
Technical Report, April 2013

On Verification by Translation to Recursive Functions
An Overview of the Leon Verification System

Régis Blanc Etienne Kneuss Viktor Kuncak Philippe Suter
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

firstname.lastname@epfl.ch

Abstract
We present the Leon verification system for a subset of the
Scala programming language. Along with several functional
features of Scala, Leon supports imperative constructs such
as mutations and loops, using a translation into recursive
functional form. Both properties and programs in Leon are
expressed in terms of user-defined functions. We discuss
several techniques that led to an efficient semi-decision pro-
cedure for first-order constraints with recursive functions,
which is the core solving engine of Leon. We describe a
generational unrolling strategy for recursive templates that
yields smaller satisfiable formulas and ensures completeness
for counter-examples. We evaluate the benefits of these tech-
niques on a set of examples.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meaning of Programs]: Specifying and Verifying and Rea-
soning about Programs

1. Introduction
Scala supports the development of reliable software in a
number of ways: concise and readable code, an advanced
type system, and testing frameworks such as Scalacheck.
This paper adds a new dimension to this reliability toolkit:
an automated program verifier for a Scala subset. Our veri-
fier, named Leon, leverages existing run-time checking con-
structs for Scala, the require and ensuring clauses [31],
allowing them to be proved statically, for all executions.
The specification constructs use executable Scala expres-
sions, possibly containing function calls. Developers there-
fore need not learn a new specification language, but simply
obtain additional leverage from executable assertions, and
additional motivation to write them. Thanks to Leon, asser-
tions can be statically checked, providing full coverage over
all executions.

Leon thus brings strong guarantees of static types to the
expressive power of tests and run-time checks. It is difficult
to argue with usefulness of having the same specification
and implementation language, especially when this language
has clear semantics. Although not universally used, such
approaches have been adopted in the past, most notably in

the ACL2 system and its predecessors [20], which have been
used to verify an impressive set of real-world systems [21].

At the core of Leon is a verifier for a purely functional
subset of Scala. The verifier makes use of contracts when
they are available, but does not require fully inductive in-
variants and can be used even with few or no annotations.
Like bounded model checking algorithms, the algorithms in-
side Leon are guaranteed to find an error if it exists, even if
the program has no auxiliary annotations. We have found
this aspect of Leon to be immensely useful in practice for
debugging both specifications and the code. In addition to
the ability to find all errors, the algorithms inside Leon
also terminate for correct programs when they belong to
well-specified fragments of decidable theories with recursive
functions [34, 35].

The completeness makes Leon suitable for extended type
checking. It can, for example, perform semantic exhaus-
tiveness checks for advanced pattern matching constructs,
and predictably verify invariants on algebraic data types. A
notable feature is that Leon is guaranteed to accept a cor-
rect program in such fragments, will not accept an incor-
rect program, and is guaranteed to find a counterexample if
the program is not correct. A combination of these features
is something that neither typical type systems nor verifica-
tion techniques achieve; this has been traditionally reserved
for model checking algorithms on finite-state programs. The
techniques in Leon now bring these benefits to functional
programs that manipulate unbounded data types.

Leon can thus be simultaneously viewed as a theorem
prover and as a program verifier. It tightly integrates with
the Z3 theorem prover [10], mapping functional Scala data
types directly to mathematical data types of Z3. This direct
mapping means that we can use higher-level reasoning than
employed in many imperative program verifiers that must
deal with pointers and complex library implementations. As
a prover, Leon extends the theory of Z3 with recursive func-
tions. To handle such functions Leon uses an algorithm for
iterative unfolding with under- and over-approximation of
recursive calls. The implementation contains optimizations
that leverage incremental solving of Z3 to make the entire
process efficient. Leon thus benefits from the ideas of sym-

On Verification by Translation to Recursive Functions 1 2013/4/25

bolic execution, but without limitations on the number of
memory cells in the initial state, and without explicit enu-
meration of program paths. Completeness for counterexam-
ples is possible in Leon due to the executable nature of its
language. We use executability in Leon not only to provide
guarantees on the algorithm, but also to improve the perfor-
mance of the solver: in a number of scenarios we can replace
constraint solving in the SMT solver with direct execution of
the original program. For that purpose, we have built a sim-
ple and fast bytecode compiler inside Leon.

Although the core language of Leon engine is a set of
pure recursive functions, Leon also supports several exten-
sions to accept more general forms of programs as input.
In particular, it supports nested function definitions, muta-
ble local variables, local mutable arrays, and while loops.
Such fragment is related to those used in modeling languages
such as VDM [18, 19], and abstract state machines [9].
Leon translates such extended constructs into the flat func-
tional code, while preserving input-output behavior. In con-
trast to many verification-condition generation approaches
that target SMT provers, Leon’s semantic translation does
not require invariants, it preserves validity, and also pre-
serves counterexamples. We expect to continue following
such methodology in the future, as we add more constructs
into the subset that Leon supports. Note that a basic support
for higher-order functions was available in a past version of
Leon [23]; it is currently disabled, but a new version is under
development.

