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ABSTRACT 

We consider the problem of energy-efficient scheduling for 

slice-parallel video decoders on multicore systems with Dynamic 

Voltage Frequency Scaling (DVFS) enabled processors. We 

rigorously formulate the problem as a Markov decision process 

(MDP), which simultaneously considers the on-line scheduling 

and per-core DVFS capabilities; the power consumption of the 

processor cores and caches; and the loss tolerant and dynamic 

nature of the video decoder. The objective is to minimize long-

term power consumption subject to a minimum Quality of Service 

(QoS) constraint related to the decoder’s throughput. We evaluate 

the proposed scheduling algorithm using traces generated from a 

cycle-accurate multiprocessor ARM simulator. 

Index Terms— Slice-parallel video decoding, multicore 

scheduling, multicore power management, dynamic voltage 

scaling, Markov decision process. 

1. INTRODUCTION 

Despite improvements in mobile device technology, energy-

efficient multicore scheduling for video decoding remains a 

challenging problem for several reasons. First, video decoding 

applications have intense and time-varying workloads, which have 

worst-case execution times that are significantly larger than the 

average case. Second, they have sophisticated dependency 

structures due to predictive coding. These dependency structures, 

which can be modeled as directed acyclic graphs (DAGs), not 

only result in different frames having different priorities, but also 

make it difficult to balance loads across the cores, which is 

important for energy efficiency [1]. Finally, they often have 

stringent delay constraints, but are considered soft real-time 

applications. In other words, video frames should meet their 

deadlines, but when they do not, the application quality (e.g. 

decoded video frame rate) is reduced. 

During the last decade, many energy-efficient multicore 

scheduling algorithms that exploit Dynamic Voltage Frequency 

Scaling (DVFS [7]) and/or Dynamic Power Management (DPM 

[12]) have been proposed, e.g. [2][3][4][6][8]. The Largest Task 

First with Dynamic Power Management (LTF-DPM) algorithm in 

[3] assumes that frame decoding deadlines are equally spaced in 

time, and therefore does not support video group of pictures 

(GOP) structures with B frames; moreover, LTF-DPM will 

typically have looser deadline constraints than our proposed 

algorithm because it assigns groups of frames a common “weak” 

deadline. The Stochastic Scheduling2D algorithm [6] considers a 

periodic DAG application model that requires a “source” and 

“sink” node in each period, making the algorithm incompatible 

with GOP structures where the last B frame in a GOP depends on 

the I frame in the next GOP (e.g. an IBPB GOP). The Variation 

Aware Time Budgeting (Var-TB) algorithm in [8] uses a 

functional partitioning algorithm for parallelizing the video 

decoder (e.g. pipelining decoder sub-functions such as inverse 

DCT and motion compensation on different cores). Functional 

partitioning is known to be suboptimal [13] and parallelization 

approaches based on data partitioning (e.g. mapping different 

frames, slices, or macroblocks to different processors) are superior 

[13]. The so-called SpringS algorithm in [4] uses a task-level 

software pipelining algorithm called RDAG [5] to transform a 

periodic dependent task graph (expressed as a DAG) into a set of 

tasks that can be pipelined on parallel processors. However, if this 

technique is applied to video decoding applications, it will require 

retiming delays proportional to the GOP size, which may be large.  

There is no solution that simultaneously considers per-core 

DVFS capabilities; dynamic processor assignment; and loss-

tolerant tasks with different complexity distributions, DAG 

dependency structures, and stringent, but soft real-time, 

constraints. The contributions of this paper are as follows: 

• We rigorously formulate the multi-core scheduling problem 

using a Markov decision process (MDP) that considers the 

abovementioned properties. The MDP enables the system to 

optimally tradeoff long-term power and performance. 

