
MARKOV DECISION PROCESS BASED ENERGY-EFFICIENT SCHEDULING

FOR SLICE-PARALLEL VIDEO DECODING

Nicholas Mastronarde*, Karim Kanoun†, David Atienza†, and Mihaela van der Schaar
‡

* Department of EE, University at Buffalo, † Institute of EE, EPFL,

‡
Department of EE, UCLA

ABSTRACT

We consider the problem of energy-efficient scheduling for

slice-parallel video decoders on multicore systems with Dynamic

Voltage Frequency Scaling (DVFS) enabled processors. We

rigorously formulate the problem as a Markov decision process

(MDP), which simultaneously considers the on-line scheduling

and per-core DVFS capabilities; the power consumption of the

processor cores and caches; and the loss tolerant and dynamic

nature of the video decoder. The objective is to minimize long-

term power consumption subject to a minimum Quality of Service

(QoS) constraint related to the decoder’s throughput. We evaluate

the proposed scheduling algorithm using traces generated from a

cycle-accurate multiprocessor ARM simulator.

Index Terms— Slice-parallel video decoding, multicore

scheduling, multicore power management, dynamic voltage

scaling, Markov decision process.

1. INTRODUCTION

Despite improvements in mobile device technology, energy-

efficient multicore scheduling for video decoding remains a

challenging problem for several reasons. First, video decoding

applications have intense and time-varying workloads, which have

worst-case execution times that are significantly larger than the

average case. Second, they have sophisticated dependency

structures due to predictive coding. These dependency structures,

which can be modeled as directed acyclic graphs (DAGs), not

only result in different frames having different priorities, but also

make it difficult to balance loads across the cores, which is

important for energy efficiency [1]. Finally, they often have

stringent delay constraints, but are considered soft real-time

applications. In other words, video frames should meet their

deadlines, but when they do not, the application quality (e.g.

decoded video frame rate) is reduced.

During the last decade, many energy-efficient multicore

scheduling algorithms that exploit Dynamic Voltage Frequency

Scaling (DVFS [7]) and/or Dynamic Power Management (DPM

[12]) have been proposed, e.g. [2][3][4][6][8]. The Largest Task

First with Dynamic Power Management (LTF-DPM) algorithm in

[3] assumes that frame decoding deadlines are equally spaced in

time, and therefore does not support video group of pictures

(GOP) structures with B frames; moreover, LTF-DPM will

typically have looser deadline constraints than our proposed

algorithm because it assigns groups of frames a common “weak”

deadline. The Stochastic Scheduling2D algorithm [6] considers a

periodic DAG application model that requires a “source” and

“sink” node in each period, making the algorithm incompatible

with GOP structures where the last B frame in a GOP depends on

the I frame in the next GOP (e.g. an IBPB GOP). The Variation

Aware Time Budgeting (Var-TB) algorithm in [8] uses a

functional partitioning algorithm for parallelizing the video

decoder (e.g. pipelining decoder sub-functions such as inverse

DCT and motion compensation on different cores). Functional

partitioning is known to be suboptimal [13] and parallelization

approaches based on data partitioning (e.g. mapping different

frames, slices, or macroblocks to different processors) are superior

[13]. The so-called SpringS algorithm in [4] uses a task-level

software pipelining algorithm called RDAG [5] to transform a

periodic dependent task graph (expressed as a DAG) into a set of

tasks that can be pipelined on parallel processors. However, if this

technique is applied to video decoding applications, it will require

retiming delays proportional to the GOP size, which may be large.

There is no solution that simultaneously considers per-core

DVFS capabilities; dynamic processor assignment; and loss-

tolerant tasks with different complexity distributions, DAG

dependency structures, and stringent, but soft real-time,

constraints. The contributions of this paper are as follows:

• We rigorously formulate the multi-core scheduling problem

using a Markov decision process (MDP) that considers the

abovementioned properties. The MDP enables the system to

optimally tradeoff long-term power and performance.

• The MDP solution requires complexity that exponentially

increases with both the number of processors and the number of

frames in a short look-ahead window. To mitigate this

complexity, we propose a novel two-level scheduler. The first-

level determines scheduling and DVFS policies for each frame

using frame-level MDPs, which account for the coupling between

the optimal policies of parent and children frames. The second-

level decides the final frame- and frequency-to-processor

mappings, ensuring that certain system constraints are satisfied.