We show that usefulness of Leon on a number of exam-
ples that include not only lightweight checking but also on
more complex examples of full-functional verification. Such
tasks are usually associated with less predictable and less
automated methods, such as proof assistants. We have found
Leon to be extremely productive for development of such
programs and specifications. Although Leon does ultimately
face limitations for tasks that require creative use of induc-
tion and lemmas, we have found it to go a long way in debug-
ging code and specification that match. To further improve
usefulness of Leon, we have built a web-based interface, run-
ning at:

http://lara.epfl.ch/leon/

The web interface supports continuous compilation and
verification of programs as well as sharing verified programs
through stable links. Leon also supports automated and in-
teractive program synthesis [22]. This functionality heavily
relies on verification, but is beyond the scope of the present
paper.

In its current state, we believe that Leon is very useful
for modeling and verification tasks. We have used it to ver-
ify and find errors in a number of complex functional data
structures and algorithms, some of which we also illustrate
in this paper. The design of Leon purposely avoids heavy
annotations and complex worst-case encoding of imperative
program semantics. Leon is therefore as much a verification

def insert(e: Int, l: List): List = {
require(isSorted(l))
l match {
case Nil ⇒ Cons(e,Nil)
case Cons(x,xs) ⇒
if (x ≤ e) Cons(x,insert(e, xs)) else Cons(e, l)

}
} ensuring(res ⇒

contents(res) == contents(l) ++ Set(e) && isSorted(res))

def sort(l: List): List = (l match {
case Nil ⇒ Nil
case Cons(x,xs) ⇒ insert(x, sort(xs))
})ensuring(res ⇒ contents(res) == contents(l) && isSorted(res))

def contents(l: List): Set[Int] = l match {
case Nil ⇒ Set.empty[Int]
case Cons(x,xs) ⇒ contents(xs) ++ Set(x)
}

Figure 1. Insertion sort.

project as it is a language design and implementation project:
it aims to keep the verification tractable while gradually in-
creasing the semantics and the complexity of programs and
problems that it can handle.

In the Spring 2013 semester we have also used Leon in
the master’s course on Synthesis, Analysis, and Verification.
Web framework allowed us to use zero-setup to get students
to start verifying examples. During the course we have for-
mulated further assignments and individual projects for stu-
dents to add functionality to the verifier. We are also in the
process of making the repository of Leon public and look
forward to community contributions and experiments.

2. Examples
We introduce the flavor of verification and error finding in
Leon through sorting and data structure examples. We focus
on describing three structures of three examples; Section 7
presents our results on a larger selection. The online inter-
face at http://lara.epfl.ch/leon/ provides the chance
to test the system and its responsiveness.

2.1 Insertion Sort
Figure 1 shows insertion sort implemented in the subset of
the language that Leon supports. List is defined as a re-
cursive algebraic data types storing list of integers. Note
that Leon also supports the usual pattern matching on alge-
braic data types, and our example functions rely on it. The
example illustrates the syntax for preconditions (require)
and postconditions (ensuring). When compiled with scalac

these constructs are interpreted as dynamic contracts that
throw corresponding exceptions, whereas Leon tries to
prove statically that their conditions hold. The contents

and isSorted functions are user defined functions defined

On Verification by Translation to Recursive Functions 2 2013/4/25

def add(x: Int, t: Tree): Tree = {
require(redNodesHaveBlackChildren(t) && blackBalanced(t))

def ins(x: Int, t: Tree): Tree = {
require(redNodesHaveBlackChildren(t) && blackBalanced(t))
t match {
case Empty ⇒ Node(Red,Empty,x,Empty)
case Node(c,a,y,b) ⇒
if (x < y) balance(c, ins(x, a), y, b)
else if (x == y) Node(c,a,y,b)
else balance(c,a,y,ins(x, b))

}}ensuring (res ⇒
content(res) == content(t) ++ Set(x) &&
size(t) ≤ size(res) && size(res) ≤ size(t) + 1 &&

redDescHaveBlackChildren(res) && blackBalanced(res))

def makeBlack(n: Tree): Tree = {
require(redDescHaveBlackChildren(n) && blackBalanced(n))
n match {
case Node(Red,l,v,r) ⇒ Node(Black,l,v,r)
case ⇒ n

}}ensuring(res ⇒
redNodesHaveBlackChildren(res) && blackBalanced(res))

// body of add:
makeBlack(ins(x, t))
}ensuring (res ⇒ content(res) == content(t) ++ Set(x) &&

redNodesHaveBlackChildren(res) && blackBalanced(res))

Figure 2. Adding an element into a red-black tree.

def balance(c: Color, a: Tree, x: Int, b: Tree): Tree = {
Node(c,a,x,b) match {
case Node(Black,Node(Red,Node(Red,a,xV,b),yV,c),zV,d) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(Black,Node(Red,a,xV,Node(Red,b,yV,c)),zV,d) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(Black,a,xV,Node(Red,Node(Red,b,yV,c),zV,d)) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(Black,a,xV,Node(Red,b,yV,Node(Red,c,zV,d))) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(c,a,xV,b) ⇒ Node(c,a,xV,b)
}} ensuring (res ⇒ content(res) == content(Node(c,a,x,b)))

Figure 3. Balancing a red-black tree.

also recursively for the purpose of expressing specifications.
Leon supports sets, which is useful for writing abstractions
of container structures.

