective behavior is also present

in our model, as shown in Figure 3.2H. Just after the go cue, the cISN population activity

strongly rotates in the top jPC plane, and rotates consistently in the same direction for all

27 initial conditions previously chosen to mimic the 27 types of arm reaches in Figure 3.2F.

3.2.4 Complex movement generation

The complicated, multiphasic nature of the single-neuron firing rate transients in cISNs sug-

gests the possibility of reading out equally complex patterns of muscle activity. We illustrate

this idea in a task where the muscles must produce either of two target movements (“snake”

and “butterfly”) as depicted in Figure 3.4A. Each movement must be generated from the

first 500ms of network dynamics following the go cue. The preparatory input for the “snake”

movement is chosen such that, by the arrival of the go cue, the network activity matches

the network’s preferred initial condition a1. Similarly, planning the “butterfly” movement

sets the network in its second preferred initial state a2. Thus, for both movements, the go

cue triggers the same kind of transient collective dynamics that we have discussed above

(e.g. Figure 3.2F). A single pair of muscle linear readouts is then learned on the basis of

100 noisy trials for both movements (Methods). The two complex trajectories are properly

learned (compare the five test trials in Figure 3.4C), although some of the finer details of



62 CHAPTER 3

0

4

8

12

S
N

R

200 ms

prepare go

A D

B (cISN)

C (WEAK RANDOM)

prepare
snake

go

ne
ur

on
s

(5
tr

ia
ls

ea
ch

) 200 ms

5 Hz
prepare

butterfly
go

ne
ur

on
s

200 ms

5 Hz

t=0

t=144ms

t=350ms

prepare
snake

go

ne
ur

on
s

200 ms

5 Hz
prepare

butterfly
go

ne
ur

on
s

200 ms

5 Hz

t=0

t=144ms

t=350ms

random, snake
random, butterfly
cISN, snake
cISN, butterfly

t=0

t=180ms

t=420ms

t=0

t=180ms

t=420ms

cISN

prepare

snake

prepare

butterfly

horizontal

position

vertical

position

Figure 3.4: Generation of complex movements through cISN dynamics. (A) Two muscles (gray

circles) representing vertical and horizontal positions are activated as linear combinations of the single

neuron activities in the cISN during the first 500ms following the go cue. The linear readouts are

learned so that the joint activation of the two muscles draws either a snake or a butterfly, depending

on which command pool (green circles) activates during the preparatory period. Learning is done on

100 training trials, and we report here on 5 test trials. (B) Firing rates versus time for 10 units in

the cISN, as the system prepares and executes either of the two target movements. Five trials are

shown for each unit. The corresponding muscle trajectories following the go cue are shown for five

test trials (gray traces) and compared to the target movement (black). (C) Same as in (B), for

a weakly connected (untuned) random balanced network. The spectral radius of the corresponding

connectivity matrix was set to 0.5. (D) Time evolution of the signal-to-noise ratio (SNR) for both

movements and both networks (see text).

the target movements (e.g. the fast turns in the snake’s tail) cannot be captured owing to

the limited number of timescales present in the single-cell firing rate responses.

The quality of the linear readout depends upon two properties. First, it depends on the signal-

to-noise ratio (SNR) in the population activity itself. If, on average across trials, the single

unit firing rates were to deviate only weakly from baseline during movement-related activity,

the magnitude of the population response would be dominated by the recurrent filtering of

the noise term ξ in Equation 3.1, which is not movement-specific and varies randomly from
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trial to trial. This concern is expressed in our definition of the SNR at time t:

SNR(t) =

√√√√
∑N
i=1 [µi(t)− µ(t)]2

∑N
i=1〈εi(t)2〉

(3.3)

where 〈·〉 denotes trial averaging, µi(t) = 〈g[xi(t)]〉 is the trial-averaged firing rate of unit

i at time t (the “signal”), µ(t) =
∑
i µi(t)/N, and εi(t) = g [xi(t)] − µi(t) is the noise

present in unit i . Thus, the signal is measured by the spread of the trial-averaged momentary

firing rates across the population, while the noise is given by the average variance of the

trial-to-trial rate fluctuations in single units. In our model, as long as the dynamics remain

approximately linear, the noise term (denominator in Equation 3.3) is essentially set by the

amplitude of the noisy inputs ξ(t) in Equation 3.1. The signal power (numerator), on the

other hand, critically depends on the selective amplification of the preparatory states by the

recurrent dynamics. Here the preparatory states for the “snake” and “butterfly” movements

are purposely chosen as the top two preferred initial conditions (a1 and a2) of the cISN. As

a result, the trial-averaged firing rates in the network transiently expand around the baseline

rate following the go cue (Figure 3.4B). Accordingly, the SNR transiently increases by a

factor of 3 or more (Figure 3.4D). The quality of the readout is also influenced by the

magnitude of the readout weights found by the linear regression (relative to the amplitude of

the movement itself). The noisy trial-to-trial fluctuations of the network activity introduce

random errors in the muscle trajectories, with a variance proportional to the squared norm of

the optimal readout weights. Large weights imply that muscle activities are obtained from

cancellations between large positive activities in some neurons and large negative activities

in some other neurons (this situation is more commonly referred to as overfitting). Such

solutions are likely to arise when the network dynamics are not rich enough in comparison

with the complexity of the desired movements. Here, the cISN generates complex patterns

of firing: neurons display asynchronous, multiphasic firing patterns that form a rich set of

basis functions (Figure 3.4B) from which complex movements may be decoded.

Weakly connected random balanced networks are one example of networks that have none

of the above two features: they do not act as strong selective amplifiers, and the activity

transients they elicit are close to simple exponential decays (Figure 3.4C). We test such a

network (randomly connected balanced network with a spectral abscissa of R = 0.5) on the

same movement generation task. The quality of the decoded movements is much poorer,

and more variable from trial to trial (compare the five test trials in Figure 3.4C).
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3.2.5 Balanced amplification

We have seen that the cISN strongly but transiently amplifies certain “preferred” network

states. The network activity after 200ms of recurrent processing has much larger amplitude

than, but bears little spatial resemblance to, the initial condition. This is reflected in the fast

decay of the correlation coefficient between the network activity and the initial state (Fig-

ure 3.5A, black). Interestingly, the dynamics of this correlation are not the same, however,

when the excitatory and inhibitory sub-populations are considered separately. The inhibitory

activity becomes very quickly negatively correlated with its initial state, while the excitatory

activity remains positively correlated for the entire duration of the transient (compare the

red and blue curves in Figure 3.5A). This indicates that, during the course of amplification,

the spatial pattern of excitatory activity is amplified but does not change much, while that

of inhibitory activity quickly reverses (i.e. changes sign) in order to quench the excitatory

transient and pull the system back to rest. Such dynamics are reminiscent of “balanced

amplification”, a mechanism previously described by Murphy and Miller (2009) to account

for the spontaneous emergence of structured activity patterns in a model of primary visual

cortex. Balanced amplification refers to the transient amplification of “difference modes” in

which the excitatory and inhibitory sub-populations fire in spatially equal but opposite ways,

into “sum modes” in which the activity of both populations equalize. Here, our cISN is not

connected following any clear topology. Thus, it is difficult to define sum/difference modes as

in Murphy and Miller (2009), that is, as spatial patterns of balance/imbalance in firing activ-

ity. However, it is possible to define sum/difference modes as patterns of balance/imbalance

in the excitatory and inhibitory inputs across the population. Figure 3.5C shows the dynamics

of the Pearson correlation coefficient rEI between the vector of momentary excitatory inputs

in the network (the product of the N × N/2 excitatory sub-matrix of W with the vector of

excitatory firing rates at time t), and its inhibitory counterpart. The preferred initial states

tend to break the balance of excitatory and inhibitory inputs, yielding significantly negative

correlations between these two input vectors (“difference” modes). The input balance is

quickly restored by the recurrent dynamics (“sum” modes), with a correlation topping ∼ 0.8

after 160ms following the first preferred initial condition. Sample pairs of excitatory and

inhibitory input currents are shown in Figure 3.5B for two units to illustrate the effect.

As in Murphy and Miller (2009), amplification in the cISN relies on the connectivity matrix

W being mathematically “nonnormal” (the eigenvectors of W do not form an orthogonal

basis). The above analysis in terms of sum/difference modes suggests that the connectiv-

ity in the cISN may be functionally equivalent to a set of feedforward links from difference

modes to sum modes. Murphy and Miller (2009) used a Schur decomposition of W to reveal

these feedforward connections and to draw a simple picture of the dynamics. This was made
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Figure 3.5: Balanced

amplification in cISNs.

The network is initialized in

either of its first, fourth,

seventh or tenth preferred

initial states, from which

the recurrent dynamics run

freely with no further in-

puts. The amplitude of

the initial condition is cho-

sen weak enough for the

dynamics of amplification

to remain linear (c.f. Fig-

ure 3.3). In all pan-

els here, the first 400ms

of dynamics are shown.

(A) Time course of the

Pearson correlation coeffi-

cient between the network

activity (black) and the ini-

tial state. The red (resp.

blue) line denotes the same

analysis, restricted to the

activity of the excitatory

(resp. inhibitory) neurons.

(B) Time course of the excitatory (red) and inhibitory (blue) inputs for two sample units. (C) Time

course of the Pearson correlation coefficient rEI between the vectors of momentary excitatory and

inhibitory inputs to the N single units. The preferred initial states tend to break the input balance.

The recurrent dynamics then restore the excitation-inhibition balance in less than 200ms. (D) Net-

work activity expressed in a basis of orthogonal activity modes {a1, . . . , a100, b1, . . . , b100} that yields

a parsimonious representation (see text). Colors represent the projection of the population activity

onto the corresponding mode.

possible by the topological regularities of their V1 model connectivity. Here we take an alter-

native approach to finding a basis of orthogonal vectors in which the network activity takes a

simple form. We know that the strongest feedforward links should originate mostly from the

top preferred initial states of the network, already found above (c.f. Figure 3.3). We thus

take the first N/2 = 100 top preferred initial states to form the first half {a1, a2, . . . , a100}
of the orthogonal basis. To complete the basis, we take the network’s response to each of

these initial conditions at time t = 2τ/3 ' 133ms (roughly the time at which the network

response has largest amplitude), resulting in
{
b′1, b

′
2 . . . , b

′
100

}
. We then orthonormalize the

b′is against the ais, and obtain a complete orthogonal basis {a1, . . . , a100, b1, . . . , b100} in

which we hope the network dynamics will have a simple form. The projection of the network

activity onto those basis vectors is depicted in Figure 3.5D, following initialization in each

of the first, fourth, seventh and tenth preferred network states. It becomes apparent that
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the network’s response to a1 is dominated by mode b1, and similarly for the subsequent

pairs (ai , bi) for which significant energy is evoked1. Note that since all the bis are orthog-

onal to one another, the various responses to the top preferred initial states are therefore

highly distinguishable. This explains why the same network could elicit two very different

muscle trajectories provided the network was initialized in different preferred states for each

movement (Figure 3.4B).

Were the cISN connectivity to embed only pairwise feedforward links of the form ai → bi

between activity modes, single-cell responses would not look multiphasic as in Figure 3.3C.

Indeed, ai would only decay, sourcing bi which would thus rise and decay (Murphy and Miller,

2009), and such a monophasic transient would show up in the single-neuron responses too.

Looking more closely at the details of Figure 3.5D, one may see that following initial state

ai , a significant amount of energy is also developed and distributed along the other bjs

(j 6= i). Those responses are mostly biphasic (see the fine details of the heat maps in

Figure 3.5D), and interfere very little with the response in bi at time 2τ/3. Thus, although

the network response at the peak of amplification is very well described in terms of pairwise

balanced amplification links, what happens before and after is more complicated and reflects

the complex nature of the excitatory connectivity that cISNs are obtained from.

3.2.6 Structure of spontaneous activity in cISNs

We now look at the structure of spontaneous activity in cISNs. Here we define “spontaneous”

activity as the network activity in the absence of a specific stimulus, i.e. when the inputs to

each neuron are restricted to i) a private source of noise (ξ(t) in Equation 3.1) and ii) the

recurrent synaptic input. The external noise being independent across neurons, it randomly

stimulates each of the orthogonal activity modes {a1, a2, . . . , aN} with equal intensity, and

so long as the dynamics remain reasonably linear we expect the network’s responses to those

input fluctuations to superimpose. Since, on average, the ai input patterns are amplified by

the recurrent circuitry (Figure 3.3A), single-unit spontaneous activity fluctuations are larger

in the cISN than they would be in an unconnected network with identical input statistics

(Figure 3.6A). Moreover, because amplification is selective, spontaneous activity fluctuations

in the cISN are expected to be comparatively larger along those modes b1,b2,. . . that are best

amplified (c.f. Figure 3.5D). This is likely to shape the structure of the spontaneous pairwise

correlations in the cISN. For example, neurons that are jointly and strongly active in the most

amplified activity pattern b1 are likely to have positively correlated spontaneous fluctuations.

1In fact, the basis we have just derived is an approximate Schur basis for the matrix exp [2(W − 1)/3],

which maps the initial condition onto the network response after 2τ/3 seconds of recurrent dynamics. That

matrix becomes lower-triangular in the new basis, with all significant entries lying along the secondary diagonal

(i.e. ti j 6= 0 for i = j + N/2).
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Figure 3.6: In cISNs, excitatory and inhibitory inputs to single cells are precisely matched

during spontaneous activity. (A) Black: spontaneous fluctuations around baseline rate (r0 = 5Hz ,

dashed horizontal line) of a sample cell in the network. The corresponding rate distribution is shown

on the right (black), and compared to the distribution obtained if the cell were not connected to the

rest of the network (gray). The cyan line denotes the momentary population average rate, which

fluctuates much less. The strength of the input noise is chosen such that firing rates remain in a range

where the gain function is approximately linear. (B) Histogram of pairwise correlations measured on

100 seconds of spontaneous activity. The black triangular mark indicates the mean (∼ 0.014). (C)

Excitatory (red) and inhibitory (blue) inputs to two sample cells, normalized to z-score. These are

compared in four different ways, and the corresponding Pearson correlation coefficient (over 100

seconds of activity) is indicated above each combination. (D) Black: cross-correlogram of excitatory

and inhibitory inputs to single cells, each normalized to z-score (cf. (C), top row). The solid line is

an average across all neurons; flanking lines denote ± 1 standard deviation. Inhibition lags behind

excitation by a few milliseconds. Cross-correlating the E input into one cell with the I input into

another cell (cf. (C), bottom row) yields the gray curve, which is an average over 1,000 randomly

chosen such pairs in the cISN.

Many pairs of neurons in the cISN are noticeably correlated (positively as well as negatively),

as seen from the wide distribution of spontaneous pairwise correlations in Figure 3.6B. This

distribution has a small but significant positive mean (∼ 0.014) which reflects the small

fluctuations of the population-averaged momentary firing rate (cyan line in Figure 3.6A), to

which – by definition – all cells contribute.

The mechanism of balanced amplification described above (3.2.5) has an interesting con-

sequence on the spontaneous activity: excitatory and inhibitory inputs to single cells are

highly temporally correlated (Figure 3.6C). This is because the network quickly amplifies

small patterns of imbalance in those inputs into large activity transients that re-establish the

balance (Figure 3.5B and 3.5C). At any time thus, the vector of excitatory inputs across the

network is to be highly correlated with its inhibitory counterpart. Since spontaneous activity

here is stationary, the average momentary balance of E and I inputs across the network

translates into an average temporal balance of those inputs in the single units (Figure 3.6C,

top row). The Pearson correlation between excitatory and inhibitory synaptic input streams
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averages to ∼ 0.66 across cells. Furthermore, we have seen that it is mostly the spatial

pattern of inhibitory activity that reverses during the course of amplification to restore the

balance, while the excitatory activity is much less affected (Figure 3.5A). Thus, inhibitory

inputs are expected to lag behind excitatory inputs by a few milliseconds during spontaneous

activity, which is indeed the case as shown by the shift in their average cross-correlogram

(Figure 3.6D).

That excitatory and inhibitory inputs should be somewhat correlated during spontaneous

activity is a known fact in the theory of balanced cortical circuits (Renart et al., 2010), and

the non-zero fluctuations of the population-averaged firing rate are an obvious source of

such input correlations (see 3.5.2 of the Supplemental Data). Here, interestingly, excitatory

and inhibitory inputs are correlated more strongly than expected from the magnitude of the

shared population fluctuations. This can be seen by correlating the excitatory input stream

taken in one cell and the inhibitory input stream taken in another cell (Figure 3.6C, bottom

row). Such correlations average to only ∼ 0.26 (to be compared with 0.66 above – see

Figure 3.6D). We return to this in the Discussion.

3.3 Discussion

“In what regime does the cortical circuit operate”? Ozeki et al. (2009) recently raised this

question, and partially answered it for the cat visual cortex (V1). They argued that V1 oper-

ates as a network that i) would be dynamically unstable in the absence of inhibitory feedback,

and ii) is successfully stabilized by inhibition. They called a network so defined an “ISN”, for

“Inhibition-Stabilized Network” (see also Tsodyks et al. (1997)), and found that ISNs explain

most known aspects of the suppression of visual cortical responses by appropriate stimulation

of the receptive field surround. They were also able to verify a few stringent experimental

predictions made by ISN dynamics. Here we have pursued the idea that local microcircuits,

as opposed to larger cortical areas such as V1, may also operate as ISNs, despite seemingly

unstructured motifs of synaptic wiring. We have introduced the concept of “complex ISNs”

to broadly define balanced networks in which the recurrent excitatory connectivity is intricate,

strongly unstable on its own, but stabilized by an appropriate inhibitory feedback loop. To

study their dynamics, we have provided a principled way of instantiating networks of this new

class, through progressive and optimal refinement of the inhibitory synaptic connectivity.

We have found cISNs capable of selective transient amplification of specific input patterns.

The single-neuron as well as the collective dynamics in cISNs are in good qualitative agree-

ment with the response properties of motor and premotor cortical neurons during arm reach-

ing (Churchland et al., 2012). Elaborating on the putative functional role of such complex
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transients, we have found that cISNs can be used as motor “engines” to generate compli-

cated and reliable movements. Reading out muscle trajectories from the cISN population

activity does not require elaborate decoding schemes: simple linear readouts are good enough.

Interestingly, the generation of noise-robust, complex movements requires forcing the cISN

into either of a few specific preparatory states through the delivery of appropriate inputs,

which are then withdrawn to release the network into free movement-generating dynamics.

A qualitatively similar phenomenon seems to take place in the data too: (pre)motor cortical

circuits first engage into slow preparatory dynamics, settling into some steady-state activ-

ity prior to eliciting the movement-related amplifying transients (Churchland et al., 2010a,

2012).

Although the dynamics of cISNs are strikingly similar to those of motor and premotor cortical

populations during reaching, and although complex movements may indeed be read out from

cISN population transients, cISNs by themselves do not constitute a complete model of

movement generation. Several key aspects have clearly been ignored here, the first of which

is the control of movement speed and duration that are mostly set here by the intrinsic

time constant of the single neurons in the cISN. Likewise, we have completely left aside the

problem of active movement control, by restricting our study to an open-loop system: the

cISN does what it does following the initial condition, the movement is then merely read

out from the instantaneous population activity, and there is no mechanism to correct for

large external disturbances that may come in after the go cue. Proper movement control

undoubtedly requires output signals – such as a visual appreciation of the actual arm position

– to be fed back into the system. Nevertheless, the control-theoretic method we have used

here to stabilize the network (minimization of the smoothed spectral abscissa) is likely an

interesting tool to be used in future studies of feedback-mediated control in neuronal networks

(see also Sussillo and Abbott (2009)).

