
Achieving Efficient Work-Stealing for Data-Parallel
Collections

Aleksandar Prokopec
École Polytechnique Fédérale de Lausanne

EPFL IC IFF LAMP, Station 14
1015 Lausanne, Switzerland

aleksandar.prokopec@epfl.ch

Martin Odersky
École Polytechnique Fédérale de Lausanne

EPFL IC IFF LAMP, Station 14
1015 Lausanne, Switzerland
martin.odersky@epfl.ch

ABSTRACT
In modern programming high-level data-structures are an impor-
tant foundation for most applications. With the rise of the multi-
core era, there is a growing trend of supporting data-parallel col-
lection operations in general purpose programming languages and
platforms. To facilitate object-oriented reuse these operations are
highly parametric, incurring abstraction performance penalties. Fur-
thermore, data-parallel operations must scale when used in prob-
lems with irregular workloads. Work-stealing is a proven load-
balancing technique when it comes to irregular workloads, but gen-
eral purpose work-stealing also suffers from abstraction penalties.
In this paper we present a generic design of a data-parallel col-
lections framework based on work-stealing for shared-memory ar-
chitectures. We show how abstraction penalties can be overcome
through callsite specialization of data-parallel operations instances.
Moreover, we show how to make work-stealing fine-grained and
efficient when specialized for particular data-structures. We exper-
imentally validate the performance of different data-structures and
data-parallel operations, achieving up to 60× better performance
with abstraction penalties eliminated and 3× higher speedups by
specializing work-stealing compared to existing approaches.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel programming; D.3.3
[Language constructs and features]: Concurrent programming
structures; E.1 [Data Structures]: Trees, Arrays

General Terms
Algorithms

Keywords
data parallelism, conc-lists, work-stealing collections, callsite spe-
cialization, parallel hash-tables, parallel arrays, abstraction penalty,
workload-driven, load balancing, domain-specific work-stealing

1. INTRODUCTION
While the declarative nature of data-parallel programming makes
programs easier to understand and maintain, as well as to apply

to a plethora of different problems [30], implementing an efficient
data-parallel framework remains a challenging task. This task is
only made harder by the fact that data-parallel frameworks offer
genericity on several levels. First, parallel operations are generic
both in the type of the data records and the way these records are
processed. Orthogonally, records are organized into data sets in dif-
ferent ways depending on how they are accessed – as arrays, hash-
tables, trees or heaps. Let us consider the example of a subroutine
that computes the mean of a set of measurements to illustrate these
concepts. We show both its imperative and data-parallel variant.
def mean(x: Array[Int]) = {1

var sum = 02

while (i < x.length)3

{ sum += x(i); i += 1 }4

sum.toDouble / x.length }5

def mean(x: Array[Int]) = {1

val sum = x.par.fold(0) {2

(acc, v) => acc + v3

}4

sum.toDouble / x.length }5

The data-parallel operation that the declarative-style mean subrou-
tine relies on is fold, which aggregates multiple values into a sin-
gle value. This operation is generic in the user-specified aggrega-
tion operator. The data set is represented with an array and the data
records are the elements of the array, in this case integers. We show
a simplified implementation of the parallel foldmethod [24] [41].

def fold[T](x: Iterable[T], z: T, op: (T, T) => T) = {6

val subsets = x.iterator.split7

val results = subsets.inParallel { subset =>8

var sum = z9

while (subset.hasNext) sum = op(sum, subset.next())10

sum }11

results.foldLeft(z)(op) }12

We assume collections have a method that returns an iterator
and that this iterator can be efficiently split into subsets [9] [24]
[41] [44]. These subsets are processed in parallel by different work-
ers – from a high-level perspective, this is done by the inParallel
call. Once all the workers complete, their results can be aggre-
gated sequentially. We focus on the work done by separate work-
ers, namely, lines 9 through 11. Note that the while loop in those
lines closely resembles the imperative variant of the method mean,
with several differences. The neutral element of the aggregation
z is generic and specified through an argument. Then, instead
of comparing a local variable i against the array length, method
hasNext is being called, which translates to a dynamic dispatch.
The second dynamic dispatch updates the state of the iterator and
returns the next element and another dynamic dispatch is required
to apply the summation operator to the integer values.
These inefficiencies are referred to as the abstraction penalties.
We can identify several abstraction penalties above. First of all,
in typical object-oriented languages such as Java or C++ the dy-
namic dispatches above amount to reading the address of the vir-
tual method table and then the address of the appropriate method
from that table. Second, and not immediately apparent, the itera-

tor abstraction inherently relies on maintaining the traversal con-
tinuation. The method next must read an integer field, check the
bounds and write the new value back to memory before returning
the corresponding value in the array. The imperative implemen-
tation of mean merely reads the array value and updates i in the
register. The third overhead has to do with representing method
parameters in a generic way. In languages like Java, Scala, Haskell
and OCaml primitive values passed to generic methods are con-
verted to heap objects and their references are used instead. This
is known as boxing and can severely impact peformance. While
in languages like C++ the templating can specialize the fold for
primitive types, generic type parameters remain a problem on plat-
forms like the JVM.
The discussed penalties apply as much to single-threaded data par-
allelism as they do to multi-threaded execution. To achieve parallel
speedups as well proper load balancing is required. In the simpli-
fied fold implementation we used the hypothetical inParallel
method that assigns subsets of work to different workers. This ap-
proach of statically partitioning the workload has been studied ex-
tensively [15] [45] [46], but it does not guarantee optimal speedup
in all cases [33]. Consider the following example of naively com-
puting a list of prime numbers smaller than N.

(3 until N) filter { i =>13

(2 to dsqrt(i)e) forall { d => i % d != 0 } }14

For each of the numbers i between 3 and N the filter pred-
icate checks if any number up to the square root of i divides i.
The amount of computation for each element depends on its value,
making this data-parallel computation irregular. If the numbers are
specified as part of the program input, then there is no way for static
analysis to optimally partition the work at compile time. Similarly,
not all workers might be available during execution.
While static partitioning should ideally be combined with runtime
techniques [10] [47], this paper focuses on runtime workload-driven
load balancing. So far, work-stealing has proven an efficient run-
time load balancing technique for irregular problems [1] [3] [7]
[16] [19] [22] [49], and the collections design we propose adopts
work-stealing as well. It was shown that tailoring the work-stealing
techniques to specific domains allows a more fine-grained work-
stealing, thus better load balancing data-parallel computations [17]
[43]. For this reason, our design integrates work-stealing with the
shape of the data-structure, allowing the chunks that the elements
are divided into to be as small as possible. As we will show, some
existing approaches that ignore this potential gain in specializing
work-stealing and rely only on general-purpose task work-stealing
fail to parallelize irregular data-parallel workloads well [24] [41] –
we will call such inefficiencies the scheduling penalty.
The goal of this paper is to twofold. First, we show how the afore-
mentioned abstraction penalties can be eliminated in a generic way
for different data-structures and data-parallel operations, achieving
optimal or near optimal performance. In doing so we rely on an
abstraction called a kernel of a data-parallel operation, which is
comprised of the specialized code for traversing and processing a
chunk of data for a specific data-parallel operation instance. Sec-
ond, we show how to minimize the scheduling penalties by em-
ploying fine-grained work-stealing for different data-structures in
a generic, efficient and lock-free manner. We will introduce the
concept of work-stealing iterators, which abstract over how work
is divided into chunks and how it is stolen.
The rest of the paper is organized as follows. Section 2 presents
the related work and more closely examines the work-stealing tree
scheduling. Section 3 describes the work-stealing iterator and ker-
nel abstractions in detail, as well as their implementations for dif-

ferent data-structures and data-parallel operations. In Section 4 we
evaluate the performance of data-parallel collection operations on a
range of microbenchmarks as well as on several larger benchmark
applications. Finally, Section 5 concludes.

