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Abstract— In this work, synthesis and closed-loop operation
of robust distributed model predictive control (MPC) for linear
systems using distributed optimization is discussed. Previous
work has shown that a nominal MPC controller for this setup
can be synthesized and operated in a purely distributed manner.
This paper extends this concept to linear systems subject to
additive bounded disturbance. It is shown how well-established
robust MPC approaches can be applied to distributed systems.
The main focus of the paper is on a thorough discussion of
computational issues arising from distributed synthesis and
closed-loop operation of existing robust MPC controllers. In
particular, techniques for distributed synthesis of structured
robust positive invariant sets and distributed constraint tight-
ening are proposed. The paper is concluded by a numerical
example which illustrates the functionality and performance of
the proposed techniques.

I. INTRODUCTION

The main challenge in the formulation of control strategies
for distributed dynamic systems is the fact that communica-
tion among subsystems is limited. This property applies to
systems from numerous fields, such as power systems [1] or
irrigation canals [2]. Due to the presence of state and input
constraints in such systems, distributed MPC is an attractive
control scheme.

Distributed MPC has been an area of active research in the
last decade. The approaches proposed in the literature can
be categorized into two classes: iterative and non-iterative.
In iterative distributed MPC, the subsystems do multiple
communication rounds per time step, while in non-iterative
distributed MPC they communicate only once. Most iterative
approaches rely on distributed optimization, e.g. [3], [4].
Thus, all subsystems collaboratively follow a global per-
formance objective. Contrary, most non-iterative approaches
rely on locally constrained controllers which are made robust
against dynamic coupling effects [5], [6]. As a consequence,
in the presence of strong coupling, the iterative approach is
advantageous since the synthesis of non-iterative controllers
might yield conservative control laws or even be infeasible.
While nominal iterative distributed MPC was a field of active
recent research [7], [8], [9], the robust case has received little
attention and is therefore discussed in this paper.

In particular, this paper extends the work on nominal
distributed MPC presented in [9] to linear systems subject to
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bounded additive disturbance and shows how existing robust
MPC formulations for centralized MPC can be applied in
a distributed way. Existing formulations are usually either
of min-max type [10], or based on tubes [11]. Due to
the high computational complexity inherent to min-max
approaches, we focus on tube MPC is considered in this
paper. Distributed tube MPC has been considered in [6]
for a non-iterative parallel, and in [12] for a non-iterative
sequential setup.

In contrast, this paper considers tube techniques tailored
for iterative distributed MPC based on distributed opti-
mization. The paper highlights computational issues, which
arise if existing tube MPC controllers are synthesized and
computed on a distributed system. As a first contribution of
the paper, it is shown how structured versions of these con-
trollers can be synthesized in a distributed manner. The main
synthesis steps include constraint tightening and distributed
computation of robust positive invariant sets. As a second
contribution, it is to shown that the resulting structured
controllers can be operated using distributed optimization in
closed-loop.

The paper is structured as follows: In Section II all
necessary preliminaries on distributed systems and optimiza-
tion are given. In Section III, the two particular robust
MPC approaches used are outlined. Section IV discusses
distributed synthesis of these approaches, while Section V
discusses distributed closed-loop operation. All approaches
are compared in a numerical example in Section VI.

II. PRELIMINARIES

A. Notation
A block-diagonal matrix with blocks Si, i ∈ {1, . . . ,M},

is denoted by diagi∈{1,...,M}(Si), a vector consisting of
stacked sub vectors si, i ∈ {1, . . . ,M}, is denoted by
coli∈{1,...,M}(si). Furthermore, for a set S ⊆ Rn and a
matrix T ⊆ Rl×n, the set TS is defined as {x ∈ Rl|∃s ∈
S : x = Ts}. For two sets S, T ⊆ Rn, S ⊕ T = {x ∈
Rn|∃s ∈ S, t ∈ T : x = s+ t} denotes the Minkowski sum
and S 	 T = {x ∈ Rn|x + t ∈ S, ∀t ∈ T } denotes the
Pontryagin difference.

