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Abstract—The Multi-Parametric Toolbox is a col-
lection of algorithms for modeling, control, analysis,
and deployment of constrained optimal controllers
developed under Matlab. It features a powerful ge-
ometric library that extends the application of the
toolbox beyond optimal control to various problems
arising in computational geometry. The new version
3.0 is a complete rewrite of the original toolbox with
a more flexible structure that offers faster integration
of new algorithms. The numerical side of the toolbox
has been improved by adding interfaces to state of the
art solvers and by incorporation of a new parametric
solver that relies on solving linear-complementarity
problems. The toolbox provides algorithms for design
and implementation of real-time model predictive
controllers that have been extensively tested.

I. INTRODUCTION

The Multi-Parametric Toolbox (MPT) is a software
tool for Matlab [19] that aims at solving parametric
optimization problems that arise in constrained optimal
control. In particular, as the name of the toolbox sug-
gests, its primal objective is to provide computationally
efficient means for design and application of explicit
model predictive control (MPC). Since the initial release
in 2004 [14] there has been a significant progress in
the development of the toolbox and the scope of the
toolbox has widened to deal also with problems arising
in computational geometry.
On the market there exist toolboxes that offer oper-

ations involved purely in computational geometry, i.e.
GEOMETRY toolbox [3], CGLAB [23], and Ellipsoidal
Toolbox [13]. Other toolboxes beside geometrical tools
offer also algorithms for computing and implementation
of control routines e.g. the Hybrid toolbox [1], MOBY-
DIC toolbox [21], RACT toolbox [29], PnPMPC toolbox
[25], and RoMulOC [22]. MPT is also one of the tools
that combines computational geometry with control rou-
tines. Many of these toolboxes including MPT rely on
YALMIP [17] which provides a high level language for
modeling and formulating optimization problems.
The content of MPT can be divided into four modules:

• modeling of dynamical systems,
• MPC-based control synthesis,
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• closed-loop analysis,
• deployment of MPC controllers to hardware.

Each part represents one stage in design and implemen-
tation of explicit MPC. The modeling module of MPT
allows to describe discrete-time systems with either linear
or hybrid dynamics. The latter can be directly imported
from the HYSDEL environment [28]. The control module
allows to formulate and solve constrained optimal control
problems for both linear and hybrid systems. For a de-
tailed overview of employed mathematical formulations
the reader is referred to [2]. The analysis module provides
methods for investigation of closed-loop behavior and
performance. Moreover, it also features methods to re-
duce complexity of explicit MPC feedbacks. The deploy-
ment part allows to export control routines to the ANSI-
C language, which can be subsequently downloaded to a
target hardware implementation platform.

Compared to the previous release, the 3.0 version
of MPT significantly improves capabilities of all four
aforementioned modules. The main advances can be
summarized as follows:

• Completely new installation procedure using a soft-
ware manager.

• New optimization engines based on linear-
complementarity problem solvers.

• Extended support for computational geometry.
• New flexible user interface based on object-oriented

programming.
• Modular structure for easier integration of new al-

gorithms.
• Extended support for real-time control.
• Improved numerical reliability based on extensive

testing.
• Detailed documentation including examples and de-

mos.

This paper describes the new features of MPT in detail
and highlights the key properties that may be of interest
to a broader control community.

II. Notations

To clarify the presentation, this section introduces
the common notations to be referred throughout the
text. Specifically, the notation is required to define the
solutions to multi-parametric problems and is used in
description of the polyhedral sets to understand the
features of the geometric library.



A. Set Description

Definition 2.1 (Convex set): A set S ⊆ Rn is convex
if the line segment connecting any pair of points of S lies
entirely in S, i.e. if for any s1, s2 ∈ S and any α with
0 ≤ α ≤ 1, we have αs1 + (1− α)s2 ∈ S.

Definition 2.2 (Set collection): S is called a set collec-
tion (union) in R

n if it is a collection of a finite number of
n-dimensional sets Si, i.e., S :=

⋃NS

i=1 Si, where NS < ∞.
Definition 2.3 (Piecewise function): The function f :

S 7→ R
nf is called a piecewise function if its domain

is defined over a collection of a finite number of n-
dimensional sets Si, and each set is associated with a
particular vector field fi, i.e., f(x) := fi(x) if x ∈ Si,
where S :=

⋃NS

i=1 Si and NS < ∞.
Definition 2.4 (Polyhedron): A polyhedron is a convex

set given as the intersection of a finite number of hyper-
planes and half-spaces or as a convex combination of a
finite number of vertices and rays.
Definition 2.5 (Polytope): A polytope is a bounded

polyhedron.
Definition 2.6 (H-representation): The polyhedron P

is formed by the intersection of m inequalities and me

equalities, i.e.

