
In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

Die-Stacked DRAM Caches for Servers
Hit Ratio, Latency, or Bandwidth? Have It All with Footprint Cache

Stavros Volos
EcoCloud, EPFL

ABSTRACT
Recent research advocates using large die-stacked DRAM caches
to break the memory bandwidth wall. Existing DRAM cache
designs fall into one of two categories — block-based and page-
based. The former organize data in conventional blocks (e.g.,
64B), ensuring low off-chip bandwidth utilization, but co-locate
tags and data in the stacked DRAM, incurring high lookup latency.
Furthermore, such designs suffer from low hit ratios due to poor
temporal locality. In contrast, page-based caches, which manage
data at larger granularity (e.g., 4KB pages), allow for reduced tag
array overhead and fast lookup, and leverage high spatial locality
at the cost of moving large amounts of data on and off the chip.

This paper introduces Footprint Cache, an efficient die-stacked
DRAM cache design for server processors. Footprint Cache allo-
cates data at the granularity of pages, but identifies and fetches
only those blocks within a page that will be touched during the
page's residency in the cache — i.e., the page's footprint. In doing
so, Footprint Cache eliminates the excessive off-chip traffic asso-
ciated with page-based designs, while preserving their high hit
ratio, small tag array overhead, and low lookup latency. Cycle-
accurate simulation results of a 16-core server with up to 512MB
Footprint Cache indicate a 57% performance improvement over a
baseline chip without a die-stacked cache. Compared to a state-of-
the-art block-based design, our design improves performance by
13% while reducing dynamic energy of stacked DRAM by 24%.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles — Cache memories;
B.3.1 [Memory Structures]: Semiconductor Memories —
Dynamic memory (DRAM)

General Terms
Design, Measurement, Performance

1. INTRODUCTION
The slowdown in Dennard Scaling is shifting many-core server
chips towards larger numbers of lean cores. Conventional (e.g,
OLTP, DSS) and emerging scale-out (e.g., Data Serving, Web
Search) server workloads exhibit an abundance of request-level
parallelism and therefore benefit from many-core chips that enable
high throughput. The growth in core count, however, ultimately
drives designs into a memory bandwidth wall [10, 30] due to poor
pin count scalability.

Emerging 3D die stacking technology interconnects a processor
die with a stack of DRAM dies using high-density, low-latency
through-silicon vias (TSVs). This technology virtually eliminates
the memory bandwidth wall by providing orders of magnitude
higher bandwidth, and exposes lower latency for stacked on-chip
DRAM [10, 11, 14, 20, 21]. Technological constraints, however,

limit the stacked DRAM capacity to levels that are far lower than
what modern server workloads demand. As such, most proposals
for die stacking advocate using the stacked DRAM as a cache [13,
22, 24].

There are two classes of die-stacked DRAM caches: block-based
and page-based. Block-based designs store data at a fine granular-
ity (e.g., 64B) [22, 24] in order to optimize for capacity and
temporal locality. As such, they require a prohibitively large tag
space infeasible to support in on-chip SRAM. Thus, they mandate
co-location of tags with data in the DRAM cache [22, 24]. Such an
implementation, however, increases hit latency and reduces
DRAM locality. Furthermore, due to low temporal reuse in server
workloads, block-based designs experience high miss rates, fre-
quently exposing full off-chip latency to incoming requests.
However, thanks to small fetch granularity, block-based designs
result in low off-chip traffic. Because servers favor overall
throughput over single-threaded performance, minimizing off-chip
bandwidth to support more threads is a top design priority.

Page-based designs, whose allocation unit is in the order of a few
kilobytes, rely on abundant spatial locality that benefits server
workloads. As a result, page-based designs enjoy a much higher
(up to 10x) hit ratio compared to block-based ones [11, 13]. Due to
their large allocation granularity, page-based caches require
smaller tag arrays that can be stored in SRAM. Moreover, page-
based caches maximize the benefit of DRAM row-buffer locality.
However, the large granularity magnifies off-chip traffic by up to
an order of magnitude and results in poor utilization of available
cache capacity, because much of the data in a page, although allo-
cated and fetched, are never touched prior to the page’s eviction.

To exploit the best aspects of both block- and page-based designs
while avoiding their respective drawbacks, we propose Footprint
Cache. Footprint Cache decouples the cache allocation unit from
the fetch unit, allocating large pages but identifying and fetching
only those 64-byte blocks that will be used during the residency of
the page in the cache — i.e., the page’s footprint. To identify
pages’ footprints, we leverage prior research on spatial correlation
[34] and apply it in the context of page-based DRAM caches to
design a simple and highly accurate footprint predictor. The pre-
dictor allows for exploiting the abundant spatial locality of scale-
out workloads in a bandwidth-efficient manner. As a result, Foot-
print Cache achieves high hit ratios, comparable to those of page-
based approaches, and low off-chip traffic as in block-based
caches. Due to its large allocation unit, Footprint Cache allows for
small and fast, SRAM-based tag arrays. To optimize for capacity,
Footprint Cache further identifies pages that have few useful
blocks (no spatial locality) and show no reuse (no temporal local-
ity), which account for a significant fraction of the total pages. By
not allocating such pages and fetching only the individual blocks
on demand, our design improves the effective cache capacity.

In this paper we make the following contributions:

• We propose Footprint Cache, a novel die-stacked DRAM cache
architecture that combines the benefits of block- and page-
based designs through footprints. By predicting the footprint of
each page and fetching only the predicted blocks, Footprint
Cache overcomes the high off-chip bandwidth overhead of
page-based designs, yet preserving their high hit ratio. We dem-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISCA 2013, June 23-27, 2013, Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06… $15.00

Djordje Jevdjic

{djordje.jevdjic, stavros.volos, babak.falsafi}@epfl.ch

Babak Falsafi

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

2

onstrate that Footprint Cache reduces the off-chip traffic of the
page-based design by 2.6x, while achieving 4.7x higher hit
ratios compared to the block-based design, on average. Mean-
while, by managing capacity at the granularity of pages,
Footprint Cache achieves small tag overhead and low access
latency.

• We observe that a significant fraction of the pages in the cache
exhibit neither temporal nor spatial locality, and thus do not
contribute to any cache hits. By detecting and not caching these
pages, Footprint Cache improves the effective cache capacity
and reduces the miss rate by an additional 10%, on average.

• Using cycle-accurate, full-system simulation of a scale-out pro-
cessor [26], we demonstrate that Footprint Cache achieves 57%
performance improvement over a baseline system without a
die-stacked cache, while outperforming state-of-the-art designs
in terms of performance and energy. Footprint Cache reduces
off-chip DRAM dynamic energy of the baseline system by
78%, also providing a 24% and 9% reduction in stacked
DRAM dynamic energy compared to the state-of-the-art block-
based design and the page-based design, respectively.

The rest of the paper is organized as follows. We examine existing
DRAM cache designs in Section 2, and identify their key advan-
tages and drawbacks. We describe the basic idea behind our
proposal, Footprint Cache, in Section 3 and detail our design in
Section 4. In Section 5 we describe our evaluation methodology.
We present our experimental results in Section 6 and discuss inter-
esting questions in Section 7. We revisit prominent prior work in
Section 8 and conclude in Section 9.

2. BACKGROUND AND MOTIVATION
With the slowdown in Dennard Scaling server chips are resorting
to larger numbers of lean cores (e.g., Tilera) to maintain a practical
power envelope. Scale-out server workloads benefit from such
many-core processor organizations, which enable high throughput
thanks to the abundant parallelism in these workloads. The growth
in core count, however, ultimately drives designs into a memory
bandwidth wall [10, 30] due to poor pin count scalability. Emerg-
ing many-core chips with hundreds of cores/chip are already able
to utilize and even exceed their bandwidth budgets [10, 14, 26],
hitting the bandwidth wall before the power wall [26].

Recent research advocates using die-stacked DRAM to break the
memory bandwidth wall [10, 11, 13, 14, 20, 21, 22, 24]. Figure 1
assesses the opportunity of the technology to boost performance of
scale-out and multiprogrammed workloads from two aspects:
bandwidth and latency (the details on experimental methodology
are explained in Section 5). The first set of bars shows perfor-
mance improvement for a many-core server system [26] with the
main memory fully integrated on the chip using die stacking, pro-
viding 8x the bandwidth of the 2D baseline. The second set of bars
shows performance improvement of the same high-bandwidth sys-
tem, but with halved DRAM latency [24]. We see that both
bandwidth and latency play a vital role in achieving high perfor-
mance, which implies that future designs must exploit both
opportunities given by the technology.