2. RELATED WORK
Data-parallelism is a well-established concept in parallel program-
ming languages dating back to APL [29], subsequently adopted
by languages like NESL [5], High Performance Fortran [37] and
ZPL [12]. With the emergence of commodity parallel hardware
data parallelism is gaining more traction. Programming platforms
like OpenCL and CUDA focusing mainly on GPUs are heavily ori-
ented towards data parallelism. Chapel [11] is a parallel program-
ming language supporting both task and data parallelism that im-
proves the separation between data-structure implementation and
algorithm description. The idea of specializing the data-parallel op-
eration with the iterator instance itself comes from Chapel, where it
was applied to efficiently traversing arrays in a platform-independent
way [31]. X10 [14] is a parallel programming language with both
JVM and C backends providing both task and data parallelism, and
a variety of other modern concurrency constructs. Fortress [4] is
another parallel programming language targetting the JVM with
implicit parallelism and a highly declarative programming style.
JVM-based languages like Java and Scala [38] provide data-parallel
programming support as part of the standard library [24] [41]. Scala
Parallel Collections support data-parallelism in a generic way for
different collections and parallelize concurrent data-structures through
the use of efficient lock-free snapshots [40] [42]. STAPL [9] and
Intel TBB [44] are data-parallel libraries for C++ that rely on the
template mechanism [48] and the STL architecture. In distributed
computing data-parallel frameworks like MapReduce [18], Flume-
Java [13] and Dryad [28] used for processing large data sets have
been proposed in the recent years.
Most data-parallel languages rely on parallel loops, the scheduling
of which bears a critical importance. The fixed-size chunking [32]
technique was among the first techniques that allowed a more fine-
grained load-balancing. It divides the loop into smallest possible
subsets and the workers synchronize to obtain them from a central
queue. A downside of this approach is that it fails to load balance
the more irregular workloads well. Other variable size chunking
approaches have been proposed, including guided self-scheduling
[39], factoring [27] and trapezoidal self-scheduling [51], but static
partitioning decisions of these techniques have proven detrimental.
Work-stealing is a load balancing technique used in the Cilk pro-
gramming language [6] [22] to support task parallelism. In work-
stealing each worker maintains its own work queue and steals work
from other workers when its own queue is empty. Work-stealing
is particularly applicable to problems with irregular workloads [1]
[3] [16] [19]. It has been traditionally used as the load balancing
technique for task parallel programming [7] [34] [35] [49], but can
be applied to data parallelism as well [43] [50].
Work-stealing tree scheduling [43] is a load balancing technique
in which work is kept in a tree rather than a work queue. Each
node in the tree contains a subset of the data-parallel loop and is
owned by a single worker. A stealer notifies the owner of the de-
sired leaf node that the node is invalidated and replaces it with two
leaf nodes, dividing the remaining work. Due to a work-stealing
mechanism specialized for data-parallel loops and its tendency to
keep the worker in isolation as long as possible this technique can
efficiently schedule highly irregular workloads that traditional ap-
proaches [27] [32] [39] [41] [51] cannot cope with.
In the context of the JVM compilation techniques were proposed
to eliminate boxing selectively, like the generic type specialization

Ptr

Node 0 x u π

AVAILABLE Ptr

Node 0 xs u π

STOLEN Ptr

Node 0 xs u π

Ptr

Node xsxsx1 π

Ptr

Node x1x1 u ψ

EXPANDED

steal expand

Figure 1: Stealing in the work-stealing tree scheduler

transformation used in Scala [21]. While generic type specializa-
tion can be used to eliminate boxing, it does not help in eliminating
other abstraction penalties. For this reason we rely on the Scala
macro system [8], but note that our technique can be applied to
languages with a templating mechanism like C++ [48].

3. DESIGN AND IMPLEMENTATION
It is common that tasks recursively spawn subtasks in task parallel
programming, potentially generating additional work to be stolen.
This fact drives the design of many language runtimes based on
work-stealing [6] [22] [34] [49] – only a single, usually oldest task
is stolen at a time, the execution of which can hopefully create more
subtasks. Conversely, in data parallel programming the parallelism
units are not tasks but individual collection elements that do not
generate more work. Thus, stealing must proceed in batches of el-
ements to reduce the scheduling penalty.
The work-stealing tree scheduler [43] exploits this observation by
dividing the remaining workload equally between the stealer and
the victim when a steal occurs. In this approach each worker keeps
the loop iteration index and atomically increments it to inform po-
tential stealers of its progress. The iteration index is kept in the
work-stealing node structure belonging to a specific processor π.
Each work-stealing node traverses a specific subset of the parallel
loop. This is shown in Figure 1 in the AVAILABLE state – the 0
and the u denote the bounds of the parallel loop, and x denotes the
current value of the iteration index. A stealer ψ invalidates this in-
dex to prevent the victim from further increments and, importantly,
at the same time captures the information about its progress. This
is shown in the STOLEN state in Figure 1. Subsequent updates to
the iteration index are disallowed and the work-stealing node is ex-
panded by creating two child nodes, each of which holds roughly
half of the remaining elements of the original node.
This approach to scheduling data-parallel operations is particularly
efficient in load-balancing irregular data-parallel operations, as well
as uniform ones. Two different data-parallel workloads and the
typical states of the work-stealing tree data-structure at the end of
the data-parallel operation are shown in Figure 2 for illustration
purposes. The uniform workload like the fold mentioned in the
introduction yields a balanced work-stealing tree in which every
worker processes roughly the same number of elements and works
in isolation most of the time without communicating other workers.
The irregular workload like the prime number computation men-
tioned earlier yields a fairly unbalanced work-stealing tree in which
the worker 1 processes the smaller numbers much earlier than the
worker 4 completes the computation on the bigger ones. Instead of
remaining idle, worker 1 steals some of the expensive elements. In
general, the unbalancing factor in a work-stealing subtree is pro-
portional to the workload irregularity in the corresponding part of
the parallel loop. Importantly, when the irregularity is high, there is
enough work per each element to amortize the scheduling penalties
of creating new work-stealing tree nodes. Conversely, when the ir-
regularity is low the per element work may be low too, but there
are less nodes being created. The scheduling is thus fully adaptive
and occurs at runtime – we say that it is workload-driven.