• We validate the proposed algorithm in Matlab using video

decoder trace statistics generated from an H.264/AVC decoder

that we implemented on a cycle-accurate multiprocessor ARM

(MPARM) simulator [11].

The remainder of the paper is organized as follows. We

introduce the system and application models in Section 2 and

formulate the on-line multi-core scheduling problem as an MDP.

In Section 3, we propose a lower complexity solution by

approximating the original MDP problem with a two-level

scheduler. In Section 4, we present our experimental results. We

conclude in Section 5.

2. PROBLEM FORMULATION

We consider the problem of energy-efficient slice-parallel

video decoding in a time slotted multicore system, where time is

divided into slots of (equal) duration t∆ seconds indexed by

t ∈ � . We assume that there are M processors, which we index

by {1, , }j M∈ … . In Section 2.1, we describe seven important

video data attributes. In Section 2.2, we propose a sophisticated

Markovian traffic/workload model that accounts for the video data

attributes introduced in Section 2.1. In Sections 2.3, 2.4, and 2.5

we describe the scheduling and frequency actions, the evolution of

the video traffic/workload, and the power and Quality of Service

(QoS) metrics used in our optimization. In subsection 2.6, we

formulate the multicore scheduling problem as an MDP.

2.1. Video data attributes
We model the encoded video bitstream as a sequence of

compressed data units. We assume that a data unit corresponds to

one video slice, which is a subset of a video frame that can be

decoded independently of other slices within the same frame [9].

We assume that the video is encoded using a fixed, periodic, GOP

structure that contains K frames and lasts a period of T time

slots of duration t∆ . The set of frames within GOP g ∈ � is

denoted by
1 2

{ , , , }g g g g

K
v v vV � … and the set of all frames is

denoted by g

g∈
V V

�
� ∪ . Each frame g

k
v is characterized by

seven attributes:

1. Type: Frame g

k
v

is an I, P, or B frame. We denote the operator

extracting the frame type by type()g
k
v .

2. Number of slices: Frame g

k
v is composed of max{1, , }

g

k
v
l l∈ …

slices, where
g

k
v
l is assumed to be fixed for all frames and is

determined by the encoder [9].

3. Decoding complexity: Slices belonging to frame g

k
v

have

decoding complexity
g

k
v
w cycles. We assume that

g

k
v
w is an

i.i.d. random variable conditioned on the frame type.

4. Arrival time:
g

k
v
t denotes the earliest time slot g

k
v can be

decoded (i.e., its arrival time at the scheduler).

5. Display deadline:
,dispg

k
v
d denotes the final time slot in which

g
kv

must be decoded so it can be displayed.

6. Decoding deadline:
,dec ,dispg g

k k
v v
d d≤ denotes the final time slot

in which g

k
v must be decoded so that frames that depend on it

can be decoded before their display deadline.

7. Dependency: The frames must be decoded in decoding order,

which is dictated by the dependencies introduced by predictive

coding (e.g., motion-compensation). In general, the

dependencies among frames can be described by a DAG,

denoted by ,DAG V E� , with the nodes in V

representing frames and the edges in E representing the

dependencies among frames. We use the notation
g g

kk
v v

′

′ ≺ to

indicate that frame g

k
v depends on frame

g

k
v

′

′ (i.e., there exists

a path directed from
g

k
v

′

′ to g

k
v) and therefore g

k
v

cannot be

decoded until
g

k
v

′

′ is decoded. We write (,)g g

kk
v v

′

′ ∈ E if there

is a directed arc emanating from frame
g

k
v

′

′ and terminating at

frame g

k
v , indicating that

g

k
v

′

′ is an immediate parent of g

k
v .

These attributes determine which slices can be decoded, how

long they will take to decode, when they need to be decoded. In

the next subsection, we propose a Markovian traffic model that

captures the above attributes, enabling us to rigorously formulate

the multicore scheduling problem as an MDP.

2.2. Markovian traffic model

We define a traffic state (, ,)
t t t t
= x rT C to represent the

video data that can potentially be decoded in time slot t . This

traffic state comprises the frame working set
t
⊂C V , the buffer

state tx , and the dependency state tr .