We have also verified or found errors in more complex
algorithms, such as merge sort and a mutable array-based
implementation of a quick sort.

2.2 Red-Black Trees
Leon is also able to handle complex data structures. Figure 2
shows the insertion of an element into a red-black tree, estab-
lishing that the algebraic data type of trees satisfies a number
of complex invariants [32]. Leon proves, in particular, that
the insertion maintains the coloring and height invariant of
red-black trees, and that it correctly updates the set of ele-

def maxSum(a: Array[Int]): (Int, Int) = {
require(a.length > 0)
var sum = 0
var max = 0
var i = 0
(while(i < a.length) {
if(max < a(i))
max = a(i)

sum = sum + a(i)
i = i + 1
}) invariant (sum ≤ i ∗ max && 0 ≤ i && i ≤ a.length)
(sum, max)
} ensuring(res ⇒ res. 1 ≤ a.length ∗ res. 2)

Figure 4. Sum and max of an array.

ments after the operation. These invariants are expressed us-
ing recursive functions that take an algebraic data type value
and return a boolean value indicating whether the property
holds. This example also introduces an additional feature of
Leon which is the possibility to define local functions. Lo-
cal functions help build a clean interface to a function by
keeping local operations hidden. Figure 3 shows a balanc-
ing operation of a red-black tree. A functional description of
this operation is very compact and also very easy for Leon
to handle: the correct version in the figure verifies instantly,
whereas a bug that breaks its correctness is instantly identi-
fied with a counterexample. Note that, although the function
is non-recursive, its specification uses a recursive function
content.

2.3 Sum and Max
To illustrate imperative constructs in Leon, Figure 4 shows
an example inspired by the Problem 1 of the VSTTE com-
petition in 2010. Note that the example uses arrays, loops,
and mutable local variables. Leon proves its correctness in-
stantly by first translating the while loop into a nested tail-
recursive pure function, hoisting the generated nested func-
tion outside, and verifying the resulting functional program.

3. Leon Language
We now describe the Leon input language, a subset of the
Scala programming language. This subset is composed of
two parts: a purely functional part referred to as PureScala
and a selected set of extensions. The formal grammar of this
subset can be found in Figure 5. It covers most first-order
features of Scala, including case classes and pattern match-
ing. It also supports special data types such as sets, maps,
and arrays. However, only a selected number of methods are
supported for these types.

This subset is expressive enough to concisely define cus-
tom data-structures and their corresponding operations. The
specifications for these operations can be provided through
require and ensuring constructs. Contracts are also written in
this subset and can leverage the same expressiveness. Pro-

On Verification by Translation to Recursive Functions 3 2013/4/25

grams and contracts are thus defined using the same exe-
cutable language.

While having a predominant functional flavor, Scala also
supports imperative constructs such as mutable fields and
variables. It is however common to see mutation being lim-
ited to the scope of a function, keeping the overall function
free from observable side-effects. Indeed, it is often easier to
write algorithms with local mutation and loops rather than
using their equivalent purely functional forms. For this rea-
son, we extended PureScala with a set of imperative con-
structs, notably permitting local mutations and while loops.
We describe later in Section 5 how we handle these exten-
sions specifically.

4. Core Algorithm
In this section, we give an overview of an algorithm to solve
constraints over PureScala expressions. (For the theoreti-
cal foundations and the first experiments on functional pro-
grams, please see [33, 35].)

This procedure is the core of Leon’s symbolic reasoning
capabilities: more expressive constructs are reduced to this
subset (see Section 5).

The idea of the algorithm is to determine the truth value
of a PureScala boolean expression (formula) through a suc-
cession of under- and over-approximations. PureScala is a
Turing-complete language, so we cannot expect this to al-
ways succeed. Our algorithm, however, has the desirable
theoretical property that it always finds counter-examples
to invalid formulas. It is thus a semi-decision procedure for
PureScala formulas.

All the data types of PureScala programs are readily
supported by state-of-the-art SMT solvers, which can ef-
ficiently decide formulas over combinations of theories
such as boolean algebra, integer arithmetic, term algebras
(ADTs), sets or maps [6, 10, 12]. The remaining challenge
is in handling user-defined recursive functions. SMT solvers
typically support uninterpreted function symbols, and we
leverage those in our procedure. Uninterpreted function
symbols are a useful over-approximation of interpreted func-
tion symbols; because the SMT solver is allowed to assume
any model for an uninterpreted function, when it reports
that a constraint is unsatisfiable it implies that, in particular,
there is also no solution when the correct interpretation is as-
sumed. On the other hand, when the SMT solver produces a
model for a constraint assuming uninterpreted functions, we
cannot reliably conclude that a model exists for the correct
interpretation. The challenge that Leon’s algorithm essen-
tially addresses is to find reliable models in this later case.