1

1 2

1 3 2 4

1

1 2

1 3 2 4

2 3 4 1

1 2

element index

w
or

k

UNIFORM

element index

w
or

k

IRREGULAR

Figure 2: Scheduling uniform and irregular workloads

We omit the details of how the scheduler uses the work-stealing
tree, i.e. expands it or assigns workers to specific nodes – this was
already discussed in detail in related work [43]. We instead focus
on the code that the workers and stealers execute. The pseudocode
we show closely resembles Scala, but relies on language features
available in modern general-purpose programming languages.
Lets start by showing the pseudocode for a worker executing a par-
allel loop. We assume that the worker is assigned a chunk deter-
mined by the integers start≥ 0 and until≥start. It also
maintains a globally visible integer progress which it updates
atomically with a CAS. This value denotes the first loop element
within 〈start, until〉 that the worker is not obliged to process.
def work() = {1

var loop = true2

var step = 03

while (loop) {4

step = update(step)5

val p = READ(progress)6

if (p ≥ until ∨ p < 0) loop = false else7

if (CAS(progress, p, min(until, p + step)))8

apply(p, min(until, p + step)) } }9

The algorithm uses a value step to decide how many loop ele-
ments to try to commit to in each iteration. Updating step in line
5 and its effect on scheduling has been studied elsewhere [27] [32]
[39] [43] [51] and is outside of the scope of this work, but it suffices
to say that this value has to be varied to amortize the scheduling
costs and achieve the best speedup [43]. In each loop iteration the
worker reads the value of progress and tries to atomically in-
crement it with a CAS. If it succeeds, it is committed to process all
the elements smaller than the last value written to progress. It
does so by calling apply in line 9, which executes a user-specified
operation on each element within the specified range. Section 3.2
shows how apply corresponds to a specific operation instance.
The stealer invalidates the progress by executing the following.
def markStolen() = {10

val p = READ(progress)11

if (p < until ∧ p ≥ 0)12

if (¬CAS(progress, p, -p - 1)) markStolen() }13

Note that replacing the current value of progresswith a negative
value allows decoding the previous state uniquely. Also, neither the
worker nor any of the stealers write to progress after it becomes
negative. We do now show how the remaining work is split after
markStolen completes – at this point there is sufficient informa-
tion to reach a consensus on that in a lock-free way. Note that while
this kind of execution of arbitrary parallel loops is not itself lock-
free because a specific worker commits to processing specific ele-
ments, the work-stealing process is, as stealers proceed without the
help of the victim as long as there are elements left in progress.

3.1 Work-stealing iterators
The goal of this section is to augment the iterator abstraction [36]
with the facilities that support work-stealing. The progress value

def work(it: StealIterator[T]) = {1

var step = 02

var res = zero3

while (it.state() == A) {4

step = update(step)5

val chunk = it.advance(step)6

if (chunk >= 0)7

res = combine(res, apply(it, chunk)) }8

it.result = res }9

Figure 3: The generalized loop scheduling algorithm

described earlier serves exactly this purpose for parallel loops.
There are several parts of the presented work-stealing scheduler
that we can generalize. We read the value of progress in line
6 to see if the value is negative (indicating a steal) or greater than
or equal to until (indicating that the loop is completed) in line
7. Here the value of progress indicates the state, and the states
that it determines are available (A), stolen (S) and completed (C). A
work-stealing iterator must thus have a method state that returns
one of these values. In line 8 we atomically update progress,
in the same time deciding on the number of elements that can be
processed. This can be abstracted away with a method advance
taking a desired number of elements to traverse and returning an
estimate on the number of elements that can be traversed, or −1 if
there are no elements left. Figure 3 shows an updated version of the
loop scheduling algorithms that relies on these methods. Iterators
should also abstract the method markStolen shown earlier. We
show the complete work-stealing iterator interface in Figure 4. The
additional method owner returns the index of the worker own-
ing the iterator. The method next can be called as long as the
method hasNext returns true, just as with the ordinary itera-
tors. Method hasNext returns true if next be called again be-
fore the next advance call. Finally, the method expanded can
only be called on S iterators and it returns a pair of iterators such
that the disjoint union of their elements are the remaining elements
of the original iterator. This implies that markStolen must inter-
nally encode the iterator state immediately when it gets stolen.
The contracts of these methods are more formally expressed below.
We implicitly assume termination and a specific iterator instance.
Unless specified otherwise, we assume linearizability [26]. When
we say that a method M is owner-specific (π-specific), it means
that every invocation by a worker π is preceeded by a call to owner
returning π. For non-owner-specific M owner returns ψ 6= π.
Contract owner. If an invocation returns π at time t0, then ∀t1 ≥
t0 invocations return π.
Contract state. If an invocation returns s ∈ {S,C} at time t0,
then all invocations at t ≥ t0 return s, where C and S denote com-
pleted and stolen states, respectively.
Contract advance. If an invocation exists at some time t0 then
it is π-specific and the parameter step ≥ 0. If the return value c
is −1 then a call to state at ∀t1 > t0 returns s ∈ {S,C}. Other-
wise, a call to state at ∀t−1 < t0 returns s = A, where A is the
available state.
Contract markStolen. Any invocations at t0 is non-owner-
specific and every call to state at t1 > t0 returning s ∈ {S,C}.
Contract next. A non-linearizable φ-specific invocation is lin-
earized at t1 if there is a hasNext invocation returning true at
t0 < t1 and there are no advance and next invocations in the
interval 〈t0, t1〉.
Contract hasNext. If a non-linearizable φ-specific invocation re-
turns false at t0 then all hasNext invocations in 〈t0, t1〉 return
false, where there are no advance calls in 〈t0, t1〉.
Contract expanded. If an invocation returns a pair (n1, n2) at

trait StealIterator[T] {10

def owner(): Int11

def state(): A ∨ S ∨ C12

def advance(step: Int): Int13

def markStolen(): Unit14

def hasNext: Boolean15

def next(): T16

def expanded(): (StealIterator[T], StealIterator[T]) }17

Figure 4: The StealIterator interface

abstract class IndexIterator[T](val owner: Int,18

@volatile var progress: Int, val until: Int)19

extends StealIterator[T] {20

private var nextProgress = -121

private var nextUntil = -122

def state() = READ(progress) match {23

case p if p ≥ until => C24

case p if (p < 0) => S25

case _ => A }26

def advance(s: Int) = if (state() 6= A) -1 else {27

val p = READ(progress)28

val np = math.min(p + s, until)29

if (¬CAS(progress, p, np)) advance(s) else {30

nextProgress = p31

nextUntil = np32

np - p } }33

def markStolen() = ... // as before34

def hasNext: Boolean = nextProgress < nextUntil35

def next(): T = {36

nextProgress += 137

elemAt(nextProgress - 1) }38

def elemAt(idx: Int): T // returns element at idx }39

Figure 5: The IndexIterator implementation

time t0 then the call to state returned S at some time t−1 < t0.
Traversal contract. Define X = x1x2 . . . xm as the sequence of
return values of next invocations at times t′1 < t′2 < . . . < t′m. If
a call to state at t > t′m returns C then e(i) = X . Otherwise, let
an invocation of expanded on an iterator i return (i1, i2). Then
e(i) = X · e(i1) · e(i2), where · is concatenation. There exists a
fixed E such that E = e(i) for all valid sequences of advance
and next invocations.
While the last contract may seem complicated, it merely formalizes
the notion that every iterator always traverses the same elements in
the same order. We show several iterator implementations next.