P = {x ∈ R
n | Ax ≤ b, Aex = be} (1)

where A ∈ R
m×n, b ∈ R

m, Ae ∈ R
me×n, be ∈ R

me

are the data representing the halfspaces and hyperplanes,
respectively.
Definition 2.7 (V-representation): The polyhedron P

is formed by a convex combination of nv vertices and nr

rays, i.e.

P = {x ∈ R
n | x = λTV +γTR, λ, γ ≥ 0, 1Tλ = 1} (2)

where V ∈ R
n×nv , R ∈ R

n×nr represent vertices and
rays, respectively.

III. Features of MPT 3.0

A. Installation and Updates

The new version of MPT is distributed in a modular
structure that is operated by a Toolbox Manager avail-
able at www.tbxmanager.com. Toolbox Manager provides
means for automatic installation, uninstallation and up-
dates of Matlab toolboxes. The manager can be installed
as per instructions on its web page.
MPT 3.0 is composed of several modules that are re-

quired to achieve the full functionality. The base package
is referred to as mpt and the related documentation as
mptdoc which can be installed by issuing

tbxmanager install mpt mptdoc

at the Matlab prompt. The other modules can be in-
stalled by pointing to the names of the submodules

tbxmanager install lcp hysdel cddmex clpmex

glpkmex fourier sedumi yalmip

After installation of the submodules, the user can start
using the software directly. If any module has been

updated, the new versions can be obtained and installed
with the help of

tbxmanager update

The Toolbox Manager thus provides a very simple ap-
proach to keep updated with any future releases of MPT,
including its submodules.

B. Modular Structure

The MPT 3.0 comes with an extended structure that is
based on submodules and object-oriented programming.
The main motivation for this change was to achieve easier
maintainability of the toolbox and to provide flexible
structure for possible future enhancements. For instance,
in the previous version of MPT there was a single object
encompassing multiple algorithms. In the version 3.0,
several new objects have been introduced that follow
a hierarchy derived from object-oriented programming
approach. Using this hierarchy it is possible to introduce
new objects and methods to the existing framework
with a minimal effort. The new class can be added by
creating a new folder and by subclassing an existing
object. The new object inherits properties and methods
of the superclass and can be used to associate specific
methods for tackling a particular problem. In the next
sections some of the new objects will be presented and
the main functionality will be explained.

C. Core Numerical Engines

Majority of the optimization problems involved in the
computational geometry can be expressed as linear (LP)
or quadratic problems (QP). To solve these problems
effectively, MPT requires additional solvers that can
be installed easily as submodules using the Toolbox
Manager. Version 3.0 of MPT comes with new solvers
that tackle both of these problems effectively. The new
optimization engines are based on solvers for a linear
complementarity problem (LCP) that represents a su-
perclass for LP and QP. The advantage of representing
and solving the optimization problems as LCPs is that
a single solver covers all three scenarios and there is no
need for multiple solvers that could potentially return
different results. There are two new solvers implemented
in MPT 3.0: LCP solver and parametric LCP solver.
Both of these solvers will be reviewed next including their
properties and implementation details.
1) LCP Solver: The linear-complementarity problem

represents the class of optimization problems given as

find w, z

s.t.: w −Mz = q (3a)

wT z = 0 (3b)

w, z ≥ 0 (3c)

where the problem data is given by a sufficient matrix
M ∈ R

n×n and vector q ∈ R
n. The unknown variables

are z and w that are coupled by the linear complementar-
ity constraints (3b). LCP problems are well studied in the

www.tbxmanager.com


literature [20] and several efficient methods for solving
such problems have been proposed. One of the most
successful approaches to solve LCP (3) is by employing
the lexicographic Lemke’s algorithm [20, Chap 2.]. This
active set algorithm features a symbolic perturbation
technique that ensures unique pivot step selection at
each iteration, which prevents the method from internal
cycling.
MPT 3.0 provides a C-code implementation of the