To be able to perform both over-approximation and
under-approximation, we transform functional programs
into logical formulas that represent partial deterministic
paths in the program. For each function in a Leon program,

Purely functional subset (PureScala):

program ::= object id { definition∗ }

definition ::= abstract class id

| case class id (decls) extends id

| fundef
fundef ::= def id (decls) : type = {

〈 require(expr) 〉?
expr

} 〈 ensuring (id ⇒ expr) 〉?
decls ::= ε | id: type 〈 , id: type 〉∗

expr ::= 0 | 1 | ... | true | false | id
| if (expr) expr else expr

| val id = expr; expr

| (〈 expr 〈 , expr 〉∗ 〉?)

| id (〈 expr 〈 , expr 〉∗ 〉?)

| expr match { 〈 case pattern ⇒ expr 〉∗ }
| expr . id

| expr . id (〈 expr 〈 , expr 〉∗ 〉?)

pattern ::= binder | binder : type

| binder @ id(〈 pattern 〈 , pattern 〉∗ 〉?)

| binder @ (pattern 〈 , pattern 〉∗)

| id(〈 pattern 〈 , pattern 〉∗ 〉?)

| (pattern 〈 , pattern 〉∗)

binder ::= id |
id ::= IDENT

type ::= id | Int | Boolean | Set[type]
| Map[type, type] | Array[type]

Imperative constructs and nested functions:

expr ::= while (expr) expr 〈 invariant (expr) 〉?
| if (expr) expr

| var id = expr

| id = expr

| id (expr) = expr

| fundef
| { expr 〈 ; expr 〉∗ }
| ()

type ::= Unit

Figure 5. Abstract syntax of the Leon input language.

On Verification by Translation to Recursive Functions 4 2013/4/25

φ1

φ1 ∧ b1

φ2

φ2 ∧ b2

φ3

φ3 ∧ b3

. . .

Unsat? Unsat? Unsat?Sat? Sat? Sat?

Figure 6. Successive over- and under-approximations.

we generate an equivalent representation as a set of clauses.
For instance, for the function

def size(lst : List) : Int = lst match {
case Nil ⇒ 0
case Cons(, xs) ⇒ 1 + size(xs)
}

we produce the clauses:

(size(lst) = e1) ∧ (b1 ⇐⇒ lst = Nil)

∧ (b1 =⇒ e1 = 0) ∧ (¬b1 =⇒ e1 = size(lst.tail))
(1)

Intuitively, these clauses represent the relation between the
input variable lst and the result. The important difference be-
tween the two representation is the introduction of variables
that represent the status of branches in the code (in this ex-
ample, the variable b1). Explicitly naming branch variables
allows us to control the parts of function definitions that the
SMT solver can explore.

As an example, consider a constraint φ ≡ size(lst) = 1.
We can create a formula equisatisfiable —assuming the cor-
rect interpretation of size— with φ by conjoining it with the
clauses (1). We call this new formula φ1. Now, assuming
an uninterpreted function symbol for size, if φ1 is unsatisfi-
able, then so is φ for any interpretation of size. If however
φ1 is satisfiable, it may be because the uninterpreted term
size(lst.tail) was assigned an impossible value.1 We control
for this by checking the satisfiability of φ1 ∧ b1. This addi-
tional boolean literal forces the solver to ignore the branch
containing the uninterpreted term. If this new formula is sat-
isfiable, then so is φ1 and we are done. If it is not, it may be
because of the restricted branch. In this case, we introduce
the definition of size(lst.tail) by instantiating the clauses (1)
one more time, properly substituting lst.tail for lst, and using
fresh variables for b1 and e1.

We can repeat these steps, thus producing a sequence of
alternating approximations. This process is depicted in Fig-
ure 6. An important property is that, while it may not nec-
essarily derive all proofs of unsatisfiability, this technique
will always find counter-examples when they exist. Intu-
itively, this happens because a counter-example corresponds
to an execution of the property resulting in false, and our
technique enumerates all possible executions in increasing
lengths.

1 Note that there is a chance that the model is in fact valid. In Leon we check
this by running an evaluator, and return the result if confirmed.

5. Handling Imperative Programs by
Translation

We now present the transformations we apply to reduce
the general input language of Leon to its functional core,
PureScala. We present a recursive procedure to map imper-
ative statements to a series of definitions (val and def) that
form a new scope introducing fresh names for the program
variables, and keeping a mapping from program variables
to their current name inside the scope. The procedure is in-
spired from the generation of verification conditions from a
program [11, 15, 28]. However such methods suffer from an
exponential growth in the size of the program fragment. In
some sense, our transformation to functional programs, fol-
lowed by a later generation of verification conditions avoid
the exponential growth similarly to the work of Flanagan et
al. [13].

Intuitively, we can represent any imperative snippet as
a series of definitions followed by a group of parallel as-
signments. These assignments rename the program variables
to their new names, that is, the right hand side will be the
new identifiers of the program variable (that have been in-
troduced by the definitions) and the left hand side will be the
program variables themselves. Those parallel assignments
are an explicit representation of the mapping from program
variables to their fresh names. As an example, consider the
following imperative program:

x = 2
y = 3
x = y + 1

It can be equivalently written as follows:

val x1 = 2
val y1 = 3
val x2 = y1 + 1
x = x2
y = y1

This is the intuition behind this mapping from program
variables to their fresh identifiers representation. The advan-
tage is that we can build a recursive procedure and easily
combine the results when we have sequences of statements.