B. Distributed Linear Systems
We consider a network of M interconnected linear sub-

systems of the form

x+i =

( M∑
j=1

Aijxj

)
+Biui + wi , (1)

where state and input of each subsystem i are denoted by
xi ∈ Rmi and ui ∈ Rpi respectively. Moreover, wi ∈ Rmi is



a bounded disturbance entering the dynamics of subsystem
i. Communication in the network is assumed to be limited
to neighboring subsystems.

Definition II.1 (Neighboring Subsystems) Subsystem j is
a neighbor of subsystem i if Aij 6= 0. By Ni we denote
the set of subsystem i and its neighbors. Moreover, by
xNi

= colj∈Ni
(xj) ∈ RmNi , we denote the vector of all

states belonging to subsystems in Ni.

The dynamics of subsystem i can thus be alternatively
described as

x+i = ANi
xNi

+Biui , (2)

where ANi ∈ Rmi×mNi .

Assumption II.2 (Communication) Two subsystems i and
j can communicate in a bidirectional way if i ∈ Nj∨j ∈ Ni.

The dynamics of the global network of subsystems are
described by the linear system

x+ = Ax+Bu+ w , (3)

where A is block-sparse with non-zero blocks Aij and
B = diag(B1, . . . , BM ) is block-diagonal. Furthermore,
x = coli∈{1,...,M}(xi) ∈ Rm is the global state, u =
coli∈{1,...,M}(ui) ∈ Rp the global input and w =
coli∈{1,...,M}(wi) ∈ Rm the global disturbance. State and
input are constrained to lie in convex compact sets

X = X1 × . . .×XM , (4)
U = U1 × . . .× UM , (5)

where for each subsystem i, Xi ⊆ Rmi and Ui ⊆ Rpi contain
the origin in their interior. Moreover, the global disturbance
w is assumed to lie in a convex compact set

W =W1 × . . .×WM , (6)

where for each subsystem i, Wi ⊆ Rmi contains the origin.
For system (3), existence of a stabilizing structured control
law is assumed.

Assumption II.3 (Structured Control Law) There exists
a stabilizing linear state feedback control law with dis-
tributed structure for system (3), i.e. u = Ktx =
coli∈{1,...,M}(Kt,ixNi

), where Kt,i ∈ Rpi×mNi . Distributed
techniques to find such structured control laws are described
for instance in [9].

Two classes of invariant sets are defined in the following:

Definition II.4 (Positively invariant (PI) set) A set S ∈
Rn is a positively invariant (PI) set for system x+ =
Ax+Bκ(x), if x+ ∈ S for all x ∈ S.

Definition II.5 (Robust positively invariant (RPI) set) A
set S is a robust positively invariant (RPI) set for system
x+ = Ax + Bκ(x) + w, if x+ ∈ S for all x ∈ S , w ∈ W .
Smin is the minimum RPI set if for any RPI set S it holds
that Smin ⊆ S.

C. Distributed Optimization

Distributed optimization is a key component for both
synthesis and closed-loop operation of iterative distributed
MPC as presented in this work. In particular, it allows the
application of well-established MPC theory (see e.g. [13]) to
distributed systems. The main requirements for distributed
optimization to be of use for MPC is for the global MPC
problem to be structured and for Assumption II.2 to hold.
A detailed discussion of distributed optimization concepts
and methods is beyond the scope of this paper, the reader is
referred to the standard reference [14] instead.

III. ROBUST MPC

In this paper, we focus on the two robust MPC approaches
presented in [11] and [15] respectively. In the approach
proposed in [11], the nominal constraints are tightened by
an RPI set, whereas in the approach proposed in [15], they
are tightened over the MPC prediction horizon. Furthermore,
in [15], pre-stabilized dynamics are used. In the next two
sections, we briefly outline the two approaches in order to
then propose methods for distributed synthesis and closed-
loop operation in Section IV and Section V.