The generation of large transients in cISNs relies primarily on the mechanism of “balanced

amplification”, first described by Murphy and Miller (2009) in a model of V1 synaptic orga-

nization. The authors argued that, in networks with strong excitation balanced by equally

strong (or stronger) inhibition, small patterns of spatial imbalance (difference modes) should

drive large activity transients in which neighboring excitatory and inhibitory neurons fire hand

in hand (sum modes). The absence of a topology in cISNs makes it impossible to tell

which neuron is a neighbor to which, thus sum and difference modes are difficult to define.

Nevertheless, we have shown that sum/difference modes may alternatively be defined as

balance/imbalance in the patterns of excitatory and inhibitory synaptic inputs across the

network. With such definitions, we have shown that balanced amplification – which we con-

tinue to define as the consequence of strong, pairwise feedforward links from difference to

sum modes hidden in the connectivity – largely contributes to the dynamics of cISNs.
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cISNs capture a key experimental observation regarding how excitation and inhibition inter-

act: during spontaneous activity, balanced amplification of noisy external inputs establishes

an exquisite temporal balance of excitatory (E) and inhibitory (I) inputs to single cells. This

phenomenon has been observed in several brain areas, and on levels as different as the trial-

averaged E and I synaptic input conductances in response to sensory stimuli (Wehr and Zador,

2003; Mariño et al., 2005; Froemke et al., 2007; Dorrn et al., 2010), single-trial synaptic re-

sponses in which the trial-average has been removed (“residuals”, Cafaro and Rieke (2010)),

and spontaneous activity (Okun and Lampl, 2008; Cafaro and Rieke, 2010). In cISNs, the

detailed balance emerges from the simultaneous inhibitory anihilation of many distabilizing

excitatory pathways initially present in the circuit, which goes beyond simply stabilizing the

overall population activity. Here, a word of caution must be given: how should we interpret

the fine temporal balance of excitatory and inhibitory inputs reported in experiments? The

most obvious source of E/I input correlations are the joint fluctuations of the entire local

pool of neurons, E and I included. Indeed, consider a single cell that receives hundreds of

E and I synaptic inputs from the local network. Assuming that the E presynaptic partners

have only weakly correlated firing rate fluctuations, the compound E conductance that this

cell receives is effectively a measure of the average excitatory activity µE(t). Similarly, the

compound I conductance is a measure of the average inhibitory activity µI(t). Now, it turns

out the strongest balanced amplification link is made by the spatially uniform difference mode

(1, . . . , 1,−1, . . . ,−1) onto the spatially uniform sum mode (1, 1, . . . , 1). This is true in any

balanced network made of separate populations of E and I neurons, irrespective of the details

of the connectivity (Murphy and Miller, 2009; Hennequin et al., 2012; Kriener et al., 2008).

Thus, unless the sum mode also exerts a strong negative feedback onto itself (see below), the

sum mode is driven into large fluctuations during spontaneous activity, causing co-variations

in µE(t) and µI(t), and thus co-variations in the E and I input conductances (see also 3.5.2

in the Supplemental Data). Here though, we have found that E/I input correlations in the

cISN are 2.5 times greater than expected from the above argument (Figure 3.6D). How can

this be? The answer lies in the nature of the pairwise balanced amplification links discussed

above: cISNs strongly amplify patterns of imbalance in the E and I inputs across the network,

into large patterns of balanced inputs. Importantly, the corresponding activity patterns are

centered, i.e. do not interfere with the DC mode. Thus, E/I input correlations may not only

emerge from large DC fluctuations, but also from the spontaneous amplification of a collec-

tion of centered modes that induce balanced E and I inputs. In which proportions do each

of the above two sources of correlations contribute to the balance of input conductances in

the cortex? The earliest evidence for the input E/I co-tuning during spontaneous activity ac-

tually came from paired recordings in different, neighbouring cells (Okun and Lampl, 2008).

Thus, by experimental design, only E/I correlations originating from large DC fluctuations

was being searched for and could be found. We do not know how greater the measured
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E/I input correlation coefficient would have been, had the E/I conductance been recorded

simultaneously in single cells. Conversely, a recent study in the mouse retina was able to

measure E and I input conductances (near)-simultaneously in single cells, but did not per-

form cross-measurements in pairs of different cells (Cafaro and Rieke, 2010). Here again, we

have no way of estimating the relative contributions of both alternatives. Our results suggest

that, in order to be more conclusive, later experiments should ideally attempt to measure the

correlation coefficient of E and I inputs both to single cells and to pairs of different cells in

the local microcircuit. Should the latter be greater than the former, cISNs dynamics would

be a plausible candidate circuit structure, and balanced amplification a plausible mechanism.

Here, we have used an optimal inhibitory stabilization algorithm to instantiate networks

from the (potentially large) class of cISNs. Although we have been careful to constrain the

optimization procedure to yield plausible network connectivities, our update rule for inhibitory

synapses is not (and was not primarily meant to be) a plausible synaptic plasticity mechanism.

Indeed, the prescribed synaptic modifications are not readily expressed as functions of pre-

and post-synaptic activities. Thus, it would be interesting to relate cISNs (and optimal

network stabilization) to recent models of inhibitory synaptic plasticity (Vogels et al., 2011;

Luz and Shamir, 2012; Kullmann et al., 2012). In Vogels et al. (2011) (see the last figure

of their paper), memory patterns were stored as strengthened connections among pools of

excitatory neurons. These connections were strong enough to destabilize the background

state, where all network neurons would usually fire at low rate. A simple inhibitory plasticity

rule was then shown to restore stability, despite the strengthened excitatory connections being

left untouched (as in our study). The memory patterns could then be transiently recalled

by breaking the balance of excitation and inhibition in (some part of) the corresponding cell

assembly. The network would go back to its background state of low activity as soon as the

stimulation was switched off. Such transient amplification behavior shows all the defining

characteristics of balanced amplification in (c)ISNs, which suggests interesting ties may exist

between their local inhibitory plasticity rule and our optimal stabilization procedure.

3.4 Methods

3.4.1 Network setup and dynamics

The network dynamics are given by Equation 3.1, which we integrate using a standard

fourth-order Runge-Kutta method. The noise term ξ(t) is modelled as a collection of N

independent Ornstein-Uhlenbeck processes with time constant τξ = 50ms (N is the network

size). The variance of those processes is set to σ2
0(τ + τξ)/τξ such that, in the limit of very
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weak synaptic connectivity, the firing rate of each cell in the network would fluctuate with a

standard deviation σ0 = 0.2Hz. Following Rajan et al. (2010), we choose the gain function

as

g(x) =





r0 tanh

(
x

r0

)
if x < 0

(rmax − r0) tanh

(
x

rmax − r0

)
if x ≥ 0

(3.4)

with r0 = 5Hz and rmax = 100Hz, so that firing rates effectively vary between 0 and 100Hz,

with a 5Hz baseline.

During the preparatory period, the “command” pool corresponding to the desired movement

slowly activates with the following continuous temporal profile: slow exponential rise with

time constant 400ms from target onset to go cue, then fast exponential decay with time

constant 2ms from the go cue on. The overall scaling of the projection weights Ik onto the

motor circuit is chosen such that, in the limit of very long preparatory periods, preparatory

activity in the network reaches a steady state of standard deviation σi = 1.5Hz.

In Figure 3.2E, 27 conditions are associated with 27 command pools, each projecting onto

the motor circuit (cISN) via different weight vectors I1, . . . , I27. We choose the Ik so that

the steady state preparatory activity Vk in the motor circuit lies within the subspace spanned

by the top two preferred initial conditions of the cISN, a1 and a2 (see below, 3.4.3). More

precisely, projection vectors are chosen as Ik = Vk − Wg [Vk ] with Vk =
∑
`=1,2 sk`zk`a`

where sk` is a random sign, and zk` is drawn uniformly between 0.5 and 1.

3.4.2 Connectivity matrices

Random connectivity matrices of size N = 2M (M positive (excitatory) columns and M

negative (inhibitory) columns) are generated as in Hennequin et al. (2012), with connectivity

density p = 0.1. Non-zero weights are set to ±w0/
√
N, with w0 = R/

√
p(1− p) and a

sign that depends on the nature of the presynaptic neuron (E or I). Here R is the desired

spectral abscissa (before stability optimization). We then enforce a global balance in favor

of inhibition, by writing the connectivity matrix W block-wise as

W =

(
WE→E W I→E

WE→I W I→I

)
, (3.5)

and multiplicatively rescaling both inhibitory blocks (separately) to achieve

W
I→E

= −γWE→E
and W

I→I
= −γWE→I

(3.6)

where W
X→Y

denotes the average over all matrix elements and γ = 3 sets the overall

strength of inhibition relative to excitation. For large networks, a value of γ greater than one
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ensures that the overall population firing rate remains almost constant in time (Hennequin

et al., 2012).

3.4.3 Preferred initial states

The analysis of collective input tuning is done in the linear regime, i.e. assuming that firing

rates do not deviate too much from their baseline r0 so that g(x) ' x . Let W be a stable

connectivity matrix. Imagine initializing the network in a state x(t = 0) = a of unit norm

and letting the noiseless dynamics run freely according to Equation 3.1 (this corresponds to

running Equation 3.1 with ξ(t) = 0 and I(t) = a δ(t)). We define the evoked “energy” as

E(a) =
2

τ

∫ ∞

0

‖x(t)‖2 dt. (3.7)

Here 2/τ is a normalizing factor such that E = 1 for an unconnected network (W = 0),

irrespective of the unit-norm initial condition a (Equation 3.1 would then give ‖x(t)‖2 =

exp(−2t/τ)). Note that for a stable network, E is finite, in the sense that any initial

condition is bound to decay exponentially, asymptotically in time. We then define the “best”

input direction as the initial condition a1 that maximizes E(a). Equation 3.7 can be rewritten

as

E(a) = aT
[

2

∫ ∞

0

et(W−1)T et(W−1) dt

]
a

def
= aT Qa (3.8)

where (·)T denotes the matrix transpose. The last equality defines Q as the matrix integral

inside square brackets. Q is a symmetric, positive-definite matrix, and its principal eigenvector

is precisely the initial condition a1 that maximizes the evoked energy, which is then given

by the corresponding principal eigenvalue of Q. In fact, the full eigenbasis of Q, ranked

in decreasing order of the associated eigenvalues, defines a collection (a1, a2, . . . , aN) of N

orthogonal input states that each maximize the evoked energy within the subspace orthogonal

to all previous best input directions. Again, the eigenvalues are the corresponding evoked

energies. We use this energy formalism again below to explain the optimal stabilization

algorithm. Note that matrix Q is the solution to the Lyapunov equation

(W − 1)T Q+Q (W − 1) = −2 · 1 (3.9)

which is easily solved numerically (e.g. using the Matlab function lyap, see also Bartels and

Stewart (1972)). There is therefore no need to actually compute and summate the matrix

exponentials that show up in the definition of Q (Equation 3.8).
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3.4.4 Optimal inhibitory stabilization

Optimizing a recurrent system for linear stability is a standard problem in control theory. The

main difficulty lies in the nature of the spectral abscissa α(W ) (the most natural objective

function to consider for linear stability), which is typically a non-smooth function of matrixW ,

precluding the use of gradient-based optimization methods. Progress on this issue has been

made recently through the introduction of the “smoothed spectral abscissa”, a relaxation

of α(W ) that is smooth with respect to small variations in W (Vanbiervliet et al., 2009).

To introduce this stability measure, let us first recall the expression for the energy evoked

in a stable linear network as it evolves freely according to Equation 3.1 from some initial

condition ‖a‖ = 1:

E(W , a) = aTQ(1)a (3.10)

where Q(1) is defined more generally as

Q(s) = 2

∫ ∞

0

et(W−s1)T et(W−s1) dt (3.11)

For the network to be stable, the energy must remain finite for any initial condition a. Note

that Q(1) is a symmetric positive definite matrix, whose leading eigenvalue corresponds to

the maximum energy that a unit-norm initial condition can evoke. Thus, E(W , a) is upper-

bounded by the largest eigenvalue of Q(1), and since all the eigenvalues are positive, it

is also upper-bounded by their sum, i.e. by the trace of Q(1). Thus, if tr [Q(1)] < ε−1

for some given ε > 0, then the energy evoked by any a is less than ε−1, so the network

dynamics of Equation 3.1 are guaranteed to be stable. In a network that is not (yet) linearly

stable, one can ask: how far to the left must the system be “shifted”, W 7→ W − s1, for

tr [Q(s)] to become smaller than ε−1? The ε-smoothed spectral abscissa is the answer to

this question (see supplementary Figure 3.8). Mathematically, α̃ε(W ) is the unique root of

s 7→ tr [Q(s)]−ε−1, which is a monotonically decreasing function of s. If the shift s is smaller

than the spectral abscissa α(W ), some of the eigenvalues of W − s1 will have positive real

parts, causing tr [Q(s)] to diverge. The smoothed spectral absisca is therefore necessarily

greater than α(W ). Consequently, we may seek to minimize α̃ε(W ) instead of α(W ), which

is advantageous since α̃ε is a smooth function of the synaptic weights.

The tractability of the approach stems from the computability of α̃ε(W ) and its derivatives

w.r.t W . For any s > α(W ), matrix Q(s) defined in Equation 3.11 is known to be the

solution to the following Lyapunov equation

(W − s1)T Q(s) +Q(s) (W − s1) = −2 · 1 (3.12)

Solving this equation numerically can be done efficiently (Bartels and Stewart, 1972). Know-

ing that tr [Q(s)] − ε−1 is a decreasing function of s, one can apply standard root-finding
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methods to find α̃ε(W ). Finally, Vanbiervliet et al. (2009) also worked out the gradient

∂ α̃ε(W )

∂W
=

Q(α̃ε)P (α̃ε)

tr [Q(α̃ε)P (α̃ε)]
(3.13)

where

P (s) = 2

∫ ∞

0

et(W−s1) et(W−s1)T dt (3.14)

solves the Lyapunov equation dual to Equation 3.12:

(W − s1)P (s) + P (s) (W − s1)T = −2 · 1 (3.15)

The iterative gradient descent on α̃ε(W ) entails the following steps:

1. Compute the current value of the smoothed spectral abscissa α̃ε(W ). This im-

plies multiple iterations of a numerical root-finding method (e.g. bisection) on s 7→
tr[Q(s)]− ε−1. Each iteration requires solving Equation 3.12 for Q(s).

2. Solve Equation 3.12 and Equation 3.15 with s = α̃ε found in step 1. This gives

matrices Q(α̃ε) and P (α̃ε), which must be multiplied to form the desired gradient

(Equation 3.13).

3. Move the inhibitory weights by a small amount in the direction of the negative gradient.

That is, for every existing inhibitory synapse wi j (only 40% of all possible inhibitory

connections exist at any given time, see step 6), set wi j ← wi j − η (∂α̃ε/∂W )i j . Here

η is a learning rate.

4. Enforce constraint 1 (inhibition remains inhibition), by clipping positive inhibitory weights

to zero

5. Enforce constraint 2 (global E/I balance) through Equation 3.6. This step is not nec-

essary for stability optimization, but is essential to make sure that the high correlation

of excitatory and inhibitory input currents that emerges from optimization is not over-

whelmed by the baseline correlation contributed by shared population fluctuations (see

main text and 3.5.2 in the Supplemental Data).

6. Enforce constraint 3 (connectivity sparsity). Remove any existing connection wi j that

step 4 may have set to zero, and replace it by another connection wik where inhibitory

neuron k is chosen randomly. Set the strength of these new connections to zero

initially. Again this constraint is not required, but adds to the biological plausibility of

the resulting connectivity.
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Steps 1 through 6 are then repeated until convergence of the spectral abscissa. In the

Supplemental Data, we show how step 1 may be short-circuited, thereby significantly reducing

the computational cost of the stabilization procedure (it also constrains the choice of ε, which

so far has been left as free parameter). In any event, the above-described procedure with

ε = 0.01 does achieve stabilization and yields cISNs similar to the one presented in the main

text (in particular, it builds ones with identical dynamical properties).

A key result presented here is that cISNs exhibit a detailed balance of E and I inputs during

spontaneous activity (c.f. Figure 3.6). In particular, we make the point that this balance

goes well beyond the “trivial” temporal correlations between E and I synaptic inputs that

arise from the (necessarily shared) temporal fluctuations of the population-averaged firing

rate. In order to make this point, we need to make sure that the population-averaged activity

fluctuates as little as possible. We have shown previously (Hennequin et al., 2012) that this

can be achieved by making inhibition γ times stronger than excitation on average, with γ > 1

(and this was shown in Renart et al. (2010) too, for networks of nonlinear threshold units).

This explains why we choose γ = 3 in Equation 3.6, and also why we strive to maintain this

inhibition dominance throughout the stabilization procedure (step 5 above).

3.4.5 Analysis of rotational dynamics

The planes of rotation of Figure 3.2H are found with jPCA, a dynamical variant of principal

component analysis (Churchland et al., 2012). It is a method to extract planes of rotation

from multidimensional time trajectories. Given data of the form (y(t), ẏ(t))), where ẏ(t)

denotes the temporal derivative of y(t), jPCA attempts to fit (through standard least-square

regression) a linear oscillatory model of the form

ẏ(t) = Mskewy(t) (3.16)

where Mskew is a skew-symmetric matrix, therefore one with purely imaginary eigenvalues.

The two leading eigenvectors of the best-fitting Mskew (associated with the largest conjugate

pair of imaginary eigenvalues) define the plane in which the trajectory rotates most strongly.

Here we compute the jPCA projections exactly as prescribed in Churchland et al. (2012),

using the gradient implementation we derive in subsection 3.5.3. The data consist of the

population responses during the first 200ms following the go cue for each of our 27 conditions,

sampled in 1ms time steps. To make sure that the jPC projection captures enough of the

data variance, that is, that the observed rotational dynamics (if any) are significant, the data

is first projected down to its top 6 standard principal components.
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3.4.6 Muscle activation through linear readouts

In Figure 3.4, a single pair of muscle readouts is learned from 200 training trials (100 trials

for each of the “snake” and “butterfly” movements). We assume the following linear model:

zt = (m1;m2)T g [xt ] + b + εt (3.17)

where zt (size 2) denotes the target muscle activation vector at discrete time t, g [xt ] is

the N × 1 vector of momentary firing rates in the network, and εt is the vector of residual

errors (size 2). The readout weights (column vectors mi , i = 1, 2) are parameters which

we optimize through simple least-square regression, together with a pair of biases (b). The

snake (resp. butterfly) target trajectory is made of 58 points (resp. 26 points), equally

spaced in time over 500ms following the go cue, which defines the discrete time variable t

in Equation 3.17. The activity vector xt is sampled accordingly for each movement.
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3.5 Supplemental Data

3.5.1 Optimal stabilization of recurrent networks

In this section, we argue that step 1 in the optimization procedure given in the Methods can

be bypassed altogether, which significantly reduces the computational cost, and turns out

to promote faster stabilization. Indeed, in the main text we have left ε a free parameter.

ε modulates the distance between the spectral abscissa α and its upper bound α̃ε: if ε

decreases, α̃ε becomes a tighter upper bound to the spectral abscissa. In pilot studies, we

realized that stability could be reached much faster if ε was set to decrease progressively

during the course of the gradient descent. Empirically, it seemed a good idea to keep the

ratio α̃ε/α constant, and to adjust ε in every iteration to meet this need. Maintaining

such a ratio constant resulted in an exponential decay of the spectral abscissa during the

course of optimization. Mathematically, this means that the cost function (W 7→ α̃ε(W ))

keeps moving, but it becomes a progressively tighter upper bound on α, and brings a crucial

advantage: one no longer needs to compute α̃ε!