5.1 Example
Let us first look at an example. The following program
computes the floor of the square root of an integer n:

def sqrt(n : Int) : Int = {
var toSub = 1
var left = n
while(left ≥ 0) {
if(toSub % 2 == 1)
left -= toSub

toSub += 1
}
(toSub / 2) − 1
}

On Verification by Translation to Recursive Functions 5 2013/4/25

Our transformation starts from the innermost elements, in
particular it will transform the conditional expression to the
following:

val left2 = if(toSub % 2 == 1) {
val left1 = left − toSub
left1
} else {
left
}
left = left2

Then it combines this expression with the rest of the body
of the loop, yielding:

val left2 =
if(toSub % 2 == 1) {
val left1 = left − toSub
left1
} else {
left
}

val toSub1 = tuSub + 1
left = left2
toSub = toSub1

The final assignments can be seen as a mapping from
program identifiers to fresh identifiers. The while loop is then
translated to a recursive function using a similar technique:

def rec(left3: Int, toSub2: Int) = if(left3 ≥ 0) {
val left2 =
if(toSub3 % 2 == 1) {
val left1 = left3 − toSub2
left1
} else {
left3
}

val toSub1 = tuSub2 + 1
rec(left2, toSub1)
} else {
(left3, toSub2)
}
val (left4, toSub3) = rec(left, toSub)
left = left4
toSub = toSub3

In this transformation, we made use of the mapping in-
formation in the body for the recursive call. Note that a loop
invariant would be translated to a pre and post-condition of
the recursive function. We also substituted left and toSub in
the body of the recursive function. In the final step, we com-
bine all top level statements and substitute the new variables
in the returned expression:

def sqrt(n : Int) : Int = {
val toSub4 = 1
val left5 = n
def rec(left3: Int, toSub2: Int) = if(left3 ≥ 0) {
val left2 =
if(toSub3 % 2 == 1) {
val left1 = left3 − toSub2

left1
} else {
left3
}

val toSub1 = tuSub2 + 1
rec(left2, toSub1)
} else {
(left3, toSub2)
}
val (left4, toSub3) = rec(left5, toSub4)
(toSub3 / 2) − 1
}

5.2 Transformation Rules
Figure 7 shows the formal rules to rewrite imperative code
into equivalent functional code. The rules define a function
e 〈T | σ〉, which constructs from an expression e a term
constructor T and a variable substitution function σ.

We give the main rules for each fundamental transfor-
mation. This is a mathematical formalization of the intu-
ition of the previous section, we defined a scope of defini-
tions as well as maintained a mapping from program vari-
ables to fresh names. Note that each time we introduce sub-
scripted versions of variables, we are assuming they adopt
fresh names.

We write term constructors as terms with exactly one in-
stance of a special value � (a “hole”). If e is an expression
and T a term constructor, we write T [e] the expression ob-
tained by applying the constructor T to e (“plugging the
hole”). We also use this notation to apply a term construc-
tor to another constructor, in which case the result is a new
term constructor. Similarly, we apply variables substitutions
to variables, variable tuples, expressions and term construc-
tors alike, producing as an output the kind passed as input.

As an illustration, if T ≡ �+ y, e ≡ x + 1, and σ ≡
{x 7→ z}, then we have for instance:

T [e] ≡ x + 1 + y T [T] ≡ �+y + y

σ(e) ≡ z + 1 σ(T) ≡ �+y

We denote the point-wise update of a substitution function
by σ1] σ2. This should be interpreted as “σ2 or else σ1”.
That is, in case the same variable is mapped by both σ1 and
σ2, the mapping in σ2 overrides the one in σ.

For ease of presentation, we assume that blocks of state-
ments are terminated with a pure expression r from the core
language, which corresponds to the value computed in the
block. So, given the initial body of the block b and the fol-
lowing derivation:

b 〈s | σ〉
we can define the function expression equivalent to b; r by:

T [σ(r)]

This simplification allows us to ignore the fact that each of
those expressions with side effect actually returns a value,

On Verification by Translation to Recursive Functions 6 2013/4/25

x = e 〈val x1 = e; � | {x 7→ x1}〉 var x = e 〈val x1 = e; � | {x 7→ x1}〉
e1 〈T1 | σ1〉 e2 〈T2 | σ2〉

e1; e2 〈T1[σ1(T2)] | σ1] σ2〉

t 〈T1 | σ1〉 e 〈T2 | σ2〉 dom(σ1] σ2) = x

if(c) t else e 〈val x1 = if(c) T1[σ1(x)] else T2[σ2(x)]; � | {x 7→ x1}〉 () 〈� | ∅〉

e 〈T1 | σ1〉 σ1 = {x 7→ x1} σ2 = {x 7→ x2} T2 = σ2(T1)

while(c) e 〈def loop(x2) = { if(σ2(c)) T2[loop(x1)] else x2}; val x3 = loop(x); � | {x 7→ x3}〉

Figure 7. Transformation rules to rewrite imperative constructs into functional ones.

and could be the last one of a function. This is particularly
true for the if expression which can return an expression ad-
ditionally to its effects. The rules can be generalized to han-
dle such situation by using a fourth element in the relation
denoting the actual returned value if the expression was re-
turned from a function or assigned to some variable. Note
that in our system we have implemented this more general
behaviour.

