
ABC: Algebraic Bound Computation for Loops

Régis Blanc Thomas A. Henzinger Thibaud Hottelier Laura Kovács
EPFL IST Austria UC Berkeley TU Vienna

Introduction
ABC Design

Formalization
Experiments
Conclusion

What Is ABC?

I Automatically computes an algebraic relation among iteration
variables of a loop

I Can then derive iteration bound of the loop

I Works for any level of nested loops

I Only works on specific shape of loops

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 2/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

What Is ABC?

I Automatically computes an algebraic relation among iteration
variables of a loop

I Can then derive iteration bound of the loop

I Works for any level of nested loops

I Only works on specific shape of loops

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 2/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

What Is ABC?

I Automatically computes an algebraic relation among iteration
variables of a loop

I Can then derive iteration bound of the loop

I Works for any level of nested loops

I Only works on specific shape of loops

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 2/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

What Is ABC?

I Automatically computes an algebraic relation among iteration
variables of a loop

I Can then derive iteration bound of the loop

I Works for any level of nested loops

I Only works on specific shape of loops

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 2/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Motivations

I Some real-time systems need to prove an upper bound time of
their computation

I Can be used to prove termination

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 3/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Application: Matrix Linearization

for i = 1 to n do
for j = 1 to n do

M[i ,j] = i + j
end for

end for

−→

for i = 1 to n do
for j = 1 to n do

A[(i - 1)n + j] = i + j
end for

end for

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 4/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

An Example

z = 1
for i = 1 to n do

for j = 1 to n do
z = z + 1

end for
end for

I Z-relation:
z = (i − 1)n + j

I Iteration bound:
n2

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 5/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

An Example

z = 1
for i = 1 to n do

for j = 1 to n do
z = z + 1

end for
end for

I Z-relation:
z = (i − 1)n + j

I Iteration bound:
n2

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 5/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

An Example

z = 1
for i = 1 to n do

for j = 1 to n do
z = z + 1

end for
end for

I Z-relation:
z = (i − 1)n + j

I Iteration bound:
n2

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 5/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Another Example

z = 1
for i = 0; i ≤ n; i = i + 1 do

for j = 0; j ≤ m; j = j + 2 do
z = z + 1

end for
end for

I Z-relation:

z = 1 +

⌊
j

2

⌋
+ i

(⌊m

2

⌋
+ 1

)
I Iteration bound:

1 + (1 + n)
⌊m

2

⌋
+ n

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 6/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Another Example

z = 1
for i = 0; i ≤ n; i = i + 1 do

for j = 0; j ≤ m; j = j + 2 do
z = z + 1

end for
end for

I Z-relation:

z = 1 +

⌊
j

2

⌋
+ i

(⌊m

2

⌋
+ 1

)

I Iteration bound:

1 + (1 + n)
⌊m

2

⌋
+ n

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 6/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Another Example

z = 1
for i = 0; i ≤ n; i = i + 1 do

for j = 0; j ≤ m; j = j + 2 do
z = z + 1

end for
end for

I Z-relation:

z = 1 +

⌊
j

2

⌋
+ i

(⌊m

2

⌋
+ 1

)
I Iteration bound:

1 + (1 + n)
⌊m

2

⌋
+ n

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 6/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

ABC Structure

ABC relies on three modules:

I Bound Computer

I Loop Converter

I Symbolic Solver

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 7/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

ABC Overall Workflow

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 8/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Bound Computer

I Works on a special class of loop: ABC-loops

I Computes a polynomial relation over loop variables: z-relation

I Core part of ABC

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 9/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Bound Computer On An Example

z = 1
for i = 1 to n do

for j = 1 to m do
z = z + 1

end for
end for

−→

z = 1
for i = 1 to n do

z = z +
∑m

k=1 1
end for

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 10/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Bound Computer On An Example

Solving the sum:
z = 1
for i = 1 to n do

for j = 1 to m do
z = z + 1

end for
end for

−→

z = 1
for i = 1 to n do

z = z + m
end for

Recurrence relation for the value zi of z at iteration i :

zi = zi−1 + m

With z1 = 1, we get:

zi = 1 +
i−1∑
k=1

m = 1 + (i − 1)m

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 11/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Bound Computer On An Example

Apply recursively the method on the loop:
z = 1
for i = 1 to n do

for j = 1 to m do
z = z + 1

end for
end for

−→

z = 1 + (i − 1)m
for j = 1 to m do

z = z + 1
end for

Recurrence relation of zj :
zj = zj−1 + 1

With z1 = 1 + (i − 1)m, we get:

zj = 1 + (i − 1)m +

j−1∑
k=1

1 = (i − 1)m + j

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 12/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Bound Computer On An Example

z = 1
for i = 1 to n do

for j = 1 to m do
z = z + 1

end for
end for

Thus we obtain the z-relation:

z = (i − 1)m + j

Substituting i by n and j by m, we get the iteration bound:

nm

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 13/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Why A Loop Converter?