In time slot t , we assume that the set of frames whose

deadlines are within the scheduling time window (STW)

[],
t

t t W+ can be decoded. We define the frame working set as

all the frames within the STW, i.e.

,disp{ | { , 1, , }}
t t

vv d t t t W= ∈ ∈ + +C V … . Because the

GOP structure is fixed and periodic,
t
C is periodic with some

period T . A frame’s arrival time vt (respectively, display

deadline ,dispvd) is the first (respectively, last) time slot in which

it appears in the frame working set, and a frame’s decoding

deadline ,decvd is the minimum display deadline of its children.

Note that the distinction between display and decoding deadlines

is important because, even if a frame’s decoding deadline is

missed, which renders its children undecodable, it is still possible

to decode the frame itself before its display deadline. Fig. 1

illustrates the STW concept for a simple IBPB GOP structure.

We define the buffer state (|)v

t tt
x v= ∈x C , where v

t
x

denotes the number of slices of frame v awaiting decoding at

time t . Finally, the dependency state (|)v

t tt
r v ∈r C� defines

whether or not each frame in the frame working set is decodable

in time slot t . In particular,

v

t
r is a binary variable that takes

value 1 if all of frame v ’s dependencies are satisfied, i.e. if

,
0

u t
x = for all u v≺ , and takes value 0 otherwise.

2.3. Scheduling actions and frequencies

Let {0,1}jv

t
y ∈ =Y denote the number of slices belonging

to frame v that are scheduled on processor j at time t . For

notational convenience, we define (|)j j

t

v

t t
y v ∈=y C . There

are three important constraints on the scheduling actions jv
ty for

all {1, , }Mj ∈ … and
t

v ∈ C :

Fig. 1. Illustrative DAG dependencies for an IBPB GOP structure that contains 4K = frames and lasts a period of 4T = time

slots of duration 1 / 30t∆ = seconds.

1
gv

2
gv

3
gv

4
gv

1
1
gv +

1
2
gv +

1
3
gv +

1
4
gv +

2
1
gv +

, tt t W + 

• Buffer constraint:
1

M jv v
t tj
y x

=
≤∑ . In words, the total

number of scheduled slices belonging to frame v cannot

exceed the number of slices in its buffer in time slot t .

• Processor constraint: 1
t

jv
tv
y

∈
≤∑ C

. In words, no more

than one slice can be scheduled on processor j in time slot t .

• Dependency constraint: If 0v
tr = , then

1
0

M jv
tj
y

=
=∑ . In

words, all of the v th frame’s dependencies must be satisfied

before slices belonging to it are scheduled to be decoded.

We assume that each processor can operate at a different

frequency in each time slot to tradeoff processing energy and

delay. Let 1 2(, , ,)M M

t t t t
f f f= ∈f F… denote the frequency

vector, where j

t
f ∈ F is the speed of the j th processor in time

slot t and F is the set of available operating frequencies.

2.4. State evolution and system dynamics

To fully characterize the video traffic, we need to understand

how the traffic state

(, ,)
t t t t
= x rT C evolves over time. The

transition of the frame working set from
t
C to

1t+
C is

independent of the scheduling action; in fact, it is deterministic

and periodic for a fixed GOP structure, and therefore the sequence

{ | }
t
t ∈C � can be modeled as a deterministic Markov chain.

The transition of the buffer state from v

t
x to

1
v

t
x

+
 depends on

the scheduling actions and processor frequencies. Let

(,)jv jv j jv

t t t t
z z f y= denote the number of slices belonging to

frame v that finish decoding on processor j at time t given

frequency j

t
f . Note that jv jv

t t
z y≤ . Let |)(,jv j jv

tz t t
p z f y denote

the probability that jv

t
z slices are decoded on processor j in time

slot t given the frequency j

t
f and scheduling action jv

t
y .

Before we can write the buffer recursion governing the

transition from v

t
x to

1
v

t
x

+
, we need to define a partition of the

frame working set
1t+

C . The partition divides
1t+

C into two sets:

a set of frames that persist from time t to 1t + because they

have display deadlines ,dispvd t> , i.e.,
1t t+

∩C C ; and, a set of

newly arrived frames with arrival times 1vt t= + , i.e.,

1 1 1
\

t tt tt+ + +
− ∩C C C C C� . Based on this partition,

1t
vx
+

 can

be determined from v

t
x as follows

1 1
1

1

, i

i \, f

f

.