• The MDP solution requires complexity that exponentially 

increases with both the number of processors and the number of 

frames in a short look-ahead window. To mitigate this 

complexity, we propose a novel two-level scheduler. The first-

level determines scheduling and DVFS policies for each frame 

using frame-level MDPs, which account for the coupling between 

the optimal policies of parent and children frames. The second-

level decides the final frame- and frequency-to-processor 

mappings, ensuring that certain system constraints are satisfied.  

• We validate the proposed algorithm in Matlab using video 

decoder trace statistics generated from an H.264/AVC decoder 

that we implemented on a cycle-accurate multiprocessor ARM 

(MPARM) simulator [11]. 

The remainder of the paper is organized as follows. We 

introduce the system and application models in Section 2 and 

formulate the on-line multi-core scheduling problem as an MDP. 

In Section 3, we propose a lower complexity solution by 

approximating the original MDP problem with a two-level 

scheduler. In Section 4, we present our experimental results. We 

conclude in Section 5. 

2. PROBLEM FORMULATION 

We consider the problem of energy-efficient slice-parallel 

video decoding in a time slotted multicore system, where time is 

divided into slots of (equal) duration t∆  seconds indexed by 

t ∈ � . We assume that there are M  processors, which we index 

by {1, , }j M∈ … . In Section 2.1, we describe seven important 

video data attributes. In Section 2.2, we propose a sophisticated 

Markovian traffic/workload model that accounts for the video data 

attributes introduced in Section 2.1. In Sections 2.3, 2.4, and 2.5 

we describe the scheduling and frequency actions, the evolution of 

the video traffic/workload, and the power and Quality of Service 

(QoS) metrics used in our optimization. In subsection 2.6, we 

formulate the multicore scheduling problem as an MDP. 



2.1. Video data attributes 
We model the encoded video bitstream as a sequence of 

compressed data units. We assume that a data unit corresponds to 

one video slice, which is a subset of a video frame that can be 

decoded independently of other slices within the same frame [9]. 

We assume that the video is encoded using a fixed, periodic, GOP 

structure that contains K  frames and lasts a period of T  time 

slots of duration t∆ . The set of frames within GOP g ∈ �  is 

denoted by 
1 2

{ , , , }g g g g

K
v v vV � …  and the set of all frames is 

denoted by g

g∈
V V

�
� ∪ . Each frame g

k
v  is characterized by 

seven attributes: 

1. Type: Frame g

k
v

 
is an I, P, or B frame. We denote the operator 

extracting the frame type by type( )g
k
v . 

2. Number of slices: Frame g

k
v  is composed of max{1, , }

g

k
v
l l∈ …  

slices, where 
g

k
v
l  is assumed to be fixed for all frames and is 

determined by the encoder [9].  

3. Decoding complexity: Slices belonging to frame g

k
v

 
have 

decoding complexity 
g

k
v
w  cycles. We assume that 

g

k
v
w  is an 

i.i.d. random variable conditioned on the frame type. 

4. Arrival time: 
g

k
v
t  denotes the earliest time slot g

k
v  can be 

decoded (i.e., its arrival time at the scheduler). 

5. Display deadline: 
,dispg

k
v
d  denotes the final time slot in which 

g
kv  

must be decoded so it can be displayed. 

6. Decoding deadline: 
,dec ,dispg g

k k
v v
d d≤  denotes the final time slot 

in which g

k
v  must be decoded so that frames that depend on it 

can be decoded before their display deadline.  

7. Dependency: The frames must be decoded in decoding order, 

which is dictated by the dependencies introduced by predictive 

coding (e.g., motion-compensation). In general, the 

dependencies among frames can be described by a DAG, 

denoted by ,DAG V E� , with the nodes in V  

representing frames and the edges in E  representing the 

dependencies among frames. We use the notation 
g g

kk
v v

′

′ ≺  to 

indicate that frame g

k
v  depends on frame 

g

k
v

′

′  (i.e., there exists 

a path directed from 
g

k
v

′

′  to g

k
v ) and therefore g

k
v

 
cannot be 

decoded until  
g

k
v

′

′  is decoded. We write ( , )g g

kk
v v

′

′ ∈ E  if there 

is a directed arc emanating from frame 
g

k
v

′

′  and terminating at 

frame g

k
v , indicating that 

g

k
v

′

′  is an immediate parent of g

k
v . 