We thus capitalize on this observation and set α̃ε(W ) = Cα(W ) in every iteration, with

C = 1.5 (empirically good choice). Note that this automatically constrains ε to a value

of 1/tr[Q(Cα)], where Q(·) is defined in Equation 3.11 in the Methods. Steps 2 to 6 are

then performed as prescribed in the Methods. Note that computationally, the cost is still

of order K · N3, but the large constant K implied by the iterative root-finding method of

Step 1 is dramatically reduced. Note also that Step 2 requires solving Equation 3.12 and

Equation 3.15, for which a single Schur decomposition of W needs to be computed. As a

byproduct, the Schur decomposition also returns the spectral abscissa at no further cost, so

α needs not be computed separately.

The above simplified procedure is very effective, up to one small detail. Since α(W ) is non-

smooth, one would like to keep the smoothed spectral abscissa some safe margin away from

α, so its gradient remains well-behaved. In the above scenario, Cα becomes increasingly

closer to α as stability optimization progresses. This indeed leads to unstable learning as α

becomes as low as ∼ 0.2. In every iteration, we therefore set the smoothed spectral abscissa

to Cα or α+ B, whichever was the greatest. We use B = 0.2.

As mentioned above, if ε is set to decrease progressively during the course of optimization,

the whole stabilization procedure looses its interpretation as a gradient descent on a fixed

objective function. Nevertheless, the (moving) cost function remains invariably an upper

bound on the spectral abscissa (which becomes tighter and tighter), so there is no need to

worry about this so long as mere stabilization is the only real objective.
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3.5.2 How much do shared population fluctuations contribute to the

detailed E/I balance?

Intuitively, fluctuations of the mean population firing rate, by definition shared by all neurons,

are expected to increase the match between the E and I input currents into single cells. To

make this intuition precise and to dissect the impact of population-wide fluctuations on the

detailed balance, we study the following simplified model.

We consider a random balanced network of size N = 2M � 1, in which excitatory weights

(including the zero weights) are drawn independently from some distribution with mean

µE/
√
N and variance σ2

E/N, and similarly for the inhibitory weights with parameters −µI/
√
N

and σ2
I /N. The key simplification is to forget about the recurrent dynamics, and to assume

that, due to shared population-wide fluctuations, the neuronal activities xi(t) comprise some

common fluctuation r(t) and private fluctuations ξi(t), in the following mixing proportions:

xi(t) = r(t)
√
c + ξi(t)

√
1− c (3.18)

Here r(t) and the ξi(t) are all stationary fluctuations of unit variance, without loss of gen-

erality. Note that the temporal aspects are irrelevant to this discussion – only stationarity

matters. Clearly this simplification neglects the width of the distribution of pairwise corre-

lations, and focuses on its mean c . We interpret the first half of the xi ’s (1 ≤ i ≤ M) as

the activity of the excitatory neurons, and the second half as the activity of the inhibitory

neurons. By design, we have

〈xi(t)xj(t)〉 = (1− c)δi j + c (3.19)

where 〈·〉 denotes temporal averaging. We now form the E and I input currents “artificially”

by passing x(t) through the weight matrix W . We may thus write the E and I input currents

to neuron ` as

cE` (t) =

M∑

j=1

w`jxj(t) and c I` (t) = −
N∑

j=M+1

w`jxj(t) (3.20)

The E/I input correlation for cell ` is defined as

ρ` =
〈cE` (t) · c I` (t)〉√
〈cE` (t)2〉 · 〈c I` (t)2〉

(3.21)

We then compute

〈cE` (t) · c I` (t)〉 = −
M∑

j=1

N∑

k=M+1

w`jw`k〈xj(t)xk(t)〉 (3.22)

= −c
M∑

j=1

N∑

k=M+1

w`jw`k (3.23)
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Figure 3.7: How does shared neural variability influence the detailed E/I balance? (A) Pearson

correlation coefficient between E and I input currents into single cells, averaged across a population of

size N = 200, as a function of the mean pairwise correlation between neuronal firing rates. Errorbars

denote one standard deviation across all neurons. The solid curves represent Equation 3.28. The

network dynamics were not simulated as such: instead, individual neuronal activities were generated

independently with some shared baseline (see text, Equation 3.18). Input currents were “artifically”

computed by passing the network activity vector through the E and I synaptic weights, which were

drawn as indicated in Equation 3.27. (B,C and D) The full network dynamics were simulated, and we

report here the mean E/I correlation coefficient obtained from the simulation (black), or the coefficient

obtained from the theory (Equation 3.28) in which the average pairwise correlation coefficient c was

nonetheless numerically estimated from the network dynamics (blue). Errorbars denote one standard

deviation across 10 trials (each with a new connectivity matrix W drawn following Equation 3.27).

Since the w`j and w`k have been drawn independently from their respective distributions, we

may approximate the double sum byM2 times the product of their means, i.e. −
∑
j

∑
k w`jw`k '

M2µEµI/N, leading to

〈cE` (t) · c I` (t)〉 =
NµEµIc

4
(3.24)

A very similar calculation yields

〈cE` (t)2〉 =
cNµ2

E

4
+

(1− c)

2

(
µ2
E + σ2

E

)
(3.25)

and similarly for 〈c I` (t)2〉. We thus conclude

ρ` =
1√[

1 +
2(1− c)

Nc

(
1 +

σ2
E

µ2
E

)][
1 +

2(1− c)

Nc

(
1 +

σ2
I

µ2
I

)] (3.26)

which no longer depends on cell index `, and converges to 1 as N → ∞ (if c is non-zero).

At this point we may conclude that, if population fluctuations are finite (non-zero), then a

perfect balance is established between E and I currents into single cells, so long as N is large

enough. However, when inhibition dominates over excitation (µI > µE), the mean pairwise

correlations coefficient c vanishes with large N (Renart et al., 2010; Hennequin et al., 2012);

in fact, it scales as 1/N. We therefore expect ρEI to have a finite limit as N →∞.
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To illustrate the result of Equation 3.26, we generated random sparse balanced networks,

with connectivity matrix W drawn as follows:

wi j =
1√
N
·





+w0 if j ≤ N/2

−γw0 if j > N/2

]
with proba. p

0 with proba. (1− p)

(3.27)

Simple algebra yields the respective means and variances of the E and I weights, which we

plug in Equation 3.26 to receive

ρ =
1

1 + 2(1−c)
Npc

(3.28)

This result is plotted in Figure 3.7A, together with numerical simulations of this simplified

problem (where the xi(t) are generated by Equation 3.18).

In order to further validate Equation 3.26 in situations were neuronal activities are actually

generated by the recurrent dynamics, we simulated spontaneous activity as described in the

Experimental Procedures. To vary the mean pairwise correlation coefficient c , with varied γ,

p, and N independently. The results are shown in Figure 3.7B-D. In particular, Figure 3.7D

confirms that ρ converges to a value smaller than 1 as the network grows in size. This is

because, when γ > 1, the variance of the population fluctuations scales with 1/N (Hennequin

et al., 2012).

3.5.3 Derivation of gradient-based jPCA

jPCA is a dynamical variant of principal component analysis (PCA) that seeks to discover

planes in which a multidimensional time trajectory rotates most strongly. If there is a rota-

tional component to the collective dynamics of a set of units, it will show up in the top jPC

planes. The original description of the method is provided in the Supplementary Information

of Churchland et al. (2012), and is an excellent reference. There it is mentioned in passing

that for large datasets, it may be advantageous to perform the least-square optimization that

jPCA entails using gradient methods. In this section I provide a (straightforward) derivation

of the gradient in question, which then can be used to solve the jPCA problem using any

numerical gradient-based optimization routine.

The data on which jPCA operates is a collection of K snapshots of network activity and

associated instantaneous time-derivatives :
{(
xk , ẋk

)}
k=1...K

. jPCA seeks the best possible

rotational linear dynamics description of the data, i.e. an N × N skew-symmetric matrix

Mskew such that the error made by the prediction model

ẋ = Mskewx (3.29)
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is minimized. The error is defined in the standard least-square sense:

L(Mskew) =
1

2

K∑

k=1

∥∥ẋk −Mskewx
k
∥∥2

(3.30)

In a skew-symmetric matrix, there are only N(N − 1)/2 degrees of freedom. One therefore

looks for strict lower triangles T , and one goes from T to a full skew-symmetric matrix via

a linear map H(T ) = T − T T , where ·T denotes the transpose. The error to be minimized

is therefore

L(T ) =
1

2

K∑

k=1

∥∥ẋk −
(
T − T T

)
xk
∥∥2

(3.31)

Let us express the model-reconstructed momentary derivative, which we call
?
x
k

:

?
x
k

m =
[(
T − T T

)
xk
]
m

=

m−1∑

n=1

Tm,nx
k
n −

N∑

n=m+1

Tn,mx
k
n (3.32)

Thus for a > b

∂
?
x
k

m

∂Ta,b
= δa.m · xkb − δm,b · xka (3.33)

Let us differentiate the error in Equation 3.31 w.r.t Ta,b, with a > b:

∂L
∂Ta,b

=
1

2

K∑

k=1

N∑

m=1

(
?
x
k

m −ẋkm
)2

(3.34)

= −
K∑

k=1

N∑

m=1

(
δa,mx

k
b − δb,mxka

)( ?
x
k

m −ẋkm
)

(3.35)

= −
K∑

k=1

[
xkb ·

(
?
x
k

a −ẋka
)
− xka ·

(
?
x
k

b −ẋkb
)]

(3.36)

The final expression is the gradient one should use to perform batch optimization and obtain

the least-squares solution for T . The objective function is convex, so gradient methods are

guaranteed to converge to the global minimum.
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3.5.4 Supplementary Figures
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Figure 3.8: Schematics of the smoothed spectral abscissa. The decreasing and convex behavior

of tr[Q(s)] as a function of s is sketched in black. It goes to zero as s → +∞, and diverges as

s approaches the spectral abscissa α(W ) from above. The point on the x-axis at which the curve

crosses the dotted line at 1/ε defines the smoothed spectral abscissa α̃ε(W ).
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Figure 3.9: Optimizing random networks with various initial weight strengths. (Left) Stability

is achieved no matter how strong the excitatory synaptic weights are. The curves are obtained using

the exact same procedure as we used to generate the network of Figure 3.2, starting from random

balanced networks with different initial spectral abscissae (color-coded). Note that in this model of

random balanced connectivity, the spectral abscissa uniquely determines the strength of the E synaptic

weights. (Right) Corresponding “energy profiles” after optimization (see caption for Figure 3.3A).

The expected energy (average of the energy curve) increases with the average E weight strength.
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Figure 3.10: The stronger the weights, the finer the E/I balance in stabilized networks, and
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(Left) Empty boxes denote the average correlation coefficient of E and I inputs when they are taken

in different cells; solid boxes denote the average correlation of E and I inputs into the same cell.

(Right) Distributions of pairwise correlations during spontaneous activity.



CHAPTER 4

Towards an inhibitory synaptic plasticity rule for optimal and robust

network stabilization

In chapter 3, I have mostly focused on the dynamical behavior of networks in which recurrent

excitation is complex and strongly unstable on its own, but stabilized by fine-tuned inhibitory

feedback. To instantiate such networks, I have used an optimal stabilization procedure

derived from control-theoretic principles. I have entirely left aside the question of how

inhibitory stabilization could be achieved in the cortex, for example through realistic synaptic

plasticity mechanisms. The present (small) chapter is intended to revisit this question. A

large part is dedicated to understanding the nature of the inhibitory feedback optimization

performed in chapter 3, by discussing some important properties of the “smoothed spectral

abscissa”. I then establish a link between the minimization of the smoothed spectral abscissa

(the measure of robust stability introduced in chapter 3, see also Vanbiervliet et al. (2009))

and the phenomenological model of inhibitory synaptic plasticity recently developed in Vogels

et al. (2011) to account for the self-organization of a precise excitation/inhibition balance

along the auditory synaptic pathway of the rat. Overall, this chapter shows that spontaneous

circuit dynamics can be used as a substrate for robust network stabilization through inhibitory

synaptic plasticity.

I begin by formulating the assumptions made for the network dynamics, and I state the

problem of “robust” network stabilization. I then explain why traditional spectral analysis

is ill-suited to the problem of robust stabilization, and introduce again the smoothed spec-
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tral abscissa (chapter 3) as a better alternative. The latter can be used to formulate a

parameter-free version of the robust stabilization problem. This formulation turns out to

be stricly equivalent to the minimization of the average variance of the single-neuron spon-

taneous activity fluctuations in the linear regime. Interestingly, such minimization can be

approximated by a local learning rule at inhibitory synapses that is structurally similar to the

plasticity rule of Vogels et al. (2011), itself inspired by the experimental results of Woodin

et al. (2003). I show numerically that the local learning rule can indeed be used to stabilize

complex (nonlinear) networks based on their spontaneous activity. As a local approximation

to a global problem, it is necessarily suboptimal, but yields solutions (inhibitory synaptic

strengths) that correlate with the solutions found by the optimal control-theoretic method.

4.1 Spontaneous rate dynamics and network stability

4.1.1 Setup

Here I briefly recall the formalism I have used previously (chapter 2 and chapter 3) to describe

balanced cortical dynamics on the level of firing rates. I consider a network of N neurons

recurrently connected to one another through a matrix W of synaptic interactions. I assume

that W ≡ W (z) depends on a certain number of parameters, summarized in a vector z ,

and that only those parameters may be optimized to stabilize the network (see below). For

example, in chapter 3, z was simply made of all the inhibitory synaptic efficacies.

The dynamics of each neuron i are described by a single activation variable xi(t), from which

a firing rate g [xi(t)] is computed where g[·] is the input-output nonlinearity (reminiscent

of the neuronal f-I curve). Following initialization in some non-zero activity state x0, the

noiseless free dynamics of the network are described by

τ
dx

dt
= −x(t) +Wg [x(t)] + δ(t)γ

x0

‖x0‖
(4.1)

where x(t) = (x1(t), . . . , xN(t))T is the column vector of activation variables, δ(t) denotes

the Dirac delta function, and γ sets the overall magnitude of the initial condition. I also

define spontaneous activity as the recurrent processing of unspecific noisy external inputs,

following

τ
dx

dt
= −x(t) +Wg [x(t)] + γξ(t) (4.2)

where ξ(t) is a spatially and temporally white N-dimensional Wiener process of unit variance

and γ again sets the overall magnitude of that input noise.
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4.1.2 Evoked energy and amplification factor

Two definitions will be useful for the rest of this chapter. First, I define the average “evoked

energy” E0(W ) in the noiseless free dynamics of Equation 4.1 as

E0(W )
def
=

〈∫ ∞

0

‖g [x(t)]‖2 dt

〉

x0;N (0,1)

(4.3)

where 〈·〉x0;N (0,1) denotes the expectation over initial condition x0, drawn from a multivari-

ate Gaussian distribution with identity covariance matrix. Second, I define the “amplification

factor” A(W ) as the average variance of the single-cell spontaneous activity fluctuations in

the context of Equation 4.2:

A(W )
def
=

1

N

N∑

i=1

σ2
i (4.4)

Here σ2
i denotes the temporal variance of the firing rate g [xi(t)] of unit i during spontaneous

activity.

From now on I will restrict the analysis to linear networks, i.e. to situations where γ is

small enough that, given a stable W , firing rates deviate only weakly around baseline. For

simplicity and without loss of generality I now set γ =
√

2/τ , so that both E0(W ) and A(W )

equal 1 for an unconnected network (W = 0).

In the linear regime, the dynamics of Equation 4.2 become those of a multivariate Ornstein-

Uhlenbeck process (as in chapter 2). In this case, the covariance matrix
〈
x(t)x(t)†

〉
t

of the

network activity is given by P (W , 1) (Gardiner, 1985), defined more generally as

P (W , s)
def
=

∫ ∞

0

(
et(W−s·1)

)(
et(W−s·1)

)T
dt (4.5)

(the more general form P (W , s) will be useful later). The sum in Equation 4.4 can be written

as the trace of the covariance matrix, such that

A(W ) =
tr [P (W , 1)]

N
(4.6)

We have seen in chapter 3 that the average evoked energy E0(W ) can be written in a similar

form as

E0(W ) =
tr [Q(W , 1)]

N
(4.7)

where again Q(W , 1) is defined more generally as

Q(W , s)
def
=

∫ ∞

0

(
et(W−s·1)

)T (
et(W−s·1)

)
dt (4.8)
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Using the identity tr (AB) = tr (BA) together with Equations 4.5 and 4.8, we note that in

the linear regime, the amplification factor and the expected evoked energy are one and the

same:

E0(W ) = A(W ) (4.9)

4.1.3 Linear stability and associated caveats

As in the previous chapters, the stability of the network dynamics is understood here in the

linear sense. That is, the network is said to be stable if and only if the linear versions of the

dynamics in equations 4.1 and 4.2 lead to finite E0(W ) (or finite A(W )). Linear stability

depends solely on the matrix of synaptic interactions W . More specifically, it depends on its

eigenvalue spectrum: for the network to be stable, all the eigenvalues of W must have real

part smaller than one. Therefore, the relevant quantity for stability is the spectral abscissa

α(W ) defined as

α(W )
def
= max

eigv. λ
Re(λ) (4.10)

Importantly, linear stability is only about the asymptotic behavior of the network following

an arbitrary initial condition: when α(W ) < 1, after enough time has passed, the firing rates

decay back to rest exponentially fast. Indeed, one can always find a constant K such that,

for sufficiently large t, ‖x(t)‖ ≤ K exp [(α(W )− 1)t/τ ]. This ensures that the expected

evoked energy E0(W ) remains finite. The transient behavior of the network, however, is not

captured by standard eigenvalue analysis (Trefethen and Embree, 2005). For a large class

of matrices known as “non-normal” (c.f. chapter 2), stability can coexist with transient

amplification of large amplitude that is due to purely linear effects1. Thus, although the

expected evoked energy E0(W ) (or amplification A(W ) in the spontaneous case) is finite,

it may still be large enough to cause the system to leave the linear regime, and to perhaps

undergo an unwanted transition into unstable dynamics (we have seen an example of such a

transition in Figure 3.3 of chapter 3). Ideally, one would like to have a more robust stability

certificate than α(W ) < 1, i.e. one that takes into account such transient amplification

effects. The smoothed spectral abscissa introduced in chapter 3 provides precisely this2, as

we shall see below.

In the brain, synaptic connections undergo constant changes, on many levels ranging from

transient changes in the effective connectivity due to synaptic transmission failure and short-

1In chapter 2, transient amplification was revealed by a Schur decomposition of W , which is nothing but

linear algebra.
2There is also an extensive theory of “pseudospectra”, a concept developed in the early 1990s primarily

to fill the gaps left by standard spectral analysis with respect to transient behavior; I warmly recommand

Trefethen and Embree (2005) for a comprehensive overview of the mathematics and physics literature on

these issues.
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term depression/facilitation, to more enduring patterns such as neuronal death, spine ad-

dition/removal, and synaptic plasticity. Potentially, some of those changes may threaten

stability. The spectral abscissa criterion for stability does not take this into account: it only

says whether or not the network is stable in its current state, but does not quantify how

much damage the connectivity is allowed to suffer before the network runs unstable. As we

shall see below, the smoothed spectral abscissa is a more satisfying stability measure in this

respect too.

More pragmatically, there is a third reason why the spectral abscissa is not necessarily a good

cost function for network stabilization: it is not smooth in the synaptic weights, hence it

is difficult to minimize (Burke et al., 2002; Noll and Apkarian, 2005). In contrast, as the

name indicates, the smoothed spectral abscissa is differentiable everywhere, allowing the use

of gradient methods as I have shown in chapter 3.