Mv jv

tt t t

t v

t t

v j
vx

x
l v

z
= +

+

+

− ∈ ∩
=

∈




∑ C C

C C

(1)

The sequence { | }
t

vx t ∈ � can be modeled as a controlled

Markov chain.

The transition of the dependency state from v

t
r to

1
v

t
r
+

 follows

intuitively from the definition of dependency: frame v can be

decoded in time slot 1t + (i.e.,
1

1v

t
r
+

=) if and only if all of its

parents are completely decoded at the end of time slot t . It

follows that the sequence { | }v

t
r t ∈ � can be modeled as a

controlled Markov chain.

2.5. Power cost and slice decoding rate

The power-frequency function ()j
t
fρ maps the j th

processor's speed j

t
f to its expected power consumption (watts).

We also consider the expected power consumed by the

instruction, data, and L2 cache using a function

(, , type())j jv
t tf y vσ (watts). Thus, the total expected power

consumed by processor j (and the associated accesses to the

various caches) at time t can be written as

()(,) () , , type), (
t

j j j j jv

t t t tt tv
P f f f y vρ σ

∈
= + ∑y

C
C (watts). (2)

We consider the following QoS metric in each time slot t :

 (), , type() (| ,)jv jv
t t

j jv jv

t t t

jv j jv
t tz z ty

Q f y v zp z f y
≤

= ∑ ,, (3)

which is simply the expected number of slices belonging to frame

v that will be decoded on processor j in time slot t . We will

refer to (3) as the slice decoding rate. In the remainder of the

paper, we will omit the dependence of (2) and (3) on type()v .

2.6. Markov decision process formulation

In this subsection, we formulate the problem of energy-efficient

slice-parallel video decoding on M processors. In each time slot

 t , the objective is to determine the scheduling action
jv

t
y , for all

{1, 2 , }, Mj ∈ … and tv ∈ C , and the frequency vector
t
f , in

order to minimize the long-term power consumption subject to a

long-term slice decoding rate constraint. The total discounted [12]

average power consumption and slice decoding rate can be

expressed as

 0 1

(, ,)
M

t j j

t t

t j

t
P P fγ

∞

= =

=
 
 
 
  
∑∑E yC , and (4)

 0 1

(,)

t

M

t j jv

t t

t j v

Q Q f yγ

∞

= = ∈

=
 
 
 
  
∑∑∑E

C

, (5)

respectively, where [0,1)γ ∈ is the discount factor, and the

expectation is over the sequence of traffic states { | }t t ∈T � .

Stated more formally, the optimization objective and constraints

are as follows:

, [,]
min subject to jv

t jvty t
P Q η

∀ ∈
≥

f �
 (6)

where η is the slice decoding rate constraint. Note that the

buffer, processor, and dependency constraints defined in Section

2.3 must hold in every time slot; however, we will omit them from

our exposition in the remainder of the paper.

Equation (6) can be formulated as an unconstrained MDP by

introducing a Lagrange multiplier λ
+

∈ � associated with the

slice decoding rate constraint. For a fixed λ , in each time slot t ,

the unconstrained problem’s objective is to determine the

frequency vector
t
f and scheduling actions []

v

jv

t j
y , for all

processors {1, , }Mj ∈ … and all frames
t

v ∈ C , that minimize

the discounted average Lagrangian cost: i.e.,

 (){ }, [] ,
in .m

t jv
jv
ty t

L QPλ λ η
∀ ∈

= + −
f �

 (7)

3. LOW COMPLEXITY SOLUTION

Solving (6) and (7) is a computationally intractable problem

because their complexity increases exponentially with the number

of frames in the frame working sets and with the number of

processors M . The reason for the exponential growth in the state

space (respectively, action space) is that the optimization

simultaneously considers the states (respectively, scheduling

actions and processor frequencies) of multiple frames on all of the

processor cores. However, the only reason these need to be

optimized jointly is the processor constraint, which ensures that

only one slice is assigned to each processor in each time slot.