We have also assumed that expressions such as right hand
sides of assignments and test conditions are pure expres-
sions that do not need to be transformed. However, it is also
possible to generalize the rules to handle such expressions
when they are not pure, but omit this discussion. Again,
in our implementation we support this more general trans-
formation. Note that pattern matching is simply a general-
ized conditional expression in Leon, we do not present the
rule here but Leon implements complete translation rules
for pattern matching. We assume that if(c) t is rewritten to
if(c) t else () with () corresponding to the Unit literal.

5.3 Function Hoisting
Nested functions can read immutable variables from the
enclosing scope, for example the formal parameters or a
let-binding from an outer function. We note that since the
previously described transformation rules have already run
at this point, the program and in particular nested functions
are free of side-effects.

The function hosting phase starts by propagating the pre-
condition of the enclosing function to the nested function.
We also track path conditions until the definition. This outer
precondition is indeed guaranteed to hold within the nested
function. We then close nested functions, which consists in
augmenting the signature of functions with all variables read
from the enclosing scope. Function invocations are also up-
dated accordingly to include these additional arguments. As
a result, nested functions become self-contained and can be
hoisted to the top level.

We note that this transformation causes nested functions
to be treated modularly, similarly to functions that were not
nested originally. It thus prevents Leon from exploiting the

fact that these functions could only be called from a finite
number of program points.

This is illustrated in the following example:

def f(x: Int) = {
require(x > 0)
def g(y: Int) = {
y ∗ 2
} ensuring(> y)
g(x)
}

which becomes, after hoisting:

def g(y: Int, x: Int) = {
require(x > 0)
y ∗ 2
} ensuring(> y)

def f(x: Int) = {
require(x > 0)
g(x, x)
}

Even though g is originally only called with positive values,
this fact is not propagated to the new precondition. Leon thus
reports a spurious counter-example in the form of y = −1.

5.4 Arrays
We support functional arrays in the core solver by mapping
them to the theory of maps over the domain of integers. In
order to support the .size operation, arrays are encoded as a
pair of an integer, for the length, and of a map representing
the contents of the array. This is necessary since maps have
an implicit domain that spans the set of all integers. Main-
taining this symbolic information for the size lets us gener-
ate verification conditions for accesses, thus allowing us to
prove that array accesses are safe.

Imperative arrays are supported through another transfor-
mation phase. We rewrite (imperative) array updates as as-
signments and functional updates. The imperative transfor-
mation phase described in the previous paragraphs then han-
dles those assignments as any other assignments.

On Verification by Translation to Recursive Functions 7 2013/4/25

VC Gen Solvers Backend

Front-end
Code

Transformation
Verification

Array
Encoding

Imperative to
Functional

Function
Hoisting

Figure 8. Overall architecture of Leon.

6. Leon Tool Architecture and Features
In this section we describe the implementation of the dif-
ferent parts that make up the pipeline of Leon. The overall
architecture is displayed in Figure 8.

Front end. The front end to Leon relies on the early
phases of the official Scala compiler —up to and includ-
ing refchecks. We connected them to a custom phase that
filters the Scala abstract syntax trees, rejects anything not
supported by Leon, and finally produces Leon abstract syn-
tax trees. This architecture allows us to rely entirely on the
reference implementation for parsing, type inference, and
type checking.

Core solver. The core solver, described in Section 4, relies
on the Z3 SMT solver [10]. Communication between Leon
and Z3 is done through the ScalaZ3 native interface [24]. As
more clauses are introduced to represent function unfold-
ings, new constraints are pushed to the underlying solver. We
have found it crucial for performance to implement this loop
using as low-level functions as possible; by using substitu-
tions over Z3 trees directly as opposed to translating back-
and-forth into Leon trees, we have lowered solving times by
on average 30% and sometimes up to 60% on comparable
hardware compared to our previous effort [35].

Code generator. Several components in Leon need or ben-
efit from accessing an evaluator; a function that computes
the truth value of ground terms. In particular, the core solver
uses ground evaluation in three cases:

• Whenever a function term is ground, instead of unfolding
it using the clausal representation, we invoke the evalua-
tor and push a simple equality to the context instead. This
limits the number of boolean control literals, and gener-
ally simplifies the context.
• Whenever an over-approximation for a constraint is es-

tablished to be satisfiable, we cannot in general trust the
result to be valid (see Section 4). In such situations, we
evaluate the constraint with the obtained model to check
if, by chance, it is in fact valid.
• As an additional precaution against bugs in the solver, we

validate all models through evaluation.

To ensure fast evaluation, Leon compiles all functions us-
ing on-the-fly Java bytecode generation. Upon invocation,
the evaluator uses reflection to translate the arguments into
the Java runtime representation and to invoke the corre-
sponding method. The results are then translated back into
Leon trees.

Termination checker. Proving that all functions terminate
for all inputs is a prerequisite to sound analysis. While ter-
mination was previously simply assumed, the latest version
of Leon includes a basic termination checker, which works
by identifying decreasing arguments in recursive calls. Our
implementation is far from the state of the art, but is an im-
portant step towards a fully integrated verification system for
a subset of Scala.

Web interface. The most convenient way to use Leon is via
its public web interface2. It provides an editor with continu-
ous compilation similar to modern IDEs. The web server is
implemented using the Play framework3. Leon runs inside a
per-user actor on the server side, and communicates with the
client through web-sockets.

