ABC: Algebraic Bound Computation for Loops

Régis Blanc	Thomas A. Henzinger	Thibaud Hottelier	Laura Kovács
EPFL	IST Austria	UC Berkeley	TU Vienna

What Is ABC?

- Automatically computes an algebraic relation among iteration variables of a loop

What Is ABC?

- Automatically computes an algebraic relation among iteration variables of a loop
- Can then derive iteration bound of the loop

What Is ABC?

- Automatically computes an algebraic relation among iteration variables of a loop
- Can then derive iteration bound of the loop
- Works for any level of nested loops

What Is ABC?

- Automatically computes an algebraic relation among iteration variables of a loop
- Can then derive iteration bound of the loop
- Works for any level of nested loops
- Only works on specific shape of loops

Motivations

- Some real-time systems need to prove an upper bound time of their computation
- Can be used to prove termination

Application: Matrix Linearization

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \quad M[i, j]=i+j \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } n \text { do } \\
& \quad A[(i-1) n+j]=i+j \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

An Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } n \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

An Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } n \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

- Z-relation:

$$
z=(i-1) n+j
$$

An Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } n \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

- Z-relation:

$$
z=(i-1) n+j
$$

- Iteration bound:

$$
n^{2}
$$

Another Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=0 ; i \leq n ; i=i+1 \text { do } \\
& \quad \text { for } j=0 ; j \leq m ; j=j+2 \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=0 ; i \leq n ; i=i+1 \text { do } \\
& \quad \text { for } j=0 ; j \leq m ; j=j+2 \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

- Z-relation:

$$
z=1+\left\lfloor\frac{j}{2}\right\rfloor+i\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)
$$

Another Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=0 ; i \leq n ; i=i+1 \text { do } \\
& \quad \text { for } j=0 ; j \leq m ; j=j+2 \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

- Z-relation:

$$
z=1+\left\lfloor\frac{j}{2}\right\rfloor+i\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)
$$

- Iteration bound:

$$
1+(1+n)\left\lfloor\frac{m}{2}\right\rfloor+n
$$

ABC Structure

$A B C$ relies on three modules:

- Bound Computer
- Loop Converter
- Symbolic Solver

ABC Overall Workflow

Bound Computer

- Works on a special class of loop: ABC-loops
- Computes a polynomial relation over loop variables: z-relation
- Core part of ABC

Bound Computer On An Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } m \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Bound Computer On An Example

Solving the sum:

$$
\begin{aligned}
& z=1 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } m \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Recurrence relation for the value z_{i} of z at iteration i :

$$
z_{i}=z_{i-1}+m
$$

With $z_{1}=1$, we get:

$$
z_{i}=1+\sum_{k=1}^{i-1} m=1+(i-1) m
$$

Bound Computer On An Example

Apply recursively the method on the loop:

$$
\begin{aligned}
& z=1 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } m \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

$$
\begin{aligned}
& z=1+(i-1) m \\
& \text { for } j=1 \text { to } m \text { do } \\
& \quad z=z+1 \\
& \text { end for }
\end{aligned}
$$

Recurrence relation of z_{j} :

$$
z_{j}=z_{j-1}+1
$$

With $z_{1}=1+(i-1) m$, we get:

$$
z_{j}=1+(i-1) m+\sum_{k=1}^{j-1} 1=(i-1) m+j
$$

Bound Computer On An Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } m \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Thus we obtain the z-relation:

$$
z=(i-1) m+j
$$

Substituting i by n and j by m, we get the iteration bound:

$$
n m
$$

Why A Loop Converter?

- The preceding algorithm only works on the ABC-loops.

Why A Loop Converter?

- The preceding algorithm only works on the ABC-loops.
- Transforms, whenever possible, a loop into its equivalent ABC-loop.

Why A Loop Converter?

- The preceding algorithm only works on the ABC-loops.
- Transforms, whenever possible, a loop into its equivalent ABC-loop.
- Loop that starts from an arbitrary expression

Why A Loop Converter?

- The preceding algorithm only works on the ABC-loops.
- Transforms, whenever possible, a loop into its equivalent ABC-loop.
- Loop that starts from an arbitrary expression
- Loop with each of its iteration variables incremented by one

Yet Another Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=0 ; i \leq n ; i=i+1 \text { do } \\
& \quad \text { for } j=0 ; j \leq m ; j=j+2 \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Yet Another Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i=0 ; i \leq n ; i=i+1 \text { do } \\
& \quad \text { for } j^{\prime}=0 ; j^{\prime} \leq\left\lfloor\frac{m}{2}\right\rfloor ; j^{\prime}=j^{\prime}+1 \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