Technological constraints, however, limit the stacked DRAM
capacity to levels that are far lower than what modern server work-
loads demand [24]. While today’s servers need tens to hundreds of
gigabytes of DRAM each, the projections for die-stacked DRAM
capacity vary between hundreds of megabytes to several gigabytes.
Thus, most proposals for die stacking advocate using the stacked
DRAM as a cache [13, 22, 24]. Unfortunately, the inherent limita-
tions of DRAM cache designs prevent them from achieving the
full potential of the technology, depicted in Figure 1. Firstly,
DRAM caches, regardless of their organization, require significant
tag storage due to their large capacity, whose lookup necessarily

adds extra latency to the critical path. Secondly, the limited capac-
ity of the stacked DRAM limits the level of concurrency it can
provide, despite the virtually unlimited TSV bandwidth. The
stacked DRAM is orders of magnitude smaller than the off-chip
DRAM, and, thus, experiences frequent bank conflicts and lower
availability. In contrast to off-chip main memory systems with
hundreds of gigabytes of DRAM that provide more bandwidth
than the memory channels can sustain, the bandwidth to the
DRAM cache is restricted by the parallelism in the stacked DRAM
itself, and not by the interface. Therefore, stacked DRAM caches
fall short of fully leveraging the abundant on-chip bandwidth
enabled by dense TSV buses. Cache designs must be aware of this
limitation, and optimize for the stacked DRAM locality to allow
for higher concurrency and availability.

Furthermore, despite their capacity, DRAM caches exhibit high
miss ratios, with each miss being satisfied from the off-chip mem-
ory at full off-chip latency. This behavior is caused by the low
reuse of the data in lower-level caches [9], in contrast to L1 caches,
where data are frequently reused and where most of the temporal
locality is exploited. This phenomenon is further exacerbated by
vast datasets of scale-out workloads, which do not form any well-
defined working sets [6]. Besides their latency penalty, misses
inherently result in DRAM cache evictions. We find that, for scale-
out workloads, these are mostly dirty evictions, because data reside
in the cache for long enough to become modified by dirty evictions
from the upper-level caches. Dirty evictions consume additional
off-chip and on-chip TSV bandwidth, affecting the stacked DRAM
availability as well (the data have to be read from the stacked
DRAM and written back to the off-chip DRAM). The same holds
for cache fills that follow the misses.

2.1 Guidelines for Designing DRAM Caches
As existing DRAM cache designs fall short of leveraging the bene-
fits that die stacking technology provides, we present a set of
guidelines for designing effective DRAM caches:

• Fast tag lookup. Because tag lookups are on the critical path of
all requests coming to the cache, tag lookup latency must be
minimized. While this statement holds for all cache designs
that serialize tag and data lookups, it gains more importance in
the context of DRAM caches, due to their tag array size.

• Small tag storage. The total storage dedicated to tags or other
metadata should be minimal, as it does not directly contribute
to better system performance, but does incur high cost.

• Low off-chip traffic. While cache misses are responsible for
most of the off-chip bandwidth overhead, various cache fea-
tures can adversely impact off-chip bandwidth even further.
Examples include the use of large cache blocks that saturate

0%

25%

50%

75%

100%

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

High-BW
High-BW & Low-Latency

31
2

12
8

Figure 1. Opportunity for performance improvement with
high-bandwidth and low-latency die-stacked DRAM.

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

3

off-chip bandwidth. Reduction in off-chip traffic is the main
driver for 3D-stacked DRAM adoption, and as such should be
among the top priority goals.

• High hit ratio is crucial to exploiting both the bandwidth and
the latency benefits that the technology provides, demonstrated
by Figure 1.

• Low hit and miss latency. To achieve the benefits depicted in
Figure 1, DRAM caches must optimize for both hit and miss
latency. Internal details of the cache organization should neither
penalize hit latency nor postpone miss serving.

• High DRAM access locality. Accesses to DRAM structures
experience unpredictable latency, highly dependent on the
locality of references, availability, address-mapping schemes,
row-buffer management policy, and access scheduling. To min-
imize the stacked DRAM and off-chip DRAM access latencies,
cache designs must take of all these parameters into account.

• Efficient capacity management. Allocation of space for data
that are never used should be avoided. The problem is severe in
page-based designs, which suffer from internal fragmentation.

Unfortunately, most of these requirements are mutually conflict-
ing, which makes the design process more challenging. To better
understand such challenges, we focus on two main DRAM cache
designs that optimize for different constraints.

2.2 Block-Based Caches
On-chip caches have traditionally been designed to primarily
exploit temporal locality, and to make the best use of their limited
capacity. Trade-offs between the effective cache capacity, temporal
and spatial locality resulted in 16- to 128-byte cache blocks, 64-
byte being the most common block size employed today. Such a
design is illustrated in Figure 2a. For large DRAM caches, 64-byte
blocks would require huge tag storage, as illustrated in Figure 2a,
which is infeasible to build in SRAM, thereby forcing the tags to
be embedded in DRAM [13, 22, 24]. Embedding tags in DRAM,
however, results in multiple DRAM accesses per cache request —
and, consequently, in substantially higher hit and miss latencies.
Intelligent co-location of data with the corresponding tags in the
same DRAM row [22] accompanied with optimized access sched-
uling [24], obviates the need for multiple DRAM accesses per
request. However, the optimization only partially reduces the high
hit latency, because of the need for several operations to be per-
formed within the DRAM row-buffer. Furthermore, the co-
location of tags and data mandates particular data placement poli-
cies that diminish DRAM locality. It also requires a way to
determine the presence of a block in the cache prior to accessing
the tags, as well as additional multi-megabyte storage for that pur-

pose (not shown in Figure 2a), whose access latency is on the
critical path. Most importantly, block-based designs fall short of
exploiting abundant spatial locality. Instead, they focus on limited
temporal locality, experiencing high miss ratios, thus frequently
exposing full off-chip latency to incoming requests. However, due
to the small fetch unit and the efficient management of cache
capacity, block-based designs minimize off-chip traffic, making
them a favorable option for high-throughput servers.

2.3 Page-Based Caches
Increasing the block size allows for a proportionate reduction in
tag storage. The use of larger allocation/fetch units (e.g., 1-8KB)
makes the placement of tags in SRAM feasible at acceptable stor-
age overhead [13]. We call such units pages.1 The large fetch unit
allows for maximum DRAM access efficiency, fully exploiting
locality in both off-chip and stacked DRAM. For instance, a single
DRAM row opening is needed per off-chip DRAM fetch, eviction,
or stacked DRAM fill, for a whole page, assuming that the page
size does not exceed the DRAM row size. While large DRAM
caches exhibit limited temporal locality, they show significant spa-
tial locality, which can be easily leveraged by large fetch units, as
illustrated in Figure 2b, providing an order of magnitude more hits
compared to a block-based cache of the same size [11, 13]. Cache
hits are critical to exploiting the latency advantages of die-stacked
DRAM and page-based caches provide them at lower latency.
Unfortunately, many of the cached pages contain data that are not
used prior to the page eviction, resulting in excessive data over-
fetch [13] and capacity waste. As a result, page-based caches tend
to increase the off-chip traffic of the baseline system without a
DRAM cache by up to an order of magnitude in the worst case,
which negates a key benefit of die-stacked DRAM caches.

Summary. Table 1 provides a comparison between the two
designs with respect to the most important features. The block-
based and page-based designs show complementary, yet mutually
exclusive, characteristics. To take the best of the both designs, we
propose Footprint Cache.

3. FOOTPRINT CACHE
While the block-based and page-based designs show complemen-
tary properties, never achieving the same goals, together they
could meet all of the requirements of an ideal die-stacked cache as

1. Not to be confused with a DRAM row, sometimes called
DRAM page.

Tags

Data

Tags

Data

White space denotes
unused fetched blocks

TSV

DRAM DRAM

Demanded
block

Prefetched

Memory Memory

PageBlock

(a) (b)

Figure 2. A DRAM die stacked on top of the logic die, used as (a) a block-based cache or as (b) a page-based cache. For the block-
based design, one tag entry corresponds to one data block. For the page-based design, only the useful blocks (accessed by the
cores) are shown in the figure, and one tag entry corresponds to one page.