4.2 Smooth and robust formulation of the stabilization problem

4.2.1 The ε-smoothed spectral abscissa

Intuitively, enough negative self-feedback in each unit should ensure that, despite strong

interactions in W , the firing rates do not blow up. By “negative self-feedback”, I mean

replacing each synaptic weight wi i by wi i − s with s > 0, which in matrix notation reads

W ← W − s1. The spectral abscissa α(W ) can in fact be defined as the minimal value that

s would need to take to guarantee stability3, that is, to guarantee that E0(W − s1) is finite.

Let us rephrase this using Equation 4.7:

α(W ) = inf {s ∈ R / tr [Q(W , s)] <∞} (4.11)

The <∞ criterion makes it clear that α(W ) is an asymptotic quantity (the infimum is not

within the set inside curly brackets). A more robust stability measure is obtained by relaxing

this inequality, and requiring tr [Q(W , s)] ≤ N/ε for some small positive ε instead. This is

precisely4 how Vanbiervliet et al. (2009) defined the ε-smoothed spectral abscissa α̃ε(W ):

α̃ε(W )
def
= inf

{
s ∈ R / tr [Q(W , s)] ≤

N

ε

}
(4.12)

3This is because the spectrum of W − s1 is nothing but the spectrum of W shifted by s units to the left,

so that in particular α(W − s1) = α(W )− s.
4Vanbiervliet et al. used ≤ 1/ε instead of ≤ N/ε for the relaxation. We make this slight modification

here because, in the context of balanced neuronal network in which the synaptic weights are of order 1/
√
N,

the evoked energy remains finite in the large N limit (c.f. chapter 2). That is, tr [Q(W , 1)] = O(N).



90 CHAPTER 4

The function s 7→ tr [Q(W , s)] can be shown to be monotonically decreasing (and convex),

so α̃ε(W ) is simply the unique solution to

tr [Q(W , α̃ε)] =
N

ε
(4.13)

This definition was already illustrated in Figure 3.8 in chapter 3. It is easily shown that α̃ε

is a growing function of ε. In the limit of very small ε, the definition of α̃ε collapses to that

of α, and indeed limε→0+ α̃ε = α (Vanbiervliet et al., 2009).

Importantly, the smoothed spectral abscissa bounds the spectral abscissa from above:

α(W ) < α̃ε(W ) (∀ε > 0) (4.14)

This implies that the condition

α̃ε(W ) ≤ 1 (4.15)

can be used as a sufficient condition for network stability, as it implies α(W ) < 1. Moreover,

it is a condition for robust stability. Indeed, when α̃ε(W ) = 1, not only do we know the

network is stable, we also know that E0(W ) = 1/ε, which is easily checked by setting

α̃ε(W ) = 1 in Equation 4.13 and looking at Equation 4.7. More generally, since tr [Q(W , s)]

is a decreasing function of s, we have:

α̃ε(W ) ≤ 1 ⇒ E0(W ) ≤
1

ε
(4.16)

(and by Equation 4.9, the same holds for A(W )). Thus, if condition 4.15 holds for sufficiently

large ε, we may obtain a reasonably useful upper bound on E0(W ), which may for example

tell us that random disturbances in the network dynamics (e.g. external noise) are not to be

amplified enough to push the system in the nonlinear regime and (potentially) distabilize the

dynamics. Note, however, that the bound in Equation 4.16 applies to the expected evoked

energy E0(W ) ≤ 1/ε when the initial condition is chosen randomly without any knowledge

of W . Recalling that E0(W ) = tr [Q(W , 1)] /N, it is clear that even if the trace5 of Q is

equal to 1/ε, Q could well have one single eigenvalue equal to N/ε, and N − 1 negligible

eigenvalues of order 1/Nε. In this case, the recurrent network would be ultra sensitive to

patterns of inputs aligned onto the leading eigenvector of Q(W , 1). In other words, “robust

stability” as assessed by condition 4.15 is about the robustness to random “uninformed”

input perturbations, and in principle does not conflict with selective input amplification –

which we saw in chapter 3 can be functionally relevant.

The stability criterion of Equation 4.15 based on α̃ε(W ) also leads to a nice guarantee on

the “distance to instability” of the synaptic connectivity. Indeed, Vanbiervliet et al. (2009)

5Recall that the trace of a matrix is also the sum of its eigenvalues – here Q(W , 1) is a symmetric, positive

semi-definite matrix, so all its eigenvalues are real and positive.
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also showed that

α̃ε(W ) ≤ 1 ⇒ β(W ) ≤
ε

2
(4.17)

where

β(W )
def
= min

{
‖D‖ : D ∈ CN , α(W +D) ≥ 1

}
(4.18)

is the minimum size of an additive matrix perturbation that would distabilize the network.

Equation 4.17 is to be interpreted as follows: if for some ε > 0, α̃ε(W ) can be made smaller

than 1 by optimizing over some parameters (such as the inhibitory synaptic strengths),

then the network is robustly stable in the sense that random additive disturbances D in the

synaptic weights would need to be of “size” greater than ε/2 to make the network unstable

again. Here “size” is understood as the operator norm ‖D‖ = sup‖z‖=1 ‖Dz‖, which is

also the largest singular value of D. Assuming that the noisy synaptic perturbations di j are

independent of one another, and all drawn from the same distribution with zero mean and

variance σ2, then the singular values of D are scattered in the range
[
0 : 2σ

√
N
]

following a

“quarter circle” distribution (Mehta, 2004), so ‖D‖ ' 2σ
√
N. Therefore, one may conclude

that, so long as the standard deviation σ of the perturbations is smaller than ε/4
√
N, the

network remains stable.

Finally, the fact that α̃ε(W ) (unlike α) is a smooth function6 of W , and because the corre-

sponding derivatives can be computed efficiently, α̃ε is a convenient cost function for network

stabilization. As I have shown in chapter 3, the parameters z upon which W depends may

be iteratively refined following the negative gradient of α̃ε, until a sufficiently small value of

α is reached.

4.2.2 Parameter-free robust stabilization and link to the Vogels rule

In the above discussion, the choice of ε > 0 has been left arbitrary. In chapter 3 also, ε

was chosen empirically, and set to progressively decrease during the course of optimization

to obtain faster convergence. The previous section has made the point that, in the lucky

event that the minimization of α̃ε(W ) does yield a solution smaller than one (e.g through

constrained gradient descent as in chapter 3), the obtained network stability is augmented

with the following two properties

• random inputs, on average, are not amplified by more than 1/ε (in terms of evoked

energy, Equation 4.3)

6This is because tr [P (W , s)] itself is a smooth function of W and s, and because α̃ε is defined implicitly

as the unique solution of tr [P (W , s)] = 1/ε.
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• (zero-mean) random damage in the synaptic weights can be as large as ε/4
√
N in

standard deviation without threatening stability.

These two properties constitute what I have called “robust stability” throughout. Naturally,

the larger ε, the more advantageous these two properties become. Unfortunately, it may not

be possible to achieve α̃ε ≤ 1 if ε is chosen too big. Ideally thus, ε should be chosen as large

as possible within the constraint that robust stability (α̃ε ≤ 1) can still be achieved. This

tradeoff leads to a parameter-free version of the robust stabilization problem based on the

smoothed spectral abscissa (Vanbiervliet et al., 2009), which is to find

max
(ε,z)

ε, subject to α̃ε(W (z)) ≤ 1 and other constraints on z (4.19)

Note that the connectivity matrix is now called W (z) to make the dependence on the

parameter set z more explicit. The constraints on z in problem 4.19 may for example

express the fact that the inhibitory synapses cannot be positive, as in chapter 3. Let (ε?, z?)

denote the solution to problem 4.19. Importantly, because α̃ε is a growing function of ε,

the smoothed spectral abscissa in the optimum ε? must be exactly one, and z? solves the

minimization of z 7→ α̃ε?(W (z)) subject to the constraints. Thus, the solution to problem

4.19 always involves

E0(W (z?)) =
1

Nε?
(4.20)

Therefore, problem 4.19 which is about maximizing ε, is equivalent to the minimization of

the expected evoked energy E0(W (z)), subject to the constraints on z (or the minimization

of A(W (z)), by Equation 4.9). This observation was already formulated in Vanbiervliet et al.

(2009), though with a different vocabulary.

In summary, robust stabilization can be done through the minimization of E0(W ), which

by Equation 4.9 is equivalent to the minimization of the average variance A(W ) of the

spontaneous firing rate fluctuations in single cells. I now show that, since A(W ) depends

on quantities available “online” during spontaneous activity, a synaptic learning rule can be

derived that approximates robust stabilization. This learning rule is structurally similar to

that of Vogels et al. (2011).

4.3 A learning rule for approximate robust stabilization

I now consider a biologically feasible approximation to the robust stabilization problem (Equa-

tion 4.19), based on the idea of minimizing the intensity A(W ) of the spontaneous activity

fluctuations under the linearized dynamics of Equation 4.2. The cost function to minimize
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is

L(W ) =
1

2

N∑

i=1

〈
x2
i (t)

〉
t

(4.21)

where 〈·〉t denotes temporal averaging. In general, since the network is recurrently connected,

〈x2
i (t)〉t for postsynaptic neuron i depends upon all synaptic weights in the network, not only

those that point to neuron i . This gives rise to a non-local learning rule. A straightforward

local approximation would be to ignore such recurrent effects and assume that 〈x2
i (t)〉 de-

pends only on the i th row of W . In the case of linear dynamics (Equation 4.2 with g(x) = x),

this yields the following approximate local gradient:

∂Li
∂wi j

' 〈x̂j(t) xi(t)〉t (4.22)

where x̂j(t) ≡
∫ t
−∞ xj(s) exp[−(t− s)/τ ]ds reflects the low-pass filtering dynamics of unit i .

Invoking standard stationarity and self-averaging arguments to drop the expectation brackets

in Equation 4.22, one obtains a local and online inhibitory learning rule:

dwi j
dt

∝ −x̂j(t) xi(t) (4.23)

For inhibitory weights (wi j < 0), this learning rule is of the Hebbian type, in the sense that

correlated pre- (xj) and post-synaptic (xi) activities cause an increase in absolute synaptic

efficacy.

I first test this local learning rule on the same inhibitory-stabilization task as in chapter 3.

Since the theoretical considerations of section 4.2 apply only to the linear regime, I start

from a random network of size N = 200 with an initial spectral abscissa of 0.9 so that

the network is initially stable (Figure 4.1) (I extend to the nonlinear, initially unstable case

later below). All excitatory weights remain fixed throughout, and the inhibitory weights are

progressively modified as dictated by the learning rule, subject to i) a negativity constraint

and ii) a sparsity constraint as in chapter 3 (only 40% of the I weights can be non-zero

at a time). In short, I follow exactly the same method as described in section 3.4, except

that steps 1–3 on page 75 are now replaced by the local and online synaptic update rule in

Equation 4.23.

The primary effect of learning according to Equation 4.23 is indeed to decrease the spectral

abscissa, which eventually saturates at a value of ∼ 0.3. In comparison, the optimal learning

rule (exact same procedure as in chapter 3 - ran on the exact same initial connectivity matrix

– can reach a value of ∼ 0.12 (Figure 4.1A and B). This discrepancy can be attributed to the

crudeness of the locality approximation made to arrive at Equation 4.23, in a network that is

fully recurrent. In any case, both learning procedures give rise to similar weight distributions

(Figure 4.1C), and the individual synaptic weights that result from the two procedures are
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Figure 4.1: Online learning rule for approximate optimal inhibitory stabilization. (A) A stable

random network with an initial spectral abscissa of 0.9 is subjected to the local inhibitory plasticity

learning rule of Equation 4.23, aimed at minimizing the strength of activity fluctuations during spon-

taneous activity (modeled after Equation 4.2 with g(x) = x). Shown here is the evolution of the

spectral abscissa as learning progresses (green). For the sake of comparison, we report the evolution

of the spectral abscissa under optimal stability optimization (black; the x-axis should be interpreted as

number of iterations of the optimization procedure; 200s ' 160 iterations). (B) Eigenvalue spectrum

of the connectivity matrix before (gray dots) and after learning (green dots). The black dots report

the result of the optimal procedure. (C) Distribution of non-zero inhibitory synaptic efficacies after

learning, with the same color scheme as in (B). Note that only 40% of the weights are non-zero. (D)

The two procedures (online vs. optimal) yield correlated individual synaptic efficacies.

substantially correlated (Figure 4.1D), indicating that similar solutions are found by the two

update rules.

Can we extrapolate to situations in which the network is initially unstable, yielding chaotic

nonlinear dynamics? Let me again derive a local inhibitory plasticity learning rule, aimed at

minimizing the amplitude of the spontaneous activity fluctuations. The network dynamics

now obey the nonlinear version of Equation 4.2, with the nonlinearity x 7→ g(x) given by

Equation 3.4 in chapter 3 (it is also sketched in Figure 3.3B). This function has maximum

slope at x = 0, in which case the output is θ = 0Hz (interpreted as the mean firing rate of

each neuron). Since the variance of the spontaneous fluctuations may be “trivially” minimized

by sending every neuron to a region where g saturates (corresponding to firing rates of either

0Hz or 100Hz), an homeostasis term must be added to the objective function to encourage

firing rates to fluctuate around θ instead. The full cost function for postsynaptic neuron i

now reads,

Li(W ) = 〈(yi(t)− 〈yi(t)〉t)2〉t + (〈yi(t)〉t − θ)2 (4.24)

with the notation yi(t) = g [xi(t)]. This reduces to

Li(W ) = 〈(yi − θ)2〉t (4.25)
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Figure 4.2: Online learning in a nonlinear, initially unstable network. Panels have the same

meaning as in Figure 4.1. The initial connectivity matrix was a random balanced network with

a spectral abscissa of 3. Learning ocurred following Equation 4.26 during spontaneous nonlinear

dynamics (Equation 4.2).

Let us again make a local approximation, and assume that xi(t) depends only on the i th row

of W . This yields the following gradient descent update rule:

dwi j
dt

∝ − g′[xi(t)] · ŷj(t) · (yi(t)− θ) (4.26)

where ŷj(t) =
∫ t
−∞ yj(s)exp[−(t − s)/τ ]ds. This learning rule successfully achieves lin-

ear stability in an initially unstable random balanced network with a spectral abscissa of 3

(Figure 4.2). Again the solution it finds is substantially correlated with the solution found

by the optimal procedure based on the smoothed spectral abscissa. As expected though,

the performance is substantially worse than that of the optimal stabilization strategy. When

starting from a spectral abscissa of 10 as we did in chapter 3 (Figure 3.2), the online learning

rule of Equation 4.26 is not able to achieve linear stability (not shown).

The learning rule of Equation 4.26 is structurally similar to the one Vogels and colleagues used

in order to explain the maintenance of a detailed E/I balance in feedforward auditory pathways

(Vogels et al., 2011). They also showed in recurrent network simulations that Hebbian

learning at inhibitory synapses during spontaneous activity can suppress instabilities that may

arise from strong and patterned excitatory feedback (destabilizing attractors). Here, through

the link I have drawn with the smoothed spectral abscissa, I have provided a theoretical

account for why a learning rule aimed at minimizing the strength of the spontaneous activity

fluctuations can have such stabilizing effects.

In the simulations presented here, I have compared the inhibitory plasticity rule (Equa-

tion 4.26), supposed to approximate robust stabilization, to the control-theoretic stabiliza-

tion procedure used in chapter 3. The latter was not strictly speaking an implementation of



96 CHAPTER 4

the full robust stabilization problem in Equation 4.19; instead, it was a constrained minimiza-

tion of α̃ε(W ) with some heuristic choice of ε, and the main goal was to cause the spectral

abscissa to decrease as much as possible. Future numerical studies should implement the full

problem 4.19, and compare the results to the local learning rule in Equation 4.26. More work

is also needed to check that the local plasticity learning rule derived here achieves robust sta-

bility in the sense that, after stabilization, the network remains stable despite comparatively

large random perturbations of the synaptic weights.



CHAPTER 5

Stability in spatially structured networks via local inhibition

So far, this thesis has focussed on the issues of stability and amplification in local microcir-

cuits, where the excitatory synaptic organization does not follow any obvious topology and

has therefore been modelled as a random graph (chapter 2 and chapter 3). I have shown

that stabilizing such microcircuits can be a difficult problem, and that inhibition must be

finely tuned (chapter 3).

In this chapter, I zoom out and consider the cortical network at a larger scale. Specifically,

I focus on the intrinsic lateral connections that form within the gray matter, and ramify up

to several millimeters away from the soma of the presynaptic neuron. These originate from

axon collaterals spreading toward distant columns (e.g. Gilbert and Wiesel (1983)). I look

at the connectivity structure in a 3mm by 3mm patch of cortex (Figure 5.1A,B), and ignore

its vertical (laminar) extent. A recent review has summarized the key qualitative features

of synaptic organization at such a macroscopic scale into a canonical model (Voges et al.,

2010) which I discuss here in terms of stability.

Perhaps surprisingly, I find that inhibitory feedback need not be complicated to stabilize

recurrent excitation: it is sufficient i) that the average strength of the inhibitory connections

be at least as large as that of the excitatory connections, and ii) that inhibitory synapses be

confined to within a small radius around the soma of their presynaptic interneuron – smaller

than the local radius of excitation. This situation seems to be in line with the anatomy of

inhibition in the cortex (Voges et al., 2010; Packer and Yuste, 2011; Fino and Yuste, 2011).
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Figure 5.1: Stability in spatially extended cor-

tical networks. (A and B) Schematics of network

connectivities with topological organization within

a 3mm by 3mm square patch of cortex. In both

(A) and (B), excitatory (E, red) and inhibitory (I,

blue) neurons make local connections onto neurons

located within ∼ 300µm of their own cell bod-

ies (dashed red and blue circles, around the cor-

responding highlighted E and I neurons). In (A),

both E and I neurons also make long-range pro-

jections (arrows), clustered into 3 distant patches

(dashed blue and red circles) placed at random po-

sitions for each presynaptic neuron (see text). In

(B), inhibition stays purely local. In both cases, the

average I connection is equal in magnitude to the

average E connection (global balance). (C and D)

Stability analysis of the corresponding connectivities in (A) and (B). The eigenvalues of each connec-

tivity matrix are plotted in the complex plane. Purple points that lie to the right of the dashed purple

vertical line represent unstable modes of network activity. The network with local dense inhibition is

always stable, no matter how strong all the connections are overall.

5.1 Patchy model of macroscopic synaptic organization

In the class of network architectures considered here, all neurons – excitatory and inhibitory

alike – establish a significant fraction of their outgoing synapses onto “neighbors”, i.e. neu-

rons located less than 300µm away from their soma (Figure 5.1A,B). This predominance

of local connections reflects the physical proximity of neurons that are positioned less than

300µm apart, taking into account the spatial reach of their morphologies (Chklovskii, 2004;

Douglas and Martin, 2007). Additionally, neurons may also project long-range, clustered

connections to distant locations (Figure 5.1A,B, arrows). I assume 3 projection patches

per neuron (the average given in Voges et al. (2010)), although variations in this number

have little consequences on the results presented below. I consider two variants of the above

synaptic architecture: MODEL A in which excitatory and inhibitory neurons all make lo-

cal and long-range clustered projections (Figure 5.1A), and MODEL B in which inhibition

remains local (Figure 5.1B).

The connectivities in MODEL A and MODEL B are idealized as dense connectivity matrices

W , where wi j represents the probability that neuron j would synapse onto neuron i . The

formalism to describe how W is computed is common to both models, only parameters differ.