These attributes determine which slices can be decoded, how 

long they will take to decode, when they need to be decoded. In 

the next subsection, we propose a Markovian traffic model that 

captures the above attributes, enabling us to rigorously formulate 

the multicore scheduling problem as an MDP.  

2.2. Markovian traffic model 

We define a traffic state ( , , )
t t t t
= x rT C  to represent the 

video data that can potentially be decoded in time slot t . This 

traffic state comprises the frame working set 
t
⊂C V , the buffer 

state tx , and the dependency state tr . 

In time slot t , we assume that the set of frames whose 

deadlines are within the scheduling time window (STW) 

[ ],
t

t t W+  can be decoded. We define the frame working set as 

all the frames within the STW, i.e. 

,disp{ | { , 1, , }}
t t

vv d t t t W= ∈ ∈ + +C V … . Because the 

GOP structure is fixed and periodic, 
t
C  is periodic with some 

period T . A frame’s arrival time vt  (respectively, display 

deadline ,dispvd ) is the first (respectively, last) time slot in which 

it appears in the frame working set, and a frame’s decoding 

deadline ,decvd  is the minimum display deadline of its children.  

Note that the distinction between display and decoding deadlines 

is important because, even if a frame’s decoding deadline is 

missed, which renders its children undecodable, it is still possible 

to decode the frame itself before its display deadline. Fig. 1 

illustrates the STW concept for a simple IBPB GOP structure. 

We define the buffer state ( | )v

t tt
x v= ∈x C , where v

t
x  

denotes the number of slices of frame v  awaiting decoding at 

time t . Finally, the dependency state ( | )v

t tt
r v ∈r C�  defines 

whether or not each frame in the frame working set is decodable 

in time slot t . In particular,
 

v

t
r  is a binary variable that takes 

value 1 if all of frame v ’s dependencies are satisfied, i.e. if 

,
0

u t
x =  for all u v≺  , and takes value 0 otherwise.  

2.3. Scheduling actions and frequencies 

Let {0,1}jv

t
y ∈ =Y  denote the number of slices belonging 

to frame v  that are scheduled on processor j  at time t . For 

notational convenience, we define ( | )j j

t

v

t t
y v ∈=y C . There 

are three important constraints on the scheduling actions jv
ty  for 

all {1, , }Mj ∈ …  and 
t

v ∈ C : 

 
Fig. 1. Illustrative DAG dependencies for an IBPB GOP structure that contains 4K =  frames and lasts a period of 4T =  time 

slots of duration 1 / 30t∆ =  seconds. 
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• Buffer constraint: 
1

M jv v
t tj
y x

=
≤∑ . In words, the total 

number of scheduled slices belonging to frame v  cannot 

exceed the number of slices in its buffer in time slot t . 

• Processor constraint: 1
t

jv
tv
y

∈
≤∑ C

. In words, no more 

than one slice can be scheduled on processor j  in time slot t . 

• Dependency constraint: If 0v
tr = , then 

1
0

M jv
tj
y

=
=∑ . In 

words, all of the v th frame’s dependencies must be satisfied 

before slices belonging to it are scheduled to be decoded. 

We assume that each processor can operate at a different 

frequency in each time slot to tradeoff processing energy and 

delay. Let 1 2( , , , )M M

t t t t
f f f= ∈f F…  denote the frequency 

vector, where j

t
f ∈ F  is the speed of the  j th processor in time 

slot  t  and F  is the set of available operating frequencies.  