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

4

summarized in Section 2.1. The page-based design demonstrates
superior properties overall, but due to its excessive off-chip traffic
overheads, it is not a feasible option. Ideally, we would like to
achieve the properties of the page-based design, but without the
unnecessary traffic and with better capacity management. Our pro-
posal, Footprint Cache, uses a page-based organization, but
identifies the blocks that will be demanded by the cores during a
page’s on-chip residency. It then fetches only those blocks at the
page allocation time, eliminating the unnecessary off-chip and on-
chip traffic. Footprint Cache further identifies pages that have the
fewest useful blocks and show no reuse, and neither allocates
entries in the cache for such pages nor fetches them. Footprint
Cache instead fetches 64-byte blocks from such pages, one by one
and only on demand, and forwards them to the requestor, bypass-
ing the cache. Such pages account for a significant fraction of all
pages that are fetched and are the biggest contributor to the capac-
ity waste. Thus, Footprint Cache mitigates both the bandwidth and
capacity problems of page-based designs and manages to get the
best of the both designs.

Footprint Cache decouples the cache allocation unit from the fetch
unit, similar to sub-blocked (or sectored) caches, allocating large
pages while fetching 64-byte blocks. The set of useful blocks
accessed during page’s on-chip residency constitute the page’s
footprint. Upon a miss in the cache, a new page is allocated and the
whole page’s footprint is fetched at once from the main memory.
To detect the useful blocks, we leverage prior work on spatial cor-
relation [34] and design a simple and highly accurate predictor that
identifies the page’s footprint. As a result, Footprint Cache
achieves high hit ratios, comparable to those of page-based
approaches, and low off-chip traffic as in conventional block-
based caches. Because the whole footprint is fetched and evicted at
once, Footprint Cache enforces high DRAM access locality both
for the off-chip and stacked DRAM, thus allowing for lower
DRAM access latency. Last, but not least, Footprint Cache allows
for a small and fast, SRAM-based tag array due to its large alloca-
tion unit. In summary, Footprint Cache meets all of the
requirements of an ideal die-stacked cache as summarized in
Section 2.1.

3.1 Footprint Prediction
To achieve the desired properties, Footprint Cache relies on the
footprint predictor. The accuracy of the footprint predictor is cru-
cial for both performance and energy efficiency. The predictor
must have high coverage, ideally predicting all the blocks that will
be later demanded. Every unpredicted block that is demanded later
would result in a cache miss and consequently, in performance and
energy loss. We call such an event underprediction. While it is
important to correctly predict as many blocks as possible, it is
essential that the predictor has minimal overprediction rate. Over-
predictions represent blocks that are fetched but not used prior to
eviction, and their transfer to and from main memory merely
wastes off-chip and on-chip bandwidth and energy.

An example of a system with no overpredictions is a sub-blocked
cache, which allocates pages but fetches every block on demand.
However, such a system would have the maximum number of

underpredictions, as it would experience a miss for each demanded
block in a page. A system with no underpredictions would be a
page-based cache, that fetches all the data from the demanded page
at once. Fetching all the blocks is, however, an even worse solu-
tion, as it produces the maximum number of overpredictions,
saturating the off-chip bandwidth.

Minimizing both the underprediction and overprediction rates at
the same time is a challenging task for a predictor. To achieve the
two conflicting goals, Footprint Cache relies on the observation
that there is a high correlation between data and the code that
accesses those data. For instance, server software exposes a well-
defined interface with only several functions for accessing their
structured datasets — e.g., get and set methods of a class or vari-
ous data structure iterators. Traversals of data structures require
repetitive calls to these functions, resulting in recurring memory
access patterns. The access pattern observed from the first call to
such a function can be used to predict the memory access patterns
of its subsequent calls. This fundamental property has been
exploited in various contexts [18], mostly for data prefetching [2,
16, 34] and speculating on data granularity [15, 17, 39].

Footprint Cache achieves high prediction accuracy by monitoring
the code that accesses data residing in the cache. The first instruc-
tion that accesses a page provides valuable information about the
data that the page contains and is a good indicator of future
accesses within that page [34], due to regular and repetitive layouts
of data structures. By observing which blocks the code further
accesses and by remembering that information, we can later pre-
dict, with high accuracy, which blocks will be demanded when
another page, possibly previously unvisited, is accessed by the
same piece of code [34].

Prediction based on the first instruction that accesses a page is
highly accurate provided that data structures always have the same
layout within a page. However, this is not necessarily the case for
all the workloads and page sizes. To account for various possible
data structure alignments across different pages, we base our pre-
diction mechanism not only on the instruction that caused the page
miss, but also on the distance between the requested block and the
beginning of the page, which we call offset. The combination of
PC and offset (noted as PC & offset) provides near-perfect predic-
tion accuracy at low overhead. Previous work has a detailed study
of other related prediction mechanisms and their trade-offs in the
context of data prefetching [34].

3.2 Capacity Optimization
Our analysis shows that a significant fraction of pages (more than a
quarter, on average) contain only a single useful block. Such pages
often account for the largest share of the pages in workloads with
low spatial locality. Moreover, we find that, on average, 95% of
these pages show no reuse in the DRAM cache, and therefore
waste capacity. We call such pages singleton pages. Footprint
Cache is able to identify such pages with almost perfect accuracy,
thanks to the fact that these pages are accessed by a single instruc-
tion, and obviously, with a single offset. Footprint Cache does not
allocate entries for such pages. The requested block is directly for-
warded to the higher cache level and its subsequent eviction is not
tracked. This mechanism increases the effective cache capacity
reusing the existing footprint prediction mechanisms. It avoids
eviction of useful pages, thus allowing for even higher hit ratios.
The optimization plays an important role at smaller cache sizes, for
which efficient use of cache capacity matters the most.

4. FOOTPRINT CACHE DESIGN
Footprint Cache tightly couples the footprint prediction mecha-
nism with the tag array. The footprint predictor uses the
information from the tag array to learn pages’ footprints, storing

Table 1. Comparison: block- & page-based designs.
Block-based Page-based

Small and fast tag storage
Low off-chip traffic

High hit ratio
Low hit latency

High DRAM locality
Efficient capacity management

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

5

the footprints into a history table upon page evictions and using the
footprint information upon page misses to fetch useful blocks. We
next detail the predictor design and its integration with the tag
array, and we further explain the prediction history management.

4.1 Footprint Cache Tag Array
Similar to page-based and sub-blocked caches, Footprint Cache
requires almost two orders of magnitude smaller tag arrays, which
can be kept within reasonably small SRAM storage. The tag array
is organized as a set-associative structure; set and way pairs
directly determine physical addresses of pages cached in DRAM.
The size of a page is selected to match commonly used DRAM
row sizes (e.g., 1-4KB),2 keeping in mind the impact on the predic-
tion accuracy and tag overhead. Similarly to sub-blocked caches,
Footprint Cache keeps two bit vectors to track valid and dirty
blocks, and a page-level valid bit (Figure 3). In the multicore sys-
tem we evaluate, the tag array is distributed into four tiles
organized in a page-interleaved fashion, each tile being responsible
for a partition of the DRAM cache. We use page-interleaved place-
ment in the Footprint Cache tag array for efficiency.3 Each tag tile
is attached to an on-chip memory controller that controls a 128-bit
TSV channel associated with the corresponding partition of the
DRAM cache. The only additional overhead introduced in the tag
array is a pointer that links pages to the prediction history
described in Section 4.2.

4.2 Prediction History
The prediction history, shared by all the tag tiles, is kept as a sepa-
rate tiled structure, called Footprint History Table (FHT). The FHT
is a set-associative structure indexed by PC & offset pairs, storing
predicted footprints for PCs & offsets that trigger page misses.
Each entry keeps a tag identifying the PC & offset key, while the
corresponding prediction information is kept as a bit vector, deter-
mining the footprint associated with the key [34]. The FHT size is
independent of the workload’s dataset, as it holds only a small
fraction of the workload’s instruction footprint, measured in kilo-
bytes. The FHT is updated upon every page eviction with the most
recent footprint generated during the page’s on-chip residency.