I assume a 25 × 25 grid on which both the excitatory neurons and inhibitory neurons are

regularly positioned. Thus, there are M = 625 excitatory and M = 625 inhibitory cells, for

a total of N = 1250 neurons in the network. Let ci denote the position of neuron i on the
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grid (vector of two relative coordinates between 0 and 1). For each neuron j , I pick a set

of 3 target locations {`j(k), k = 1, 2, 3}, drawn randomly and uniformly on the grid. Like

cj , `j(k) is a pair of normalized spatial coordinates between 0 and 1. A connectivity matrix

W = {wi j} is then computed as

wi j · sj = plocal
j Fσj

[
∆
(
ci |cj

)]
+ (1− plocal

j )
1

3

3∑

k=1

Fσj
[
∆
(
ci |`j(k)

)]
(5.1)

where sj = ±1 determines the sign of the connection: positive for j ≤ M and negative

otherwise. In Equation 5.1, ∆(a|b) denotes the distance between position a and position

b on the grid, assuming cyclic boundaries. The radial profile Fσj (∆) – parameterized by

a spread σj – expresses the decay of connection probability with distance, for connections

that neuron j makes either around itself (first term in the r.h.s.) or around each of its 3

target locations (second term). Unless otherwise stated, I assume a Gaussian connectivity

profile Fσj (∆) ∝ exp
(
−∆2/2σ2

j

)
. Note that function Fσj is further normalized so that∫

Fσj = 1. Unless indicated otherwise, the spread σj is set to 300µm, independent of

presynaptic neuron j .

Parameter plocal
j denotes the fraction of connections that neuron j makes in its local neigh-

borhood, relative to its total number of outgoing synapses. For simplicity, I assume it depends

only on unit j being excitatory or inhibitory: I thus define plocal
E ≡ plocal

j≤M and plocal
I ≡ plocal

j>M .

MODEL A is thus characterized by plocal
I = 0.5 (equal proportion of local and long-range

inhibition), while MODEL B assumes plocal
I = 1 (purely local inhibition). In both models I

set plocal
E = 0.5 (Voges et al., 2010).

Finally, I assume that excitation and inhibition are globally balanced: the sum of all excitatory

weights in matrix W is equal in absolute value to that of all inhibitory weights.

Note that the connectivity matrices are only defined up to a multiplicative constant here.

For sufficiently weak connections, stability is not an issue. Here I wish to derive stability

conditions that do not depend upon the overall connection strength. The stability arguments

made below will be independent of the overall scaling of W .

5.2 Stability via local inhibition

The key result here is the following: if inhibition is kept local (MODEL B), then a mere

global E/I balance guarantees network stability (subject to some mild conditions as detailed

below). As in previous chapters, stability is understood in the linear sense here: stability

requires all the eigenvalues λ of W to lie within the left half-plane defined by Re(λ) < 1.

Within the connectivity model of section 5.1 above, when inhibition is kept local and the
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global E/I balance is satisfied, this stability condition is met, and robustly so: every real

part in the spectrum of W is even negative (Figure 5.1D). This implies in particular that the

overall absolute magnitude of the connection strengths can be made arbitrarily large without

causing instability, so long as a global E/I balance holds.

There are a few additional conditions for network stability in MODEL B. First, the local radius

of inhibition must be smaller than that of excitation (not shown). Second, the radial profile

Fσj (∆) of the local and distant patches around their respective centers (c.f. Equation 5.1)

must satisfy a certain equation that we derive below, and which holds for the various types

of distance-dependence reported in experiments (Hellwig, 2000; Perin et al., 2011; Levy and

Reyes, 2012).

Importantly, the global E/I balance by itself is not a sufficient condition for stability. This is

well illustrated by the qualitatively different behavior of MODEL A: despite a globally balanced

mix of excitation and inhibition, the connectivity matrix has eigenvalues with positive real

parts (Figure 5.1C), meaning that for sufficiently strong (though balanced) synaptic strengths

instabilities are bound to develop. Thus, the overall strength of the synaptic efficacies in

such a network must be carefully controlled in order to keep the dynamics stable, whereas

model A does not require such fine tuning.

I now describe an attempt to characterize the stability of MODEL B analytically, and in

particular to derive stability conditions on the spatial profile F (∆). The connectivity matrix

in MODEL B has the form

W =

(
WE −WI

WE −WI

)
, (5.2)

Equation 5.2 expresses the assumption that, when a neuron targets a specific area, it makes

connections to both E and I neurons in that local area with similar probabilities. Because W

is made of two identical row blocks, it has at least N/2 zero eigenvalues (its rank is at most

N/2). It is easily checked that the remaining N/2 eigenvalues of W are also the eigenvalues

of W0 = WE −WI with the same multiplicities (and see Supplemental Data of Murphy and

Miller (2009)). Thus I will focus on W0.

Under what conditions does keeping inhibition local ensure that all eigenvalues of W0 (hence,

of W ) have negative real parts? Characterizing the full spectrum of W is a difficult problem,

but valuable insights can be gained from considering the reduced problem sketched in Fig-

ure 5.2A. In this toy problem, the 2D grid with cyclic boundaries is replaced by a continuous,

infinite one-dimensional space. Thus, connectivity matrices become connectivity “kernels”,

and matrix multiplication becomes convolution with those kernels (see e.g. Dayan and Ab-

bott (2001), chapter 7). Each excitatory neuron makes a single long-range projection patch

at a distance p from itself. This distance is taken to be the same for every neuron, making
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Figure 5.2: Simplified version of MODEL B (local inhibition). (A) Schematics of the connectivity.

Excitatory neurons (red circle) make a single projection patch at a distance of p from themselves

(translation-invariant). Inhibitory neurons (blue circle) make a single local patch. Both types of

projections (distant or local) have the same spatial profile F (∆). Here it is sketched as a Gaussian

profile, but I leave the shape free (see (B)) and seek conditions on F (∆) so that every eigenvalue

of the combined connectivity operator W0 = WE − WI (black) has negative real-part. (B) The

eigenvalue real parts of the combined connectivity operator W0 in (A) are bound to lie between 0 and

−Re[F̂ (f )]. These boundaries (bottom row) are plotted here for four different radial profiles F (∆)

(top row). For Gaussian-shaped or Laplacian distance-dependence, all eigenvalues have negative real

parts, which corresponds to a robustly stable network.

the E connectivity translation-invariant. Each inhibitory neuron makes a single local patch

(this is clearly also translation invariant). The spatial profile of each projection patch (local

or distant) around its center is a positive and even function F (∆) where ∆ is the distance

from center (Figure 5.2A). One may thus write the E connectivity from any point s in space

to point s + ∆ as as a kernel WE(∆) = F (∆ − p), and similarly for the I connectivity with

a kernel WI(∆) = F (∆). Because F is taken to be the same for both E and I projections,

I need not model the local excitatory patch (present in the original Equation 5.1) explicitly,

since it cancels out with half of the local inhibitory patch in the difference W0 = WE −WI .

Note that the connectivity in this toy problem satisfies the global E/I balance, as
∫
W0 = 0.

An eigenvalue/eigenfunction pair (λ, x(·)) of the convolution operator with the combined

kernel W0(∆) = WE(∆)−WI(∆) = F (∆− p)− F (∆) satisfies

∫ +∞

−∞
x(s − ∆)W0(∆)d∆ = λx(s) (∀s ∈ R) (5.3)

Due to the assumed translation invariance, it is easy to show that Equation 5.3 is fulfilled

by the Fourier modes xf (s) = e2jπf s (with j2 = −1). The eigenvalue associated with some

spatial frequency f is λf =
∫
W0(∆)e−2jπf ∆d∆, and the corresponding real part is given by

Re(λf ) =

∫
W0(∆) cos(2πf ∆)d∆ =

∫
[F (∆− p)− F (∆)] cos(2πf ∆)d∆ (5.4)
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Figure 5.3: Conditions for stability in net-

works with local inhibition and a global E/I

balance – The eigenvalue spectra of connec-

tivity matrices are shown in (A), for the four

types of connectivity distance-dependence

shown in (B). Just as predicted by the sim-

plified analysis of Figure 5.2, Gaussian and

Laplacian radial profiles lead to robustly sta-

ble networks (all real parts in the spectrum

are negative), while cosine-shaped or uniform

profiles may cause instabilities if connections

are strong enough. In (A), it is assumed that

the spreads σE and σI of the E and I radial

profiles are identical. In (C), we consider the

remaining two cases (excitation broader, in-

hibition broader). For robust stability, excita-

tion must be broader.

I now look at the extrema of Re(λf ) as a function of p. Taking an arbitrary frequency f ,

and setting the derivative of Re(λf ) w.r.t p to zero yields the extremum condition
∫
F ′(∆− p) cos(2πf ∆)d∆ = 0 (5.5)

In other words, the real part of the Fourier transform of F ′(∆ + p) is zero, which can also

be written as

Re
(

2πjf e2πjpf F̂ (f )
)

= 0 (5.6)

where F̂ is the Fourier transform of F . Since F is even, its Fourier transform is real. If

F̂ (f ) 6= 0 (which is the non-trivial case), the extremum condition in Equation 5.6 can

therefore be written as sin(2πpf ) = 0, meaning p = k/f or p = (k + 1/2)/f for some

integer k . The real part Re(λf ) in Equation 5.4 is then easily evaluated at those extrema,

and yields Re(λf ) = 0 in the first case, and Re(λf ) = −
∫
F (∆) cos(2πf ∆)d∆ = −Re[F̂ (f )]

in the second case. I conclude that Re(λf ), seen as a function of p, lies somewhere between

0 and −Re[F̂ (f )], and is therefore negative if, and only if, Re[F̂ (f )] > 0. Our robust stability

condition may thus be expressed as

Re[F̂ (f )] > 0 (∀f > 0) (5.7)

The Fourier transforms of both a Gaussian profile F (∆) ∝ exp(−∆2/2σ2) and a Laplacian

F (∆) ∝ exp(− |∆| /σ) have positive real parts at all frequencies (Figure 5.2B). For those
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radial profiles one therefore expects a balanced network with local inhibition to be stable

irrespective of the absolute strength of the connections. This however is not true of other

radial profiles, such as a rectified cosine Fσj (∆) ∝
[
cos
(

∆π/6σj
)]

+
or a uniform flat profile

on the interval [−3σj , 3σj ] (Figure 5.2B).

Despite numerous simplifying assumptions, the condition in Equation 5.7 is predictive of

stability even in the full model of section 5.1. Numerically, Equation 5.7 appears to be an

accurate sufficient condition for stability via local inhibition, even when the excitatory neurons

make both local and multiple long-range projections, that are not translation-invariant, and

formed in 2D space. This is shown in Figure 5.3A, where I plot the eigenvalue spectra of the

matrices built as described in section 5.1 with different forms of distance-dependence F (∆)

shown in Figure 5.3B.

Finally, a derivation similar to the above can be made to show that the local radius of inhibition

must be smaller than that of excitation for all the eigenvalues of W to have negative real

parts (Figure 5.3C). This is opposite to the well-known “mexican-hat” connectivity structure,

known to yield bump attractor dynamics when combined with a saturating input-output gain

function in single neurons (Ben-Yishai et al., 1995).





CHAPTER 6

STDP in adaptive neurons gives close-to-optimal information

transmission

This chapter is largely unrelated to the first three chapters of this thesis, and is therefore

difficult to introduce in their context. I let it stand alone as a contribution to the field of

synaptic plasticity, and let the abstract and introduction of the paper position the work within

the previous literature on spike timing-dependent plasticity (STDP). This work was published

in

STDP in adaptive neurons gives close-to-optimal information transmission

Guillaume Hennequin, Wulfram Gerstner and Jean-Pascal Pfister

Frontiers in Computational Neuroscience (2010)
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Abstract

Spike-frequency adaptation is known to enhance the transmission of information in

sensory spiking neurons by rescaling the dynamic range for input processing, matching

it to the temporal statistics of the sensory stimulus. Achieving maximal information

transmission has also been recently postulated as a role for Spike-Timing Dependent

Plasticity (STDP). However, the link between optimal plasticity and STDP in cortex

remains loose, as does the relationship between STDP and adaptation processes. We

investigate how STDP, as described by recent minimal models derived from experimental

data, influences the quality of information transmission in an adapting neuron. We show

that a phenomenological model based on triplets of spikes yields almost the same infor-

mation rate as an optimal model specially designed to this end. In contrast, the standard

pair-based model of STDP does not improve information transmission as much. This

result holds not only for additive STDP with hard weight bounds, known to produce

bimodal distributions of synaptic weights, but also for weight-dependent STDP in the

context of unimodal but skewed weight distributions. We analyze the similarities between

the triplet model and the optimal learning rule, and find that the triplet effect is an im-

portant feature of the optimal model when the neuron is adaptive. If STDP is optimized

for information transmission, it must take into account the dynamical properties of the

postsynaptic cell, which might explain the target-cell specificity of STDP. In particular,

it accounts for the differences found in vitro between STDP at excitatory synapses onto

principal cells and those onto fast-spiking interneurons.

6.1 Introduction

The experimental discovery of Spike Timing-Dependent Plasticity (STDP) in the mid-nineties

(Markram et al., 1997; Bell et al., 1997; Magee and Johnston, 1997; Bi and Poo, 1998; Zhang

et al., 1998) led to two questions, in particular. The first is: what is the simplest way of

describing this complex phenomenon? This question has been answered in a couple of minimal

models (phenomenological approach) whereby long-term potentiation (LTP) and long-term

depression (LTD) are reduced to the behavior of a small number of variables (Gerstner et al.,

1996; Kempter et al., 1999; Song et al., 2000; van Rossum et al., 2000; Rubin et al., 2001;

Gerstner and Kistler, 2002a; Pfister and Gerstner, 2006; Froemke et al., 2006; Clopath

et al., 2010) – see Morrison et al. (2008) for a review. Because they are inspired by in vitro

plasticity experiments, the state variables usually depend solely on what is experimentally

controlled, i.e. on spike times and possibly on the postsynaptic membrane potential. They

are computationally cheap enough to be used in large-scale simulations (Morrison et al.,

2007; Izhikevich and Edelman, 2008). The second question has to do with the functional
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role of STDP: what is STDP good for? The minimal models mentioned above can address

this question only indirectly, by solving the dynamical equation of synaptic plasticity for input

with given stationary properties (Kempter et al., 1999; van Rossum et al., 2000; Rubin

et al., 2001). An alternative approach is to postulate a role for synaptic plasticity, and

formulate it in the mathematical framework of optimization (“top-down approach”). Thus,

in artificial neural networks, Hebbian-like learning rules were shown to arise from unsupervised

learning paradigms such as principal components analysis (Oja, 1982, 1989), independent

components analysis (Intrator and Cooper, 1992; Bell and Sejnowski, 1995; Clopath et al.,

2008), maximization of mutual information (Linsker, 1989), sparse coding (Olshausen and

Field, 1996; Smith and Lewicki, 2006) and predictive coding (Rao and Ballard, 1999). In

spiking neurons, local STDP-like learning rules were obtained from optimization criteria such

as maximization of information transmission (Chechik, 2003; Toyoizumi et al., 2005, 2007),

information bottleneck (Klampfl et al., 2009), maximization of the neuron’s sensitivity to the

input (Bell and Parra, 2005), reduction of the conditional entropy (Bohte and Mozer, 2007),

slow-feature analysis (Sprekeler et al., 2007), and maximization of the expected reward (Xie

and Seung, 2004; Pfister et al., 2006; Florian, 2007; Sprekeler et al., 2009).

The functional consequences of STDP have mainly been investigated in simple integrate-and-

fire neurons, where the range of temporal dependencies in the postsynaptic spike train spans

no more than the membrane time constant. Few studies have addressed the question of the

synergy between STDP and more complex dynamical properties on different timescales. In

Seung (2003), more complex dynamics were introduced not at the cellular level, but through

short-term plasticity of the synapses. The postsynaptic neuron was then able to become

selective to temporal order in the input. Another elegant approach to this question was

taken in Lengyel et al. (2005) in a model of hippocampal autoassociative memory. Memories

were encoded in the phase of firing of a population of neurons relative to an ongoing theta

oscillation. Under the assumption that memories are stored using a classical form of STDP,

they derived the form of the postsynaptic dynamics that would optimally achieve their recall.

This turned out to match what they recorded in vitro, suggesting that STDP might optimally

interact with the dynamical properties of the postsynaptic cell in this memory storage task.

More generally, optimality models are ideally suited to study plasticity and dynamics together.

Indeed, optimal learning rules contain an explicit reference to the dynamical properties of the

postsynaptic cell, by means of the transfer function that maps input to output values. This

function usually appears in the formulation of a gradient ascent on the objective function. In

this article, we exploit this in order to relate STDP to Spike-Frequency Adaptation (SFA),

an important feature of the dynamics of a number of cell types found in cortex. Recent

phenomenological models of STDP have emphasized the importance of the interaction be-

tween postsynaptic spikes in the LTP process (Senn et al., 2001; Pfister and Gerstner, 2006;
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Clopath et al., 2010). In these models, the amount of LTP obtained from a pre-before-post

spike pair increases with the number of postsynaptic spikes fired in the recent past, which

we call the “triplet effect” (combination of 1 pre-spike and at least 2 post-spikes). The

timescale of this post-post interaction was fitted to in vitro STDP experiments, and found

to be very close to that of adaptation (100 to 150 ms).

We reason that STDP may be ideally tuned to SFA of the postsynaptic cell. We specifically

study this idea within the framework of optimal information transmission (infomax) between

input and output spike trains. We compare the performance of a learning rule derived from the

infomax principle in Toyoizumi et al. (2005), to that of the triplet model developed in Pfister

and Gerstner (2006). We also compare them to the standard pair-based learning window

used in most STDP papers. Performance is measured in terms of information theoretic

quantities. We find that the triplet learning rule yields a better performance than pair-STDP

on a spatio-temporal receptive field formation task, and that this advantage crucially depends

on the presence of postsynaptic SFA. This reflects a synergy between the triplet effect and

adaptation. The reasons for this optimality are further studied by showing that the optimal

model features a similar triplet effect when the postsynaptic neuron adapts. We also show

that both the optimal and triplet learning rules increase the variability of the postsynaptic

spike trains, and enlarge the frequency band in which signals are transmitted, extending it

towards lower frequencies (1-5 Hz). Finally, we exploit the optimal model to predict the form

of the STDP mechanism for two different target cell types. The results agree qualitatively

with the in vitro data reported for excitatory synapses onto principal cells and those onto

fast-spiking inhibitory interneurons. In the model, the learning windows are different because

the intrinsic dynamical properties of the two postsynaptic cell types are different. This might

be the functional reason for the target-cell specificity of STDP.

6.2 Material and Methods

6.2.1 Neuron model

We simulate a single stochastic point neuron (Gerstner and Kistler, 2002b) and a small

portion of its incoming synapses (N = 1 for the simulation of in vitro experiments, N = 100

in the rest of the paper). Each postsynaptic potential (PSP) adds up linearly to form the

total modeled synaptic drive

u(t) =

N∑

j=1

wjεj(t) (6.1)
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with

εj(t) =

∫ t

0

xj(t
′) exp

(
−
t − t ′

τm

)
dt ′ (6.2)

where xj(t) =
∑
tfj
δ
(
t − t fj

)
denotes the j th input spike train, and wj (mV) are the synaptic

weights. The effect of thousands of other synapses is not modeled explicitly, but treated as

background noise. The firing activity of the neuron is entirely described by an instantaneous

firing density

ρ(t) = g[u(t)]M(t) (6.3)

where

g[u] = g0 + r0 log [1 + exp (β (u − uT ))] (6.4)

is the gain function, drawn in Figure 6.1A. Refractoriness and SFA both modulate the in-

stantaneous firing rate via

M(t) = exp [−(gR(t) + gA(t))] (6.5)

The variables gR and gA evolve according to

dgR
dt

= −
gR(t)

τR
+ qR y(t) and

dgA
dt

= −
gA(t)

τA
+ qA y(t) (6.6)

where y(t) =
∑
tfpost

δ
(
t − t fpost

)
is the postsynaptic spike train and 0 < τR � τA are the

time constants of refractoriness and adaptation respectively. The firing rate thus becomes

a compressive function of the average gain, as shown in Figure 6.1B. The response of the

neuron to a step in input firing rate is depicted in Figure 6.1C.