2.4. State evolution and system dynamics 

To fully characterize the video traffic, we need to understand 

how the traffic state 
 

( , , )
t t t t
= x rT C  evolves over time. The 

transition of the frame working set from 
t
C  to 

1t+
C  is 

independent of the scheduling action; in fact, it is deterministic 

and periodic for a fixed GOP structure, and therefore the sequence 

{ | }
t
t ∈C �  can be modeled as a deterministic Markov chain. 

The transition of the buffer state from v

t
x  to 

1
v

t
x

+
 depends on 

the scheduling actions and processor frequencies. Let 

( , )jv jv j jv

t t t t
z z f y=  denote the number of slices belonging to 

frame v  that finish decoding on processor j  at time t  given 

frequency j

t
f . Note that jv jv

t t
z y≤ . Let | )( ,jv j jv

tz t t
p z f y  denote 

the probability that jv

t
z  slices are decoded on processor j  in time 

slot t  given the frequency j

t
f  and scheduling action jv

t
y . 

Before we can write the buffer recursion governing the 

transition from v

t
x  to 

1
v

t
x

+
, we need to define a partition of the 

frame working set 
1t+

C . The partition divides 
1t+

C  into two sets: 

a set of frames that persist from time t  to 1t +  because they 

have display deadlines ,dispvd t> , i.e., 
1t t+

∩C C ; and, a set of 

newly arrived frames with arrival times 1vt t= + , i.e., 

1 1 1
\

t tt tt+ + +
− ∩C C C C C� . Based on this partition, 

1t
vx
+

 can 

be determined from v

t
x  as follows 

 

1 1
1

1

, i

i \, f 

f 

.

Mv jv

tt t t

t v

t t

v j
vx

x
l v

z
= +

+

+

− ∈ ∩
=

∈




∑ C C

C C
 

(1) 

The sequence { | }
t

vx t ∈ �  can be modeled as a controlled 

Markov chain.  

The transition of the dependency state from v

t
r  to 

1
v

t
r
+

 follows 

intuitively from the definition of dependency: frame v  can be 

decoded in time slot 1t +  (i.e., 
1

1v

t
r
+

= ) if and only if all of its 

parents are completely decoded at the end of time slot t . It 

follows that the sequence { | }v

t
r t ∈ �  can be modeled as a 

controlled Markov chain.  

2.5. Power cost and slice decoding rate 

The power-frequency function ( )j
t
fρ  maps the j th 

processor's speed j

t
f  to its expected power consumption (watts). 

We also consider the expected power consumed by the 

instruction, data, and L2 cache using a function 

( , , type( ))j jv
t tf y vσ  (watts). Thus, the total expected power 

consumed by processor j  (and the associated accesses to the 

various caches) at time t  can be written as  

( )( , ) ( ) , , type ), (
t

j j j j jv

t t t tt tv
P f f f y vρ σ

∈
= + ∑y

C
C  (watts). (2) 

We consider the following QoS metric in each time slot t : 

 ( ), , type( ) ( | , )jv jv
t t

j jv jv

t t t

jv j jv
t tz z ty

Q f y v zp z f y
≤

= ∑ ,, (3) 

which is simply the expected number of slices belonging to frame 

v  that will be decoded on processor j  in time slot t . We will 

refer to (3) as the slice decoding rate. In the remainder of the 

paper, we will omit the dependence of (2) and (3) on type( )v . 

2.6. Markov decision process formulation 

In this subsection, we formulate the problem of energy-efficient 

slice-parallel video decoding on M  processors. In each time slot 

 t , the objective is to determine the scheduling action 
jv

t
y , for all 

{1, 2 , }, Mj ∈ …  and tv ∈ C , and the frequency vector 
t
f , in 

order to minimize the long-term power consumption subject to a 

long-term slice decoding rate constraint. The total discounted [12] 

average power consumption and slice decoding rate can be 

expressed as 

 0 1

( , , )
M

t j j

t t

t j

t
P P fγ

∞

= =

=
 
 
 
  
∑∑E yC , and (4) 

 0 1

( , )

t

M

t j jv

t t

t j v

Q Q f yγ

∞

= = ∈

=
 
 
 
  
∑∑∑E

C

, (5) 

respectively, where [0,1)γ ∈  is the discount factor, and the 

expectation is over the sequence of traffic states { | }t t ∈T � . 