The FHT is accessed only in case the page containing a requested
address is not found in the cache. Upon a page miss, which we call
a triggering miss, the table is queried by the PC of the instruction
that caused the miss and the offset bits of the request address,
returning the predicted footprint. The triggering miss is served by

the off-chip memory and a page eviction takes place. If the PC &
offset pair exists in the FHT, which is the common case, the rest of
the blocks, encoded in the predicted footprint, are fetched from
memory, and a pointer to the FHT entry is stored in the tag entry. If
the FHT does not contain the PC & offset pair, which mostly hap-
pens at the beginning of the program execution, a new FHT entry
is allocated, and a pointer to the new FHT entry is stored in the tag
entry.

Upon a cache eviction, a bit vector containing the blocks that were
indeed demanded by the cores, is sent to the FHT, using the pointer
created during the allocation of the page. This bit vector gives
feedback to the prediction mechanism, correcting mispredictions if
any, and keeping the FHT in harmony with the workload’s execu-
tion phase. As we do not store the PC in the tag entry, but only the
pointer to the FHT entry, it is possible, although unlikely, that the
pointer becomes stale, as a result of an FHT eviction. While this
may affect prediction accuracy, we could not see any observable
impact. The reason is, unlike the cached data, the content of the
FHT is stable, therefore, such situations almost never happen.

For practical reasons, similar to the tag array, the FHT is designed
as a tiled structure, and its entries are distributed based on PC &
offset keys of incoming requests, not necessarily matching the dis-
tribution criterion for the tag tiles (physical addresses). The
mismatch can result in frequent accesses to neighboring FHT tiles.
However, this does not have any timing impact due to the FHT’s
negligible access latency, which is not on the critical path of mem-
ory accesses.

4.3 Footprint Generation
Blocks that are placed in the cache must be set to the valid state
regardless of whether they are demanded by a core or predicted by
the predictor. On the contrary, providing correct feedback to the
FHT requires a distinction between the blocks that are demanded
and the ones that are in the cache but were not demanded during
the page’s on-chip residency (overpredictions). Upon a core’s
request, whether a hit or a miss, the corresponding block should be
marked as demanded. To make this distinction possible without
additional storage, we reuse the existing valid and dirty bits to cre-
ate the block state encoding listed in Table 2.

We are able to achieve this encoding, because a block cannot be in
a dirty state if it has not been used by a core. The high order bits
for all block states together represent the demanded bit vector (i.e.,
the page’s footprint), used to update the FHT upon a page eviction.

2. The exact matching of the page size and DRAM row size is not
crucial for the proposed technique.
3. The placement policy in the upper-level caches, however, is not
affected by this design decision and can use either block- or page-
interleaving, with no observable performance difference for our
workloads. In this work we assume block-interleaving.

Request Address

Footprint

… …
01101110

11111111

PCtag index offset block

Tag v LRU Dirty Valid
01010101

Footprint History Table

01101110

Tag array

11111111 01000001

hash

01101110 00010001
… … … … … …

Tag

prediction tag index

Figure 3. Footprint Cache tag array and Footprint History Table (FHT).

Table 2. Block state encoding.
Dirty-Valid Bits Block State

00 the block is not in the cache
01 the block is valid, clean, not demanded yet
10 the block is valid, clean, was demanded
11 the block is valid, dirty, was demanded

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

6

4.4 Capacity Optimization
Footprint Cache increases the effective cache capacity by avoiding
allocation of singleton pages — i.e., pages with a single useful
block. In our design, if the footprint bit vector corresponding to a
missing PC & offset pair in the FHT has a single bit set, the corre-
sponding cache entry is allocated neither in the cache nor in the tag
array. Not allocating entries for singleton pages in the tag array
implies that the FHT would never receive feedback regarding its
single block predictions. Once a page is classified as singleton, it
would remain singleton until its FHT entry is evicted, regardless of
any mispredictions or changes in the application’s behavior.

To avoid this scenario, we add a small table, which is further parti-
tioned and co-located with the tag array tiles, called Singleton
Table (ST). In case the FHT predicts a singleton block, the page is
not allocated in the cache, but an ST entry is allocated, containing
the PC, offset, and the page tag. The ST is indexed by a page tag,
and only upon a page miss. Finding the tag in the ST, but with a
different offset, implies that there is a second access to a page that
was originally predicted to be a singleton page (underprediction).
In this case, the new tag and FHT entry is allocated with the PC &
offset information found in the ST, and the corresponding ST entry
is invalidated. An entry stays in the ST until a second access to the
page, or until its eviction. The ST has negligible overhead (3KB,
512 entries), but allows for more accurate and adaptive prediction
of singleton pages. This is important for smaller caches, where
pages could be misclassified as singleton due to their short on-chip
residency and capacity conflicts.

5. METHODOLOGY
We evaluate Footprint Cache in terms of performance, energy effi-
ciency, and hardware overhead in the context of high-throughput,
bandwidth-demanding scale-out processors, which can benefit
from the die stacking technology [26]. We compare Footprint
Cache to a state-of-the-art implementation of conventional block-
based DRAM caches as well as to page-based DRAM caches.

5.1 Baseline System
We evaluate Footprint Cache using scale-out processors. The
scale-out processor architecture splits the available chip resources
into multiple stand-alone servers, called pods [26], which are mul-
ticore configurations designed to match the needs of scale-out
workloads and deliver the highest throughput for given silicon

real-estate. A pod is a complete server that tightly couples a num-
ber of cores to a modestly-sized last-level cache using a fast
interconnect. Replicating the pod to fill the die area yields proces-
sors that have optimal performance density. Moreover, as each pod
is a stand-alone server, scale-out processors avoid the expense of
global (i.e., inter-pod) interconnect and coherence. These features
synergistically maximize throughput, lower design complexity,
and improve technology scalability. We model a chip in 20nm
technology with on-chip supply voltage of 0.85V, assuming area
and power budgets of 250mm2 and 105W, respectively. The chip
features six 16-core pods and six single-channel DDR3-1600 inter-
faces. Area and power estimates are measured by scaling down the
published data at 40/45nm process technology [12, 26], following
ITRS projections. Table 3 summarizes the parameters for the high-
est-performance baseline chip that can be designed under the area,
power, and bandwidth constraints described above [26].

5.2 DRAM Cache Organizations
Footprint Cache parameters are listed in Table 4. We use an open-
page policy both for the on-chip and off-chip DRAM, as our
design exhibits near-optimal data locality for off-chip DRAM, on-
chip DRAM fills and evictions, while data locality for on-chip
read/write requests is workload-dependent. We use 2KB pages and
2KB address-interleaving for on-chip memory channels. The FHT
has 16K entries (144KB) while the ST has 512 entries (3KB).

Block-based caches are modeled after a state-of-the-art proposal
that provides an elegant solution to tag handling, by co-locating
tags from one cache set with all the blocks in that set in the same
DRAM row [24]. For 2KB DRAM rows, it is possible to fit 29 64-
byte data blocks in one row, using the three remaining blocks for
the corresponding tags. A crucial optimization to avoid two
DRAM accesses per cache access includes intelligent memory
controller scheduling [24]. An access to a cache block involves a
single row activation, and one column activation signal (CAS) to
read the tags, a one-cycle tag lookup to determine the location of
the data block, another CAS to retrieve/write to the data block, and
a third CAS to write back the updated tags. The last CAS is
required as the tags must be updated, however, our evaluation does
not account for that latency, as we assume the algorithm can be re-
engineered to take the tag updates off the critical path.

The exact location of the requested block is stored in DRAM tags
and determined after the row activation. However, the presence of
the block in the cache is tracked by a compact structure called
MissMap, which keeps track of the cached data at 4KB granularity,
storing bit vectors that determine only the presence of blocks
within a page. If the requested block is found in MissMap, the
cache is accessed, otherwise the request is serviced by memory.
This optimization avoids unnecessary tag lookups in DRAM in
case of cache misses [24].

Table 3. Archtiectural parameters.