IndexIterator. This is a simple iterator implementation fol-
lowing from refactorings in Figure 3. It is applicable to parallel
ranges, arrays, vectors and data-structures where indexing is fast.
We show a generic implementation in Figure 5. The CAS instruc-
tions are the linearization points for linearizable methods. Note
that the IndexIterator contains a private nextProgress
and nextUntil fields that the tail-recursive advance updates
after a successful CAS in line 30. These fields are also used by
next and hasNext in a non-atomic way. The contracts specify
that those methods are only called by the owner in isolation, so
there is no need to make the fields globally visible. This improves
performance since next is used in generic operation implementa-
tions (see Section 3.2).
All method contracts are straightforward to verify and follow from
the linearizability of CAS. For example, if state returns S or C at
time t0, then the progresswas either negative or equal to until
at t0. All the writes to progress are CAS instructions that check
that progress is neither negative nor equal to until. There-
fore, progress has the same value ∀t > t0 and state returns
the same value ∀t > t0.
HashIterator. Hash tables are an ubiquitous data structure in
programming languages and in a variety of applications that rely

A

B C

1 →

AA

B C

2

→

B
AA

B C

3

→

TD
AA

B C

4

→

TD
INA

B C

5

→

C
INA

B C

6

→

INA

B C

7

→

TDA

B C

8

push

push

pop

switch

push

pop

pop

SNA

B C

9 →
⇒

SLA

B C

10

→⇒

B
SLA

B C

11

→

⇒

TD
SLA

B C

12

→⇒

TD
SRA

B C

13

→⇒

C
SRA

B C

14

→

⇒

SRA

B C

15

→⇒

SDA

B C

16 →
⇒

push

pop

push

pop

snatch

snatch

snatch

snatch

snatch

snatch

snatch

snatch

SN
SLA

B C

17

⇒

SD
SLA

B C

18

→
⇒

SN
SRA

B C

19

⇒

SD
SRA

B C

20

→
⇒

snatch

snatch

snatch

snatch

snatch

snatch

SN
SD
SLA

B C

21

→
⇒

SN
SD
SRA

B C

22

→
⇒

snatch

snatch

TD - subtree done (TD)
IN - left child done (IN)
SL - stolen, go left (SL)
SR - stolen, go right (SR)
SD - stolen, subtree done (SD)
SN - stolen, end of stack (SN)
→ - worker position
⇒ - stealer position

Figure 6: The TreeIterator state diagram

on efficient set membership or key-based lookup operations. The
implementation of work-stealing iterators for flat hash-tables we
show in this section is similar to the iterators for data-structures
with fast indexing. Thus, the iteration state can still be repre-
sented with a single integer field progress, and invalidated with
markStolen in the same way as with IndexIterator. The
advance has to compute the expected number of elements be-
tween to array entries using the load factor lf as follows:
def advance(step: Int) = {40

val p = READ(progress)41

val np = math.min(p + (step / lf).toInt, until)42

if (¬CAS(progress, p, np)) advance(s)43

else { nextProgress = p; nextUntil = np; np - p } }44

We change the next and hasNext implementations so that they
traverse the range between nextProgress and nextUntil as
a regular single-threaded hash-table iterator implementation. This
implementation relies on the hashing function to achieve good load-
balancing, which is the common case with hash-table operations.
TreeIterator. Tree-like collections are of interest in paral-
lelism because computation on them can easily be partitioned. Hav-
ing shown that work-stealing iterators can be implemented for flat
data structures, we turn our attention to a lock-free iterator imple-
mentation for tree data structures. For reasons of clarity, we fo-
cus on binary trees that store elements in external nodes, but this
technique can be extended to n-ary trees with elements in internal
nodes. We assume trees do not contain parent pointers.
Tree iterators typically mimic a tree traversal continuation by main-
taining a stack of node references that describes the path from the
root to the currently visited leaf. To implement advance and
markStolen, the state of this stack needs to be visible. However,
known concurrent stack implementations either rely on heap alloca-
tion for every push and pop operation [20], are specialized for high

class TreeIterator[T](val owner: Int,45

val root: Tree, val stack: Array[AnyRef], var dep: Int)46

extends StealIterator[T] {47

type Stolen = SL ∨ SR ∨ SD ∨ SN48

private val nextStack = new Array[Tree](stack.length)49

private val nextDepth = -150

private var lastSwitch: Tree = null51

def read(i: Int) = if (i≥0) READ(stack(i)) else null52

def push(ov: AnyRef, nv: AnyRef): Boolean = {53

if (¬CAS(stack(dep + 1), ov, nv)) false54

else { dep += 1; true } }55

def pop(ov: AnyRef, nv: AnyRef): Boolean = {56

if (¬CAS(stack(dep), ov, nv)) false57

else { dep -= 1; true } }58

def switch(ov: Tree): Boolean = {59

if (¬CAS(stack(dep), ov, IN)) false60

else { lastSwitch = ov; true } }61

def snatch(idx: Int): Boolean = {62

val (p, v) = (read(idx - 1), read(idx))63

val isLeft = p ∈ { SL, null }64

if (v ∈ Stolen) return true65

val nv = v match {66

case IN => SR67

case TD => if (isLeft) SD else SN68

case null => if (isLeft) SN else SD69

case t: Tree => if (t.isLeaf) SN else SL }70

CAS(stack(idx), v, nv) }71

// ... }72

Figure 7: The TreeIterator data type and helper methods

loads and scalability [25] or rely on a DCAS operation [2]. Fortu-
nately, our problem is somewhat different – there is only a single
worker invoking push and pop operations to implement advance
and an unbounded number of stealers that call markStolen. We
show an implementations using single-word CAS instructions and
the amount of storage proportional to the depth of the tree.
A state diagram with several execution scenarios is shown in Fig-
ure 6. Horizontal movement depicts progress of the stealer, while
vertical movement depicts worker progress. Each iterator contains
an array serving as a stack. Consider a subtree with nodes A, B and
C shown in Figure 6-1. The worker traverses the tree by pushing
and popping nodes on the stack. To start traversing the subtree it
pushes the node A, bringing the stack into the state 2. By subse-
quently pushing the leaf B it arrives into the state 3. The worker
then decides to process the element stored in the leaf B. To commit
to processing B, it pops it and replaces it with a special value TD
(tree done), which denotes that all the elements below B will be
processed, and arrives in state 4. More generally, the worker can
choose to commit to an entire subtree in the same way. After pro-
cessing B the worker goes into state 5 by switching the top of the
stack A with a special value IN (inner node done), which denotes
that the rest of the traversal proceeds in the right child. Worker then
pushes C to the stack, arriving in the state 6. Again, it commits
to processing the leaf C by popping it and replacing it with null,
arriving in the state 7. Note that the worker now replaces a node
with null, not TD. The rule is to replace left children with TD,
and right with null. Otherwise, an observer cannot disambiguate
between states (e.g. 5 and 7).
The stealer steals by invalidating the stack entries. It starts from
the bottom of the stack and replaces entries with special values that
denote that the entry was stolen and encode the traversal direction.
We say that the stealer snatches the entry. The stealer uses four
special values SL, SR, SC and SN. SL and SR denote that the tree
traversal at the corresponding tree level goes left or right, respec-
tively. SC denotes that work on the corresponding subtree is com-
pleted. SN serves as a terminator. From any of the states 1-8 the
stealer can snatch a value from the stack and replace it with one

