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Evidence for a nonlinear coupling between �ring threshold
and subthreshold membrane potential
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Standard GIF models do not capture f-I curves of 
somatosensory L5 pyramidal neurons

Why a nonlinear coupling between the mem-
brane potential and the �ring threshold?

The �ring threshold depends on the membrane 
potential derivative

(Platkiewicz and Brette, PLOS Comp. Biol.  2011)

Spiking Neuron Model

Functional implications
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C ˙V = −gL(V − EL) + Iext −
∑

t̂j<t

η(t− ˆtj)

λ(t) = λ0 exp

(
V (t)− VT (t)

∆V

)

τθ ˙θ = −θ + fθ(V )

VT (t) = V ∗
T + θ(t) +

∑

t̂j

γ(t− ˆtj)

Spikes are emitted stochastically according to 
the escape rate mechanism.

Each spike triggers both a movement of the 
�ring threshold and an adaptation current.

A nonlinear coupling between the membrane 
potential and the �ring threshold constitutes a 
source of feed-foreward subthreshold adapta-
tion.
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In a rate-based framework, individual neurons 
are often characterized by f-I curves: functions 
that map constant inputs onto steady-state 
output rates. While the experimentally ob-
served f-I curves of fast spiking interneurons 
are in good agreement with the ones predicted 
by generalized integrate-and-�re (GIF) models, 
the same is not true for excitatory pyramidal 
neurons. 

To solve this issue, we propose a model in 
which a subthreshold adaptation mechanism 
complements spike-dependent adaptation.  
This mechanism implements a nonlinear cou-
pling between the �ring threshold and the 
membrane potential. Importantly, all the 
model parameters, including the timescale and 
the functional shape of the nonlinear coupling, 
are not assumed a priori but are extracted from 

in vitro recordings using a convex optimization 
procedure. 

Our results demonstrate that the �ring threshold 
and the subthreshold membrane potential are 
indeed nonlinearly coupled. This mechanism, 
consistent with subthreshold Na+-channel inacti-
vation, operates on a relatively short timescale (5 
ms) and makes the �ring threshold dependent 
on the speed at which the threshold is ap-
proached.

The precise shape of the nonlinear coupling ex-
tracted from the experimental data accounts for 
both the saturation and the noise sensitivity that 
characterize f-I curves of pyramidal neurons. 
Moreover, the model predicts the occurrence of 
individual spikes with millisecond precision.
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Parameters extracted from in vitro recordings

Following the approximation used to reduce the 
HH model to the EIF model:

The e�ective threshold is therefore:

C ˙V = gLkah exp

(
V − VT

ka

)
+ . . .

τh ˙h = −h+ h∞(V )

τθ ˙θ = −θ + θ∞(V )

θ = VT − ka log(h)

And its dynamics can be approximated by:

m∞(V )

θ∞(V ) = VT − ka log(h∞(V ))

h∞(V )
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All model parameters are extracted from intracellular recordings using a new �tting procedure. Any 
a priori assumption is made on the functional shape of the di�erent �lters. The results reveal a strong 
coupling between the subthreshold membrane potential and the �ring threshold.
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Spike-timing prediction

Nonlinear coupling:
smooth rectifier (Brette)

Nonlinear coupling:
‘model free’ (rectangular basis functions)
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The model not only predicts the mean �ring rate observed in response to stationary inputs, but is also 
able to account for occurence of individual spikes with millisecond precision.
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In rat prefrontal cortex (PFC), pyramidal neurons saturate at low 
rates and retain sensitivity to current �uctuations (Arsiero et al., 
2007).

In PFC, during working memory tasks, certain neurons show  
persistent activity. This phenomeon is usually interpreted as a 
bistability of the network. However, it is problematic to account 
for the high variability (high CV) observed during persistent ac-
tivity. 

Compared to standard LIF models, the nonlinear coupling be-
tween membrane potential and �ring threshold might explain, 
at least partially, the high variability observed in vivo.