lexicographic Lemke’s algorithm, enriched by various
techniques and methods to improve speed and nume-
rical robustness of the method. In particular, the LU
recursive factorization based on rank-one updates [26]
has been incorporated to reduce computational time at
each iteration. The LCP solver automatically performs
scaling of the input data in case the problem is not
well-conditioned. In addition, the LCP solver executes
re-factorization of the basis if the lexicographic per-
turbation did not properly identify the unique pivot.
The package is linked to BLAS and LAPACK numer-
ical routines that provide state-of-the art algorithms
for implementation of linear algebra. With all these
features implemented, the LCP solver should provide
a numerically reliable engine for resolving also difficult
degenerate cases that may easily arise in formulations of
MPC problems. The LCP solver is seamlessly integrated
in MPT, but can also be installed separately via the
Toolbox manager.
2) Parametric LCP Solver: The parametric LCP

(PLCP) solver aims at solving the following class of
problems

find w, z

s.t.: w −Mz = q +Qθ, (4a)

wT z = 0, (4b)

w, z ≥ 0, (4c)

θ ∈ Θ, (4d)

which differs from (3) by the addition of the parametric
term Qθ in (4a) with Q ∈ R

n×d . Here, θ ∈ R
d

represents a free parameter, which is assumed to be
bounded by (4d), where Θ ⊂ R

d is a polytope. The
problem data are furthermore given by a sufficient matrix
M ∈ R

n×n and the vector q ∈ R
n.

MPT 3.0 implements the algorithm of [12] to solve
PLCP (4) that employs the lexicographic perturbations
to improve robustness. In the initial phase of the algo-
rithm, the PLCP (4) is solved as an LCP for a particular
value of the parameter θ ∈ Θ. This results in a starting
basis for exploration of the parametric space. In subse-
quent steps the algorithm proceeds by lexicographic pivot
steps that identify the solution for the remaining space
of parameters. The solution is given by an optimal pair
of z∗, w∗ that forms a piecewise affine (PWA) function
of the parameters θ:

(

w∗

z∗

)

= Fiθ + gi if θ ∈ Pi. (5)

Here, Fi, gi define the i-th local affine function which
determines values of w∗ and z∗ for any θ that resides in
the i-th polytope Pi.
The PLCP formulation (4a) naturally entails paramet-

ric linear programming (PLP) and parametric quadratic
programming (PQP) as special cases. In particular, con-
sider a formulation of the form

min
x

1

2
xTHx+ (Fθ + f)Tx (6a)

s.t.: Aex = be + Eθ (6b)

Ax ≤ b+Bθ (6c)

θ ∈ Θ (6d)

which consists of a parametrized objective function (6a)
with problem data H ∈ R

n×n, H � 0, F ∈ R
n×d,

f ∈ R
n, and parametrized polyhedron (6b)-(6c) where

E ∈ R
me×d, B ∈ R

m×d. The formulation (6) can
be converted into the PLCP setup (4) using suitable
affine transformations between variables x, w, z, and
θ. Since the process can be tedious for a human, MPT
3.0 provides automatic routines that convert PQP/PLP
setups into the PLCP form.
There are few advantages of solving PLP/PQP (6) as

PLCP (4). Firstly, a single method is used to tackle all
three classes of problems that prevents from encoding
inconsistencies that may be eventually caused by dif-
ferent algorithms and different tolerance settings. This
was one of the problems in the previous version where
there were multiple versions for multi-parametric LP/QP
solvers. Secondly, according to [12], the PLCP approach
is numerically robust and superior in efficiency to other
methods. Furthermore, the PLCP approach can handle
PLP/PQP problems where the parameters appear lin-
early in the cost function and in the right hand side
of constraints and therefore is applicable to solve wider
classes of practical problems.
3) Interfaces to External Solvers: Besides the new

LCP solvers, MPT 3.0 provides interfaces to ex-
ternal state-of-the-art solvers. Supported solvers in-
clude, but are not limited to, CDD [7], GLPK [18],
CLP [10], QPOASES [6], QPSPLINE [16], SeDuMi [24],
GUROBI [9], and CPLEX [4]. With the exception of
the latter two, all other solvers are provided under an
open-source license and can easily be installed using the
Toolbox manager.
It is worth noting that MPT 3.0 relies heavily on