For the simulation of in vitro STDP experiments, only one synapse is investigated. The

potential u is thus given a baseline ub (to which the PSP of the single synapse will add) such

that g(ub) yields a spontaneous firing rate of 7.5 Hz (Figure 6.1B).

In some of our simulations, postsynaptic SFA is switched off (qA = 0). In order to preserve

the same average firing rate given the same synaptic weights, r0 is rescaled accordingly

(Figure 6.1A and Figure 6.1B, dashed lines).

In the simulation of Figure 6.8, we add a third variable gB in the after-spike kernel M in

order to model a fast-spiking inhibitory interneuron. This variable jumps down (qB < 0)

following every postsynaptic spike, and decays exponentially with time constant τB (with

τR � τB < τA).

All simulations were written in Objective Caml and run on a standard desktop computer

operated by Linux. We used simple Euler integration of all differential equations, with 1 ms

time resolution (0.1 ms for the simulation of in vitro experiments). All parameters are listed

in Table 6.1 together with their values.
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Figure 6.1: Stochastic neuron model. (A) The gain function g(u) (Equation 6.4, solid line here)

shows the momentary rate of a non-refractory neuron as a function of the membrane potential u.

(B) The mean rate 〈g[u(t)]M(t)〉 of a neuron with refractoriness and adaptation is lower (solid red

line). The baseline potential ub used in the simulation is defined as the membrane potential that

yields a spontaneous firing rate of 7.5 Hz (green arrow and dashed line). In some simulations, we

need to switch off adaptation, but we want the same holding potential ub to evoke the same 7.5 Hz

output firing rate. The slope r0 of the gain function is therefore rescaled ((A), dashed curve) so that

the frequency curves in the adaptation and no-adaptation cases ((B), solid and dashed red curves)

cross at u = ub. (C) Example response property of an adaptive neuron. A single neuron receives

synaptic inputs from 100 poisson spike trains with a time-varying rate. The experiment is repeated

1000 times independently. Bottom: the input rate jumps from 10 to 50 Hz, stays there for half a

second and returns back to 10 Hz (bottom). Middle: Persi-Stimulus Time Histogram (PSTH, 4 ms

bin). Top: example spike trains (first 100 trials).

6.2.2 Presynaptic firing statistics

To analyze the evolution of information transmission under different plasticity learning rules,

we consider N = 100 periodic input spike of 5 seconds duration generated once and for

all (see below). This “frozen noise” is then replayed continuously, feeding the postsynaptic

neuron for as long as is necessary (e.g. for learning, or for mutual information estimation).

To generate the time-varying rates of the N processes underlying this frozen noise, we first

draw point events at a constant Poisson rate of 10 Hz, and then smooth them with a Gaussian

kernel of width 150 ms. Rates are further multiplicatively normalized so that each presynaptic

neuron fires an average of 10 spikes per second. We emphasize that this process describes the

statistics of the inputs across different learning experiments. When we mention “independent

trials”, we mean a set of experiments which have their own independent realizations of those

input spike trains. However, in one learning experiment, a single such set of N input spike

trains is chosen and replayed continuously as input to the postsynaptic neuron. The input

is therefore deterministic and periodic. When the periodic input is generated, some neurons
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can happen to fire at some point during those 5 seconds within a few milliseconds of each

other, and by virtue of the periodicity, these synchronous firing events will repeat in each

period, giving rise to strong spatio-temporal correlations in the inputs. We are interested

in seeing how different learning rules can exploit this correlational structure to improve the

information carried by the postsynaptic activity about those presynaptic spike trains. We now

describe what we mean by information transmission under this specific stimulation scenario.

6.2.3 Information theoretic measurements

The neuron can be seen as a noisy communication channel in which multidimensional sig-

nals are compressed and distorted before being transmitted to subsequent receivers. The

goodness of a communication channel is traditionally measured by Shannon’s mutual infor-

mation between the input and output variables, where the input is chosen randomly from

some “alphabet” or vocabulary of symbols.

Here, the input is deterministic and periodic (Figure 6.2A). We therefore define the quality

of information transmission by the reduction of uncertainty about the phase of the current

input if we observe a certain output spike train at an unknown time. In discrete time (with

time bin ∆ = 1ms), there are only Nφ = 5000 possible phases since the input has a period of

5 seconds. Therefore, the maximum number of bits that the noisy postsynaptic neuron can

transmit is log2(Nφ) ' 12.3 bits. We further assume that an observer of the output neuron

can only see “words” corresponding to spike trains of finite duration T = K∆. We assume

T = 1 second for most of the paper, which corresponds to K = 1000 time bins. This choice

is justified below.

The discretized output spike trains of size K (binary vectors), called YK, can be observed

at random times and plays the role of the output variable. The input random variable is the

phase Œ of the input. The quality of information transmission is quantified by the mutual in-

formation, i.e. the difference between the total response entropy H(YK) =
〈

log2 P (YK)
〉

YK

and the noise entropy H(YK|Œ) =
〈〈

log2 P (YK|Œ)
〉

YK|Œ

〉
Œ

. Here 〈·〉 denotes the en-

semble average. In order to compute these entropies, we need to be able to estimate the

probability of occurence of any sample word Y K , knowing and not knowing the phase. To

do so, a large amount of data is first generated. The noisy neuron is fed continously for a

large number of periods Np = 100 with a single periodic set of input spike trains and a fixed

set of synaptic weights. The output spikes are recorded with ∆ = 1ms precision. From this

very long output spike train, we randomly pick words of length K and gather them in a set

S. We take |S| = 1000. This is our sample data.

In general, estimating the probability of a random binary vector of size K is very difficult if
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Figure 6.2: Information transmission through a noisy postsynaptic neuron. (A) Schematic

representation of the feedforward network. 5-second input spike trains repeat continuously in time

(periodic input) and drive a noisy and possibly adapting output neuron via plastic synapses. It is

assumed that an observer of the output spike train has access to portions Y K of it, called “words”,

of duration T = K∆. The observer does not have access to a clock, and therefore has a flat prior

expectation over possible phases before observing a word. The goodness of the system, given a set

of synaptic weights w, is measured by the reduction of uncertainty about the phase, gained from

the observation of an output word Y K (mutual information, see text). (B) For a random set of

synaptic weights (20 weights at 4mV, the rest at zero), the mutual information (MI) is reported as a

function of the output word size K∆. Asymptotically, the MI converges to the theoretical limit given

by log2(Nφ) ' 12.3 bits. In the rest of this study, 1-second output words are considered (square).

(C) Mutual information (MI, top) and information per spike (MI’, bottom) as a function of the

average firing rate. Black: with SFA. Green: without SFA. Each dot is obtained by setting a fraction

of randomly chosen synaptic efficacies to the upper bound (4 mV) and the rest to 0. The higher

the fraction of non-zero weights, the higher the firing rate. The information per spike is a relevant

quantity because spike generation costs energy.

K is large. Luckily, we have a statistical model for how spike trains are generated (Equa-

tion 6.3), which considerably reduces the amount of data needed to produce a good estimate.

Specifically, if the refractory state of the neuron [gR(t), gA(t)] is known at time t (initial

conditions), then the probability 1 − exp(−ρk∆) ' ρk∆ of the postsynaptic neuron spiking

is also known for each of the K time bins following t (Equation 6.3 to Equation 6.5). The

neuron model gives us the probability that a word Y K occured at time t – not necessarily

the time at which the word was actually picked – (Toyoizumi et al., 2005):

P
(
Y K | t, gR(t), gA(t)

)
= exp

[
K∑

k=1

Y Kk log (ρk∆) + (1− Y Kk ) log (1− ρk∆)

]
(6.7)

where ρk = ρ(t + k∆) and Y Kk is one if there is a spike in the word at position k , and zero

otherwise. To compute the conditional probability of occurence of a word Y K knowing the

phase φ, we have to further average Equation 6.7:

P (Y K |φ) =
〈
P (Y K |t)

〉
t with Φ(t)=φ

(6.8)

where Φ(t) = 1 + (t mod Nφ) denotes the phase at time t. Averaging over multiple times

with same phase also averages over the initial conditions [gR(t), gA(t)], so that they do not
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appear in Equation 6.8. The average in Equation 6.8 is estimated using a set of 10 randomly

chosen times ti with Φ(ti) = φ.

The full probability of observing a word Y K is given by P (Y K) = 1
Nφ

∑Nφ
φ=1 P (Y K |φ) where

P (Y K |φ) is computed as described above. Owing to the knowledge of the model that un-

derlies spike generation, and to this huge averaging over all the possible phases, the obtained

P (Y K) is a very good estimate of the true density. We can then take a Monte-Carlo ap-

proach to estimate the entropies, using the set S of randomly picked words: H(YK) =

−
∑
Y K P (Y K) log2 P (Y K) can be estimated by

Ĥ(YK) = −
1

|S|
∑

Y K∈S

log2 P (Y K) (6.9)

and H(YK|Œ) = −
∑
φ P (φ)

∑
Y K P (Y K)P (Y K |φ)

P (Y K)
log2 P (Y K |φ) is estimated using

Ĥ(YK|Œ) = −
1

Nφ

Nφ∑

φ=1

1

|S|
∑

Y K∈S

P (Y K |φ)

P (Y K)
log2 P (Y K |φ) (6.10)

The mutual information (MI) estimate is the difference of these two entropies, and is ex-

pressed in bits. In Figure 6.2C, we introduce the information per spike MI’ (bits/spike),

obtained by dividing the MI by the expected number of spikes in a window of duration K∆.

Figure 6.2B shows that the MI approaches its upper bound log2(Nφ) as the word size in-

creases. The word size considered here (1 second) is large enough to capture the effects of

SFA while being small enough not to saturate the bound.

Although we constrain the postsynaptic firing rate to lie around a fixed value ρtarg (see

homeostasis in the next section), the rate will always jitter. Even a small jitter of less

than 0.5 Hz (which we have in the present case) makes it impossible to directly compare

entropies across learning rules. Indeed, while the mutual information depends only weakly on

small deviations of the firing rate around ρtarg, the response and noise entropies have much

larger (co-)variations. In order to compare the entropies across learning rules, we need to

know what the entropy would have been if the rate was exactly ρtarg instead of ρtarg + ε.

We therefore compute the entropy (H(YK) or H(YK|Œ)) for different firing rates in the

vicinity of ρtarg. These firing rates are achieved by slightly rescaling the synaptic weights, i.e.

wi j ← κwi j where κ takes several values around 1. We then fit a linear model H = aρ+ b,

and evaluate H at ρtarg.

The computation of the conditional probabilities P (Y K |φ) was accelerated on an ATI Radeon

(HD 4850) graphics processing unit (GPU), which was 130 times faster than a decent CPU

implementation.
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Figure 6.3: Description of the three learning rules. (A) Time course of the variables involved

in the optimal model. ∆̃w denotes the cumulative weight change. (B) Schematic representation

of the phenomenological models of STDP used in this paper. Each presynaptic spike yields LTD

proportionally to o1 (blue trace) in both models (pair and triplet). In the pair model, postsynaptic

spikes evoke LTP proportionally to rj (green trace), while in the triplet model rj is combined with an

additional postsynaptic trace o2 (red).

6.2.4 Learning rules

6.2.4.1 Optimal learning rule

The optimal learning rule aims at maximizing information transmission under some metabolic

constraints (“infomax” principle). Toyoizumi et al. (2005) and Toyoizumi et al. (2007)

showed that this can be achieved my means of a stochastic gradient ascent on the following

objective function

L = I − γD − λΨ (6.11)

whereby the mutual information I between input and output spike trains competes with a

homeostatic constraint on the mean firing rate D and a metabolic penalty Ψ for strong

weights that are often active. The first constraint is formulated as D = KL
[
P (YK), P̃ (YK)

]

where KL denotes the Kullback-Leibler (KL) divergence. P denotes the true probability

distribution of output spike trains produced by the stochastic neuron model, while P̃ assumes

a similar model in which the gain g(t) is kept constant at a target gain gtarg. Minimizing

the divergence between P and P̃ therefore means driving the average gain close to gtarg,

thus implementing firing rate homeostasis. The second constraint reads Ψ =
∑
j wj

〈
nj
〉

XK
,

whereby the cost for synapse j is proportional to its weight wj and to the average number

nj of presynaptic spikes relayed during the K time bins under consideration. The Lagrange

multipliers γ and λ set the relative importance of the three objectives.

Performing gradient ascent on L yields the following online learning rule (Toyoizumi et al.,
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2005, 2007):
dwj
dt

= ηo
[
Cj(t)Bpost(t)− λxj(t)

]
(6.12)

where

Cj(t) =

∫ t

0

dt ′ exp

(
−
t − t ′

τC

)
εj(t

′)
g′[u(t ′)]

g[u(t ′)]

[
y(t ′)− g[u(t ′)]M(t ′)

]
(6.13)

and

Bpost(t) = y(t) log

[
g[u(t)]

ḡ

(
gtarg

ḡ

)γ]
−M(t)

[
g[u(t)]− ḡ + γ

(
gtarg − ḡ

)]
(6.14)

ηo is a small learning rate. The first term Cj is Hebbian in the sense that it reflects the

correlations between the input and output spike trains. Bpost is purely postsynaptic: it

compares the instantaneous gain g to its average ḡ (information term), as well as the

average gain to its target value gtarg (homeostasis). The average ḡ is estimated online by a

low pass filter of g with time constant τg. The time course of these quantities is shown in

Figure 6.3A for example spike trains of 1 second duration, for γ = 0.

Because of the competition between the three objectives in Equation 6.11, the homeostatic

constraint does not yield the exact desired gain gtarg. In practice, we set the value of gtarg

empirically, such that the actual mean firing rate approaches the desired value.

Finally, we use τC , ηo and λ as three free parameters to fit the results of in vitro STDP

pairing experiments (Figure 6.8). τC is set empirically equal to the membrane time constant

τM = 20 ms, while ηo and λ are determined through a least-squares fit of the experimental

data. The learning rate ηo can be rescaled arbitrarily. In the simulations of receptive-field

development (Figure 6.4,Figure 6.5, and Figure 6.6), λ is set to zero so as not to perturb

unnecessarily the prime objective of maximizing information transmission. It is also possible

to remove the homeostasic constraint (γ = 0) in the presence of SFA. As can be seen in

Figure 6.2C, the MI has a maximum at 7.5Hz when the neuron adapts, so that firing rate

control comes for free in the information maximization objective. We therefore set γ = 0

when the neuron adapts, and γ = 1 when is does not. In fact, the homeostasis constraint only

slightly impairs the infomax objective: we have checked that the MI reached after learning

(Figure 6.4 and Figure 6.5) does not vary by more than 0.1 bit when γ takes values as large

as 20.

6.2.4.2 Triplet-based learning rule

We use the minimal model developed in Pfister and Gerstner (2006) with “all-to-all” spike

interactions. Presynaptic spikes at synapse j leave a trace rj (Figure 6.3B) which jumps by
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1 after each spike and otherwise decays exponentially with time constant τ+. Similarly, the

postsynaptic spikes leave two traces, o1 and o2, which jump by 1 after each postsynaptic

spike and decay exponentially with time constants τ− and τy respectively:

drj
dt

= −
rj
τ+

+ xj(t)
do1

dt
= −

o1

τ−
+ y(t)

do2

dt
= −

o2

τy
+ y(t) (6.15)

where xj(t) and y(t) are sums of δ-functions at each firing time as introduced above. The

synaptic weight wj undergoes LTD proportionally to o1 after each presynaptic spike, and

LTP proportionally to rjo2 following each postsynaptic spike:

dwj
dt

= η3

[
A+

3 rj(t)o2(t − ε)y(t)− A−2 o1(t)xj(t)
]

(6.16)

where η3 denotes the learning rate. Note that o2 is taken just before its update. Under the

assumption that pre- and postsynaptic spike trains are independent Poisson processes with

rates ρx and ρy respectively, the average weight change was shown in Pfister and Gerstner

(2006) to be proportional to

〈∆w〉 ∝ ρxρy
(
ρy −

τ−A
−
2

τ+τyA
+
3

)
(6.17)

The rule is thus structurally similar to a BCM learning rule (Bienenstock et al., 1982) since

it is linear in the presynaptic firing rates and nonlinear in the postsynaptic rate. It is possible

to roughly stabilize the postsynaptic firing rate at a target value ρtarg, by having A−2 slide in

an activity-dependent manner:

A−2 (t) = Ã−2
ρ̄3(t)

ρ3
targ

(6.18)

where Ã−2 is a starting value and ρ̄ is an average of the instantaneous firing rate on the

timescale of seconds or minutes (time constant τρ). Finally, A+
3 is set to make ρtarg an

initial fixed point of the dynamics in Equation 6.17:

A+
3 =

τ−Ã
−
2

ρtargτ+τy
(6.19)

The postsynaptic rate should therefore roughly remain equal to its starting value ρtarg. In

practice, the Poisson assumption is not valid because of adaptation and refractoriness, and

independence becomes violated as learning operates. This causes the postsynaptic firing rate

to deviate and stabilize slightly away from the target ρtarg. We therefore always set ρtarg

empirically so that the firing rate stabilizes to the true desired target.

6.2.4.3 Pair-based learning rule

We use a pair-based STDP rule structurally similar to the triplet rule described by Equa-

tion 6.16 (Figure 6.3B). The mechanism for LTD is identical, but LTP does not take into
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account previous postsynaptic firing:

dwj
dt

= η2

[
A+

2 rj(t)y(t)− A−2 o1(t)xj(t)
]

(6.20)

where η2 is the learning rate. A−2 also slides in an activity-dependent manner according to

Equation 6.18, to help stabilizing the output firing rate at a target ρtarg. A+
2 is set such that

LTD initially balances LTP, i.e.

A+
2 =

Ã−2 τ−
τ+

(6.21)

Comparing learning rules in a fair way requires making sure that their learning rates are

equivalent. Since the two rules share the same LTD mechanism, we can simply take the

same value for Ã−2 as well as η2 = η3. Since LTD is dynamically regulated to balance LTP

on average in both rules, this ensures that they also share the same LTP rate.

6.2.4.4 Weight bounds

In order to prevent the weights from becoming negative or from growing too large, we set

hard bounds on the synaptic efficacies for all three learning rules, when not stated otherwise.

That is, if the learning rule requires a weight change ∆wj , wj is set to

wj ← min
[
wmax,max

(
0, wj + ∆wj

)]
(6.22)

This type of bounds, in which the weight change is independent of the initial synaptic weight

itself, is known to yield bimodal distributions of synaptic efficacies. In the simulation of

Figure 6.5, we also consider the following soft bounds to extend the validity of our results

to unimodal distributions of weights:

if ∆wj ≥ 0 then wj ← wj + ∆wj

if ∆wj < 0 then wj ← wj +

[
1−

1

1 + a
wj
w0

+

(
1

1 + a

)
wj
w0

]
∆wj (6.23)

where a is a free parameter and w0 = 1 mV is the value at which synaptic weights are

initialized at the beginning of all learning experiments. This choice of soft-bounds is further

motivated in the Results section. The shapes of the LTP and LTD weight-dependent factors

are drawn in Figure 6.5A, for a = 9. Note that the LTD and LTP factors cross at w0, which

ensures that the balance between LTP and LTD set by Equation 6.19 and Equation 6.21 is

initially preserved.