def advance(step: Int) = if (read(0) == TD) -1 else {73

val (p, t, n) = (read(dep-1), read(dep), read(dep+1))74

if (read(0) ∈ Stolen) { markStolen(); return -1 }75

val isLeft = p ∈ Tree ∪ { null }76

(t, n) match {77

case (tree: Tree, null) =>78

if (tree.isLeaf || sizeBound(dep) ≤ step) {79

val nv = if (isLeft) TD else null80

if (¬pop(tree, nv)) advance(step) else {81

nextStack(0) = tree82

nextDepth = 083

sizeBound(dep) }84

} else {85

push(null, tree.left)86

advance(step) }87

case (tree: Tree, TD) =>88

switch(tree)89

advance(step)90

case (IN, null) =>91

pop(IN, if (isLeft) TD else null)92

advance(step)93

case (IN, TD) =>94

push(TD, lastSwitch.right)95

advance(step) } }96

def steal(depth: Int): Unit = read(depth) match {97

case TD if depth == 0 => // done98

case SN => // done99

case v: Stolen => steal(depth + 1)100

case t => snatch(depth, t); steal(depth) }101

def markStolen(): Unit = steal(0)102

Figure 8: The TreeIterator advance and markStolen

of these Stolen values, arriving into one of the states 9-16.
Figure 7 shows the TreeIterator definition and the basic prim-
itives needed to implement the algorithm. The worker uses push,
pop and switch to atomically change the state of the stack. These
operations take the previously observed stack value and replace it
atomically. If successful, they update the private stack depth dep
and the lastSwitch inner node that was last switched.
Implementations of advance and markStolen are shown in
Figure 8. Method advance starts by checking if the entire tree
was already processed (TD) and returns -1 if so. Otherwise, it
reads the top of the stack t, and the previous and the next entries p
and t. After that, it checks if the bottom of the stack was stolen. If
it was, it helps complete the stealing and returns -1. Otherwise, it
compares the top entry t and the next entry n of the stack against
the following patterns. In case the current entry is some subtree
tree and the next entry is null (line 78), the worker will attempt
process all the elements in tree by popping it, given that tree is
a leaf or there are less than step elements in it. This corresponds
to the transition from the state 3 to 4 in Figure 6. The advance
pushes the node on the private nextStack array, which the next
and hasNext can then use. Note that for balanced trees we can
always find the bound on the number of elements in a subtree from
the number of elements in the entire tree and the depth of the sub-
tree – we abstract this with a call to sizeBound. If neither of the
conditions for processing a subtree holds, the worker descends by
pushing the left child to the stack in line 86, going from state 2
to state 3. The remaining stack patterns, namely, (tree, TD),
(IN, null) and (IN, TD) deal with the state transitions 4 to
5, 7 to 8 and 5 to 6, respectively.
The stealer invokes the tail recursive steal method, descending
the stack and invalidating entries to prevent worker progress.
If advance returns a non-negative value, then its linearization
point is the pop call in line 81. Otherwise, the linearization point
is either a successful snatch in line 101 of the steal method if
the iterator is in state S, or the read in line 73 if it is in state C.
For reasons of space, we do not show the implementation of the rest
of the methods, but note that those are either more straightforward

class LockingIterator[T](val owner: Int,103

@volatile var progress: Int, val until: Int)104

extends StealIterator[T] {105

private var nextProgress: Int = -1106

private var nextUntil: Int = -1107

def advance(step: Int) = synchronized {108

if (progress < 0 ∨ progress ≥ until) -1 else {109

val np = math.min(progress + step, until)110

val chunk = np - progress111

progress = np112

chunk } }113

def markStolen(): Unit = synchronized {114

progress = -progress - 1 }115

/* other methods same as before */ }116

Figure 9: The LockingIterator implementation for ranges

or do not have linearizability constraints.
We show an outline of traversal contract proof by assuming we
have a next method that iterates over the elements of the subtree
chosen by advance (line 82) in left-to-right order. We then show
that every sequence of advance calls chooses subtrees ti, each
containing a sequence of elements xi, such that there is a unique
X = x1 · x2 · · ·xn.
First, note that the subtrees ti chosen by advance do not overlap.
This follows from the fact that if a subtree t on the stack is replaced
with the TD value, then no node in the subtree t will appear on the
stack. Thus, no chosen tree is a subtree of another chosen tree, and
we know that overlapping trees are always in a subtree relationship.
Second, note that every leaf will be included in at least one chosen
subtree. This is because for every subtree that is not chosen, both
its children are pushed to the stack and every node on the stack is
replaced with a TD or null, indicating that the corresponding sub-
tree was processed.
Now, without loss of generality, assume by contradiction that there
are some two advance invocation sequences choosing subtrees
t1, . . . , tk, . . . , tn and t1, . . . , t′k, t

′′
k , . . . , tn, such that xk 6= x′k ·

x′′k . Based on the previous observations, the subtrees t′k and t′′k
must be children of tk, otherwise they would overlap with other
trees or leaves would exist that are not children of any chosen sub-
tree. Since in the second invocation sequence the pop in line 81
did not replace tk with TD or null, t′k was pushed on the stack
in line 86, followed by the push of t′′k in line 95. This contradicts
the assumption that xk 6= x′k · x′′k .
LockingIterator. Lock-free implementations can be too com-
plicated or prohibitively expensive for some data-structures. In
such cases, work-stealing iterators can also be implemented in a
naive way using plain locks. Here, the worker acquires a lock dur-
ing the execution of advance, and the stealers do the same during
calls to markStolen. In most cases the state method can read
the state of the iterator without requiring a lock, as shown in Figure
9 where locking has been used to implement a work-stealing iter-
ator over ranges. While this approach excludes the possibility of
lock-free work-stealing, it has the advantage of being applicable to
a bigger range of data-structures more easily.