The interface also performs continuous verification: it
displays an overview of the verification results and updates
it asynchronously as the program evolves. Upon modifica-
tion, the server computes a conservative subset of affected
functions, and re-runs verification on them. We identify four
different verification statuses: valid, invalid, timeout, and
conditionally-valid. This last status is assigned to functions
which were proved correct modularly but invoke (directly or
transitively) an invalid function.

For invalid functions, we include a counter-example in
the verification feedback. The web interface shows them for
selected functions. Screen captures of the web interface can
be found in the appendix.

7. Evaluation
We used Leon to prove correctness properties about purely
functional as well as imperative data structures. Addition-
ally, we proved full functional correctness of textbook sort-
ing algorithms (insertion sort and merge sort). To give some
examples: we proved that insertion into red-black trees pre-
serves balancing, coloring properties, and implements the
proper abstract set interface.

Our results are summarized in Table 1. The benchmarks
were run on a computer equipped with two Intel Core 2 Duo
CPU running at 2.53GHz and 4.0 GB of RAM. We used
Z3 version 4.2. The column V/I indicates the number of
valid and invalid postconditions. The column #VCs refers
to additional verification conditions such as preconditions,
match exhaustiveness and loop invariants. All benchmarks
are available and can be run from the web interface.

2 http://lara.epfl.ch/leon/
3 http://www.playframework.com/

On Verification by Translation to Recursive Functions 8 2013/4/25

Benchmark LoC V/I #VCs Time (s)
Imperative
ListOperations 146 6/1 16 0.62
AssociativeList 98 3/1 9 0.80
AmortizedQueue 128 10/1 21 2.57
SumAndMax 36 2/0 2 0.21
Arithmetic 84 4/1 8 0.58
Functional
ListOperations 107 12/0 11 0.43
AssociativeList 50 4/0 5 0.43
AmortizedQueue 114 13/0 18 1.56
SumAndMax 45 4/0 7 0.23
RedBlackTree 117 7/1 10 1.87
PropositionalLogic 81 6/1 9 0.72
SearchLinkedList 38 3/0 2 0.21
Sorting 175 13/0 17 0.48

Table 1. Summary of evaluation results.

8. Related Work
Many interactive systems that mix the concept of com-
putable functions with logic reasoning have been devel-
oped, ACL2 [20] being one of the historical leader. Such
systems have practical applications in industrial hardware
and software verification [21]. ACL2 requires manual assis-
tance because it is usually required to break down a theorem
into many small lemmas that are individually proven. Other
more recent systems for functional programming include
VeriFun [36] and AProVE [14]. Isabelle [30] and Coq [7]
are proof assistant systems that provide a sort of program-
ming language in higher order logic to express theorem and
help proving them. This logic is expressive enough to de-
fine some computable functions in a similar way as it would
be done in functional programming. It is also possible to
automatically generate code for such systems.

A trait common to these systems is that the outcome is
relatively difficult to predict. These systems provide very
expressive input languages that make it very hard to auto-
matically solved in general. Many of these systems are also
very good at automating the proof of some valid properties,
mostly by a smart usage of induction, while our system is
complete for finding counter-examples. We think that our
approach is more suited for practical programmers, that may
not be verification experts but that would be able to make
sense out of counter-example.

Several tools exist for the verification of contracts and
invariants in imperative programs. One such tool is Dafny
[25]. Dafny supports an imperative language as well as many
object-oriented features. It is thus able to reason about class
invariant and mutable fields, which Leon does not support
so far. Dafny translates its input program to an intermedi-
ate language, Boogie [4], from which verifications condi-
tions are then generated. The generation of verification con-

ditions is done via the standard weakest precondition seman-
tics [11, 29]. Our approach, on the other hand, translates the
imperative code into functional code and does not make use
of predicate transformers. Additional features of our transla-
tion, as well as support for disciplined non-determinism are
presented in [8].

From early days, certain programming languages have
been designed with verification in mind. Such programming
languages usually have built-in features to express specifica-
tions that can be verified automatically by the compiler itself.
These languages include Spec# [5], GYPSY [2] and Euclid
[26]. Eiffel [27] popularized design by contract, where con-
tracts are preconditions and postconditions of functions as
language annotations. On the other hand, we have found that
Scala’s contract functions, defined in the library, work just
as well as built-in language contracts and encourage experi-
menting with further specification constructs [31].

We expect that the idea of using encoding into functional
constraints will continue to prove practical for more complex
constructs. Such techniques have been used even for transla-
tion into simpler constraints, including finite-state programs
[3], set constraints [1], and Horn clauses [16, 17]. Many of
these constraints can be expressed as Leon programs; we
plan to explore this connection in the future.

9. Conclusions
We presented Leon, a verification system for a subset of
Scala. Leon reasons on both functional programs and cer-
tain imperative constructs. It translates imperative constructs
into functional code. Our verification procedure then vali-
dates the functional constraints. The verification algorithm
supports recursive programs on top of decidable theories and
is a semi-decision procedure for satisfiability; it is complete
for finding counter-examples to program correctness. Exper-
iments show that Leon is fast for practical use, providing
quick feedback whether the given programs and specifica-
tions are correct or incorrect. The completeness for counter-
examples and the use of the same implementation and spec-
ification language makes Leon a practical tool that can be
used by developers without special training.