When the soft-bounds are used, the parameter τC of the optimal model is adjusted so that

the weight distribution obtained with the optimal rule best matches the weight distributions
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of the pair and triplet rules. This parameter indeed has an impact on the spread of the weight

distribution: the optimal model knows about the generative model that underlies postsynaptic

spike generation, and therefore takes optimally the noise into account, as long as τC spans

no more than the width of the postsynaptic autocorrelation (Toyoizumi et al., 2005). If τC is

equal to this width (about 20 ms), some weights can grow very large (¿50mV), which results

in non-realistic weight distributions. Increasing τC imposes more detrimental noise such that

all weights are kept within reasonable bounds. In order to constrain τC in a non-arbitrary way,

we ran the learning experiment for several values of τC and computed the KL divergences

between weight distributions (optimal-triplet, optimal-pair). τC is chosen to minimize these,

as shown in Figure 6.5B.

6.2.5 Simulation of in vitro experiments

To obtain the predictions of the optimal model on standard in vitro STDP experiments,

we compute the weight change of a single synapse (N = 1) according to Equation 6.12.

The effect of the remaining thousands of synapses is concentrated in a large background

noise, obtained by adding a ub = 19 mV baseline to the voltage. The gain becomes gb =

g(ub) ' 21.45 Hz, which in combination with adaptation and refractoriness would yield a

spontaneous firing rate of about 7.5 Hz (see Figure 6.1). Spontaneous firing is artificially

blocked, however. Instead, the neuron is forced to fire at precise times as described below.

The standard pairing protocol is made of a series of pre-post spike pairs, the spikes within

the same pair being separated by ∆s = tpost − tpre. Pairs are repeated with some frequency

f . The average ḡ is taken fixed and equal to gb, considering that STDP is optimal for in

vivo conditions such that ḡ should not adapt to the statistics of in vitro conditions. The

homeostasis is turned off (γ = 0) in order to consider only the effects of the infomax principle.

6.3 Results

We study information transmission through a neuron modelled as a noisy communication

channel. It receives input spike trains from a hundred plastic excitatory synapses, and

stochastically generates output spikes according to an instantaneous firing rate modulated by

presynaptic activities. Importantly, the firing rate is also modulated by the neuron’s own firing

history, in a way that captures the spike-frequency adaptation (SFA) mechanism found in a

large number of cortical cell types. We investigate the ability of three different learning rules

to enhance information transmission in this framework. The first learning rule is the stan-

dard pair-based STDP model, whereby every single pre-before-post (resp. post-before-pre)
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Neuron model Optimal rule Triplet rule Pair rule Weight bounds

τm 20 ms ηo 0.04 η3 1.0 η2 1.0 wmin 0 mV

g0 1 Hz (35) τC 20 ms τ+ 16.8 ms τ+ 16.8 ms wmax 4 mV

r0 9.25 Hz (3.25) τg 10 s τ− 33.7 ms τ− 33.7 ms a 9

β 0.5 mV−1 γ 1 (0) τy 114 ms

uT 15 mV gtarg ad hoc Ã−2 2.8e-3 Ã−2 2.8e-3

τR 2 ms λ 0.0094 A+
3 6.5e-3 A+

2 5.6e-3

τA 150 ms ρtarg ad hoc ρtarg ad hoc

qR 100 τρ 10 s τρ 10 s

qA 1 (0)

Table 6.1: Baseline values of all parameters defined in the text. Some parameters were

set to different values when the neuron was non-adapting (italic numbers). Similarly, some

parameters were different for the simulations of in vitro experiment (bold faces)

spike pair yields LTP (resp. LTD) according to a standard double exponential asymmetric

window (Bi and Poo, 1998; Song et al., 2000). The second one was developed in Pfister

and Gerstner (2006) and is based on triplets of spikes. LTD is obtained similarly to the pair

rule, whereas LTP is obtained from pairing a presynaptic spike with two postsynaptic spikes.

The third learning rule (Toyoizumi et al., 2005) is derived from the infomax principle, under

some metabolic constraints.

6.3.1 Triplet-STDP is better than pair-STDP when the neuron adapts

We assess and compare the performance of each learning rule on a simple spatiotemporal

receptive field development task, with N = 100 presynaptic neurons converging onto a single

postsynaptic cell (Figure 6.2A).

For each presynaptic neuron, a 5-second input spike train is generated once and for all (see

Material and Methods). All presynaptic spike trains are then replayed continuously 5,000

times. All synapses undergo STDP according to one of the three learning rules. Synaptic

weights are all initially set to 1 mV, which yields an initial output firing rate of about 7.5 Hz.

We set the target firing rate ρtarg of each learning rule such that the output firing rate stays

very close to 7.5 Hz. To gather enough statistics, the whole experiment is repeated 10 times

independently, each time with different input patterns. All results are therefore reported as

mean and standard error of the mean (SEM) over the 10 trials.

All three learning rules developped very similar bimodal distributions of synaptic efficacies

(Figure 6.4A), irrespective of the presence or absence of SFA. This is a well known conse-

quence of additive STDP with hard bounds imposed on the synaptic weights (Kempter et al.,

1999; Song et al., 2000). The firing rate stabilizes at 7.5 Hz as desired, for all plasticity rules
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Figure 6.4: Triplets are better than pairs when the neuron adapts. (A) Distributions of synaptic

efficacies obtained after learning. The weights were all initialized at 1 mV before learning (black

arrow). When SFA is switched off, the very same bimodal distributions emerge (not shown). (B)

Evolution of the MI along learning time. Learning time is arbitrarily indexed from 0 < α < 1. The

dashed curves represent the MI when the weights taken from the momentary distribution at time α

are shuffled. Each point is obtained from averaging the MI over 10 different shuffled versions of the

synaptic weights. Error bars denote standard error of the mean (SEM) over 10 independent learning

episodes with different input spike trains. (C) Same as in D, but SFA is switched off. The y-scale

is the same as in (B). Parameters for those simulations were λ = 0, γ = 0 with SFA, and γ = 1

without SFA. Other parameters took the values given in Table 6.1.

(not shown). In Figure 6.4B, we show the evolution of the MI (solid lines) as a function of

learning time. It is computed as described in the Materials and Methods section, from the

postsynaptic activity gathered during 100 periods (500 seconds). Since we are interested

in quantifying the ability of different learning rules to enhance information transmission, we

look at the information gain (defined as MI(α = 1) −MI(α = 0)) rather than the absolute

value of the MI after learning. The triplet model reaches 98% of the “optimal” information

gain while the pair model reaches 86% of it. Note that we call “optimal” what comes from

the optimality model, but it is not necessarily the optimum in the space of solutions, because

i) a stochastic gradient ascent may not always lead to the global maximum, ii) Toyoizumi et

al’s optimal learning rule involves a couple of approximations that may result in a sub-optimal

algorithm (Toyoizumi et al., 2005), and iii) their learning rule does not specifically optimize

information transmission for our periodic input scenario, but rather in a more general setting

where input spike trains are drawn continuously from a fixed distribution (stationarity).

It is instructive to compare how much information is lost for each learning rule when the

synaptic weights are shuffled. Shuffling means that the distribution stays exactly the same,

while the detailed assignment of each wj is randomized. The dashed lines in Figure 6.4B

depict the MI under these shuffling conditions. Each point is obtained from averaging the

MI over 10 different shuffled versions of the weights. The optimal and triplet model lose

respectively 33% and 32% of their information gains, while the pair model loses only 23%.
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This means that the optimal and triplet learning rules make a better choice in terms of the

detailed assignment of each synaptic weight. For the pair learning rule, a larger part of

the information gain is a mere side-effect of the weight distribution becoming bimodal. As

an aside, we observe that the MI is the same (4.5 bits) in the “shuffled” condition for all

three learning rules. This is an indication that we can trust our information comparisons.

The result is also compatible with the value found by randomly setting 20 weights to the

maximum value and the others to zero (Figure 6.2B, square mark).

How is adaptation involved in this increased channel capacity? In Figure 6.2C, the MI is

plotted as a function of the postsynaptic firing rate, for an adaptive (black dots) and a

non-adaptive (gray dots) neuron, irrespective of synaptic plasticity. Each point in the figure

is obtained by setting randomly a given fraction χ of synaptic weights to the upper bound (4

mV), and the rest to 0 mV. The weight distribution stays bimodal, which leaves the neuron

in a high information transmission state. χ is varied in order to cover a wide range of firing

rates. We see that adaptation enhances information transmission at low firing rates (¡10Hz).

The MI has a maximum at 7.5 Hz when the neuron is adapting (black circles). If adaptation

is removed, the peak broadens and shifts to about 15 Hz (green circles). If the energetic

cost of firing spikes is also taken into account, the best performance is achieved at 3 Hz,

whether adaptation is enabled or not. This is illustrated in Figure 6.2C (lower plot) where

the information per spike is reported as a function of the firing rate.

Is adaptation is beneficial in a general sense only, or does it differentially affect the three

learning rules? To answer this question, we have the neuron learn again from the beginning,

SFA being switched off. The temporal evolution of the MI for each learning rule is shown

in Figure 6.4C. Overall, the MI is lower when the neuron does not adapt (compare panels B

and C in Figure 6.4), which is in agreement with the previous paragraph and Figure 6.2C.

Importantly, the triplet model loses its advantage over the pair model when adaptation is

removed (compared red and blue lines in Figure 6.4C). This suggests a specific interaction

between synaptic plasticity and the intrinsic postsynaptic dynamics in the optimal and triplet

models. This is further investigated in later sections.

Finally, the main results of Figure 6.4 also hold when the distribution of weights remains

unimodal. To achieve unimodal distributions with STDP, the hypothesis of hard-bounded

synaptic efficacies must be relaxed. We implemented a form of weight-dependence of the

weight change, such that LTP stays independent of the synaptic efficacy, while stronger

synapses are depressed more strongly (see Methods). The weight-dependent factor for LTD

had traditionally been modelled as being directly proportional to wj (e.g. van Rossum et al.

(2000)), which provides a good fit to the data obtained from cultured hippocampal neurons

by Bi and Poo (1998). Morrison et al. (2007) proposed an alternative fit of the same data
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Figure 6.5: Results hold for “soft-bounded” STDP. The experiments of Figure 6.4 are repeated

with soft-bounds on the synaptic weights (see Material and Methods). (A) Bottom: LTP is weight-

independent (black line), whereas the amount of LTD required by each learning rule (∆w < 0) is

modulated by a growing function of the momentary weight value (orange curve). The LTP and

LTD curves cross at w0 = 1 mV, which is also the initial value of the weights in our simulations.

Top: this form of weight dependence produces unimodal but skewed distributions of synaptic weights

after learning, for all three learning rules. The learning paradigm is the same as in Figure 6.4. Gray

lines denote the weight distributions when adaptation is switched off. Note that histograms are

computed by binning all weight values from all learning experiments, but the distributions look similar

on individual experiments. In these simulations λ = 0, a = 9, and τC = 0.4 s. (B) The parameter

τC of the optimal learning rule has been chosen such that the weight distribution after learning stays

as close as possible to that of the pair and triplet models. τC = 0.4s minimizes the KL divergences

between the distribution obtained from the optimal model and those from the pair (black-blue) and

triplet (black-red) learning rules. The distance is then nearly as small as the triplet-pair distance

(red-blue). (C) MI along learning time in this weight-dependent STDP scenario (cf. Figure 6.4B-C).

(D) Normalized information gain (see text for definition).

with a different form of weight-dependence of LTP. Here we use a further alternative (see

Methods, and Figure 6.5A). We require that the multiplicative factors for LTP and LTD

exactly match at wj = w0 = 1 mV, where initial weights are set in our simulations. Further,

we found it necessary that the slope of the LTD modulation around w0 be less than one.

Indeed, our neuron model is very noisy, such that reproducible pre-post pairs that need to

be reinforced actually occur among a sea of random pre-post and post-pre pairs. If LTD too

rapidly overcomes LTP above w0, there is no chance for the correlated pre-post spikes to

evoke sustainable LTP. The slope must be small enough for correlations to be picked up. This

motivates our choice of weight dependence for LTD as depicted in Figure 6.5A. The weight
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distributions for all three learning rules stay indeed unimodal, but highly positively skewed,

such that the neuron can really “learn” by giving some relevant synapses large weights (tails

of the distributions in Figure 6.5A). Note that the obtained weight distributions look like

those recorded by Sjöström et al. (2001) (see e.g. Figure 3C in their paper).

The evolution of the MI along learning time is reported in Figure 6.5C. Overall, MI values

are lower than those of Figure 6.4B. Unimodal distributions of synaptic efficaces are less

informative than purely bimodal distributions, reflecting the lower degree of specialization to

input features. Such distributions may however be advantageous in a memory storage task

where old memories which are not recalled often need to be erased to store new ones. In this

scenario, strong weights which become irrelevant can quickly be sent back from the tail to the

main weight pool around 1mV. For a detailed study of the impact of the weight-dependence

on memory retention, see Billings and van Rossum (2009).

We see that it is difficult to directly compare absolute values of the MI in Figure 6.5C,

since the “shuffled” MIs (dashed lines) do not converge to the same value. This is because

some weight distributions are more skewed than others (compare red and blue distributions

in Figure 6.5A). In the present study, we are more interested in knowing how good our

plasticity rules are at selecting individual weights for up- or down-regulation, on the basis

of the input structure. We would like our performance measure to be free of the actual

weight distribution, which is mainly shaped by the weight-dependence of Equation 6.23.

We therefore compare the normalized information gain, i.e. MI(α=1)−MI(α=0)
MIsh(α=1)−MI(α=0) , where MIsh

denotes the MI for shuffled weights. The result is shown in Figure 6.5D: the triplet is again

better than the pair model, provided the postsynaptic neuron adapts.

Our simulations show that when SFA modulates the postsynaptic firing rate, the triplet model

yields a better gain in information transmission than pair-STDP does. When adaptation is

removed, this advantage vanishes. There must be a specific interaction between triplet-

STDP and adaptation that we now seek to unravel.

6.3.2 Triplet-STDP increases the response entropy when the neuron adapts

Information transmission improves if the neuron learns to produce more diverse spike trains

(H(YK) increases), and if the neuron becomes more reliable (H(YK|Œ) decreases). In Fig-

ure 6.6A we perform a differential analysis of both entropies, on the same data as presented

in Figure 6.4 (i.e. for hard-bounded STDP). Whether the postsynaptic neuron adapts (top)

or not (bottom), the noise entropy (right) is drastically reduced, and the triplet learning rule

does so better than the pair model (compare red and blue). The differential impact of adap-

tation on the two models can only be seen in the behaviour of the response entropy H(YK)



124 CHAPTER 6

A

5 7.5 10

time (sec)

optimal

triplet

pair

initial

P
S

T
H

0

0.5

1

0 5 10 15 20

P
S
D
(H
z
2
/
H
z
)

frequency (Hz)

initial
optimal
triplet
pair

62.2

62.4

62.6

56

58

60

62.2

62.6

63

58

60

62

H(Y)

(bits)

H(Y|ϕ)

(bits)

initial

optimal

triplet

pair

with adaptation

without adaptation

ISI (sec) ISI (sec)

with adaptation without adaptation

P
(I

S
I)

B

C D

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

0 0.5 1 0 0.5 1

0.00

0.02

0.04

0 0.1
0.00

0.02

0.04

0 0.1

Figure 6.6: Differential analysis of the entropies. The learning experiments are the same as in

Figure 6.4, using hard-bounds on the synaptic weights. (A) Response entropy (left) and noise entropy

(right) with (top) and without (bottom) postsynaptic SFA. Entropies are calculated at the end of

the learning process, except for the gray boxes which denote the entropies prior to learning. (B)

Interspike-interval distributions with (left) and without (right) SFA, after learning (except gray line,

before learning). The main plots have a logarithmic y-scale, whereas the insets have a linear one. (C)

Peri-stimulus time histograms (PSTHs) prior to learning (top) and after learning for each learning

rule, over a full 5-second period. All plots share the same y-scale. (D) Power spectra of the PSTHs

shown in (C), averaged over the 10 independent learning experiments.

(left). When the postsynaptic neuron adapts, triplet- and optimal-STDP both increase the

response entropy, while it decreases with the pair model. This behaviour is reflected in the

interspike-interval (ISI) distributions, shown in Figure 6.6B. With adaptation, the optimal

and triplet rules produce distributions that are close to an exponential (which would be a

straight line in the logarithmic y-scale). In contrast, the ISI distribution obtained from pair-

STDP stays almost flat for ISIs between 25 and 120ms. Without adaptation, the optimal

and triplet models further sparsifies the ISI distribution which then becomes sparser than an

exponential, reducing the response entropy.

Qualitative similarities between the optimal and triplet models can also be found in the

power spectrum of the Peri-Stimulus Time Histogram (PSTH). The PSTHs are plotted in

Figure 6.6C over a full 5-second period, and their average power spectra are displayed in panel
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D. The PSTH is almost flat prior to learning, reflecting the absence of feature selection in the

input. Learning in all three learning rules creates sharp peaks in the PSTH, which illustrates

the drop in noise entropy seen in panel A (right). The pair learning rule produces PSTHs

with almost no power at low frequencies (below 5 Hz). In contrast, these low frequencies

are strongly boosted by the optimal and triplet models. This is however not specific to SFA

being on or off (not shown). We give an intuitive account for this in the Discussion.

This section has shed light on qualitative similarities in the way the optimal and triplet learning

rules enhance information transmission in an adaptive neuron. We now seek to understand

the reason why taking account of triplets of spikes would be close-to-optimal in the presence

of postsynaptic SFA.

6.3.3 The optimal model exhibits a triplet effect

How similar is the optimal model to the triplet learning rule? In essence, the optimal model

is a stochastic gradient learning rule, which updates the synaptic weights at every time step

depending on the recent input-output correlations and the current relevance of the postsy-

naptic state. In contrast to this, phenomenological models require changing the synaptic

efficacy upon spike occurrence only. It is difficult to compress what happens between spikes

in the optimal model down to a single weight change at spike times. However we know that

the dependence of LTP on previous postsynaptic firing is a hallmark of the triplet rule, and

is absent in the pair rule. We therefore investigate the behavior of the optimal learning rule

on post-pre-post triplets of spikes, and find a clear triplet effect (Figure 6.7).

We consider an isolated post-pre-post triplet of spikes, in this order (Figure 6.7A). Isolated

means that the last pre- and postsynaptic spikes occured a very long time before this triplet.

Let t1
post, tpre and t2

post denote the spike times. The pre-post interval is kept constant equal to

∆s = t2
post − tpre = 15 ms. We vary the length of the post-post interval ∆p = t2

post − t1
post

from 16 ms to 500 ms. The resulting weight change is depicted in (Figure 6.7B). For

comparison, the triplet model would produce – by construction – a decaying exponential with

time constant τy . In the optimal model, potentiation decreases as the post-post interval

increases. Two times constants show up in this decay, which reflect that of refractoriness

(2 ms) and adaptation (150 ms). The same curve is drawn for two other adaptation time

constants (see red and blue curves). When adaptation is removed, the triplet effect vanishes

(dashed curve). It should be noted that the isolated pre-post pair itself (i.e. large post-post

interval) results in a baseline amount of LTP, which is not the case in the triplet model.

Figure 6.7A shows how this effect arises mechanistically. Three different triplets are shown,

with the pre-post pair being fixed, and the post-post interval being either 16, 100, or 200
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Figure 6.7: The optimal model incorporates a triplet effect when the postsynaptic neuron

adapts. (A) A pre-post pair (∆s = 15 ms interval, black lines in the first two rows) is preceded

by another postsynaptic spike. The post-post interval ∆p is made either 16 ms (red line), 100 ms

(purple) and 200 ms (blue). The time course of Cj , Bpost, and the cumulative weight change ∆̃w are

plotted in the bottom rows. (B) Total weight change (optimal model) as a function of the post-post

interval, for various adaptation time constants, and without adaptation (dashed line).

ms (red, purple, and blue respectively).