CDD solver for performing many tasks related to com-
putational geometry. In particular, facet and vertex enu-
meration for convex polyhedra and polytopes, as well
as elimination of redundant constraints, are delegated
to CDD. For more information, the interested reader
is referred to [8]. In addition, MPT 3.0 also requires a
freely-available Fourier solver for computing projections
of polyhedra and polytopes.
4) Interface for General Optimization Problems:

MPT 3.0 provides a unified gateway for formulating
LP/QP/LCP (and parametric versions thereof). The



gateway is represented by the Opt class. Using this class
it is possible to formulate the optimization problem and
to pass the data to any supported solver that has been
installed. The general syntax is as follows:

problem = Opt(’H’,H,’f’,f,’A’,A,’b’,b)

which accepts the problem data as matrices and vectors
of the form (6) or (4). At the time of creation of the
object, the type of the optimization problem is recog-
nized and the appropriate solver from the list of available
solvers is associated with the problem. If the problem is
formulated as an LP/QP/PLP/PQP, the transformation
to LCP/PLCP can be invoking the qp2lcp method as
follows:

problem.qp2lcp()

In general, the optimization problem can be solved by
calling the solve method, i.e.,

solution = problem.solve()

and the output is returned in a corresponding form for
non-parametric and parametric solvers.
MPT 3.0 also allows to import parametric opti-

mization problems defined using the YALMIP environ-
ment [17]. This is achieved by creating an instance of the
Opt class as follows

problem = Opt(constraints, objective, theta, x)

Here, constraints and objective define, respectively,
constraints and the cost function of a particular opti-
mization problem, and theta and x denote YALMIP’s
variables used to define the problem. New versions of
YALMIP also directly interact with MPT 3.0’s PLCP
solvers to directly solve parametric optimization setups
via the solvemp command of YALMIP. For further de-
tails the user is referred to documentation of YALMIP.

D. Enhancements in the Geometric Library

The geometric library is a vital part of MPT since
it provides basic building blocks for solving parametric
optimization problems that arise in explicit MPC. The
increasing interest in using features of the geometric
library has motivated the development of new supported
sets and related operations. In this section the enhance-
ments in the geometric library are reviewed.
1) Polyhedral Library: Polyhedra and polytopes are

represented in MPT 3.0 as instances of the Polyhedron

class. The half-space representation of a polyhedron as in
Definition 2.6 is created by calling the class constructor
as follows:

P = Polyhedron(’A’,A,’b’,b,’Ae’,Ae,’be’,be)

where A, b specify the inequalities Ax ≤ b, and Ae with
be define the equalities Aex = be. If the polyhedron
has no equality constraints, then a shorter version of the
constructor can be used:

P = Polyhedron(A, b)

V-representation of a polyhedron as in (2) can be created
by calling

P = Polyhedron(’V’,V,’R’,R)

where V are the vertices (stored row-wise), and R specifies
the rays. If no rays are present, the shorter syntax

P = Polyhedron(V)

can be used.
The main improvement in the geometric library com-

paring to previous version of MPT, is that the polyhedral
sets can be constructed not just as bounded polytopes
but also as general polyhedra according to Def. 2.6
and Def. 2.7. With this feature the geometric library
in MPT 3.0 seamlessly supports unbounded and lower-
dimensional polyhedra, as illustrated in Fig. 1. Another
point worth mentioning is that, unlike the previous
versions, MPT 3.0 does not automatically convert be-
tween H- and V-representations, neither does it eliminate
redundant constraints. The H-to-V and V-to-H conver-
sions, as well as elimination of redundant data, have to
be manually requested by calling

P.minHRep()

to compute the minimal H-representation, or by

P.minVRep()

for obtaining a minimal V-representation of a polyhe-
dron.
Once the polyhedron is constructed using the

Polyhedron constructor, the user can directly access
data of the (irredundant) H- and V-representations by
accessing the A, b, Ae, be, V, and R fields. For instance:

vertices = P.V

will return vertices of the polyhedron, regardless of
whether the object P was originally constructed as a
V-polyhedron or from a half-space representation. Simi-
larly, to access the H-representation, use

A = P.A, b = P.b, Ae = P.Ae, be = P.be

The new geometric library in MPT 3.0 implements
various methods that operate on instances of the
Polyhedron class. The new feature is that these methods
apply also to lower-dimensional and unbounded sets. As
an illustrative example, consider two polyhedra P and
Q. Then their Minkowski sum is given by P + Q =
{x + z | x ∈ P, z ∈ Q}. Such an operation can
be straightforwardly performed in MPT 3.0 using the
overloaded + (plus) operator:

S = P + Q

As an another example, consider the subset test check
P ⊆ Q. This can be achieved by using the overloaded <=

operator as follows

issubset = P <= Q



(a) Bounded polyhedron.