3.2 Operation kernels
We have seen in Figure 3 that the worker uses the work-stealing
iterator to commit to processing chunks of elements. The apply
call in line 8 conceals the details of how elements are processed. In
this section we show that the apply implementation depends on a
specific data-parallel operation instance. We focus our attention on
the previously mentioned kernel abstraction.
Each data-parallel operation invocation site creates a kernel object,
which describes how a chunk of elements is processed and what
the resulting value is, how to combine values computed by different

trait Kernel[T, R] {117

def zero: R118

def combine(a: R, b: R): R119

def apply(it: StealIterator[T], chunk: Int): R }120

Figure 10: The Kernel interface

workers and what the neutral element for the result is. The kernel
interface is shown in Figure 10. The method apply takes the iter-
ator and the number of elements estimate returned by advance. It
uses the iterator to traverse those elements and compute the result
of type R. The method combine is used to merge two different
results and zero returns the neutral element.
How these methods work is best shown through an example of a
concrete data-parallel operation. The foreach operation takes a
user-specified function object f and applies it in parallel to every
element of the collection. Assume we have a collection xs of inte-
gers and we want to assert that each integer is positive:

xs.foreach(x => assert(x > 0))121

The generic foreach implementation is as follows:
def foreach[U](f: Int => U) = {122

val k = new Kernel[Int, Unit] {123

def zero = ()124

def combine(a: Unit, b: Unit) = ()125

def apply(it: StealIterator[T], chunk: Int) =126

while (it.hasNext) f(it.next()) }127

invokeParallel(k) }128

The Unit type indicates no return value – the foreach func-
tion is executed merely for its side-effect, in this case a potential
assertion. Methods zero and combine always return the Unit
value () for this reason. Most of the processing time is spent in
the apply method, so its efficiency drives the running time of the
operation. For this reason, we use the Scala Macro system [8] to
inline the body of the function f into the Kernel at the callsite:

def apply(it: StealIterator[T], chunk: Int) =129

while (it.hasNext) assert(it.next())130

Another example is the fold operation mentioned in the introduc-
tion and computing the sum of a sequence of numbers xs:

xs.fold(0)((acc, x) => acc + x)131

Operation fold computes a resulting value, which has the integer
type in this case. Results computed by different workers have to
be added together using combine before returning the final result.
After inlining the code for the neutral element and the body of the
folding operator, we obtain the following kernel:

new Kernel[Int, Int] {132

def zero = 0133

def combine(a: Int, b: Int) = a + b134

def apply(it: StealIterator[T], chunk: Int) = {135

var sum = 0136

while (it.hasNext) sum = sum + it.next()137

sum } }138

Where fold returns a scalar value, some operations return entire
collections as results. These operations use data-structure-specific
combiners [41] to build the resulting collections. Combiners define
methods += for adding elements and combine for merging the el-
ements of two combiners into a new combiner.
The map operation transforms each element of the initial collec-
tion into a different element in the resulting collection by applying
a user-specified transformation function f. In the following exam-
ple a real vector xs is multiplied with a scalar value c:

xs.map(x => c * x)139

The generated kernel lazily creates the combiner and stores it into
the result field of the work-stealing iterator. It then traverses the

def apply(149

i: IndexIterator[T],150

chunk: Int) = {151

var sum = 0152

var p = i.nextProgress153

val u = i.nextUntil154

while (p < u) {155

sum = sum + p156

p += 1 }157

sum }158

def apply(159

i: IndexIterator[T],160

chunk: Int) = {161

var sum = 0162

var p = i.nextProgress163

val u = i.nextUntil164

while (p < u) {165

sum = sum + array(p)166

p += 1 }167

sum }168

Figure 11: The specialized apply methods of the Range and
Array kernels for the fold operation

def apply(i: TreeIterator[T], chunk: Int) = {169

def traverse(t: Tree): Int = {170

if (t.isLeaf) t.element171

else traverse(t.left) + traverse(t.right) }172

val root = i.nextStack(0)173

traverse(root) }174

Figure 12: The specialized apply method of the Tree kernel
for the fold operation

chunk, multiplies each element with c and adds it to the combiner:
new Kernel[Int, Combiner[Int]] {140

def zero = createCombiner()141

def combine(a: Int, b: Int) =142

if (a 6= null ∧ b 6= null) a combine b143

else null144

def apply(it: StealIterator[T], chunk: Int) = {145

if (it.result == null) it.result = zero146

val cmb = it.result147

while (it.hasNext) cmb += c * it.next() } }148

While the inlining shown in the previous examples avoids a dy-
namic dispatch to a function object, the while loop still contains
two virtual calls to the work-stealing iterator. Generally, maintain-
ing the iterator requires writes to memory instead of registers. It
also prevents optimisations like loop-invariant code motion, e.g.
hoisting the array bounds check that may be necessary when the
iterator traverses an array.
For these reasons, we would like to inline the iteration into the
applymethod itself. This, however, requires knowing the specifics
of the data layout in the underlying data-structure. Within this pa-
per we rely on the macro system to apply these transformations at
compile-time – we will require that the collection type is known
statically to eliminate the next and hasNext calls.
IndexKernel. Data-structures with fast indexing such as arrays
and ranges can be traversed efficiently by using a local variable p
as iteration index. Figure 11 shows range and array kernel imple-
mentations for the fold example discussed earlier. Updating p is
faster than using an iterator, since it translates into a register up-
date. Array bounds checks inside a while loop are visible to the
compiler or a runtime like the JVM and can be hoisted out. On plat-
forms like the JVM potential boxing of primitive objects resulting
from typical functional object abstractions is eliminated. Finally,
the dynamic dispatch is eliminated from the loop. The thus ob-
tained loop has optimal performance as shown in the evaluation in
Section 4.
TreeKernel. The work-stealing iterator for trees introduced in
Section 3.1 assumed that any subtree can be traversed with the
next and hasNext calls by using a private stack, much like the
linearizable advance that relies on an atomic stack. Pushing and
popping on this private stack results in abstraction penalties that
can easily be avoided by traversing the subtree directly. This is
shown in Figure 12, where the root of the subtree is extracted and
traversed with a nested recursive method traverse. In Section 4
we show that this kind of traversal improves running time several

2 4 6 8

10

20

30

40

50

A (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.foreach, N=150M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java

100 101

100

101

A (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.foreach, N=50M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java

2 4 6 8

0

20

40

60

80

100

120

B (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.fold, N=150M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java
Sequential C

100 101

10−1

100

101

102

B (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.fold, N=150M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java
Sequential C

Figure 13: Uniform workload microbenchmarks I on In-
tel i7 and UltraSPARC T2; A - ParRange.foreach, B -
ParRange.fold

times when compared with the iterator approach.
HashKernel. The hash-table kernel is based on an efficient while
loop like the array and range kernels, but must account for empty
array entries. Assuming flat hash-tables with linear collision reso-
lution, the while loop in the kernel implementation of the previ-
ously mentioned fold is as follows:

while (p < u) {175

val elem = array(p)176

if (elem 6= null) sum = sum + elem177

p += 1 }178

Work-stealing iterator implementations for hash-tables based on
closed addressing are similar.