We have introduced several techniques that improved the
performance of Leon, including efficient unfolding of bodies
of recursive calls by appropriate communication with the Z3
SMT solver. The main strength of Leon among different ver-
ification tools is the ability to predictably find counterexam-
ples, as well the ability to prove correctness properties that
do not require complex inductive reasoning. We believe that
the current version of Leon, at the very least, has potential
in modeling algorithms and systems using functional Scala
as the modeling language, as well as a potential in teaching
formal methods. Thanks to the use of modular per-function
verification methods, Leon can, in principle, scale to arbi-
trarily large Scala programs.

On Verification by Translation to Recursive Functions 9 2013/4/25

References
[1] A. Aiken. Introduction to set constraint-based program anal-

ysis. Sci. Comput. Programming, 35:79–111, 1999.

[2] A. L. Ambler. GYPSY: A language for specification and
implementation of verifiable programs. In Language Design
for Reliable Software, pages 1–10, 1977.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Au-
tomatic predicate abstraction of C programs. 2001.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In FMCO, pages 364–387, 2005.

[5] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter. Specification and verification: the
Spec# experience. Commun. ACM, 54(6):81–91, 2011.

[6] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanovic, T. King, A. Reynolds, and C. Tinelli. CVC4. In
CAV, pages 171–177, 2011.

[7] Y. Bertot and P. Castran. Interactive Theorem Proving and
Program Development – Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

[8] R. W. Blanc. Verification of Imperative Programs in Scala.
Master’s thesis, EPFL, 2012.

[9] E. Börger and R. Stärk. Abstract State Machines. 2003.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340, 2008.

[11] E. W. Dijkstra. A discipline of programming. Prentice-Hall,
Englewood Cliffs, N.J, 1976.

[12] B. Dutertre and L. M. de Moura. The Yices SMT solver, 2006.

[13] C. Flanagan and J. B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In POPL, pages
193–205, 2001.

[14] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Au-
tomated termination proofs with AProVE. In RTA, pages 210–
220, 2004.

[15] M. Gordon and H. Collavizza. Forward with Hoare. In
A. Roscoe, C. B. Jones, and K. R. Wood, editors, Reflections
on the Work of C.A.R. Hoare, History of Computing, pages
102–121. Springer, 2010.

[16] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Ry-
balchenko. Synthesizing software verifiers from proof rules.
In PLDI, 2012.

[17] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstrac-
tion and refinement for verifying multi-threaded programs. In
POPL, 2011.

[18] K. Havelund. Closing the gap between specification and
programming: VDM++ and scala. In Higher-Order Workshop
on Automated Runtime Verification and Debugging, 2011.

[19] C. B. Jones. Systematic Software Development using VDM.
Prentice Hall, 1986.

[20] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publish-
ers, 2000.

[21] M. Kaufmann, P. Manolios, and J. S. Moore, editors.
Computer-Aided Reasoning: ACL2 Case Studies. Kluwer
Academic Publishers, 2000.

[22] E. Kneuss, V. Kuncak, I. Kuraj, and P. Suter. On integrating
deductive synthesis and verification systems. Technical Re-
port EPFL-REPORT-186043, EPFL, 2013.

[23] A. S. Köksal. Constraint programming in Scala. Master’s
thesis, EPFL, 2011.

[24] A. S. Köksal, V. Kuncak, and P. Suter. Scala to the power
of Z3: Integrating SMT and programming. In CADE, pages
400–406, 2011.

[25] K. R. M. Leino. Developing verified programs with Dafny. In
HILT, pages 9–10, 2012.

[26] R. L. London, J. V. Guttag, J. J. Horning, B. W. Lampson, J. G.
Mitchell, and G. J. Popek. Proof rules for the programming
language Euclid. Acta Inf., 10:1–26, 1978.

[27] B. Meyer. Eiffel: the language. Prentice-Hall, 1991.

[28] G. C. Necula and P. Lee. The design and implementation of a
certifying compiler. In PLDI, pages 333–344, 1998.

[29] G. Nelson. A generalization of Dijkstra’s calculus. TOPLAS,
11(4):517–561, 1989.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2002.

[31] M. Odersky. Contracts for scala. In RV, pages 51–57, 2010.

[32] C. Okasaki. Red-black trees in a functional setting. Journal
of Functional Programming, 9(4):471–477, 1999.

[33] P. Suter. Programming with Specifications. PhD thesis, EPFL,
2012.

[34] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for
algebraic data types with abstractions. In POPL, 2010.

[35] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo
recursive programs. In SAS, pages 298–315, 2011.

[36] C. Walther and S. Schweitzer. About VeriFun. In CADE,
pages 322–327, 2003.

On Verification by Translation to Recursive Functions 10 2013/4/25

A. Appendix — Screenshots

Web Interface: the pane on the right displays continuous verification results. It refreshes and automatically updates the results as the program
evolves.

Detailed verification results for one function with counter-examples.

On Verification by Translation to Recursive Functions 11 2013/4/25