Technology 20nm, 0.85V, 3GHz

CMP features Scale-Out Processor with six 16-core pods

Core ARM Cortex-A15-like: 3-way OoO

L1-I/D caches 64KB, split, 64B blocks
2-cycle load-to-use

L2 cache per pod Unified, 4MB, 16-way, 64B blocks,
4 banks, 13-cycle hit latency

Interconnect per pod 16x4 crossbar

Off-chip DRAM

16-32 GB per pod,
6 DDR3-1600 channels, one per pod

Maximum bandwidth of 76.8GB/s per
chip, 8 banks per rank, 2KB row-buffer

Stacked DRAM
DDR3-3200 (1.6GHz bus frequency)

4 channels per pod, 8 banks per rank, 2KB
row-buffer, 128-bit bus width

tCAS-tRCD-tRP-tRAS
tRC-tWR-tWTR-tRTP

tRRD-tFAW

11-11-11-28
39-12-6-6

5-24

Table 4. Cache parameters.
Cache capacity (MB) 64 128 256 512

Footprint Cache
Tag storage (MB) 0.40 0.8 1.58 3.12

Tag latency (cycles) 4 6 9 11
Block-based cache

MissMap entries 192K 192K 192K 288K
MissMap storage (MB) 1.95 1.95 1.95 2.92
MissMap associativity 24 24 24 36

MissMap latency (cycles) 9 9 9 11
Page-based cache

Tag storage (MB) 0.22 0.44 0.86 1.69
Tag latency (cycles) 4 5 6 9

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

7

Table 4 lists the parameters we used for evaluation of the proposed
block-based DRAM cache. By dropping coherence bits from the
tags, we were able to achieve higher storage density with 30 data
blocks per DRAM row, and only two tag blocks, assuming ARM’s
extended 40-bit physical addressing. This also increased the cache
associativity from 29 to 30, and reduced the latency of tag
retrieval, which is on the critical path. Within proposed 2MB of
SRAM dedicated to MissMap [24], we were also able to fit more
MissMap entries. However, with larger cache capacity, we
observed performance degradation due to a high number of Miss-
Map evictions, which in return generate many dirty cache
evictions. Although this operation is not on the critical path, we
found that MissMap evictions interfere with regular read/write
cache requests as well as with cache fills of other blocks, contend-
ing for the same DRAM bank. The reason is that MissMap keeps
and evicts spatially consecutive blocks, which are all in different
cache sets, and therefore, in different DRAM rows, causing exces-
sive row activations. To avoid this situation, we increased the size
of the MissMap structure by 50% to evaluate 512MB caches.

We use close-page policy both for off-chip and on-chip DRAM, as
we found that it performs better due to absence of data locality, and
64-byte address interleaving between memory channels to increase
DRAM-level parallelism.

Page-based cache parameters are listed in Table 4. We use open-
page policy both for stacked and off-chip DRAM, as page-based
caches exhibit optimal data locality for off-chip DRAM, optimal
data locality in stacked DRAM for fills and evictions, while data-
locality for on-chip read/write requests is workload-dependent. We
use 2KB pages and 2KB address-interleaving for on-chip memory
channels.

Row-buffer management policies and address-mapping schemes
are chosen for each evaluated system separately to allow for opti-
mal performance and DRAM-level parallelism.

5.3 Workloads
Our scale-out workloads, which include Data Serving, MapRe-
duce, SAT Solver, Web Frontend, and Web Search, are taken from
CloudSuite 1.0 [3, 6]. Their memory footprints exceed the avail-
able memory, which is 16-32GB. As a reference, we also simulate
a multiprogrammed desktop workload that consists of SPEC
INT2006 applications using the reference input set. We run a mix
of different applications and inputs to utilize all available cores.

These workloads, when running on the baseline chip we consider,
have off-chip bandwidth of 0.6-1.6GB/s per core, or 60-150GB/s
for the whole chip. While today’s dominant server processors,
which integrate a handful of fat cores, are not able to utilize the
available bandwidth when running these workloads [6], our design
utilizes and even exceeds the bandwidth budget [26].

5.4 Simulation Infrastructure
We evaluate Footprint Cache using a combination of trace-driven
and cycle-accurate full-system simulations of a scale-out pod using
Flexus [37]. Flexus extends the Simics functional simulator with
timing models of out-of-order cores, caches, on-chip protocol con-
trollers, interconnect, and DRAM. Flexus models the SPARC v9
ISA and is able to run unmodified operating systems and applica-
tions. The details of the simulated architecture are listed in Table 3.

Our trace-based analyses use memory access traces collected from
Flexus with in-order execution, no memory system stalls, and a
fixed IPC of 1.0. For each workload, we collect a trace of 20-40
billion instructions per core and use half of the trace for warm-up
prior to collecting experimental results. For cycle-accurate simula-
tions, we use the SMARTS sampling methodology [38]. Our
samples are drawn over an interval of 10 seconds of simulated
time, with 400-800 equidistant measurements. For each measure-
ment, we launch simulations from checkpoints with warmed
caches and branch predictors, and run 300K cycles (2M cycles for
Data Serving) to achieve a steady state of detailed cycle-accurate
simulation prior to collecting measurements for the subsequent
150K cycles (400K for Data Serving). To measure the performance
of scale-out workloads, we use the ratio of the aggregate number
of application instructions committed (i.e., summed over the 16
cores) to the total number of cycles (including the cycles spent
executing operating system code); this metric has been shown to
accurately reflect overall system throughput [37]. For the multipro-
grammed workload, we calculate the IPC for each core
independently and report the geometric mean. Performance mea-
surements are computed at a 95% confidence level and an average
error below 3%. To model on-chip and off-chip DRAM perfor-
mance and power, we use two separately adapted and configured
instances of DRAMSim2 [31], parametrized with data borrowed
from commercial DDR3 device specifications. We report all
results for one 16-core pod.

6. RESULTS
6.1 Spatial Characterization
To understand the behavior of scale-out workloads in the context
of large caches, first, we examine their spatial characteristics.
Figure 4 shows the page density for each workload for a page size
of 2KB while varying the cache capacity. We define page density
as the number of demanded 64-byte blocks within the page.

Not only do scale-out workloads exhibit high page density, but
they also show increase in page density as the cache capacity
increases. This can be contributed to the longer on-chip residency
of pages, which at larger cache sizes reaches hundreds of millisec-
onds, leaving more time for data to be accessed within a page. As
the cache grows in capacity, the number of high-density pages
increases while the number of low-density pages decreases, result-

0%

25%

50%

75%

100%

64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512

MB MB

Data Serving MapReduce Multiprogrammed SAT Solver Web Frontend Web Search

Fr
ac

tio
n

of
 p

ag
es

1 Block 2-3 Blocks 4-7 Blocks 8-15 Blocks 16-31 Blocks 32 Blocks

Figure 4. Page access density as a function of cache capacity. Note the increase in page access density with the cache capacity.

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

8

ing in a bimodal distribution for some of the workloads. The
multiprogrammed desktop workload, on the contrary, does not
show a regular trend. Our analysis shows that a 512MB cache cap-
tures its working set, most of the dense pages being cache-resident,
while the pages that are constantly fetched and evicted exhibit
lower density.

The increase in page density with the cache capacity has an inter-
esting implication on the footprint predictor effectiveness.
Compared to the prior work [34] that uses a similar predictor to
prefetch into block-based L1 caches, our predictor is more effec-
tive due to (1) the higher prediction opportunity at this cache level
(more blocks to predict per each obligatory page miss), and (2) a
larger fraction of fully-accessed pages that are easier to identify
due to their simple access patterns (sequential accesses).

However, not all the workloads show high page density. In fact,
Figure 4 demonstrates wide variations in workloads’ spatial local-
ity. Thus, no single fetch unit size can simultaneously exploit the
available spatial locality while using bandwidth and storage effi-
ciently [34]. Among the workloads with lower page density, the
highest fraction of the pages are singleton pages, which only have
a single block accessed. While possibly reused in L1 and L2
caches, these blocks are rarely reused in the DRAM cache (less
than 5% of the time), resulting in high bandwidth and capacity
losses for page-based caches. Footprint Cache successfully detects
such pages and avoids their allocation in the cache.

The high degree of spatial locality observed in most of the scale-
out workloads implies that page-based caches achieve higher hit
ratios compared to the block-based ones; due to their large fetch
unit, they always experience a single miss per page. Unfortunately,
fetching whole pages is a brute-force approach to achieving high
hit ratios and it comes at an unacceptable bandwidth cost, which is
the most severe for low-density pages.