A. Robust MPC according to [11]

As a first approach, robust MPC according to [11] is
considered. In this approach, it is ensured that the perturbed
system state remains in a tube around a nominally stabilizing
trajectory, and the constraints on this nominal trajectory are
tightened by the cross section of the tube. This cross section
is specifically chosen to be an RPI set Z for the system
x+ = (A+BKt)x+w. The nominally stabilizing trajectory
is obtained by solution of the MPC problem

Vr1(x) = min
x(0),u

N−1∑
k=0

l(x(k), u(k)) + Vf (x(N)) (7a)

s.t. x(0) ∈ x⊕Z , (7b)
x(k + 1) = Ax(k) +Bu(k) ∀k ∈ {0, .., N − 1}, (7c)
(x(k), u(k)) ∈ X̄ × Ū ∀k ∈ {0, .. , N − 1} , (7d)
x(N) ∈ X̄f , (7e)

where

X̄ = X 	 Z, Ū = U 	KtZ, X̄f ⊆ X̄ . (8)

In (7), u = {u(0), . . . , u(N − 1)} is the sequence of
control inputs which uniquely defines the sequence of states
x = {x(0), . . . , x(N)} given x(0). Moreover, X̄f is a PI
set and X r1

N denotes the set of states x, for which there
exists a feasible solution to problem (7). Finally, the robust
constrained control law is defined as

κr1(x) := u∗r1(0) +Kt(x− x∗r1(0)) , (9)

where x∗r1(0) and u∗r1(0) are the first elements of the optimal
state and input trajectories for problem (7). Note that due to
constraint (7b), the initial state of the nominal trajectory does
not generally coincide with the current system state.



Theorem III.1 (Theorem 1 in [11]) Given the existence of
a control law κf (x), such that ∀x ∈ X̄f ⊆ X̄ :

κf (x) ∈ Ū , Ax+Bκf (x) ∈ X̄f (10)
Vf (Ax+Bκf (x))− Vf (x) ≤ −l(x, κf (x)) , (11)

the state of system x+ = Ax + Bκr1(x) + w, w ∈ W ,
exponentially converges to Z with region of attraction X r1

N .

B. Robust MPC according to [15]

As a second robust MPC formulation, the approach pro-
posed in [15] is considered. This is a standard constraint
tightening approach, where the dynamics are pre-stabilized
as x+ = (A + BKt)x + w in order to introduce feedback
on the disturbance. A nominal state trajectory is obtained by
solving the MPC problem

Vr2(x) = min
v

N−1∑
k=0

l(x(k), v(k)) + Vf (x(N)) (12a)

s.t.x(0) = x , (12b)
x(N) ∈ X̄f , (12c)

∀k ∈ {0, . . . , N − 1} : (12d)
x(k + 1) = (A+BKt)x(k) +Bv(k) , (12e)
(x(k), v(k) +Ktx(k)) ∈ X̄k × Ūk . (12f)

In problem (12), the constraints are tightened at each
prediction time as

X̄k = X 	
( k−1⊕

j=0

(A+BKt)
jW
)
, (13)

Ūk = U 	Kt

( k−1⊕
j=0

(A+BKt)
jW
)
, (14)

where X̄f ⊆ X̄N and X̄f is a PI set. Furthermore, the set
X r2

N denotes the set of parameters x, for which there exists
a feasible solution to problem (12). Finally, the control law
derived from problem (12) is defined as

κr2(x) := v∗r2(0) +BKtx , (15)

where v∗r2(0) is the first element of the optimal variable
sequence in the sense of problem (12). Note that under the
control law (15), problem (12) is recursively feasible.

Theorem III.2 (Theorem 8 in [15]) The state of system
x+ = Ax + Bκr2(x) + w converges to the minimum RPI
set of system x+ = (A + BKt)x + w, w ∈ W , with region
of attraction X r2

N .

IV. ROBUST MPC: DISTRIBUTED SYNTHESIS

The synthesis of the two robust MPC controllers intro-
duced in Section III depends on the following operations:

1) Synthesis of a terminal cost Vf (x) and a set X̄f .
2) Synthesis of an RPI set Z .
3) Constraint tightening, i.e. operations (8) and operations

(13) and (14) respectively.