(b) Unbounded polyhedron.

(c) Lower-dimensional polytope.

Fig. 1. Extended polyhedral library supports bounded, un-
bounded and low-dimensional polyhedra.

Additional methods are summarized in Table I.

Another new feature of the geometric library is sim-
plified creation of functions defined over polyhedra by
allowing function handles to be associated to instances
of the Polyhedron class. As an example, consider a 1D
polytope P = {x ∈ R | − 1 ≤ x ≤ 1}, over which we
want to define the function f(x) = sin(x) + 2. In MPT
3.0 this can be achieved first by creating a Polyhedron

object and a Function object followed by attaching the
function:

P = Polyhedron(’lb’, -1, ’ub’, 1)

F = Function(@(x) sin(x)+2)

P.addFunction(F, ’f1’)

Here, the string ’f1’ denotes the name of the function.
Multiple functions can be associated to each polyhedron

Fig. 2. Depiction of piecewise function consisting of three
affine parts and one quadratic part.

objects. Then one can either plot the function by calling

P.fplot(’f1’)

or evaluate the function at a particular point z by

value = P.feval(z, ’f1’)

If the polyhedron only has a single function associated
to it, the second input argument can be omitted.
MPT 3.0 also provides a new PolyUnion class that

represents unions of polyhedra of identical dimensions.
Purpose of this class is to capture geometric properties of
such unions, such as boundedness, connectivity, overlaps,
convexity, and full-dimensionality. Subsequent computa-
tion can then benefit from these stored properties to
reduce computational time. Unions of polyhedra can be
created as follows:

U = PolyUnion([P1 P2 P3 P4])

where P1, P2, P3, P4 are Polyhedron objects that form
the union. Methods that operate on such unions are
summarized in Table II. If each element of the union has
a function associated to it, the PolyUnion object repre-
sents a piecewise function over polyhedra, cf. Def. 2.3. A
plot of such a function, obtained by calling

U.fplot()

is shown in Fig. 2. The function value at a point z can
be obtained by

value = U.feval(z, ’f1’)

Here, ’f1’ denotes name of the function that should
be evaluated. The syntax for function evaluation is the
same as for the Polyhedron object, i.e. if the union only
has a single function associated to it, the second input
argument can be omitted.
Using this feature of the geometric library it is possible

assign any type functions to a set to form piecewise func-
tions. For instance, Tab. III lists methods that operate
over PWA functions. These methods are used in the
analysis module of MPT to postprocess explicit solution
that is obtained in the hybrid MPC design.
2) General Convex Sets: The geometric library in

MPT 3.0 is not restricted to polyhedra. It allows to



TABLE I

Implemented methods that support geometric operations

with single polyhedra.

affineHull, affineMap,
invAffineMap, *

Computation of affine hulls, affine
maps, and inverse affine maps.

chebyCenter, interior-
Point

Computations of Chebyshev cen-
tre and arbitrary interior point.

contains, ==, ~=, <=, >= Set containment tests.
distance Compute distance of a polyhedron

from a point or set
extreme Computations of vertices in a

given direction
H, V Facet and vertex enumeration in-

volving redundancy elimination.
grid, meshGrid Generate points inside the polyhe-

dron
intersect, & Intersections of polyhedra
isAdjacent, isBounded,
isEmptySet, isFullDim

Checking properties of polyhedra.

minus, - Pontryagin difference.
mldivide, \ Set difference.
plus, + Minkowski summations.
project, projection Projections.
shoot Ray maximization in the given di-

rection.
support Compute support of the set in the

given direction.
slice Cuts.
triangulate Triangular decomposition.
volume Volume of a polyhedron.