6.2 Coverage and Off-Chip Bandwidth
Footprint Cache learns and predicts the footprint of each page and
hence it is able to achieve high hit ratios and eliminate the fetch of
blocks that will not be accessed during the residency of the page in
the cache. Figure 5 compares Footprint Cache with block-based
and page-based caches in terms of the miss ratio (Figure 5a) and
bandwidth demands (Figure 5b). The bars are plotted in a stacked
fashion. For instance, the bar showing the miss ratio at 64MB for
Data Serving (Figure 5a) indicates that the miss ratio for the page-
based cache, Footprint Cache and block-based cache is 18% (white
part), 27% (white and light gray parts together) and 62% (white,
light gray and dark gray parts together), respectively. The same
representation is used in Figure 5b to represent the off-chip band-
width demands of the three cache organizations.

For all workloads, the page-based cache achieves up to an order of
magnitude lower miss ratio, as expected due to the high page
access density. The exception is MapReduce, which at 64 and
128MB shows very low page access density, giving the block-
based cache considerable capacity advantages. As expected, Foot-
print Cache always achieves a miss ratio close to the page-based
cache. Only SAT Solver, at smaller caches sizes, shows signifi-
cantly larger miss ratios compared to the page-based design, but
still performing better than the block-based design. The reason is
that SAT Solver performs symbolic execution as part of software
testing [3] and as such does not have a static, well-structured data-
set. On the contrary, it creates its dataset on-the-fly, throughout the
whole program execution, which interferes with the prediction
mechanism.

On the bandwidth side the situation is the reverse, as Figure 5b
demonstrates. The block-based cache achieves the lowest off-chip
traffic, while the page-based increases the off-chip traffic by up to
an order of magnitude compared to the baseline. Footprint Cache,
on the contrary, demands almost the same bandwidth as the block-
based design by eliminating most of the unnecessary traffic.

6.3 Performance
Figure 6 compares performance of the three cache designs at vari-
ous cache sizes for all workloads except Data Serving. We plot the
results for Data Serving in Figure 7 due to the large difference in
the scale, caused by the excessive bandwidth requirements of this
workload. The block-based design provides the greatest initial per-
formance boost at 64MB, which is mostly contributed to the
significant cut in off-chip traffic. However, the design fails to
deliver considerable further improvements, due to its high and
steady miss ratio, as shown in Figure 5a. The page-based design
initially suffers from a considerable performance loss due the
excessive off-chip traffic it causes. As the cache capacity
increases, it quickly recovers due to fewer misses and decreased
pressure on off-chip bandwidth. On the contrary, Footprint Cache
shows steady performance improvement across all cache sizes,
outperforming the other two designs, consistently matching our
findings from Figure 5. For some of the workloads, we observe a
slight advantage of the block-based design over Footprint Cache at
smaller cache sizes, due to its superior capacity management.

As the stacked DRAM cache requires on-chip SRAM storage for
the tags (under 2MB for the 512MB stacked cache), we also con-
sider a baseline system with additional L2 capacity to compensate
for the difference in total on-chip storage. This enhanced baseline
provides negligible benefit on scale-out workloads, as expected
based on earlier research results [6, 26].

Across all workloads, Footprint Cache is able to deliver 82% of the

0

15

30

45

60

75

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

Data Map Multipro- SAT Web Web

Serving Reduce grammed Solver Frontend Search

D
R

AM
 C

ac
he

 M
is

s
R

at
io

 (%
)

Page Footprint Block

0

1

2

3

4

5

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

Data Map Multipro- SAT Web Web

Serving Reduce grammed Solver Frontend Search

O
ff-

ch
ip

 B
an

dw
id

th
(n

or
m

al
iz

ed
 to

 B
as

el
in

e) Page Footprint Block
9.1 5.2

Figure 5. (a) Miss ratio and (b) off-chip bandwidth requirements (normalized to a baseline system without a DRAM cache) of
block-based, Footprint, and page-based cache organizations.

(a) (b)

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

9

system performance of an Ideal cache — i.e., a cache that never
misses and has no tag overheads (die-stacked main memory).

6.4 Sensitivity to Page Size and History Size
Figure 8 compares the predictor accuracy assuming various page
sizes, showing a fraction of the blocks that are successfully pre-
dicted, the blocks that are not predicted (underpredictions), and the
blocks that are overpredicted. While for most of the workloads
1KB and 2KB pages are the best options, larger pages might be
desirable as they provide further tag storage reduction. Larger
pages, however, require larger footprint history, due to an increase
in number of PC & offset combinations per instruction. In this
work, we find 2KB to be the sweet spot, considering the trade-off
between the accuracy and storage overheads.

Because the Footprint Cache prediction mechanism relies on the
missing instruction, its history storage requirements are indepen-
dent of the dataset size. The prediction history, captured by the
FHT, contains only the fraction of the application’s instruction
working set that causes page misses in the DRAM cache. Thus, its
size is small and its content is stable. Figure 9 illustrates the Foot-
print Cache hit ratio sensitivity to the number of history entries. In
this work we assume 16K FHT entries, which require 144KB of
SRAM storage, but other trade-offs are possible with, as Figure 9
shows, minimal performance impacts.

6.5 Impact of Capacity Optimization
As we can see from Figure 4, singleton pages account for a quarter
of the pages in the cache, on average. Their elimination allows for
a proportionate increase in the effective cache capacity, ultimately
resulting in a 10% reduction in the miss rate, on average. The miss
rate reduction is in accordance with our observation that miss rates
for scale-out workloads follow a power low [10] (the miss rate-
capacity relationship can be also estimated from Figure 5).

6.6 Energy Implications
Figure 10 compares various designs in terms of dynamic off-chip
DRAM energy. All the cache designs use 256MB of DRAM cache.
Because the systems differ in performance, and therefore, in the

rate at which they access off-chip memory, we present the energy
per instruction normalized to the baseline system without a cache.
The dynamic energy is broken down into activate/precharge
energy, burnt for DRAM row manipulations, and burst energy,
spent on reads and writes.

All designs achieve significant energy reduction compared to the
baseline system. As expected, the page-based design burns the
most burst energy due to its high off-chip traffic per instruction.
However, the page-based design exhibits the best DRAM access
locality and the highest row-buffer hit ratio, significantly reducing
the activate/precharge energy. On the contrary, the block-based
design consumes the lowest burst energy due to its low off-chip
traffic. However, as almost every read results in a row opening,
they exhibit very high activate/precharge energy, which dominates
the total dynamic energy.

Footprint Cache delivers the lowest off-chip DRAM energy per
instruction. In particular, Footprint Cache is able to reduce both
activate/precharge and burst energy thanks to its page organization
and its high prediction accuracy, which allows for reducing off-
chip traffic significantly. Across all workloads, Footprint Cache
reduces the total dynamic off-chip DRAM energy of the baseline
by 78%, whereas the block-based and page-based designs reduce
the energy by 71% and 69%, respectively.

-46

Multiprogrammed SAT Solver

-25%

0%

25%

50%

75%
Pe

rf
or

m
an

ce
 Im

pr
ov

em
en

t MapReduce

-59

Web Search

64MB 128MB 256MB 512MB
-25%

0%

25%

50%

75%

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Web Frontend

64MB 128MB 256MB 512MB 64MB 128MB 256MB 512MB

Geomean

Baseline (6MB) Block-based Page-based Footprint Ideal

Figure 6. Performance improvement of various designs over the baseline system.

-50%

0%

50%

100%

150%

200%

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Baseline (6MB)

Block-based

Page-based

Footprint

Ideal

220 230 312

Data Serving

64MB 128MB 256MB 512MB

Figure 7. Performance improvement of various designs over
the baseline system for Data Serving.

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

10

We observe similar trends in stacked DRAM energy consumption.
Figure 11 plots stacked DRAM energy consumption for various
die-stacked designs normalized to the block-based design. Not sur-
prisingly, the savings in activate/precharge energy for the page-
based and Footprint Cache are not as low as in off-chip DRAM,
despite the excellent row-buffer locality of cache fills and evic-
tions. The reason is that regular read/write requests show much
fewer row-buffer hits for majority of the workloads. Overall, Foot-
print Cache reduces the total dynamic DRAM energy by 24%
compared to the block-based design, whereas the page-based
achieves only a 17% reduction.