To further highlight the similarity between the optimal learning rule and the triplet model,

we now derive an analytical expression for the optimal weight change that follows a post-

pre-post triplet of spikes. Let us observe that the final cumulated weight change evoked by

the triplet is dominated by the jump that occurs just following the second postsynaptic spike

(Figure 6.7A) – except for the negative jump of size λ that follows the presynaptic spike

arrival, but this is a constant. Our analysis therefore concentrates on the values of Cj(t
2
post)

and Bpost(t2
post). Let us denote by εj = exp

(
−∆s
τm

)
the value of the unitary synaptic PSP

at time t2
post. Around the baseline potential ub = 19 mV, the gain function is approximately

linear (cf. Figure 6.1A), i.e. g(ub + wjεj) ' gb + g′bwjεj where gb = g(ub) and g′b = dg
du

∣∣∣
ub

are constants. From Equation 6.14, we read Bpost(t2
post) = log

gb+g′bwjεj
gb

δ(0), which is

approximately equal to

Bpost(t2
post) '

g′b
gb
wjεjδ(0) (6.24)

assuming the contribution of wjεj is small compared to the baseline gain gb. The term propor-

tional to M in Equation 6.14 is negligible compared to the δ-function. From Equation 6.13,

we see that

Cj(t
2
post) =

εjg
′
b

gb + g′bwjεj
+ Cj(t

2
post − ε) (6.25)

The total weight change following the second postsynaptic spike is therefore

∆wj(t
2
post) '

(
g′b
gb

)2

wjε
2
j +

g′b
gb
wjεjCj(t

2
post − ε) (6.26)
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where

Cj(t
2
post − ε) = −

∫ t2
post−ε

tpre

exp

(
−
t2
post − t
τC

)
exp

(
−
t − tpre

τm

)
g′bM(t)dt (6.27)

Since we have taken τC = τm, the first two exponentials collapse into εj . To carry out the

integration, let us further simplify the adaptation model intoM(t) = 1−exp(−(t−t1
post)/τA),

assuming that tpre−t1
post > 2 ms so that the refractoriness has already vanished at the time of

the presynaptic spike, while adaptation remains. It is also assumed that the triplet is isolated,

so that we can neglect the cumulative effect of adaptation. Equation 6.27 becomes

Cj(t
2
post − ε) = −∆s − τA exp

(
−

∆p

τA

)[
exp

(
∆s

τA

)
− 1

]
(6.28)

If ∆s � τA, the last term into square brackets is approximately ∆s/τA. If not, ε2
j becomes

so small that the whole r.h.s of Equation 6.28 vanishes. To sum up, the total weight change

following the second postsynaptic spike is given by

∆wj(t
2
post) =

g′2b
gb
wjε

2
j

(
1

gb
− ∆s

)
+
g′2b
gb

∆swjε
2
j exp

(
−

∆p

τA

)
(6.29)

The first term on the r.h.s of Equation 6.29 is a pair term, i.e. a weight change that depends

only on the pre-post interval ∆s. We note that it is proportional to ε2
j , meaning that the

time constant of the causal part of the STDP learning window is half the membrane time

constant. The second term exactly matches the triplet model, when τA = τy and τ+ = τm
2 .

Indeed, the triplet model would yield the following weight change:

∆w triplet
j (t2

post) ' A+
3 εj exp

(
−

∆p

τy

)
(6.30)

From this we conclude that the triplet effect, which primarily arose from phenomenological

minimal modeling of experimental data, also emerges from an optimal learning rule when the

postsynaptic neuron adapts. To understand in more intuitive terms how the triplet mechanism

relates to optimal information transmission, let us consider the case where the postsynaptic

neuron is fully deterministic. If so, the noise entropy is null, so that maximizing information

transfer means producing output spike trains with maximum entropy. If the mean firing rate

ρtarg is a further constraint, output spike trains should be Poisson processes, which as a

by-product would produce exponentially distributed inter-spike intervals (ISIs). If the neuron

is endowed with refractory and adapting mechanisms, there is a natural tendency for short

ISIs to appear rarely. Therefore, plasticity has to fight against adaptation and refractoriness

to bind more and more stimulus features to short ISIs. The triplet effect is precisely what

is needed to achieve this: if a presynaptic spike is found to be responsible for a short ISI, it

should be reinforced more than if the ISI was longer. This issue is further developped in the

Discussion section.
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6.3.4 Optimal STDP is target-cell specific

The results of the previous sections suggest that STDP may optimally interact with adap-

tation to enhance the channel capacity. In principle, if STDP is optimized for information

transmission, it cannot ignore the intrinsic dynamics of the postsynaptic cell which influences

the mapping between input and output spikes. The cortex is known to exhibit a rich diver-

sity of cell types, with the corresponding range of intrinsic dynamics, and in parallel, STDP

is target-cell specific (Lu et al., 2007; Tzounopoulos et al., 2004). Within the optimality

framework, we should therefore be able to predict this target-cell specificity of STDP by in-

vestigating the predictions of the optimal model in the context of in vitro pairing experiments.

Predictions should be made for different types of postsynaptic neurons, and be compared

to experimental data. The optimal learning rule was shown in Toyoizumi et al. (2007) to

share some features with STDP. We here extend this work to a couple of additional features

including the frequency dependence. We also apply it to another type of postsynaptic cell,

an inhibitory fast-spiking interneuron, for which in vitro data exist.

Only one synapse is investigated, with unit weight w0 = 1 mV before the start of the

experiment. 60 pre-post pairs with given inter-spike time ∆s are repeated in time with

frequency f . The subsequent weight change given by Equation 6.12 is reported as a function

of both parameters (Figure 6.8, A and B).

The optimal model features asymmetric timing windows at 1, 20 and 50 Hz pairing frequen-

cies (Figure 6.8A). At 1 and 20 Hz, pre-before-post yields LTP and post-before-pre leads

to LTD. At 50 Hz the whole curve is shifted upwards, resulting in LTP on both sides. The

model qualitatively agrees with the experimental data reported in Sjöström et al. (2001),

redrawn for comparison (Figure 6.8A, circles).

The frequency dependence experimentally found in Markram et al. (1997) and Sjöström

et al. (2001) is also qualitatively reproduced (Figure 6.8B). Post-pre pairing (∆s = −10 ms,

green curve) switches from LTD at low frequency to LTP at higher frequencies, which is

consistent with the timing windows in Figure 6.8A. For pre-post pairing (∆s = +10 ms, blue

curve), LTP also increases with the pairing frequency. We also found that when SFA was

removed, it was impossible to have a good fit for both the time window and the frequency

dependence (not shown).

To further elucidate the link between optimal STDP and the after-spike kernel (gR + gA

in Equation 6.5), we ask whether plasticity at excitatory synapses onto fast-spiking (FS)

interneurons can be accounted for in the same principled manner. In general, the intrinsic

dynamics of inhibitory interneurons are very different from that of principal cells in cortex.

STDP at synapses onto those cells is also different from STDP at excitatory-to-excitatory
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Figure 6.8: Optimal plasticity shares features with target-cell specific STDP. (A) The optimal

model applied on 60 pre-post pairs repeating at 1 (black line), 20 (red thick) and 50 Hz (green)

yields STDP learning windows that qualitatively match those recorded in Sjöström et al. (2001). For

comparison, the in vitro data has been redrawn with permission. (B) LTP dominates when the pairing

frequency is increased. The optimal frequency window is plotted for post-before-pre (−10 ms, solid

green curve) and pre-before-post pairs (+10 ms, solid blue) repeated with frequency f (x-axis). Points

and error bars are the experimental data, redrawn from Sjöström et al. (2001) with permission. (C)

Learning window that minimizes information transmission at an excitatory synapse onto a fast-spiking

(FS) inhibitory interneuron. The procedure is the same as in (A). The spike-triggered adaptation

kernel was updated to better match that of a FS cell (see (D)). Dots are redrawn from Lu et al.

(2007). (D) Left: after-spike kernels of firing rate suppression for the principal excitatory cell (red,

same as the one we used throughout the article, see Material and Methods) and the fast-spiking

interneuron (blue). The latter was modeled by adding a third variable qB < 0 with time constant

τB = 30 ms to the initial kernel. Solid blue line: qB = −9. Dashed blue line: qB = −8. Right:

schematic of a feed-forward inhibition microcircuit. A first principal cell (PC) makes an excitatory

connection to another PC. It also inhibits it indirectly through a FS interneuron. The example spike

trains illustrate the benefit of having LTD for pre-before-post pairing at the PC-FS synapse (see text).

synapses (Lu et al., 2007; Tzounopoulos et al., 2004). The dynamics of FS cells are well

modelled using a kernel which is shown in Figure 6.8D (Mensi et al., in preparation). We
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augment the after-spike kernel with an additional variable gB governed by

dgB
dt

= −
gB
τB

+ qBY (t) (6.31)

Parameters were set to τB = 30 ms, τA = 150 ms, qB = −9 and qA = 4. The resulting

kernel (i.e. gR+gA+gB – Figure 6.8D, blue kernel) exhibits after-spike refractoriness followed

by a short facilitating period before adaptation takes over (note that the kernel is suppressive,

meaning that positive values correspond to suppression of activity while negative values mean

facilitation). Since interneurons do not project over long distances to other areas, the infomax

objective function might not appear as well justified. Instead, let us consider the simple

microcircuit shown in Figure 6.8D. A first principal cell (PC) makes an excitatory synapse

onto a second PC, and we assume the infomax principle is at work. The first PC inhibits the

second PC via a fast-spiking (FS) interneuron. How, intuitively, should the PC-to-FS synapse

change so that the FS cell also contributes to the overall information maximization between

the two PCs? In a very crude understanding of the infomax principle, if a pre-before-post pair

of spikes is evoked at the PC-PC synapse (see spike trains in Figure 6.8D), the probability of

having this pair again should be increased. If a similar pre-before-post pair is simultaneously

evoked at the PC-FS synapse, then decreasing its weight will make it less likely that the FS

spike again after the first PC. This in turn makes it more likely that the first PC-PC pair of

spike will occur again. Therefore, PC-FS synapses should undergo some sort of anti-Hebbian

learning. In fact, we found information minimization (i.e. the optimal model with opposite

learning rate) to yield a good match between the simulated STDP time window (Figure 6.8C)

and that found in Lu et al. (2007), which also exhibits LTD on both sides with some LTP

at large intervals (see orange dots, superimposed). The post-before-pre part of the window

can be understood intuitively: when a presynaptic spike arrives a few milliseconds after a

postsynaptic spike, it falls in the period where postsynaptic firing is facilitated (qB < 0).

Therefore, it still has some influence on the subsequent postsynaptic activity. In order to

avoid later causal pre-post events, the weight should be decreased. We see that the optimal

STDP window depends on the after-spike kernel that describes the dynamical properties of

the postsynaptic cell: qB directly modulates the post-pre part of the window (see dashed

curve in Figure 6.8C).

Together, these results suggest that if STDP is considered as arising from an optimality

principle, it naturally interacts with the dynamics of the postsynaptic cell. This might underlie

the target-cell specificity of STDP (Lu et al., 2007; Tzounopoulos et al., 2004).
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6.4 Discussion

Experiments (Markram et al., 1997; Sjöström et al., 2001; Froemke et al., 2006) as well as

phenomenological models of STDP (Senn et al., 2001; Pfister and Gerstner, 2006; Froemke

et al., 2006; Clopath et al., 2010) point to the fact that LTP is not accurately described by

independent contributions from neighboring postsynaptic spikes. In order to reproduce the

results of recent STDP experiments, at least two postsynaptic spikes must interact in the

LTP process. We have shown that this key feature (“triplet effect” in Pfister and Gerstner

(2006) and Clopath et al. (2010) and similarly in Senn et al. (2001)) happens to be optimal

for an adapting neuron to learn to maximize information transmission. We have compared

the performance of an optimal model (Toyoizumi et al., 2005) to that of two minimal STDP

models. One of them incorporated the triplet effect (Pfister and Gerstner, 2006), while the

second one did not (standard pair-based learning rule, Gerstner et al. (1996); Kempter et al.

(1999); Song et al. (2000)). The triplet-based model performs very close to the optimal

one, and this advantage over pair-STDP disappears when SFA is removed from the intrinsic

dynamics of the postsynaptic cell.

Our results are not restricted to additive STDP in which the amount of weight change is

independent of the weight itself. It also holds when the amount of LTD increases with the

efficacy of the synapse, a form which better reflects experimental observations (Bi and Poo,

1998; Sjöström et al., 2001). In the model introduced here, the amount of LTD is modulated

by a sub-linear function of the synaptic weight. The deviation from linearity is set by a single

parameter a > 0, with the purely multiplicative dependence of van Rossum et al. (2000)

being recovered when a = 0. Since we modeled only a fraction of the total input synapses,

we assumed a certain level of noise in the postsynaptic cell to account for the activity of the

remaining synapses, thereby staying consistent with the framework of information theory in

which communication channels are generally considered noisy. Because of this noise level,

we found a large a was required for the weight distribution to become positively skewed as

reported by Sjöström et al. (2001) (cortex layer V). For both the pair and triplet learning

rules, the noisier the postsynaptic neuron, the weaker the LTD weight-dependence (i.e.

the larger a) must be to keep a significant spread of the weight distribution. This means

that other (possibly simpler) forms of weight dependence for LTD would work equally well,

provided the noise level is adjusted accordingly. For example, in a nearly deterministic neuron,

input-output correlations are strong enough for the weight-distribution to spread even when

LTD depends linearly on the synaptic weight (a = 0, not shown).

In the original papers where the optimal and triplet rule were first described, it was pointed

out that both rules could be mapped onto the Bienenstock-Cooper-Munroe (BCM) learning

rule (Bienenstock et al., 1982). Both learning rules are quadratic in the postsynaptic activity.
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In turn, the link between the BCM rule and Independent-Components Analysis (ICA) has also

already been researched (Intrator and Cooper, 1992; Blais et al., 1998; Clopath et al., 2010),

as has the relationship between the infomax principle and ICA (Bell and Sejnowski, 1995). It

therefore does not come as a surprise that the triplet model performs close to the infomax

optimal learning rule. What is novel is the link to adaptation and spike after-potential.

We have also shown that when the optimal or triplet plasticity models are at work, the

postsynaptic neuron learns to transmit information in a wider frequency band (Figure 6.6D):

both rules evoke postsynaptic responses that have subtantial power below 5 Hz, in contrast

to the pair-based STDP rule. This is intuitively understood from the triplet effect combined

with adaptation. Let us imagine STDP starts creating a peak in the PSTH so that we have,

with high probability, a first postsynaptic spike at time t0. If a presynaptic spike at time

t0 + ∆
2 is followed by a further postsynaptic spike at time t0 + ∆ (∆ on the order of 10ms),

the triplet effect reinforces the connection from this presynaptic unit. In turn, it will create

another peak at time t0 + ∆, and this process can continue. Peaks thus extend and become

broader, until adaptation becomes strong enough to prevent further immediate firing. The

next series of peaks will then be delayed by a few hundred milliseconds. Broadening of peak

widths and inter-peak intervals together introduce more power at lower frequencies in the

PSTH.

One should bear in mind that neurons process incoming signals in order to convey them

to other receivers. Although the information content of the output spike train really is an

important quantity with respect to information processing, the way it can be decoded by

downstream neurons should also be taken into account. Some “words” in the output spike

train may be more suited for subsequent transmission than others. It has been suggested

(Lisman, 1997) that since cortical synapses are intrinsically unreliable, isolated incoming

spikes cannot be received properly, whereas bursts of action potentials evoke a reliable re-

sponse in the receiving neuron. There is a lot of evidence for burst firing in many sensory

systems (see Krahe and Gabbiani (2004) for a review). As shown in Figure 6.6, the optimal

and triplet STDP models tend to sparsify the distribution of inter-spike intervals, meaning

that the neuron learns to respond vigorously (very short ISIs) to a larger number of features

in the input stream, while remaining silent for longer portions of the stimulus. The neuron

thus overcomes the effects of adaptation, which in baseline conditions (before learning) gives

the ISI distribution a broad peak and a Gaussian-like drop-off. Our results therefore suggest

that reliable occurence of short ISIs can arise from STDP in adaptive neurons that are not

intrinsic bursters. This is in line with Eyherabide et al. (2008), which recently provided ev-

idence for high information transmission through burst activity in an insect auditory system

(Locusta migratoria). The recorded neurons encoded almost half of the total transmitted

information in bursts, and this was also shown not to require intrinsic burst dynamics.
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Since our results rely on the outcome of a couple of numerical experiments, one might be

concerned about the validity of the findings outside the range of parameter values we have

used. There are for example a couple of free parameters in the neuron model. It is obviously

difficult to browse the full high-dimensional parameter space and search for regions where

the results would break down. We therefore tried to constrain our neuron parameters in

a sensible manner. For example, the parameters of the SFA mechanism (qA and τA) were

chosen such that the response properties to a step in input firing rate would look plausible

(Figure 6.1C). The noise parameter r0 and the threshold value uT were chosen so as to

achieve an output rate of 7.5Hz when all synaptic weights are at 1mV. We acknowledge,

though, that r0 could be made arbitrarily large (reducing the amount of noise) since uT

can compensate for it. In the limit of very low noise, information transmission cannot be

improved by increasing the neuron’s reliability anymore, since the noise entropy would already

be minimal. We have shown however that a substantial part of the information gain found

in the optimal and triplet models are due to an increased response entropy. This qualitative

similarity, together with the structural similarities highlighted in Figure 6.7 and Figure 6.8,

lead us to believe that our results would still hold in the deterministic limit, and for noise

levels in between. The optimal plasticity rule becoming ill-defined in this limit, we did not

investigate this further.

To what extent can we extrapolate our results to the optimality of synaptic plasticity in

the real brain? It obviously depends on the amount of trust one can put into this triplet

model. Phenomenological models of STDP are usually constructed based on the results of

in vitro experiments. They end up reproducing the quantitative outcome of only a few pre-

post pairing schemes which are far from spanning the full complexity of real spike trains. To

what extent can these models be trusted in more natural situations? From a machine learning

perspective, a minimal model is likely to generalize better than a more detailed model, because

its small number of free parameters might prevent it from overfitting the experimental data

at the expense of its interpolation/extrapolation power. In this study, we have put the

emphasis on an extrapolation of recent minimal models (Pfister and Gerstner, 2006; Clopath

et al., 2010): the amount of LTP obtained from a pre-before-post pair increases with the

recent postsynaptic firing frequency. By construction, the models account for the frequency

dependence of the classical pairing experiment (they are fitted on this, among other things).

However, they are seriously challenged by a more detailed study of spike interactions at L2/3

pyramidal cells (Froemke et al., 2006). There, it was explicitly shown that (n-posts)-pre-post

bursts yield an amount of LTD which grows with n, the number of postsynaptic spikes in the

burst preceding the pair. In contrast, post-pre-post triplets in hippocampal slices lead to LTP

in a way that is consistent with the triplet model (Wang et al., 2005). The results of our

study should therefore be interpreted bearing in mind the variability in experimental results.



The recurrent in vitro versus in vivo debate should also be considered: synaptic plasticity

depends on a lot of biochemical parameters for which the slice conditions do not faithfully

reflect the normal operating mode of the brain.

A second controversy lies in our optimality model itself. While efficient coding of presynaptic

spike trains may seem a reasonable goal to achieve at, say, thalamocortical synapses in sensory

cortices, many other objectives could well be considered when it comes to other brain areas.

Some examples are optimal decision making through risk balancing, reinforcement learning

via reward maximization, or optimal memory storage and recall in autoassociative memories.

It will be interesting to see more STDP learning rules in functionally different areas and how

these relate to optimality principles.

Finally, while we investigated information transmission through a single postsynaptic cell, it

remains to be elucidated how local information maximization in large recurrent networks of

spiking neurons translates into a better information flow through the network.
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