TABLE II

Implemented methods that support geometric operations

with unions of polyhedra.

contains, ==, ~=, <=, >= Set containment tests.
convexHull Computation of a convex hull.
isBounded,
isConnected,
isConvex, isFullDim,
isOverlapping

Checking properties of the union.

join, merge, reduce Methods for merging of polyhedra.
outerApprox Outer approximation of the union.
plus, minus Minkowski summation and Pon-

tryagin difference for unions of
polyhedra.

define and process arbitrary convex set defined using
YALMIP. Such sets are represented by the YSet class,
whose constructor can be used as follows:

x = sdpvar(2, 1)

disc = YSet(x, [ x(1)^2 + x(2)^2 <= 1 ])

Here, the first line defines a YALMIP variable x as a
real 2 × 1 vector. The second line then defines a disc
centered at the origin with radius of 1. Such sets can
then be processed by applying one of the methods listed
in Table IV.

Note that only convex sets can be imported from
YALMIP to form objects of YSet class. This is not a
limitation, rather an interface for accessing the methods
that operate over convex sets in geometric library of
MPT.

TABLE III

Implemented methods that support operations with PWA

functions.

addFunction,
removeFunction

Adding and removing of function
handles to a set.

min, max Computing minimum, maximum
of overlapping PWA function.

fplot Plotting of functions.

TABLE IV

Implemented methods that support operations with convex

sets.

isBounded, isEmptySet Check properties of the set.
contains, ==, ~=, <=, >= Set containment tests.
distance Compute distance between the set

and a point.
extreme Computations of vertices in a

given direction
grid Generate points inside the set
outerApprox Outer approximation of the set.
project Projection of a point onto a set.
separate Separating hyperplane between a

point and a set.
shoot Ray maximization in a given direc-

tion.
support Compute support of the set in a

given direction.

E. MPC-Based Control Design

MPT 3.0 allows to formulate and solve model predic-
tive control problems for discrete-time linear and hybrid
prediction models. The control synthesis is split into
two parts. First, the user specifies the prediction model
either as a linear time invariant system, as a piecewise
affine system, or as a Mixed Logical Dynamical (MLD)
system. Subsequently, the model, along with constraints
and specifications of the objective function, are passed to
the control module which converts them into a suitable
mathematical description of the optimal control problem.

1) Modeling of Dynamical Systems: MPC synthesis for
linear systems in MPT 3.0 assumes that the prediction
model takes the form

x(t+∆) = Ax(t) +Bu(t) + f, (7a)

y(t) = Cx(t) +Du(t) + g, (7b)

where x(t) is the state vector at time instant t, x(t+∆)
is the successor state at time t + ∆ with ∆ denoting
the sampling time, u(t) is the vector of control inputs,
and y(t) denotes the vector of outputs. Such systems are
represented in MPT 3.0 as instances of the LTISystem

class. A general way to create such systems is to call the
constructor as follows:

sys = LTISystem(’A’, A, ’B’, B, ’C’, C,

’D’, D, ’f’, f, ’g’, g, ’Ts’, Ts)

Note that all but the A parameters can be omitted (if the
sampling time is not provided, MPT assumes ∆ = 1).
Hence a quick way to specify an LTI system described



by the state-update equation x(t+1) = Ax(t)+Bu(t) is
to use

sys = LTISystem(’A’, A, ’B’, B)

Such a syntax conveniently allows to specify autonomous
systems as well. For example, the autonomous system
x(t+ 1) = Ax(t) + f can be created by

sys = LTISystem(’A’, A, ’f’, f)

Another option is to specify the prediction model as a
piecewise affine system of the form

x(t+∆) =



















A1x(t) +B1u(t) + f1 if
[

x(t)
u(t)

]

∈ Pi,

...

ALx(t) +BLu(t) + fL if
[

x(t)
u(t)

]

∈ PL.

(8)
Such systems are composed of L local affine models
whose parameters (matrices A, B, f) change according
to which polyhedron Pi contains the state-input vector.
In MPT 3.0, such piecewise affine systems are defined by
the PWASystem constructor, which takes as the input an
array of local affine systems, each being an instance of the
LTISystem class. As an example, consider the following
PWA system:

x(t+ 1) =

{

0.6x(t) + 1.2u(t) if x(t) ≥ 0,

−0.3x(t) + 0.9u(t) if x(t) ≤ 0.
(9)

First, the user has to specify the two local affine models
by

local_1 = LTISystem(’A’, 0.6, ’B’, 1.2)

local_2 = LTISystem(’A’, -0.3, ’B’, 0.9)

Subsequently, the two local models are assigned to re-
spective regions of validity. We have P1 = {x | x ≥ 0}
for the first local model and P2 = {x | x ≤ 0} for the
second. Such polyhedra are specified by

P1 = Polyhedron(’lb’, 0)