4. PERFORMANCE EVALUATION
Our design aims to reduce abstraction and scheduling penalties to
a level where they are no longer noticeable, so we must verify that
these goals are fulfilled. We will show a breakdown of performance
improvements to identify the contributions of eliminating boxing,
dynamic dispatch and the iterator abstraction. Doing so shows that
these overheads really exist and that they can be efficiently elim-
inated. We will also introduce a range of different workloads to
evaluate the efficiency of our load-balancing approach.
We compare against imperative sequential programs written in Java,
against existing Scala Parallel Collections and a corresponding im-
perative C version where the two implementations can easily be
compared. We start with microbenchmarks addressing specific data
structures and data-parallel operations, and then move on to larger
data-parallel applications. We rely on the established performance
evaluation methodologies [23]. We perform the evaluation on the
Intel i7-2600 quad-core 3.4 GHz processor with hyperthreading
and an 8-core 1.2 GHz UltraSPARC T2 with 64 hardware threads.
Aside from the different number of cores and processor clock, an-
other important difference between these two architectures is in the
memory throughput - i7-1600 has a single dual-channel memory
controller, while the UltraSPARC T2 has four dual-channel mem-

2 4 6 8

0

20

40

60

80

C (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Array.fold, N=50M
Specialized kernel

Generic kernel
Parallel Collections

100 101

100

101

102

C (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Array.fold, N=15M
Specialized kernel

Generic kernel
Parallel Collections

Sequential Java

2 4 6 8

5

10

15

20

D (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Conc.fold, N=15M
Specialized kernel

Generic kernel
Sequential Java - recursion

Sequential Java - list traversal

100 101

100

101

102

D (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Conc.fold, N=1.5M
Specialized kernel

Generic kernel
Sequential Java - recursion

Sequential Java - list traversal

Figure 14: Uniform workload microbenchmarks II on Intel i7
and UltraSPARC T2; C - ParArray.fold, D - Conc.fold

ory controllers.
We start by showing several microbenchmarks for specific data-
parallel operations on specific collection types. The microbench-
marks in Figures 13 and 14 have a cheap, uniform workload –
the amount of computation per each element is fixed and small
enough to notice any abstraction penalties discussed earlier. The
microbenchmark in Figure 13A consists of a data-parallel foreach
loop that occasionally sets a volatile flag (without a potential side-
effect the JIT compiler may optimize away the loop in the kernel).

for (i <- (0 until N).par) {179

if ((i * i) & 0xffffff == 0) flag = true }180

Figure 13A shows a comparison between Parallel Collections, a
generic work-stealing kernel and a work-stealing kernel specialized
for ranges from Figure 11. In this benchmark Parallel Collections
do not instantiate primitive types and hence do not incur the costs
of boxing, but still suffer from iterator and function object abstrac-
tion penalties. Inlining the function object into the while loop for
the generic kernel shows a considerable performance gain. How-
ever, the range-specialized kernel outperforms the generic kernel
by 25% on the i7 and 15% on the UltraSPARC (note the log scale).
Figure 13B shows the same comparison for parallel ranges and the
fold operation shown in the introduction:

(0 until N).par.fold(_ + _)181

Due to the genericity of the existing Scala Parallel Collections frame-
work boxing occurs in this microbenchmark. The speed gain for a
range-specialized work-stealing kernel is 20× to 60× compared to
Parallel Collections and 2.5× compared to a generic kernel.
Figure 14C shows the same fold microbenchmark applied to par-
allel arrays. While Parallel Collections again incur the costs of
boxing, the generic and specialized kernel have a much more com-
parable performance here. Furthermore, due to the low amount of
per-element computation, this microbenchmark spends a consider-
able percentage of time fetching the data from the main memory.
This is particularly noticeable on the i7 – its dual-channel memory
architecture becomes a bottleneck in this microbenchmark, limit-
ing the potential speedup to 2×. UltraSPARC, on the other hand,

2 4 6 8
0

5

10

15

20

25

30

35

A (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.fold, N=150k
Specialized work-stealing

Parallel Collections
Sequential Java

100 101

100

101

A (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.fold, N=150k
Specialized work-stealing

Parallel Collections
Sequential Java

2 4 6 8

4

6

8

10

12

14

B (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Array.filter, N=1M
Specialized work-stealing

Parallel Collections
Sequential collections

100 101

100

101

B (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Array.filter, N=500k
Specialized work-stealing

Parallel Collections
Sequential collections

2 4 6 8

1

2

3

4

5

6

C (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.filter, N=2500
Specialized work-stealing

Parallel Collections
Sequential collections

100 101
100

101

C (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

Range.filter, N=2200
Specialized work-stealing

Parallel Collections
Sequential collections

Figure 15: Irregular workload microbenchmarks on Intel i7
and UltraSPARC T2; A - Range.fold (χ(0.97, n

N
)), B -

Array.filter (
√
n), C - Range.filter (2

n
100)

shows a much better scaling here due to its eight-channel memory
architecture and a lower computational throughput.
The performance of the fold operation on Fortress-style conc-
lists [4] is shown in Figure 14D. Conc-lists are sequences imple-
mented as external binary trees with efficient concatenation, con-
sidered a parallel variant of functional lists. Here we compare the
generic and specialized fold kernels against a manually written
recursive traversal subroutine. In the same benchmark we compare
against the fold on functional lists from the Scala standard library
commonly used in sequential functional programming. While the
memory-bandwidth is the bottleneck on the i7, we again see a nice
scaling on the UltraSPARC. The performance difference between
the generic and the specialized kernel is 2× to 3×.
We turn to irregular workloads next to compare the proposed de-
sign against the existing Scala Parallel Collections. We choose the
Scala Parallel Collections frameworks for several reasons. First,
this framework has a similar architectural approach as some other
data-parallel frameworks including Intel TBB, STAPL and the up-
coming parallel collections in Java 8 in that it divides data iterators
prior to scheduling them for execution. Second, Scala Parallel Col-
lections have proven as a competitive data-parallel framework and
were included into the Scala standard library in Scala 2.9. Third,
both our implementation and the existing Parallel Collections were
written in the Scala programming language.
The Parallel Collections rely on a Splitter abstraction that di-

2 4 6 8

−10

0

10

20

30

40

i7 Parallelism level

th
ro

ug
hp

ut
/s
−
1

N=30M
Specialized work-stealing

Parallel Collections

100 101

10−1

100

101

T2 Parallelism level

th
ro

ug
hp

ut
/s
−
1

N=30M
Specialized work-stealing

Parallel Collections

Figure 16: Standard deviation computation on Intel i7 and Ul-
traSPARC T2

vides an iterator into its subsets before the parallel traversal begins.
Their scheduler chooses a chunking schedule for each worker such
that the chunk sizes increase exponentially [41]. This scheduler is
adaptive – when a worker steals a chunk it divides it again. How-
ever, due to scheduling penalties of creating splitters and task ob-
jects, and then submitting them to a thread pool, this subdivision
only proceeds until a fixed threshold N