I The preceding algorithm only works on the ABC-loops.

I Transforms, whenever possible, a loop into its equivalent
ABC-loop.

I Loop that starts from an arbitrary expression
I Loop with each of its iteration variables incremented by one

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 14/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Why A Loop Converter?

I The preceding algorithm only works on the ABC-loops.
I Transforms, whenever possible, a loop into its equivalent

ABC-loop.

I Loop that starts from an arbitrary expression
I Loop with each of its iteration variables incremented by one

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 14/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Why A Loop Converter?

I The preceding algorithm only works on the ABC-loops.
I Transforms, whenever possible, a loop into its equivalent

ABC-loop.
I Loop that starts from an arbitrary expression

I Loop with each of its iteration variables incremented by one

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 14/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Why A Loop Converter?

I The preceding algorithm only works on the ABC-loops.
I Transforms, whenever possible, a loop into its equivalent

ABC-loop.
I Loop that starts from an arbitrary expression
I Loop with each of its iteration variables incremented by one

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 14/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Yet Another Example

z = 1
for i = 0; i ≤ n; i = i + 1 do

for j = 0; j ≤ m; j = j + 2 do
z = z + 1

end for
end for

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 15/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Yet Another Example

z = 1
for i = 0; i ≤ n; i = i + 1 do

for j ′ = 0; j ′ ≤
⌊

m
2

⌋
; j ′ = j ′ + 1 do

z = z + 1
end for

end for

With:
j = 2j ′

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 16/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Yet Another Example

z = 1
for i ′ = 1; i ′ ≤ n + 1; i ′ = i ′ + 1 do

for j ′′ = 1; j ′′ ≤
⌊

m
2

⌋
+ 1; j ′′ = j ′′ + 1 do

z = z + 1
end for

end for

With:
j = 2j ′ ∧ j ′ = j ′′ − 1 ∧ i = i ′ − 1

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 17/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer
Loop Converter
Symbolic Solver

Symbolic Solver

I We built our own symbolic solver:
I Simplifies symbolic expressions
I Derives closed forms for symbolic sums

I We rely on a simplified version of the Gosper Algorithm

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 18/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

The ABC-Loops

for (i1 = 1; i1 ≤ f1; i1 = i1 + 1) do
for (i2 = 1; i2 ≤ f2(i1); i2 = i2 + 1) do
· · ·
for (in = 1; in ≤ fn(i1, . . . , in−1); in = in + 1) do

skip
end for
· · ·

end for
end for

Where
i1, i2, . . . , in are iteration variables
f1, f2, . . . , fn are polynomials functions with symbolic constants

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 19/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Bound Computer Algorithm

Require: ABC-loop F , initial value z0 of z
Ensure: z-relation zrel

inner := loop body(F)
incr := z reduce loop(inner)
〈ovar , oubound〉 :=
〈outer iteration variable(F),outer iteration upperbound(F)〉
nvar := fresh variable()
zi := z0 + solve sum(nvar , 1, ovar − 1, incr

[
ovar 7→ nvar

]
)

if isloop(inner) then
zrel := z =Bound Computer(inner , zi)

else
zrel := z = zi

end if

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 20/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Loop Converter Algorithm

Require: For-loop F and conversion list = {}
Ensure: ABC-loop F ′ and conversion list
〈ovar , oincr〉 := 〈outer iteration variable(F), outer iteration increment(F)〉
〈olbound , oubound〉 := 〈outer iteration lowerbound(F),
outer iteration upperbound(F)〉
nvar := fresh variable()
F0 := loop body(F)

[
ovar 7→ oincr ·

(
nvar + olbound − 1

)]
conversion list := conversion list ∪ {ovar = oincr ·

(
nvar + olbound − 1

)
}

if isloop(F0) then
F ′ := for-loop(nvar , 1,

⌊
oubound−olbound

oincr

⌋
+ 1, 1, Loop Converter(F0))

else
F ′ := for-loop(nvar , 1,

⌊
oubound−olbound

oincr

⌋
+ 1, 1, F0)

end if

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 21/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

More General Loops

for (i1 = g1; i1 � f1; i1 = i1 + r1) do
for (i2 = g2(i1); i2 � f2(i1); i2 = i2 + r2) do
· · ·
for (in = gn(i1, . . . , in−1); in � fn(i1, . . . , in−1); in = in + rn) do

skip
end for
· · ·

end for
end for

Where
i1, . . . , in are iteration variables
r1, . . . , rn are symbolics constants
f1, . . . , fn, g1, . . . , gn are polynomials functions with symbolic constants
� ∈ {<,≤, >,≥}

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 22/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Symbolic Solver Capabilities

The handled sums are of the following form:

e2∑
x=e1

c1 · nx
1 · xd1 + . . . + cr · nx

r · xdr

where e1, e2 are integer valued symbolic constants, ni , di ∈ N and
ci ∈ Q.