Motivated by this weak coupling among tasks, we propose a two-

level scheduler to approximately solve (6) and (7): The first-level

scheduler determines the optimal scheduling actions and

processor frequencies for each frame under the (false) assumption

that each frame has exclusive access to the M processors. Given

the results of the first-level scheduler, the second-level scheduler

determines the final slice- and frequency-to-processor mappings

by resolving conflicts in the first-level scheduling decisions.

3.1. First-level scheduler
The first-level scheduler computes a value function

(, ,)v v vV x rC for every frame in a GOP, which provides a

measure of the expected long-term Lagrangian cost under the

optimized scheduling policy. Note that this value function only

depends on the frame working set, the frame’s buffer state vx ,

and the frame’s dependency state vr and is independent of the

buffer and dependency states of the other frames in the working

set. Importantly, the frame working set indicates the remaining

lifetime of a frame and describes the connections to its parents

and children; hence, it has a significant impact on the optimal

scheduling and DVFS decisions for the frame. To account for the

dependencies among frames, we define the v th frame’s value

function (, ,)v v vV x rC so that it includes the values of its children.

In this way, frames with many children (e.g. I frames) can account

for how their scheduling and frequency decisions will impact the

future performance of their children. We describe the first-level

scheduler in more detail in the remainder of this section.

3.1.1. Frame-level value iteration
The first-level scheduler performs the frame-level value

iteration algorithm illustrated in Table 1 to compute the optimal

value functions ,{ : }v gV v∗ ∈ V . Unlike the conventional value

iteration algorithm [10], the proposed algorithm has multiple

coupled value functions that need to be updated because the value

of a frame depends on the values of its children. Due to this

coupling, the form of the value function update (lines 5-9 in Table

1) differs from the conventional value iteration algorithm.

If it is not possible to make any decisions for a frame in the

current traffic state, then we set the frame’s value to 0 in that

state. Hence, if a frame is not in the frame working set (i.e.

v ∉ C), does not have its dependencies satisfied (i.e. 0vr =),

or is already fully decoded (i.e. v ∈ C and 0vx =), then we set

the frame’s value to 0 (line 8 in Table 1). If the frame is in the

frame working set, still has undecoded slices, and has its

dependencies satisfied (i.e. v ∈ C , 0vx > , and 1vr =), then

the value function update comprises four distinct terms: the power

consumed by each processor in the current state; the expected

slice decoding rate on each processor in the current state; the

expected future value of frame v ; and the sum of the expected

future values of the v th frame’s children. Note that the expected

future value of frame v is 0 if v ∉ ′C ; and, the expected future

values of the child frames are 0 if ur ′ is not 1 (i.e., if the parent

has not been decoded). In other words, the parent frame’s value

function is coupled with the children’s value functions only if the

parent frame gets fully decoded.

3.1.2. Decomposing frame-level value iteration
The frame-level value iterations allow us to eliminate the

exponential growth of the state space with respect to the number

of frames in the frame working set, but we still have to address the

fact that the optimization in (8) (Line 6 of Table 1) requires a

search over an exponential number of scheduling and frequency

actions. In this subsection, we discuss how to decompose the

monolithic update defined in (8) into M stages (hereafter, sub-

Table 1. Frame-level value iteration algorithm performed by the first-level scheduler.

1. Initialize:

0,
(0, ,)v v vx rV
λ

=C for all
gv ∈ V, C , {0, },v vx l∈ … , and {0,1}vr ∈

2. Repeat

3. 0∆ ←

4. For each
gv ∈ V, C , {0, },v vx l∈ … , and {0,1}vr ∈

5. If v ∈ C , 0vx > , and 1vr = (frame v is in the frame working set, has undecoded slices, and has its dependencies satisfied)

6.