Stated more formally, the optimization objective and constraints 

are as follows: 

 

, [ , ]
min   subject to  jv

t jvty t
P Q η

∀ ∈
≥

f �
 (6) 

where η  is the slice decoding rate constraint. Note that the 

buffer, processor, and dependency constraints defined in Section 

2.3 must hold in every time slot; however, we will omit them from 

our exposition in the remainder of the paper. 

Equation (6) can be formulated as an unconstrained MDP by 

introducing a Lagrange multiplier λ
+

∈ �  associated with the 

slice decoding rate constraint. For a fixed λ , in each time slot t , 

the unconstrained problem’s objective is to determine the 

frequency vector 
t
f  and scheduling actions [ ]

v

jv

t j
y , for all 

processors {1, , }Mj ∈ …  and all frames 
t

v ∈ C , that minimize 

the discounted average Lagrangian cost: i.e., 

 ( ){ }, [ ] , 
in .m

t jv
jv
ty t

L QPλ λ η
∀ ∈

= + −
f �

 (7) 

3. LOW COMPLEXITY SOLUTION 

Solving (6) and (7) is a computationally intractable problem 

because their complexity increases exponentially with the number 

of frames in the frame working sets and with the number of 

processors M . The reason for the exponential growth in the state 

space (respectively, action space) is that the optimization 



simultaneously considers the states (respectively, scheduling 

actions and processor frequencies) of multiple frames on all of the 

processor cores. However, the only reason these need to be 

optimized jointly is the processor constraint, which ensures that 

only one slice is assigned to each processor in each time slot. 

Motivated by this weak coupling among tasks, we propose a two-

level scheduler to approximately solve (6) and (7): The first-level 

scheduler determines the optimal scheduling actions and 

processor frequencies for each frame under the (false) assumption 

that each frame has exclusive access to the M processors. Given 

the results of the first-level scheduler, the second-level scheduler 

determines the final slice- and frequency-to-processor mappings 

by resolving conflicts in the first-level scheduling decisions.  

3.1. First-level scheduler 
The first-level scheduler computes a value function 

( , , )v v vV x rC  for every frame in a GOP, which provides a 

measure of the expected long-term Lagrangian cost under the 

optimized scheduling policy. Note that this value function only 

depends on the frame working set, the frame’s buffer state vx , 

and the frame’s dependency state vr  and is independent of the 

buffer and dependency states of the other frames in the working 

set. Importantly, the frame working set indicates the remaining 

lifetime of a frame and describes the connections to its parents 

and children; hence, it has a significant impact on the optimal 

scheduling and DVFS decisions for the frame. To account for the 

dependencies among frames, we define the v th frame’s value 

function ( , , )v v vV x rC  so that it includes the values of its children. 

In this way, frames with many children (e.g. I frames) can account 

for how their scheduling and frequency decisions will impact the 

future performance of their children. We describe the first-level 

scheduler in more detail in the remainder of this section. 

3.1.1. Frame-level value iteration 
The first-level scheduler performs the frame-level value 

iteration algorithm illustrated in Table 1 to compute the optimal 

value functions ,{ : }v gV v∗ ∈ V . Unlike the conventional value 

iteration algorithm [10], the proposed algorithm has multiple 

coupled value functions that need to be updated because the value 

of a frame depends on the values of its children. Due to this 

coupling, the form of the value function update (lines 5-9 in Table 

1) differs from the conventional value iteration algorithm. 