P2 = Polyhedron(’ub’, 0)

Finally, the polyhedra are attached to local models using
the setDomain() method:

local_1.setDomain(’x’, P1)

local_2.setDomain(’x’, P2)

The ’x’ parameter specifies that the regions of validity
should only be defined in the state space, as opposed
to the general formulation which assumes state-input
regions of validity. With the local models at hand, the
overall description of the PWA model is obtained by

pwasys = PWASystem([local_1, local_2])

MPT 3.0 also allows to define mixed-logical dynamical
systems of the form

x(t+∆) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) +B5,

y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) +D5,

E2δ(t) + E3z(t) ≤ E4x(t) + E1u(t) + E5,

where x is the state vector, whose components can either
be real or binary, u is a mixed real-binary control vector,
y a mixed real-binary vector of outputs, δ is a vector of
auxiliary binary variables, and z denotes the vector of
auxiliary real variables. The easiest way to define such
systems is to use the HYSDEL modeling language. Once
the model is specified using the HYSDEL syntax, it can
be imported into MPT 3.0 by

sys = MLDSystem(’model.hys’);

Here, model.hys defines the name of the file which
contains the system’s description. Version 3.0 of MPT
allows MLD models to be imported from HYSDEL; other
features of HYSDEL are not yet incorporated.
2) Control Interface: The basic type of an optimal

control problem assumed in MPT 3.0 is formulated the
following form:

min

N−1
∑

k=0

(‖Qxxk‖p + ‖Quuk‖p) (10a)

s.t. xk+1 = f(xk, uk), (10b)

u ≤ uk ≤ u, (10c)

x ≤ xk ≤ x, (10d)

where xk and uk denote, respectively, prediction of states
and inputs at the k-th step of the prediction horizon N ,
f(·, ·) is the prediction equation, x, x are lower/upper
limits on the states, and u, u represent limits of the
control authority. If p ∈ {1,∞} in (10a), then ‖ · ‖{1,∞‖

denotes the standard vector 1- or ∞-norm. If p = 2, then
‖Qxxk‖2 = xT

kQxxk is assumed.
MPT 3.0 allows to use LTI, PWA or MLD systems as

prediction models in (10b). As an example, consider the
LTI prediction model x(t+1) = 0.6x(t)+u(t), along with
constraints −5 ≤ x ≤ 5 and −1 ≤ u ≤ 1. To specify the
MPC problem, the user can proceed as follows:

model = LTISystem(’A’, 0.6, ’B’, 1)

controller = MPCController(model, N)

where N represents the prediction horizon. Now we can
fine-tune the optimal control problem setup by modifying
its properties. First, specify constraints:

controller.model.x.min = -5

controller.model.x.max = 5

controller.model.u.min = -1

controller.model.u.max = 1

Then we indicate that the objective function (10a) should
use quadratic terms with Qx = 10 and Qu = 0.1:

controller.model.x.penalty = Penalty(10, 2)



TABLE V

Filters for modification of MPC problems.

binary Indicates that a variable is to be treated
as binary.

block Move blocking.
initialSet Set constraint on the initial condition.
reference Specifies a non-zero reference for a partic-

ular variable.
softMin, softMax Constraint softening.
terminalPenalty Penalty on the final predicted value.
terminalSet Set constraint on the final predicted

value.
setConstraint Specifying polyhedral constraints.

controller.model.u.penalty = Penalty(0.1, 2)

The first argument is the value of the penalty matrix,
while the second indicates which value of p in (10a)
should be used. With the controller object in hand, we
can then solve the optimal control problem (10) for a
particular value of the initial condition as follows:

u0 = controller.evaluate(x0)

This method will solve (10) numerically and return the
first element of the predicted optimal control sequence.
To obtain information about feasibility of (10) for a
particular value of the initial condition, and to inspect
open-loop optimal profiles of states and inputs, request
additional output arguments:

[u0, feas, OL] = controller.evaluate(x0)

The basic optimal control problem formulation (10)
can be extended and customized easily. To do so, MPT
3.0 provides a mechanism referred to as filters. Each filter
adds a new property to (10) and allows the user to fine-
tune it. As an example, consider adding a terminal set
constraint xN ∈ T , where xN is the final predicted state
and T represents a polyhedron. Such a constraint can be
added by

controller.model.x.with(’terminalSet’)

controller.model.x.terminalSet = T

Here, the first line enables a new property, while the
second line specifies the terminal set itself. To remove
a property, use the without() method:

controller.model.x.without(’terminalSet’)