()
1: ,

1: , 1: ,

1: ,

1: ,

1

1,

1

,

, ,

:1 , 1

(,)

() (,) (,)

min

,

(| ,) , (,, ,)
M v M v

v v uM M

v v v

jv jv jv jv

n

M

jv

j

jv

n

M

jv jv v v M v v u u u

u r

n

u v

z

j

V x r

f f y Q f y

f y V xp r V l rz

λ

λ λ

λ

γ

ρ σ

=≤ ∈ ′ ′=

+

=

=

+ −

− +′ ′ ′ ′ ′

 
  

 
 
 

        
      

∑ ∏

∑

∑
f y

z y

z

C

C

C C

≺



 (8)

7. Else

8.
1,

,(,) 0
n

v v vV x r
λ+

=C

9 End

10. End

11.
1, ,

max (,) (,), }{ | , |,v v v v v

n

v

n
V r V rx x

λ λ+
∆ ← −∆ C C and 1n n← +

12. Until ∆ < ε (a small positive number)

13. Output:
,{ : }v gV v∗ ∈ V

value iterations), each corresponding to a local scheduling

problem on a single processor. These M sub-value iterations can

be performed iteratively, using the output of the j th processor’s

sub-value iteration as the input to the (1)j − st processor’s sub-

value iteration. Importantly, decomposing the monolithic update

into M sub-value iterations significantly reduces the

computational complexity of the update. Due to space limitations,

we refer the interested reader to [14] for a derivation of the sub-

value iterations.

Sub-value iteration at processor M :

()

()

1,
,

,

,
| ,

,

: , 1

,

() (,) (,)

,min

(

,

,

),,
Mv Mv

MvMv Mv

u

v v

Mv Mv Mv Mv

v v

M v

n

Mv

n

f y
z f

n

v

Mv v

u u u
y

u u r

V x r

f f y Q f y

V x z r

V l r

λ

λ

λ

σ

γ

ρ λ

∈ ′ ′

−

=

=

+ −

−

+

′

′ ′

+′

′

 
 

       
  

 
 
 

   
∑E

C

C

C

C

≺

 (9)

The M th processor’s sub-value iteration estimates the value of

being in traffic state ,,()vv vx r=T C under the assumption that

only processor M exists in the current time slot, while all

processors exist thereafter. This value is calculated as the sum of

(i) the immediate cost incurred by processor M for processing

slices belonging to frame v , (ii) the expected discounted future

value of frame v , and (iii) the expected discounted future value

of frame v ’s children. The output of the M th processor’s sub-

value iteration is used as input to the (1)M − st processor’s sub-

value iteration.

Sub-value iteration at processors {2, , 1}j M∈ … − :

()

()

1,
,

,
,

,| ,

,

() (,) (,)

,

n .
,,

mi
v

jv jv
jv j jv

j v

n

v

j v

v v

jv jv jv jv j

v jv v
f y

nz f y

V x r

f f y Q f y

V x z r

λ

λ

ρ σ λ

−

+

=

+ −

−

    
 
   


  E

C

C

 (10)

The j th processor’s sub-value iteration estimates the value of

being in traffic state ,,()vv vx r=T C under the assumption that

only processors ,,j M… exist in the current time slot, while all

processors exist thereafter. This value is calculated as the sum of

the immediate cost incurred by processor j and an expectation

over the value calculated by the (1)j + st processor’s sub-value

iteration. The output of the j th processor’s sub-value iteration is

used as input to the (1)j − st processor’s sub-value iteration.

Sub-value iteration at processor 1:

1
11

1
1

1 1 1

1,

1

1,
,

,| ,

1

1

(,)

() (,) (,)
mi

(,),
n

,

v v
v v v

v v

v v v

v

n

v

v
f y

nz f

v

v v v

y

V x r

f f y Q f y

V x z r

λ

λ

λρ σ

+
=

+ − +

−

     
  

 
    

E

C

C

. (11)

The output of the first processor’s sub-value iteration includes (i)

the immediate power costs incurred by all processors, (ii) the slice

decoding rate of all processors, (iii) the expected discounted

future value of frame v , and (iv) the expected future discounted

value of frame v ’s children.
1,

v

n
V

λ+
 is used as input to the M th

processor’s sub-value iteration during iteration 1n + .

Performing the M sub-value iterations for frame v in a single

traffic state , ,)(v v vx r=T C only requires a search over the

(scalar) scheduling actions {0,1}jvy ∈ and frequencies

jvf ∈ F for each processor {1, , }Mj ∈ … . Therefore, using

the proposed decomposition significantly reduces the optimization

complexity.

Finally, at run-time, we determine the approximately optimal

actions , ,(,)jv jvf y∗ ∗ to take in each state , ,)(v v vx r=T C by

taking the arguments that minimize the right-hand sides of (9),

(10), and (11). For complete details on the action selection

procedure, we refer the interested reader to [14].