For networks of dynamic systems, which might be subject to
online changes in topology, it is important to have the possi-
bility of distributed controller synthesis. Distributed synthesis
of structured terminal costs Vf (x) and terminal sets Xf was
studied in [9]. For the synthesis of Z and for constraint
tightening, however, only centralized methods exist, e.g. [16].
This section focuses on distributed methods for the solution
of those two problems. In particular, distributed computation
of RPI sets is discussed in Section IV-A and distributed
constraint tightening is discussed in Section IV-B. The main
challenge is the fact that both operations involve the solution
of infinite horizon problems, for which information of all
subsystems have to be considered.

In order to simplify the discussion, we focus on polytopic
state and input constraints of the form

X = {x ∈ Rm|Gx ≤ g}, U = {u ∈ Rp|Hu ≤ h} , (16)

where G ∈ Rq×m and H ∈ Rr×p. Note that both G and
H are block-diagonal due to the decomposable structure of
state and input constraints assumed in (4). Furthermore, for
every subsystem i, the local disturbance is assumed to lie in
a ball

Wi = {wi ∈ Rmi |wT
i wi ≤ vi} . (17)

A. Distributed Synthesis of Structured RPI Sets

For centralized linear systems, the problem of synthesizing
RPI sets has been extensively studied, see e.g. [16]. It is well
known, that the minimum RPI set for a given closed-loop
system x+ = (A+BKt)x+ w is given by

Zmin =

∞⊕
k=0

(A+BKt)
kW . (18)

Definition (18) illustrates a fundamental difficulty in the
synthesis of RPI sets for distributed systems: Any RPI set is
defined globally since the infinite horizon in (18) couples all
subsystem in the network. Synthesis of a structured RPI set
is therefore a global problem and in this section, a distributed
way to solve it is proposed. While for linear systems, syn-
thesis methods for both polyhedral and ellipsoidal RPI sets
exist, only ellipsoidal sets are considered in this paper due
to better scalability properties of the corresponding synthesis
methods.

An ellipsoidal RPI set of the form Z = {x ∈ Rm|xTPx ≤
1} can be synthesized using the S-procedure (see [17] for
details), which results in an LMI encoding the implication

xTPx ≤ 1
wTw ≤ v

}
⇒ x+,TPx+ ≤ 1 , (19)

where x+ = (A+BKt)x+w. For robust distributed MPC,
a structured RPI set is defined as follows.

Definition IV.1 (Structured RPI Set) An RPI set Z ⊆ Rm

is structured if Z = {x ∈ Rm|xTPx ≤ 1} with xTPx =∑M
i=1 x

T
Ni
PNixNi and all PNi positive semi-definite.

Given a structured RPI set Z , local sets of the form Zi =
{xNi

∈ RmNi |xTNi
PNi

xNi
≤ βi} can be defined and x ∈ Z



is equivalent to the condition

∀i ∈ {1, . . . ,M} ∃βi ≥ 0 : xNi
∈ Zi,

M∑
i=1

βi ≤ 1 . (20)

Thus, condition (20) allows for a decomposition of x ∈ Z
into local constraints which are coupled by only a single
global constraint. Constraints of this kind can be handled by
distributed consensus optimization as pointed out in [18].

For the synthesis of structured RPI sets, the global S-
procedure encoding the implication

xTPx ≤ 1
wT

i wi ≤ vi ∀i ∈ {1, . . . ,M}

}
⇒ x+TPx+ ≤ 1

(21)
is used, where x+ = (A + BKt)x + w. The LMI resulting
from the S-procedure (21) is stated in (24), where all
elements denoted with a bar have been lifted to fit the
global variable space. Although decomposition of (24) is
not straightforward, a sufficient condition can be derived and
is given by the set of LMIs (25), in combination with the
constraint

M∑
i=1

S̄i ≥ 0 . (22)

Both in (24) and in (25) it holds that si ≥ 0 for all i ∈
{1, . . . ,M}.