6.7 Other Page-Based Proposals
We evaluated a recently proposed page-based cache system [13]
that tracks the topmost accessed pages, called hot pages, that con-
tribute to 80% of the total accesses. Only pages predicted to be hot
are allocated in the cache and fetched at page granularity. The pre-
diction is based on the previous history of each page’s behavior.
The idea behind this approach is that only a small fraction of pages
contribute to the majority of cache accesses. However, we could
not make the same observation with scale-out workloads due to
their vast data set, most of which is randomly distributed across
memory, without forming a particular working set. Previous work
also noted the same problem [24]. Figure 12 plots the amount of
cache needed to capture a desired fraction of total accesses, assum-
ing a perfect predictor and an ideal cache replacement policy and
4KB pages (4KB was found to be the optimal page size [13]). As
we can see, even in the idealized case, to capture 80% of the pages
we need caches over 1GB. While the proposed mechanism does
not work well for our workloads, we find this work important and
believe the idea of page-level filtering has a lot of potential for
many applications, if equipped with a predictor that is dataset-

independent, such as instruction-based ones. In fact, Footprint
Cache uses a similar approach to eliminate singleton pages.

7. DISCUSSION
Footprint Cache and coherence. To facilitate the shared memory
programming model, contemporary server processors provide
hardware-enforced coherence at the chip level. Existing designs
enforce coherence at the last-level of the on-chip SRAM cache.
Given this organization, the addition of the Footprint Cache does
not entail any modifications to the underlying coherence protocol
and implementation, as it sits below the level at which coherence is
enforced.

In systems with multiple sockets, Footprint Cache can easily pro-
vide page-level coherence tracking [1] by extending tag entries
with per-page coherence bits. Tracking coherence at fine granular-
ity across sockets is not necessary for server workloads as they
share little or no data [6, 9].

Transfer of PC. Footprint Cache relies on the knowledge of
instructions that cause page misses. Such information is typically
not available in the last-level cache. Therefore, our design must
transfer the PC information along with read/write requests through
the on-chip network [36]. Because Footprint Cache does not track
evictions from the higher-level cache, it does not need to store PC
information at any cache level. The transfer of PC information via
the on-chip network has no performance implications due to the
underutilization of the network [35]. Such transfers, however, do
have energy implications. We find that PC transfers increase the
on-chip network power by 30mW per pod in the worst case, which
is a negligible overhead.

0%
25%
50%
75%

100%
125%
150%

10
24

20
48

40
96

10
24

20
48

40
96

10
24

20
48

40
96

10
24

20
48

40
96

10
24

20
48

40
96

10
24

20
48

40
96

Data Map Multipro- SAT Web Web

Serving Reduce grammed Solver Frontend Search

Pr
ed

ic
to

r A
cc

ur
ac

y
Covered Underpredictions Overpredictions

Figure 8. Predictor accuracy sensitivity to the page size, for a
256MB cache with 16K FHT entries.

75

80

85

90

95

100

H
it

R
at

io
 (%

)

Number of FHT entries

Data Serving
MapReduce
Multiprogrammed
SAT Solver
Web Frontend
Web Search

Figure 9. Hit ratio sensitivity to the history size. The DRAM
cache capacity is 256MB and the page size is 2KB.

0%

20%

40%

60%

80%

100%

Ba
se

lin
e

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Ba
se

lin
e

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Ba
se

lin
e

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Ba
se

lin
e

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Ba
se

lin
e

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Ba
se

lin
e

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Ba
se

lin
e

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Data Map Multipro- SAT Web Web Geomean

Serving Reduce grammed Solver Frontend Search

O
ff-

ch
ip

 D
R

AM
 E

ne
rg

y
pe

r I
ns

t.
(n

or
m

al
iz

ed
 to

 B
as

el
in

e)

Activate/Precharge Read/Write

Figure 10. Off-chip DRAM dynamic energy per instruction
normalized to the baseline system.

0%

20%

40%

60%

80%

100%

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Bl
oc

k
Pa

ge
Fo

ot
pr

in
t

Data Map Multipro- SAT Web Web Geomean

Serving Reduce grammed Solver Frontend Search

St
ac

ke
d

 D
R

AM
 E

ne
rg

y
pe

r I
ns

t.
(n

or
m

al
iz

ed
 to

 B
lo

ck
-b

as
ed

) Activate/Precharge Read/Write

Figure 11. Stacked DRAM dynamic energy per instruction
normalized to the block-based design.

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

11

Other processor architectures. We evaluated Footprint Cache in
the context of scale-out processors [25, 26]. However, our design
is not limited to such an organization. In fact, any many-core chip
design that stresses off-chip bandwidth (e.g., Tilera TILE100)
would yield similar results. In contrast, processor designs with a
handful of large cores (e.g., Intel Westmere) would see less benefit
from die-stacked caches as they cannot utilize the available mem-
ory bandwidth due to their low degree of on-chip parallelism [6].

Cache capacity. In this work we covered die-stacked DRAM
caches ranging from 64-512MB per pod (up to 3GB per chip).
However, the datasets of these workloads are scaled down from
hundreds of gigabytes to tens of gigabytes to allow for practical
full-system simulation. Because miss rates for server workloads
follow a power law [10], which we verified for these workloads,
the observed miss rate curve will shift to the right for larger datas-
ets. This means that the simulated cache sizes correspond to an
order of magnitude larger caches in an industrial-strength setup.

SRAM area overhead. All the designs we discussed, including
Footprint Cache, impose a multimegabyte SRAM overhead for
tags and other metadata. We assume this area overhead will be
compensated by the reduction in the number of off-chip memory
channels, for all designs except the page-based, which exacerbates
bandwidth demands.

Footprint Cache in non-3D systems. We evaluated Footprint
Cache in the context of die-stacked DRAM. However, nothing in
this work is 3D-specific, and our design and conclusions remain
valid for other forms of high-bandwidth low-latency on-chip
DRAM, such as eDRAM [32] or systems integrated via silicon
interposer [4].

8. RELATED WORK
Die stacking has been recognized as a powerful technology, thus
many researches have tried to exploit the advantages it provides
and address the challenges it imposes [8, 27], assuming die-
stacked DRAM in form of a main memory [11, 14, 20, 21], DRAM
cache [13, 22, 23, 24, 29, 40], or assuming a heterogeneous, or a
software-managed extension to off-chip main memory [5]. Other
researchers also looked at off-chip DRAM caches for systems with
non-volatile main memory [5, 28].

Woo et al. explore spatial locality of desktop applications, con-
cluding that large cache blocks in L2 caches boost performance
better than conventional prefetchers, if supported with a high-den-
sity TSV bus [11]. Jiang et al. arrived at a similar conclusion for
DRAM caches [13]. While most of the researchers agree that large
cache blocks are beneficial for overall performance for systems
that are not bandwidth-constrained [7, 11, 13], many of them pro-
posed filtering unused data. Lin et al. proposed filtering of unused

data coming from aggressive prefetchers [19].

Instruction-based predictors are used extensively in data prefetch-
ing [2, 34], dead-block prediction [18], last-write prediction [36],
traffic reduction in networks-on-chip [15], and on-chip and off-
chip fetch granularity speculation [17, 39]. Our work is conceptu-
ally similar to the work of Kumar and Wilkerson [16], who used a
similar predictor based on spatial footprints to predict and fetch
only useful words within an L1 cache block, and store such words
in a decoupled sectored cache [33]. Their predictor, though, relies
on the missing instruction and the full missing address, requiring
larger history storage and covering only previously accessed data.

9. CONCLUSION
In this paper we presented Footprint Cache, a cache architecture
that combines the best aspects of current die-stacked DRAM cache
designs, which fall short of achieving the potential of the die-
stacking technology. Footprint Cache fully exploits abundant spa-
tial locality of scale-out applications observed in large DRAM
caches, without introducing unnecessary off-chip and on-chip traf-
fic. Footprint Cache is able to achieve the hit ratio of page-based
designs and stay within the bandwidth requirements of the block-
based ones, while fully preserving on-chip and off-chip DRAM
locality. Furthermore, the small tag array overhead makes Foot-
print Cache practical for implementation.

Using full-system, cycle-accurate simulation of scale-out server
platforms, we demonstrated that Footprint Cache delivers 57%
performance improvement on average, outperforming existing
designs, while reducing off-chip DRAM dynamic energy by 78%
compared to the baseline system and reducing stacked DRAM
dynamic energy by 24% compared to state-of-the-art.