3.2. Second-level scheduler
Given the optimal actions calculated by the first-level

scheduler, it is likely that slices belonging to different frames in

the frame working set will want to be scheduled on the same

processor in the same time slot, thereby violating the processor

constraint in (6). To avoid this problem, the second-level

scheduler determines the final slice- and frequency-to-processor

mappings using an Earliest Deadline First (EDF) policy.

Specifically, frame ,jv ∗ gets scheduled on processor j at

frequency
,jvf ∗

 if ,jv ∗ has the minimum decoding deadline

,decvd of all of the frames scheduled on processor j (with ties

broken randomly). Finally, if a slice finishes decoding before the

first-level scheduler’s time quantum is up, then the second-level

scheduler will start decoding another slice during the “slack” time,

which is the time between the beginning of the next time quantum

and the time that the originally scheduled slice finished decoding.

4. EXPERIMENTS

To validate our optimized multi-core scheduling approach in

Matlab, we use accurate profiling/statistics generated from an

H.264/AVC decoder executed on a sophisticated cycle-accurate

and bus signal-accurate MPARM simulator [11]. We implemented

the two-level scheduling algorithm proposed in Section 3 in

Matlab. This algorithm, together with slice-level data traces

recorded from MPARM, allowed us to determine scheduling and

DVFS policies for the Silent and Foreman sequences (CIF

resolution, 30 frames per second, 8 slices per frame) with an IBPB

GOP structure. The relevant parameters used in our experiments

are given in Table 2.

In Fig. 2, we compare our proposed algorithm to the Optimum

Minimum-Energy Multicore Scheduling algorithm (OPT-MEMS

[2]), and to a modification of our algorithm where we require all

processors to operate at the same frequency (i.e., coordinated

DVFS). We note that OPT-MEMS supports both DPM and

coordinated DVFS; however, we only compare against the DVFS

part to achieve a fair comparison. (Although DPM can be

integrated into our proposed solution, we omitted it here to

simplify the exposition.)

OPT-MEMs uses a frame’s worst-case execution complexity

and its deadline to determine a DVFS schedule that multiplexes

between two frequencies in time in order to execute exactly the

worst-case number of cycles before the task’s deadline. There are

four important limitations of OPT-MEMS. First, OPT-MEMS

does not consider characteristics and requirements of future tasks

(e.g. deadlines, complexities, dependencies) when deciding the

DVFS schedule for the current task. Second, OPT-MEMS does

not provide a scheduling technique to allocate tasks to processor

cores; instead, it assumes that each task is perfectly divisible

among an arbitrary number of cores. This corresponds to the case

of perfect load balancing, which can only be achieved in practice

if the number of slices per frame is exactly the number of cores,

and each slice has exactly the same decoding complexity. Third,

OPT-MEMS does not provide a mechanism for scheduling slices

belonging to different frames at the same time. This leads to some

inefficiency because fully parallelized decoding (which accounts

for frame dependencies) is not possible. Forth, OPT-MEMS uses

coordinated DVFS. This leads to inefficiency in practice because

tasks are not the same size and therefore cannot be perfectly load

balanced with a single frequency for all cores.

As illustrated in Fig. 2(a) and Fig. 2(b), for M = 1 or 2

processors, all algorithms achieve approximately the same frame

rates and power consumptions for a given sequence. This is

because, even at the highest operating frequency, there are not

enough resources to decode all frames. For M = 4 or 8 processors,

Fig. 2(a) and Fig. 2(b) show that all algorithms achieve the full

frame rate (or very close to the full frame rate); however, Fig. 2(c)

and Fig. 2(d) show that the proposed algorithm achieves lower

overall power consumption. For M = 4 cores, the proposed

algorithm reduces power by approximately 24% for Foreman and

36% for Silent, relative to OPT-MEMS. The improvements are

more modest for M = 8 cores because each core runs at a much

lower operating frequency than with M = 4 cores, so there is less

opportunity to reduce power consumption.