If it is not possible to make any decisions for a frame in the 

current traffic state, then we set the frame’s value to 0 in that 

state. Hence, if a frame is not in the frame working set  (i.e. 

v ∉ C ), does not have its dependencies satisfied (i.e. 0vr = ), 

or is already fully decoded (i.e. v ∈ C  and 0vx = ), then we set 

the frame’s value to 0 (line 8 in Table 1). If the frame is in the 

frame working set, still has undecoded slices, and has its 

dependencies satisfied (i.e. v ∈ C , 0vx > , and 1vr = ), then 

the value function update comprises four distinct terms: the power 

consumed by each processor in the current state; the expected 

slice decoding rate on each processor in the current state; the 

expected future value of frame v ; and the sum of the expected 

future values of the v th frame’s children. Note that the expected 

future value of frame v is 0 if v ∉ ′C ; and, the expected future 

values of the child frames are 0 if ur ′  is not 1 (i.e., if the parent 

has not been decoded). In other words, the parent frame’s value 

function is coupled with the children’s value functions only if the 

parent frame gets fully decoded. 

3.1.2. Decomposing frame-level value iteration  
The frame-level value iterations allow us to eliminate the 

exponential growth of the state space with respect to the number 

of frames in the frame working set, but we still have to address the 

fact that the optimization in (8) (Line 6 of Table 1) requires a 

search over an exponential number of scheduling and frequency 

actions. In this subsection, we discuss how to decompose the 

monolithic update defined in (8) into M  stages (hereafter, sub-

Table 1. Frame-level value iteration algorithm performed by the first-level scheduler. 

1. Initialize:
 

0,
( 0, , )v v vx rV
λ

=C  for all 
gv ∈ V, C , {0, },v vx l∈ … , and {0,1}vr ∈  

2. Repeat 

3.  0∆ ←  

4.   For each 
gv ∈ V, C , {0, },v vx l∈ … , and {0,1}vr ∈  

5.   If v ∈ C , 0vx > , and 1vr =  (frame v  is in the frame working set, has undecoded slices, and has its dependencies satisfied) 

6.  

( )
1: ,

1: , 1: ,

1: ,

1: ,

1

1,

1

,

, ,

:1 , 1

( , )

( ) ( , ) ( , )

min

,

( | , ) , ( ,, , )
M v M v

v v uM M

v v v

jv jv jv jv

n

M

jv

j

jv

n

M

jv jv v v M v v u u u

u r

n

u v

z

j

V x r

f f y Q f y

f y V xp r V l rz

λ

λ λ

λ

γ

ρ σ

=≤ ∈ ′ ′=

+

=

=

+ −

− +′ ′ ′ ′ ′

 
  

 
 
 

        
      

∑ ∏

∑

∑
f y

z y

z

C

C

C C

≺



 (8) 

7.   Else 

8.    
1,

,( , ) 0
n

v v vV x r
λ+

=C  

9   End 

10.  End 

11.  
1, ,

max ( , ) ( , ), }{ | , |,v v v v v

n

v

n
V r V rx x

λ λ+
∆ ← −∆ C C   and  1n n← +  

12. Until ∆ < ε  (a small positive number) 

13. Output: 
,{ : }v gV v∗ ∈ V  



value iterations), each corresponding to a local scheduling 

problem on a single processor. These M  sub-value iterations can 

be performed iteratively, using the output of the j th processor’s 

sub-value iteration as the input to the ( 1)j − st processor’s sub-

value iteration. Importantly, decomposing the monolithic update 

into M  sub-value iterations significantly reduces the 

computational complexity of the update. Due to space limitations, 

we refer the interested reader to [14] for a derivation of the sub-

value iterations. 

