Evolution of the Aerodynamic Stability of an Oscillating Annular Compressor Cascade with Inlet Reverse Flow Condition Variations

While the advancement of computing hardware now enables accurate predictions of flutter and forced response at normal flow conditions during the compressor design phase, aeroelastic computations at off-design or reverse flow conditions remain a challenging task. During the flow reversal sequence of a surge cycle, complex aerodynamics occur which make the accurate prediction of the unsteady forces acting on the blades difficult to assess. The main objective of this study is to increase the physical understanding of the unsteady contributions acting on the blades during the reverse flow sequence of a typical deep surge cycle. The approach adopted consisted in performing aeroelastic investigations on an annular compressor cascade at established reverse flow conditions. The cascade blades were equipped with unsteady pressure transducers and were excited to controlled oscillations in travelling wave mode. In this paper, the blade surface fluctuating pressures recorded are analyzed for different flow operating conditions. The measurements enable the determination of the blade aerodynamic stability as well as the identification and characterization of the unsteady physical mechanisms present during the surge blow-down phase.

Backman, Jari
Bois, Gérard
Leonard, Olivier
Published in:
10th European Conference on Turbomachinery, 907-916
Presented at:
ETC10 - 10th European Conference on Turbomachinery, Lappeenranta, FI, April 14-19, 2013
Lappeenranta, FI, Lappeenranta University of Technology

Note: The status of this file is: EPFL only

 Record created 2013-04-21, last modified 2020-08-31

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)