As an another example, consider adding polyhedral con-
straints of the form xk ∈ X . This can be achieved by the
setConstraint filter as follows:

controller.model.x.with(’setConstraint’)

controller.model.x.setConstraint = X

List of filters provided in MPT 3.0 is shown in Table V.
It should be emphasized that, unlike previous versions,

MPT 3.0 by default assumes that the MPCController

object represents an on-line optimization controller. This
means that the value of the optimal control input is
determined by numerically solving (10) for a given value

of the initial condition. An explicit representation of the
feedback law, i.e., the function

u∗
0 = κ(x0) =















F1x0 + g1 if x0 ∈ P1,
...

FLx0 + gL if x0 ∈ PL

(11)

is only computed on-demand by calling the
toExplicit() method:

explicit_solution = controller.toExplicit()

where explicit_solution is an instance of the
EMPCController class. Such an object can be further
processed in the same way as discussed above. For in-
stance, the value of optimal control input for a particular
value of the initial condition can be obtained by

u0 = explicit_solution.evaluate(x0)

The difference being that no on-line optimization is
required this time. Instead, the optimal control input is
determined directly from (11) using sequential search.
Explicit MPC controllers can also be visually inspected.
One option is to plot regions Pi that constitute the
domain of the feedback law in (11) by

explicit_solution.partition.plot()

To plot the PWA function κ(·), call

explicit_solution.feedback.fplot()

F. Analysis of MPC Controllers

The analysis module of MPT 3.0 contains methods for
investigation of closed-loop properties, such as robust-
ness or liveness. For this purpose, MPT provides the
ClosedLoop class, which represents closed-loop systems
consisting of an MPC controller and a dynamical system
(either in LTI, PWA or MLD forms as discussed above).
An instance of such a class is created by

loop = ClosedLoop(controller, system)

Note that the system employed in the closed loop can be
different from the prediction model based on which the
controller was generated.
To perform a closed-loop simulation over a given num-

ber of steps, starting from the initial condition x0, call

data = loop.simulate(x0, steps)

The output is a structure that contains simulated closed-
loop profiles of states, inputs and outputs. The same
syntax applies to on-line as well as to explicit MPC
controllers.

G. Deployment of Explicit MPC to Hardware

The deployment module of MPT is comprised of a code
generation tool that exports control routines to the low
level C programming language. This autogenerated code
can be consequently compiled on the target hardware and
the control routines executed in real-time.



Due to presence of the LCP solver, MPT 3.0 can
support tasks where online optimization is required. The
applicability of LCP solver for real-time optimization is
rather limited to small processes because LCP solver
has been designed as general-purpose solver. For high-
speed online solutions one should still resort to specially
tailored solvers such as FIORDOS [11] and FORCES [5].
The explicit controllers are exported with the algo-

rithms for evaluation of PWA functions, including the
methods for effective evaluation using binary search
trees [27]. The code generation is invoked using the
exportToC() method.
To better understand the process of deploying MPC

controllers, one can have a look at the demos that focus
on implementation of controllers in Real-Time Workshop
of Matlab. To invoke the demos, type

mpt_demo_deployment_explicitMPC

mpt_demo_deployment_onlineMPC

at the Matlab prompt to see the functionality of the
deployment module.

H. Extensive Testing

The numerical reliability of the toolbox has been tested
on a large set of problems including randomly generated
cases, MPC problems designed from a library of linear
models [15], and numerous benchmark examples. At the
time of alpha release the test set contained 1439 problems
from which 206 were for interfaced solvers, 995 for the
polyhedral library, and 238 for remaining functions in the
control interface. These number are not final because the
test problems are continuously added in the development
process. During the testing period it has been shown
that MPT 3.0 provides superior performance to the
previous version and numerous problematic cases have
been tackled by introducing new algorithms.

IV. SUMMARY

MPT is a software tool that allows efficient formulation
and solutions of optimization problems involved in multi-
parametric programming and computational geometry.
The toolbox features various enhancements compared
to the previous version that make it more robust and
numerically reliable. The new user interface provides
easier access to implemented methods and is flexible
enough for possible future extensions of the toolbox. The
toolbox is freely available from

http://control.ee.ethz.ch/~mpt

website.
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