In order to obtain the desired structured RPI set, a syn-
thesis problem of the form

min
P

gP (P ) (23a)

s.t. (25), (22) , (23b)
PNi
≥ 0 ∀i ∈ {1, . . . ,M} , (23c)

P =

M∑
i=1

P̄Ni
(23d)

is solved. In (23), constraint (23b) is a sufficient condition
for implication (21) to hold, constraint (23c) ensures that the
submatrices are positive semi-definite and (23d) ensures the
structure of the resulting global matrix P . The objective func-
tion gP (P ) is a design parameter and should be chosen such
that it is decomposable and enforces the intended shape and
size of the resulting RPI set (e.g. gP (P ) =

∑M
i=1 gi(PNi

),
where gi(PNi) penalizes the norm difference of PNi to a
reference matrix).

Remark IV.2 A structured RPI set Z can also be synthe-
sized to be completely decentralized. Specifically, consider
local sets Zi = {xi ∈ Rmi |xTi Pixi ≤ 1}, which fulfill the
conditions

∀i ∈ {1, . . . ,M} :

xTj Pjxj ≤ 1 ∀j ∈ Ni

wT
i wi ≤ vi

}
⇒ x+T

i Pix
+
i ≤ 1 , (26)

where x+i = (ANi
+BiKt,i)xNi

+ wi. Conditions (26) can
conveniently be modelled by S-procedures, which results in a
system of M coupled LMIs. These LMIs can then be solved
by distributed optimization. This approach is expected to be

more conservative than the one based on structured RPI sets
since the local sets Zi are not only robust against local
disturbance but also against dynamic coupling.

B. Distributed Constraint Tightening

In the following, a distributed method for tightening of
local polyhedral constraints by a structured ellipsoidal RPI
set is proposed in Section IV-B.1. Furthermore, a distributed
method for tightening of local polyhedral constraints over a
finite horizon is proposed in Section IV-B.2.

1) Distributed Tightening of Polytopic Constraints by an
Ellipsoidal RPI Set: Tightening of local polytopic state and
input constraints by a structured ellipsoidal set is required
for robust distributed MPC based on [11], as stated in (8).
A tightening of this kind can be achieved by the support
function.

Definition IV.3 (Support function) The support function
σZ(·) : Rm → R+ is defined as

σZ(a) = sup
x∈Z

aTx . (27)

A tightened state constraint set X̄ = {x ∈ Rm|Gx ≤ ḡ},
as well as a tightened input constraint set, i.e. Ū = {u ∈
Rp|Hu ≤ h̄}, can thus be obtained by modifying every
single half space constraint as

ḡj = gj − σZ(GT
j ) ∀j ∈ {1, . . . , q} , (28)

h̄l = hl − σZ(KT
t H

T
l ) ∀l ∈ {1, . . . , r} , (29)

where Gj and Hl are the j’th and l’th row of the matrices G
and H as defined in (16). As pointed out in Section IV-A, the
global constraint x ∈ Z can be handled by distributed con-
sensus optimization if Z is structured. Thus, the evaluation
of the support function in (28) and (29) can be performed in
a distributed way for every local polyhedral constraint.

2) Distributed Tightening of Polytopic Constraints over
a k-step Horizon: Tightening of local polytopic state and
input constraints over a k-step horizon is required for robust
distributed MPC based on [15]. The tightening operations are
defined in (13) and (14) and can be executed by use of the
k-step support function, which is defined in the following:

Definition IV.4 (k-step support function) The k-step sup-
port function is defined as

σW(a, k) = sup
w∈Wk

aT y(k) (30a)

s.t. y(0) = 0 (30b)
y(l + 1) = (A+BKt)y(l) + w(l)

∀l ∈ {0, . . . , k − 1} , (30c)

where Wk denotes the Cartesian product
∏k−1

i=0 W and
where w is a sequence of k disturbance realizations.