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 23/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

JAMA Package

I We extracted 90 loops from the JAMA package

I ABC derived the z-relation for 87 of them

I ABC was able to compute complexity for all of them

I All in less than one second

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 24/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

JAMA Package

I We extracted 90 loops from the JAMA package

I ABC derived the z-relation for 87 of them

I ABC was able to compute complexity for all of them

I All in less than one second

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 24/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

JAMA Package

I We extracted 90 loops from the JAMA package

I ABC derived the z-relation for 87 of them

I ABC was able to compute complexity for all of them

I All in less than one second

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 24/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Some Results

Loop z-relation Iteration bound Time [s]

for (i = 1; i ≤ n; i = i + 1)
for (j = 1; j ≤ i ; j = j + 1)
skip
end do
end do

z = i2−i
2

+ j n2+n
2

0.203

for (i = 1; i ≤ m; i = i + 1)
for (j = 1; j ≤ i ; j = j + 1)
for (k = i + 1; k ≤ m; k = k + 1)
for (l = 1; l ≤ k; l = l + 1)
skip
end do
end do
end do
end do

z =

i2m2−im2+i2m−im
4

+

i2−i4

8
+ i3−i

12
+

jm+jm2+k2

2
−

m2+ji2+ji+m+k
2

+ 1

3m4+2m3−3m2−2m
24

1.281

for (i = 0; i ≤ (n∗n∗n
2

− 1); i = i + 1)
for (j = 0; j ≤ n − 1; j = j + 1)
for (k = 0; k ≤ j − 1; k = k + 1)
skip
end do
end do
end do

z =

1 + k + in2−in+j2−j
2

n5−n4

4
0.234

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 25/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Some Other Results

Loop z-relation Iteration bound Time [s]

for (i = n; i ≥ 1; i = i − 1)
for (j = m; j ≥ 1; j = j − 1)
skip
end do
end do

z = 1− j + (n − i + 1)m nm 0.187

for (i = a; i ≤ b; i = i + 1)
for (j = c; j ≤ d ; j = j + 1)
for (k = i − j ; k ≤ i + j ; k = k + 1)
skip
end do
end do
end do

z =

1− 2ad + 2id−

ad2 + id2 + ac2−

ic2 + j2 − c2+

j − a + k

(c2−(d +1)2)(a−b−
1)

0.328

for (i = n; i ≥ 1; i = i − 1)
for (j = 1; j ≤ m; j = j + 1)
for (k = i ; k ≤ i + j ; k = k + 1)
for (l = 1; l ≤ k; l = l + 1)
skip
end do
end do
end do
end do

z =

−m2+3m+2
4

i2+

(j2+j−1
2

− 2m3+9m2+13
12

)i+

k2−k
2

+ j3−j
6

+ 1+

2m2+3mn+9m+9n+13
12

mn

2m2+3mn+9m+9n+13
12

mn 0.625

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 26/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Related Work

I User-defined invariant templates [Seidl04]

→ invariants: constraint solving over template coefficients;

I User-defined atomic predicates and loop patterns [Gulwani10]

→ bounds: control-flow refinement and abstract interpretation;

I Recurrence Solving [van Egelen00, Albert08, Valigator08]

→ bounds: unfolding loops with simple but non-deterministic recurrences;

→ bounds: pattern matching simple class of recurrences;

→ bounds: quantifier elimination for unnested loops and non-initializing

assignments;

I WCET [aiT04, TUBound09]

→ bounds: interval-based abstract interpretation with unrollings of simple-loops;

→ bounds: solving constraints over variables from linear loop tests.

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 27/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Conclusion And Future Work

I ABC automatically computes algebraic loop bounds

I ABC is available at http://mtc.epfl.ch/software-tools/ABC

I Extend ABC to handle more complex loops and symbolic sums

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 28/28

Introduction
ABC Design

Formalization
Experiments
Conclusion

Conclusion And Future Work

I ABC automatically computes algebraic loop bounds

I ABC is available at http://mtc.epfl.ch/software-tools/ABC

I Extend ABC to handle more complex loops and symbolic sums

Blanc, Henzinger, Hottelier, Kovács ABC: Algebraic Bound Computation for Loops 28/28

	Introduction
	ABC Design
	Bound Computer
	Loop Converter
	Symbolic Solver

	Formalization
	Experiments
	Conclusion