Sub-value iteration at processor M : 

 

( )

( )

1,
,

,

,  
| ,

,

: ,  1

,

( ) ( , ) ( , )

,min

(

,

,

),,
Mv Mv

MvMv Mv

u

v v

Mv Mv Mv Mv

v v

M v

n

Mv

n

f y
z f

n

v

Mv v

u u u
y

u u r

V x r

f f y Q f y

V x z r

V l r

λ

λ

λ

σ

γ

ρ λ

∈ ′ ′

−

=

=

+ −

−

+

′

′ ′

+′

′

 
 

       
  

 
 
 

   
∑E

C

C

C

C

≺

 (9) 

The M th processor’s sub-value iteration estimates the value of 

being in traffic state ,,( )vv vx r=T C  under the assumption that 

only processor M  exists in the current time slot, while all 

processors exist thereafter. This value is calculated as the sum of 

(i) the immediate cost incurred by processor M  for processing 

slices belonging to frame v , (ii) the expected discounted future 

value of frame v , and (iii) the expected discounted future value 

of frame v ’s children. The output of the M th processor’s sub-

value iteration is used as input to the ( 1)M − st processor’s sub-

value iteration.  

Sub-value iteration at processors {2, , 1}j M∈ … − : 
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The j th processor’s sub-value iteration estimates the value of 

being in traffic state ,,( )vv vx r=T C  under the assumption that 

only processors ,,j M…  exist in the current time slot, while all 

processors exist thereafter. This value is calculated as the sum of 

the immediate cost incurred by processor j  and an expectation 

over the value calculated by the ( 1)j + st processor’s sub-value 

iteration. The output of the j th processor’s sub-value iteration is 

used as input to the ( 1)j − st processor’s sub-value iteration.  

Sub-value iteration at processor 1: 
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The output of the first processor’s sub-value iteration includes (i) 

the immediate power costs incurred by all processors, (ii) the slice 

decoding rate of all processors, (iii) the expected discounted 

future value of frame v , and (iv) the expected future discounted 

value of frame v ’s children. 
1,

v

n
V

λ+
 is used as input to the M th 

processor’s sub-value iteration during iteration 1n + .  

Performing the M  sub-value iterations for frame v  in a single 

traffic state , , )(v v vx r=T C   only requires a search over the 

(scalar) scheduling actions {0,1}jvy ∈  and frequencies 

jvf ∈ F  for each processor {1, , }Mj ∈ … . Therefore, using 

the proposed decomposition significantly reduces the optimization 

complexity.  

Finally, at run-time, we determine the approximately optimal 

actions , ,( , )jv jvf y∗ ∗  to take in each state , , )(v v vx r=T C  by 

taking the arguments that minimize the right-hand sides of (9), 

(10), and (11). For complete details on the action selection 

procedure, we refer the interested reader to [14]. 

3.2. Second-level scheduler 
Given the optimal actions calculated by the first-level 

scheduler, it is likely that slices belonging to different frames in 

the frame working set will want to be scheduled on the same 

processor in the same time slot, thereby violating the processor 

constraint in (6). To avoid this problem, the second-level 

scheduler determines the final slice- and frequency-to-processor 

mappings using an Earliest Deadline First (EDF) policy. 

Specifically, frame ,jv ∗  gets scheduled on processor j  at 

frequency 
,jvf ∗

 if ,jv ∗  has the minimum decoding deadline 

,decvd  of all of the frames scheduled on processor j  (with ties 

broken randomly). Finally, if a slice finishes decoding before the 

first-level scheduler’s time quantum is up, then the second-level 

scheduler will start decoding another slice during the “slack” time, 

which is the time between the beginning of the next time quantum 

and the time that the originally scheduled slice finished decoding. 

4. EXPERIMENTS 

To validate our optimized multi-core scheduling approach in 

Matlab, we use accurate profiling/statistics generated from an 

H.264/AVC decoder executed on a sophisticated cycle-accurate 

and bus signal-accurate MPARM simulator [11]. We implemented 

the two-level scheduling algorithm proposed in Section 3 in 

Matlab. This algorithm, together with slice-level data traces 

recorded from MPARM, allowed us to determine scheduling and 

DVFS policies for the Silent and Foreman sequences (CIF 

resolution, 30 frames per second, 8 slices per frame) with an IBPB 

GOP structure. The relevant parameters used in our experiments 

are given in Table 2. 