A k-step tightened state constraint set, i.e. X̄k = {x ∈
Rm|Gx ≤ ḡk}, as well as a k-step tightened input constraint



−(A+BKt)T
∑M

i=1 P̄Ni
(A+BKt) −(A+BKt)T

∑M
i=1 P̄Ni

0

−
∑M

i=1 P̄Ni
(A+BKt) −

∑M
i=1 P̄Ni

0

0 0
∑M

i=1 βi

− s0
−∑M

i=1 P̄Ni
0 0

0 0 0

0 0
∑M

i=1 βi


−

M∑
i=1

si

0 0 0
0 −Īi 0
0 0 vi

 ≥ 0 (24)

−(A+BKt)T P̄Ni
(A+BKt) −(A+BKt)T P̄Ni

0
−P̄Ni

(A+BKt) −P̄Ni
0

0 0 βi

− s0
−P̄Ni

0 0
0 0 0
0 0 βi

−si
0 0 0

0 −Īi 0
0 0 vi

 ≥ S̄i, ∀i ∈ {1, . . . ,M} (25)

set, i.e. Ūk = {u ∈ Rp|Hu ≤ h̄k}, can thus be obtained by
modifying every single half space constraint as

ḡk,j = gj − σW(GT
j , k) , ∀j ∈ {1, . . . , q} (31)

h̄k,l = hl − σW(KT
t H

T
l , k) , ∀l ∈ {1, . . . , r}. (32)

The evaluations of the k-step support function in the com-
putation of the differences in (31) and (32) can be done
by distributed optimization. This becomes apparent when
considering the fact that the optimization problem (30) in
the definition of the k-step support function has the same
coupling structure as a regular distributed MPC problem.

V. ROBUST MPC: DISTRIBUTED CLOSED-LOOP
OPERATION

In this section it is shown that closed-loop operation of
both robust MPC controllers described in Section III can be
performed by distributed optimization.

A. Closed-loop Operation of Robust Distributed MPC based
on [11]

A characteristic of the robust MPC approach proposed in
[11] is the fact that due to constraint (7b), the nominal initial
state is not equal to the current state of the system. Constraint
(7b) is structured and can be handled by distributed opti-
mization as suggested in [18]. Following [18] might however
result in prohibitively large local problems for large networks
of subsystems. Therefore, in this section, a sufficient condi-
tion for constraint (7b) to hold is presented. This condition is
based on local coupling only. In the following, x(t) denotes
the system state at time t and x∗r1(t+ k|t) denotes the k’th
element of the optimal state sequence to problem (7) at t.

Consider a structured RPI set Z = {x ∈
Rm|

∑M
i=1 x

T
Ni
PxNi ≤ 1} and functions βi(·) : N → [0, 1],

which are used to define sets Zi(t) = {xNi
∈

RmNi |
∑M

i=1 x
T
Ni
PNi

xNi
≤ βi(t)}, where

∀t ∈ N :

M∑
i=1

βi(t) ≤ 1 . (33)

Consequently, constraint (7b) can be enforced at time t by
M local constraints of the form

∀i ∈ {1, . . . ,M} : xNi
(t|t) ∈ xNi

(t)⊕Zi(t) . (34)

These constraints couple neighboring subsystems locally, the
global coupling is removed. A strategy on how to define

functions βi(t) such that problem (7) remains recursively
feasible is stated in the following theorem.

Theorem V.1 Given ∀i ∈ {1, . . . ,M} functions βi(·) as

βi(t) := (xNi(t)−x∗Ni,r1(t|t− 1))TPNi ·
(xNi

(t)− x∗Ni,r1(t|t− 1)) (35)

with βi(0) > 0 and
∑M

i=1 βi(0) ≤ 1, problem (7) remains
feasible ∀t ≥ 1 if (7b) is replaced by (34).