5. CONCLUSION

We propose a Markov decision process based on-line

scheduling algorithm for slice-parallel video decoders on

multicore systems. To mitigate the complexity of solving the

optimal on-line scheduling and DVFS policy, we proposed a

novel two-level scheduler. The first-level scheduler determines

scheduling and DVFS policies independently for each frame and

the second-level decides the final frame-to-processor and

frequency-to-processor mappings at run-time. We validate the

proposed algorithm in Matlab using accurate video decoder trace

statistics generated from an H.264/AVC decoder that we

implemented on a cycle-accurate MPARM simulator.

6. REFERENCES

[1] H. Aydin and Q. Yang, “Energy-Aware Partitioning for

Multiprocessor Real-Time Systems,” Proc. of the 17th

International Symposium on Parallel and Distributed

Processing (IPDPS '03), Apr. 2003.

[2] W. Y. Lee, Y. W. Ko, H. Lee, and H. Kim, “Energy-efficient

scheduling of a real-time task on DVFS-enabled multi-

cores,” Proc. of the 2009 Intl. Conf. on Hybrid Information

Technology (ICHIT '09), pp. 273-277, 2009.

[3] Y.-H. Wei, C.-Y. Yang, T.-W. Kuo, S.-H. Hung, and Y.-H.

Chu, “Energy-efficient real-time scheduling of multimedia

tasks on multi-core processors,” Proc. of the 2010 ACM

Symp. on Applied Computing (SAC '10), pp. 258-262, 2010.

[4] H. Liu, Z. Shao, M. Wang, and P. Chen, “Overhead-Aware

System-Level Joint Energy and Performance Optimization

for Streaming Applications on Multiprocessor Systems-on-

Chip,” Proc. of the 2008 Euromicro Conference on Real-

Time Systems (ECRTS '08), pp. 92-101, July 2008.

[5] C. E. Leiserson and J. B. Saxe, “Retiming synchronous

circuitry,” Algorithmica, vol. 6, no. 1-6, pp 5–35, 1991.

[6] R. Xu, “Energy-aware scheduling for streaming

applications,” Ph.D. Dissertation:

http://preview.tinyurl.com/c6uul4m

[7] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling

for low-power embedded operating systems,” SIGOPS Oper.

Syst. Rev., vol. 35, no. 5, pp. 89-102, Oct. 2001.

[8] J. Cong and K. Gururaj, “Energy efficient multiprocessor

task scheduling under input-dependent variation,” Proc. of

the Conference on Design, Automation and Test in

Europe (DATE '09), pp. 411-416, 2009.

[9] M. Roitzsch, "Slice-balancing H.264 video encoding for

improved scalability of multicore decoding," Proc.of the 7th

ACM & IEEE International Conference on Embedded

Software, pp. 269-278, 2007.

[10] R. S. Sutton and A. G. Barto, “Reinforcement learning: an

introduction,” Cambridge, MA:MIT press, 1998.

[11] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M.

Olivieri, “MPARM: Exploring the Multi-Processor SoC

Design Space with SystemC,” J. VLSI Signal Process. Syst.,

vol. 41, no. 2, pp. 169-182, Sept. 2005.

[12] L. Benini, A. Bogliolo, G. A. Paleologo, G. De Micheli,

“Policy optimization for dynamic power management,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and

Systems, vol. 18, no. 6, June 1999.

[13] E. B. van der Tol, E. G. Jaspers, R. H. Gelderblom,

“Mapping of H.264 decoding on a multiprocessor

architecture,” Proc. of the SPIE (May 2003), pp. 707-718.

[14] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M.

van der Schaar, “Markov decision process based energy-

efficient on-line scheduling for slice-parallel video decoders

on multicore systems,” IEEE Trans. on Multimedia, vol. 15,

no. 2, pp. 268-278, Feb. 2013.

Table 2. Simulation parameters.

Parameter Value(s)

No. slave cores (M) 1, 2, 4, 8

Frequency set (F) {125, 166, 250, 500} MHz

Sequence
Foreman (220 frames),

Silent (300 frames)

Resolution CIF (352 x 288)

GOP Structure ‘IBPB’

Frame rate 30 frames per second

Time slot duration 1/90 s

No. frame working sets 12

No. slices per frame 8

Lagrange multiplier (λ) 400

Fig. 2. Experimental comparisons (a,b) Avg. decoded frame rates

for Foreman and Silent, respectively. (c,d) Avg. total power

consumption for Foreman and Silent, respectively.