10. ACKNOWLEDGMENTS
The authors would like to thank Boris Grot, Cansu Kaynak, mem-
bers of the PARSA lab at EPFL and the anonymous reviewers for
their insightful feedback on earlier drafts of this paper. This work
was partially supported by EuroCloud, Project No 247779 of the
European Commission 7th RTD Framework Programme — Infor-
mation and Communication Technologies: Computing Systems.
The authors thank the EuroCloud project partners for their support.

11. REFERENCES
[1] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving multi-

processors performance with coarse-grain coherence tracking.
In Proceedings of the 32nd International Symposium on
Computer Architecture, May 2005.

[2] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. Accu-
rate and complexity-effective spatial pattern prediction. In
Proceedings of the 10th International Symposium on High
Performance Computer Architecture, Feb. 2004.

[3] CloudSuite 1.0. http://parsa.epfl.ch/cloudsuite.
[4] Y. Deng and W. Maly. Interconnect characteristics of 2.5-D

system integration scheme. In Proceedings of the Interna-
tional Symposium on Physical Design, Apr. 2001.

[5] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi.
Simple but effective heterogeneous main memory with on-
chip memory controller support. In Proceedings of the 2010
International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov. 2010.

[6] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the clouds: A study of
emerging scale-out workloads on modern hardware. In
Proceedings of the 17th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Mar. 2012.

0

250

500

750

1000

0 20 40 60 80

Id
ea

l C
ac

he
 S

iz
e

(M
B

)

Fraction of Covered Accesses (%)

Data Serving
MapReduce
Multiprogrammed
SAT Solver
Web Frontend
Web Search

Figure 12. Minimum size of an ideal cache needed to cover a
given fraction of cache accesses.

In Proceedings of the 40th International Symposium on Computer Architecture (ISCA 2013)

12

[7] P. A. Franaszek, L. A. Lastras-Montan, S. R. Kunkel, and
A. C. Sawdey. Victim management in a cache hierarchy. IBM
Journal of Research and Development, 50(4/5):507–523, Jul-
Sep. 2006.

[8] M. Ghosh and H.-H. S. Lee. Smart refresh: An enhanced
memory controller design for reducing energy in conventional
and 3D die-stacked DRAMs. In Proceedings of the 40th Inter-
national Symposium on Microarchitecture, Dec. 2007.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Reactive NUCA: Near-optimal block placement and replica-
tion in distributed caches. In Proceedings of the 36th
International Symposium on Computer Architecture, Jun.
2009.

[10] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31(4):6–15, Jul-
Aug. 2011.

[11] D. Hyuk Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee.
An optimized 3D-stacked memory architecture by exploiting
excessive, high-density TSV bandwidth. In Proceedings of the
16th International Symposium on High Performance
Computer Architecture, Jan. 2010.

[12] ITRS. http://www.itrs.net/Links/2011ITRS/Home2011.htm.
[13] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,

D. Newell, Y. Solihin, and R. Balasubramonian. Chop: Adap-
tive filter-based DRAM caching for CMP server platforms. In
Proceedings of the 16th International Symposium on High
Performance Computer Architecture, Jan. 2010.

[14] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski,
T. Mudge, S. Reinhardt, and K. Flautner. PicoServer: Using
3D stacking technology to enable a compact energy efficient
chip multiprocessor. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.

[15] H. Kim, P. Ghoshal, B. Grot, P. V. Gratz, and D. A. Jimenez.
Reducing network-on-chip energy consumption through
spatial locality speculation. In Proceedings of the 5th Interna-
tional Symposium on Networks-on-Chip, May 2011.

[16] S. Kumar and C. Wilkerson. Exploiting spatial locality in data
caches using spatial footprints. In Proceedings of the 25th
International Symposium on Computer Architecture, Jun.
1998.

[17] S. Kumar, H. Zhao, A. Shriraman, E. Matthews,
S. Dwarkadas, and L. Shannon. Amoeba-cache: Adaptive
blocks for eliminating waste in the memory hierarchy. In
Proceedings of the 45th International Symposium on Microar-
chitecture, Dec. 2012.

[18] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction &
dead-block correlating prefetchers. In Proceedings of the 28th
International Symposium on Computer Architecture, Jun.
2001.

[19] W.-F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak.
Filtering superfluous prefetches using density vectors. In
Proceedings of the 19th International Conference on
Computer Design, Sep. 2001.

[20] C. Liu, I. Ganusov, and M. Burtscher. Bridging the processor-
memory performance gap with 3D IC technology. IEEE
Design & Test of Computers, Nov-Dec. 2005.

[21] G. H. Loh. 3D-stacked memory architectures for multi-core
processors. In Proceedings of the 35th International Sympo-
sium on Computer Architecture, Jun. 2008.

[22] G. H. Loh. Extending the effectiveness of 3D-stacked DRAM
caches with an adaptive multi-queue policy. In Proceedings of
the 42nd International Symposium on Microarchitecture, Dec.
2009.

[23] G. H. Loh and M. D. Hill. Efficiently enabling conventional
block sizes for very large die-stacked DRAM caches. In
Proceedings of the 44th International Symposium on Microar-
chitecture, Dec. 2011.

[24] G. H. Loh and M. D. Hill. Supporting very large DRAM
caches with compound access scheduling and MissMaps.
IEEE Micro, 32(3):70 –78, May-Jun. 2012.

[25] P. Lotfi-Kamran, B. Grot, and B. Falsafi. NOC-Out: Microar-
chitecting a scale-out processor. In Proceedings of the 45th
International Symposium on Microarchitecture, Dec. 2012.

[26] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,
O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji,
E. Ozer, and B. Falsafi. Scale-out processors. In Proceedings
of the 39th International Symposium on Computer Architec-
ture, Jun. 2012.

[27] N. Madan, L. Zhao, N. Muralimanohar, A. Udipiu,
R. Balasubramonian, R. Iyer, S. Makineni, and D. Newell.
Optimizing communication and capacity in a 3D stacked
reconfigurable cache hierarchy. In Proceedings of the 15th
International Symposium on High Performance Computer
Architecture, Feb. 2009.

[28] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan.
Enabling efficient and scalable hybrid memories using fine-
granularity DRAM cache management. In Computer Archi-
tecture Letters, Feb. 2012.

[29] M. Qureshi and G. H. Loh. Fundamental latency trade-offs in
architecting DRAM caches. In Proceedings of the 45th Inter-
national Symposium on Microarchitecture, Dec. 2012.

[30] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and
Y. Solihin. Scaling the bandwidth wall: challenges in and
avenues for CMP scaling. In Proceedings of the 36th Interna-
tional Symposium on Computer Architecture, Jun. 2009.

[31] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A
cycle accurate memory system simulator. Computer Architec-
ture Letters, 10(1):16 –19, Jan-Jun. 2011.

[32] V. Salapura, J. Brunheroto, F. Redigolo, and A. Gara.
Exploiting eDRAM bandwidth with data prefetching. In
Proceedings of the International Conference on Computer
Design, Oct. 2007.

[33] A. Seznec. Decoupled sectored caches: Conciliating low tag
implementation cost and low miss ratio. In Proceedings of the
21st International Symposium on Computer Architecture,
Apr. 1994.

[34] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Spatial memory streaming. In Proceedings of
the 33rd International Symposium on Computer Architecture,
Jun. 2006.

[35] S. Volos, C. Seiculescu, B. Grot, N. Khosro Pour, B. Falsafi,
and G. De Micheli. CCNoC: Specializing on-chip intercon-
nects for energy efficiency in cache-coherent servers. In
Proceedings of the 6th International Symposium on Networks-
on-Chip, May 2012.

[36] Z. Wang, S. M. Khan, and D. A. Jimenez. Improving write-
back efficiency with decoupled last write prediction. In
Proceedings of the 39th International Symposium on
Computer Architecture, Jun. 2012.

[37] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. Simflex: Statistical sampling of
computer system simulation. IEEE Micro, 26:18–31, Jul-Aug.
2006.

[38] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In Proceedings of the 30th Inter-
national Symposium on Computer Architecture, Jun. 2003.

[39] D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez. The
dynamic granularity memory system. In Proceedings of the
39th International Symposium on Computer Architecture, Jun.
2012.

[40] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring
DRAM cache architectures for CMP server platforms. In
Proceedings of the 25th International Conference on
Computer Design, Oct. 2007.