Proof: Theorem III.2 holds under recursive feasibility
of the shifted nominal trajectory of problem (7). Here we
show recursive feasibility under (34) instead of (7b). Given
constraint (34) and

∑M
i=1 βi(t) ≤ 1 are satisfied at time t,

we know that
∑M

i=1(xNi
(t) − x∗Ni,r1

(t|t))TPNi
(xNi

(t) −
x∗Ni,r1

(t|t)) ≤
∑M

i=1 βi(t) ≤ 1 and thus x(t) ∈ x∗r1(t|t)⊕Z .
Since Z is an RPI set, by Proposition 1 in [11] we know
that x(t+ 1) ∈ x∗r1(t+ 1|t)⊕Z . Thus, we obtain

zTPz =

M∑
i=1

zTi PNi
zi =

M∑
i=1

βi(t+ 1) ≤ 1 , (36)

where zi := (xNi(t+ 1)− x∗Ni,r1
(t+ 1|t)) and z := (x(t+

1)−x∗r1(t+ 1|t)). Thus, the shifted trajectory is feasible for
constraint (34).

B. Closed-loop Operation of Robust Distributed MPC based
on [15]

During closed-loop operation, problem (12) has to be
solved by distributed optimization in order to evaluate the
control law κr2(x). This operation exhibits the same com-
plexity as a nominal distributed MPC problem and can thus
be solved by standard distributed optimization techniques.

VI. NUMERICAL EXAMPLE

A. Example Setup

The system considered is a ring of 5 random second order
systems which are coupled in a ring topology, hence N1 =
{5, 1, 2}, N5 = {4, 5, 1} and Ni = {i − 1, i, i + 1} for
i ∈ {2, 3, 4}. The dynamics of a subsystem i is defined as

x+i = Aiixi + α
∑

j∈Ni\i

Aijxj +Biui , (37)

where all entries in the matrices Aii, Aij and Bi are drawn
from a uniform distribution within [−0.5, 0.5]. The parameter
α is a scalar real number by which the coupling strength
in the system can be varied. The nominal state and input



constraints are X = {x ∈ R10|‖x‖∞ ≤ 2} and U = {u ∈
R5|‖u‖∞ ≤ 10} and for each subsystem the local additive
disturbance lies in the ball W = {w ∈ R2|wTw ≤ 0.1}.
The prediction horizon is N = 5 and the quadratic stage
cost penalizes the state twice as much as the input.

The following setups are compared: Distr. robust MPC
based on [11] with global coupling constraint (Mayne1),
distr. robust MPC based on [11] with the online heuristic
discussed in Section V-A (Mayne2), distr. robust MPC based
on [15] (Chisci) and the non-iterative MPC controller pro-
posed in [6] (Farina), where the original formulation of [6]
was modified to capture locally additive disturbance. Thus,
the presented example provides both a comparison between
various distributed robust MPC approaches and a comparison
between robust iterative and non-iterative distributed MPC.

By choosing α = 0.3, a low coupling example is ob-
tained. The closed-loop costs over 20 simulation steps of
the different setups are illustrated in the box-plot in Fig. 1,
where every box accumulates the costs corresponding to
10 different initial states, simulated for the same set of
3 different disturbance realizations. It is apparent, that all
iterative distributed MPC approaches perform equally, while
the non-iterative approach performs significantly worse.
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Fig. 1: Accumulated closed-loop costs, α = 0.3.

For stronger coupling, the synthesis procedure, especially
for the non-iterative case, becomes more difficult. Tab. I
denotes the largest values of α, for which the synthesis
problems for the different setups are feasible. It is apparent
that the iterative approaches are viable for much larger
coupling than the non-iterative ones. The closed-loop costs

Mayne1 Mayne2 Chisci Farina
α 2.6 2.6 2.6 0.39

TABLE I: Max. α for problems synthesis to be feasible.

of the iterative approaches under α = 2.5 are illustrated in
the box-plot in Fig. 2. The controllers based on [11] have
significantly lower closed-loop cost than that based on [15].
This is likely due to the fact that in [11] the nominal initial
state can be chosen flexibly, which might allow for better
adjustment to disturbances. Furthermore, the setup Mayne1
results in less outliers than the other setups.
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