With:

$$
j=2 j^{\prime}
$$

Yet Another Example

$$
\begin{aligned}
& z=1 \\
& \text { for } i^{\prime}=1 ; i^{\prime} \leq n+1 ; i^{\prime}=i^{\prime}+1 \text { do } \\
& \quad \text { for } j^{\prime \prime}=1 ; j^{\prime \prime} \leq\left\lfloor\frac{m}{2}\right\rfloor+1 ; j^{\prime \prime}=j^{\prime \prime}+1 \text { do } \\
& \quad z=z+1 \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

With:

$$
j=2 j^{\prime} \quad \wedge \quad j^{\prime}=j^{\prime \prime}-1 \quad \wedge \quad i=i^{\prime}-1
$$

Symbolic Solver

- We built our own symbolic solver:
- Simplifies symbolic expressions
- Derives closed forms for symbolic sums
- We rely on a simplified version of the Gosper Algorithm

The ABC-Loops

$$
\begin{aligned}
& \text { for }\left(i_{1}=1 ; i_{1} \leq f_{1} ; i_{1}=i_{1}+1\right) \text { do } \\
& \quad \text { for }\left(i_{2}=1 ; i_{2} \leq f_{2}\left(i_{1}\right) ; i_{2}=i_{2}+1\right) \text { do }
\end{aligned}
$$

$$
\text { for }\left(i_{n}=1 ; i_{n} \leq f_{n}\left(i_{1}, \ldots, i_{n-1}\right) ; i_{n}=i_{n}+1\right) \text { do }
$$

skip
end for

end for end for

Where
$i_{1}, i_{2}, \ldots, i_{n}$ are iteration variables
$f_{1}, f_{2}, \ldots, f_{n}$ are polynomials functions with symbolic constants

Bound Computer Algorithm

Require: ABC-loop F, initial value z_{0} of z
Ensure: z-relation zrel
inner := loop_body (F) incr := z_reduce_loop(inner)〈ovar, oubound〉:= <outer_iteration_variable (F),outer_iteration_upperbound $(F)\rangle$ nvar := fresh_variable()
$z_{i}:=z_{0}+$ solve_sum(nvar, 1 , ovar $-1, \operatorname{incr}[$ ovar $\left.\mapsto n v a r]\right)$
if isloop(inner) then

$$
\text { zrel }:=z=\text { Bound Computer }\left(\text { inner, } z_{i}\right)
$$

else

$$
\text { zrel }:=z=z_{i}
$$

end if

Loop Converter Algorithm

Require: For-loop F and conversion_list $=\{ \}$
Ensure: ABC-loop F^{\prime} and conversion_list
\langle ovar, oincr〉: $=\langle$ outer_iteration_variable (F), outer_iteration_increment $(F)\rangle$ \langle olbound, oubound $\rangle:=\langle$ outer_iteration_lowerbound (F),
outer_iteration_upperbound $(F)\rangle$
nvar := fresh_variable()
$F_{0}:=$ loop_body $(F)[$ ovar \mapsto oincr $\cdot($ nvar + olbound -1$)]$
conversion_list $:=$ conversion_list $\cup\{$ ovar $=$ oincr $\cdot($ nvar + olbound -1$)\}$
if isloop $\left(F_{0}\right)$ then

$$
F^{\prime}:=\text { for-loop }\left(n \text { var, } 1,\left\lfloor\frac{\text { oubound-olbound }}{\text { oincr }}\right\rfloor+1,1 \text {, Loop Converter }\left(F_{0}\right)\right)
$$

else

$$
F^{\prime}:=\text { for-loop }\left(n v a r, 1,\left\lfloor\frac{\text { oubound-olbound }}{\text { oincr }}\right\rfloor+1,1, F_{0}\right)
$$

end if

More General Loops

$$
\begin{aligned}
& \text { for }\left(i_{1}=g_{1} ; i_{1} \diamond f_{1} ; i_{1}=i_{1}+r_{1}\right) \text { do } \\
& \text { for }\left(i_{2}=g_{2}\left(i_{1}\right) ; i_{2} \diamond f_{2}\left(i_{1}\right) ; i_{2}=i_{2}+r_{2}\right) \text { do } \\
& \quad \ldots \\
& \quad \text { for }\left(i_{n}=g_{n}\left(i_{1}, \ldots, i_{n-1}\right) ; i_{n} \diamond f_{n}\left(i_{1}, \ldots, i_{n-1}\right) ; i_{n}=i_{n}+r_{n}\right) \text { do } \\
& \quad \text { skip } \\
& \text { end for }
\end{aligned}
$$

...

end for

end for

Where

i_{1}, \ldots, i_{n} are iteration variables
r_{1}, \ldots, r_{n} are symbolics constants
$f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ are polynomials functions with symbolic constants
$\diamond \in\{<, \leq,>, \geq\}$

Symbolic Solver Capabilities

The handled sums are of the following form:

$$
\sum_{x=e_{1}}^{e_{2}} c_{1} \cdot n_{1}^{x} \cdot x^{d_{1}}+\ldots+c_{r} \cdot n_{r}^{x} \cdot x^{d_{r}}
$$

where e_{1}, e_{2} are integer valued symbolic constants, $n_{i}, d_{i} \in \mathbb{N}$ and $c_{i} \in \mathbb{Q}$.