In Fig. 2, we compare our proposed algorithm to the Optimum 

Minimum-Energy Multicore Scheduling algorithm (OPT-MEMS 

[2]), and to a modification of our algorithm where we require all 

processors to operate at the same frequency (i.e., coordinated 

DVFS). We note that OPT-MEMS supports both DPM and 

coordinated DVFS; however, we only compare against the DVFS 

part to achieve a fair comparison. (Although DPM can be 

integrated into our proposed solution, we omitted it here to 

simplify the exposition.)  

OPT-MEMs uses a frame’s worst-case execution complexity 

and its deadline to determine a DVFS schedule that multiplexes 

between two frequencies in time in order to execute exactly the 

worst-case number of cycles before the task’s deadline. There are 

four important limitations of OPT-MEMS. First, OPT-MEMS 

does not consider characteristics and requirements of future tasks 

(e.g. deadlines, complexities, dependencies) when deciding the 

DVFS schedule for the current task. Second, OPT-MEMS does 

not provide a scheduling technique to allocate tasks to processor 

cores; instead, it assumes that each task is perfectly divisible 

among an arbitrary number of cores. This corresponds to the case 

of perfect load balancing, which can only be achieved in practice 

if the number of slices per frame is exactly the number of cores, 

and each slice has exactly the same decoding complexity. Third, 



OPT-MEMS does not provide a mechanism for scheduling slices 

belonging to different frames at the same time. This leads to some 

inefficiency because fully parallelized decoding (which accounts 

for frame dependencies) is not possible. Forth, OPT-MEMS uses 

coordinated DVFS. This leads to inefficiency in practice because 

tasks are not the same size and therefore cannot be perfectly load 

balanced with a single frequency for all cores. 

As illustrated in Fig. 2(a) and Fig. 2(b), for M = 1 or 2 

processors, all algorithms achieve approximately the same frame 

rates and power consumptions for a given sequence. This is 

because, even at the highest operating frequency, there are not 

enough resources to decode all frames. For M = 4 or 8 processors, 

Fig. 2(a) and Fig. 2(b) show that all algorithms achieve the full 

frame rate (or very close to the full frame rate); however, Fig. 2(c) 

and Fig. 2(d) show that the proposed algorithm achieves lower 

overall power consumption. For M = 4 cores, the proposed 

algorithm reduces power by approximately 24% for Foreman and 

36% for Silent, relative to OPT-MEMS. The improvements are 

more modest for M = 8 cores because each core runs at a much 

lower operating frequency than with M = 4 cores, so there is less 

opportunity to reduce power consumption. 

5. CONCLUSION 

We propose a Markov decision process based on-line 

scheduling algorithm for slice-parallel video decoders on 

multicore systems. To mitigate the complexity of solving the 

optimal on-line scheduling and DVFS policy, we proposed a 

novel two-level scheduler. The first-level scheduler determines 

scheduling and DVFS policies independently for each frame and 

the second-level decides the final frame-to-processor and 

frequency-to-processor mappings at run-time. We validate the 

proposed algorithm in Matlab using accurate video decoder trace 

statistics generated from an H.264/AVC decoder that we 

implemented on a cycle-accurate MPARM simulator.  
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Table 2. Simulation parameters.  

Parameter Value(s) 

No. slave cores (M ) 1, 2, 4, 8 

Frequency set (F ) {125, 166, 250, 500} MHz 

Sequence 
Foreman (220 frames), 

Silent (300 frames) 

Resolution CIF (352 x 288) 

GOP Structure ‘IBPB’ 

Frame rate 30 frames per second 

Time slot duration 1/90 s 

No. frame working sets 12 

No. slices per frame 8 

Lagrange multiplier (λ ) 400 

 
Fig. 2. Experimental comparisons (a,b) Avg. decoded frame rates 

for Foreman and Silent, respectively. (c,d) Avg. total power 

consumption for Foreman and Silent, respectively.  

 