JAMA Package

- We extracted 90 loops from the JAMA package

JAMA Package

- We extracted 90 loops from the JAMA package
- ABC derived the z-relation for 87 of them
- ABC was able to compute complexity for all of them

JAMA Package

- We extracted 90 loops from the JAMA package
- ABC derived the z-relation for 87 of them
- ABC was able to compute complexity for all of them
- All in less than one second

Some Results

Loop	z-relation	Iteration bound	Time [s]
```for ( \(i=1 ; i \leq n ; i=i+1\) ) for \((j=1 ; j \leq i ; j=j+1)\) skip end do end do```	$z=\frac{i^{2}-i}{2}+j$	$\frac{n^{2}+n}{2}$	0.203
```for ( \(i=1 ; i \leq m ; i=i+1\) ) for \((j=1 ; j \leq i ; j=j+1)\) for \((k=i+1 ; k \leq m ; k=k+1)\) for \((I=1 ; I \leq k ; I=I+1)\) skip end do end do end do end do```	$\begin{aligned} & z= \\ & \frac{i^{2} m^{2}-i m^{2}+i^{2} m-i m}{4}+ \\ & \frac{i^{2}-i^{4}}{8}+\frac{i^{3}-i}{12}+ \\ & \frac{j m+j m^{2}+k^{2}}{2}- \\ & \frac{m^{2}+j i^{2}+j i+m+k}{2}+1 \end{aligned}$	$\frac{3 m^{4}+2 m^{3}-3 m^{2}-2 m}{24}$	1.281
	$\begin{aligned} & z= \\ & 1+k+\frac{i n^{2}-i n+j^{2}-j}{2} \end{aligned}$	$\frac{n^{5}-n^{4}}{4}$	0.234

Some Other Results

Loop	z-relation	Iteration bound	Time [s]
```for \((i=n ; i \geq 1 ; i=i-1)\) for \((j=m ; j \geq 1 ; j=j-1)\) skip end do end do```	$z=1-j+(n-i+1) m$	$n m$	0.187
```for \((i=a ; i \leq b ; i=i+1)\) for \((j=c ; j \leq d ; j=j+1)\) for \((k=i-j ; k \leq i+j ; k=k+1)\) skip end do end do end do```	$\begin{aligned} & z= \\ & 1-2 a d+2 i d- \\ & a d^{2}+i d^{2}+a c^{2}- \\ & i c^{2}+j^{2}-c^{2}+ \\ & j-a+k \\ & \hline \end{aligned}$	$\begin{aligned} & \left(c^{2}-(d+1)^{2}\right)(a-b- \\ & \text { 1) } \end{aligned}$	0.328
```for \((i=n ; i \geq 1 ; i=i-1)\) for \((j=1 ; j \leq m ; j=j+1)\) for \((k=i ; k \leq i+j ; k=k+1)\) for \((I=1 ; I \leq k ; I=I+1)\) skip end do end do end do end do```	$\begin{aligned} & z= \\ & -\frac{m^{2}+3 m+2}{4} i^{2}+ \\ & \left(\frac{j^{2}+j-1}{2}-\frac{2 m^{3}+9 m^{2}+13}{12}\right) i+ \\ & \frac{k^{2}-k}{2}+\frac{j^{3}-j}{6}+1+ \\ & \frac{2 m^{2}+3 m n+9 m+9 n+13}{12} m n \end{aligned}$	$\frac{2 m^{2}+3 m n+9 m+9 n+13}{12} m n$	0.625

## Related Work

- User-defined invariant templates [Seid104]
$\rightarrow$ invariants: constraint solving over template coefficients;
- User-defined atomic predicates and loop patterns [Gulwani10]
$\rightarrow$ bounds: control-flow refinement and abstract interpretation;
- Recurrence Solving [van Egelen00, Albert08, Valigator08]
$\rightarrow$ bounds: unfolding loops with simple but non-deterministic recurrences;
$\rightarrow$ bounds: pattern matching simple class of recurrences;
$\rightarrow$ bounds: quantifier elimination for unnested loops and non-initializing assignments;
- WCET [aiT04, TUBound09]
$\rightarrow$ bounds: interval-based abstract interpretation with unrollings of simple-loops;
$\rightarrow$ bounds: solving constraints over variables from linear loop tests.


## Conclusion And Future Work

- ABC automatically computes algebraic loop bounds
- ABC is available at http://mtc.epfl.ch/software-tools/ABC


## Conclusion And Future Work

- ABC automatically computes algebraic loop bounds
- ABC is available at http://mtc.epfl.ch/software-tools/ABC
- Extend ABC to handle more complex loops and symbolic sums