8P
, whereN is the number of

elements and P is the number of processors. If most of the work-
load is concentrated in some sequence of elements smaller than the
threshold, the speedup will be suboptimal. The work-stealing iter-
ators, on the other hand, typically have much smaller chunks con-
sisting of potentially up to a single element, which occurs in parts
of the workload where the irregularities are higher.
To demonstrate the benefits of work-stealing iterators, in Figure
15A we run a parallel foldmethod on a step workloadχ(0.97, n

N
)

– the first 97% of elements have little or no work associated with
them, while the rest of the elements require a high amount of com-
putation. Since most of the work is located in a sequence of ele-
ments smaller than the threshold, the existing Parallel Collections
scheduler only yields a speedup on UltraSPARC when the number
of processors used exceeds 16.
More benign irregularities present in some problems have work-
loads increasing monotonically, described by a function such as√
n. The prime number computation mentioned in the introduction

is shown in Figure 15B – a performance difference is 15% on i7 and
10% on the UltraSPARC in favour of specialized work-stealing.
However, as the irregularity grows, this difference becomes larger
as shown in Figure 15C, where the workload of the n-th element
grows with the function 2

n
100 .

To show that these microbenchmarks are not just contrived ex-
amples, we show several larger benchmark applications as well.
Cheap, uniform workloads occur in practice with linear algebra ap-
plications and numerical computations. In Figure 16 we show per-
formance results for an application computing a standard deviation
of a set of measurements. The relevant part of it is as follows:

val mean = measurements.sum / measurements.size182

val variance = measurements.aggregate(0.0)(_ + _) {183

(acc, x) => acc + (x - mean) * (x - mean) }184

As in previous experiments, Parallel Collections scale but have a
large constant penalty due to boxing. On UltraSPARC boxing ad-
ditionally causes excessive memory accesses resulting in non-linear
speedups for higher parallelism levels (P = 32 and P = 64).
Irregular workloads exist in practical applications as well. We first
show an application that renders an image of the Mandelbrot set in
parallel. The Mandelbrot set is irregular in the sense that all points
outside the circle x2 + y2 = 4 are not a part of the set, but all the
points within the circle require some amount of computation to de-
termine their set membership. Rendering a high resolution image a

2 4 6 8
10

20

30

40

50

60

70

80

A (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

103 × 103; (-2,-2)x(32,32)
Specialized work-stealing

Parallel Collections
Sequential C

100 101

100

101

A (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

2 · 103 × 2 · 103;
(-2,-2)x(32,32)

Specialized work-stealing
Parallel Collections

Sequential C

2 4 6 8

0

10

20

30

B (i7) Parallelism level

th
ro

ug
hp

ut
/s
−
1

2 · 103 × 2 · 103; (-48,-48)x(2,2)
Specialized work-stealing

Parallel Collections
Sequential C

100 101

100

101

B (T2) Parallelism level

th
ro

ug
hp

ut
/s
−
1

2 · 103 × 2 · 103;
(-48,-48)x(2,2)

Specialized work-stealing
Parallel Collections

Sequential C

Figure 17: Mandelbrot set computation on Intel i7 and Ultra-
SPARC T2

2 4 6 8
0

2

4

6

8

10

12

14

i7 Parallelism level

th
ro

ug
hp

ut
/s
−
1

3 · 103 × 3 · 103
Specialized work-stealing

Parallel Collections

100 101

10−0.5

100

100.5

T2 Parallelism level

th
ro

ug
hp

ut
/s
−
1

3 · 103 × 3 · 103
Specialized work-stealing

Parallel Collections

Figure 18: Raytracing on Intel i7 and UltraSPARC T2

part of which contains the described circle thus results in an irreg-
ular workload.
We show the running times of rendering two different Mandelbrot
set images in Figure 17. In Figure 17A the aforementioned com-
putationally demanding circle is in the lower left part of the image,
whereas in Figure 17B the same circle is situated in upper right part
of the image. In both cases the fixed threshold on the chunk sizes
proves detrimental. We can see a similar effect as in the Figure
15A – with a fixed threshold there is only a 50% to 2× speedup
until P becomes larger than 16. The subsequent speedup due to the
chunk size threshold being inversely proportional to the number of
processors remains suboptimal for P > 16 since only a subset of
all the processors gets to work on the more expensive chunks.
In Figure 18 we show the performance of a parallel raytracer, im-
plemented using existing Parallel Collections and specialized work-
stealing. Raytracing renderers project a ray from each pixel of the
image being rendered, and compute the intersection between the
ray and the objects in the scene. The ray is then reflected several
times up until a certain threshold. This application is inherently
data-parallel – computation can proceed independently for differ-
ent pixels. The workload characteristics depend on the placement
of the objects in the scene. If the objects are distributed uniformly
throughout the scene, the workload will be uniform. The particular
scene we choose contains a large number of objects concentrated

2 4 6 8

2

3

4

5

6

i7 Parallelism level

th
ro

ug
hp

ut
/s
−
1

350× 350

Specialized work-stealing
Parallel Collections

100 101

10−1

100

T2 Parallelism level

th
ro

ug
hp

ut
/s
−
1

350× 350

Specialized work-stealing
Parallel Collections

Figure 19: Triangular matrix multiplication on Intel i7 and Ul-
traSPARC T2

in one part of the image, making the workload highly irregular.
The fixed threshold on the chunk sizes causes the region of the
image containing most of the objects to end up in a single chunk,
thus eliminating most of the potential parallelism. On the i7 Paral-
lel Collections barely manage to achieve the speedup of 2×, while
the specialized work-stealing easily achieves up to 4× speedups.
For higher parallelism levels the chunk size becomes small enough
to divide the computationally expensive part of the image between
processors, so the plateau ends at P = 32 on UltraSPARC. The
speedup gap still exists at P = 64 – existing Parallel Collections
scheduler is 3× slower than specialized work-stealing.
The last application we choose is triangular matrix multiplication,
in which a triangular N × N matrix is multiplied with a vector of
size N . Both the matrix and the vector contain arbitrary precision
values. This application has a less irregular workload shown in
Figure 2 – the amount of work to compute the n-th element in the
resulting vector is w(n) = n. We call this workload is triangular.
Figure 19 shows a comparison of the existing Parallel Collections
scheduler and specialized work-stealing. The performance gap is
smaller but still exists, Parallel Collections being 18% slower on
the i7 and 20% slower on the UltraSPARC. The downsides of fixed
size threshold and preemptive chunking are thus noticeable even
for less irregular workloads, although less pronounced.

5. CONCLUSION
The conclusions from the previous section are twofold. First, the
abstraction penalties associated with generic data-parallel frame-
works can be eliminated. This is important from the perspective
of achieving optimal parallelization – additional processors should
not be wasted on compensating for the abstraction overheads.
Furthermore, schedulers that work by preemptively creating chunks
of elements and scheduling them for execution to allow work-stealing
incur higher scheduling penalties. These scheduling penalties are
usually overcome by setting a threshold on the chunk size, but
this in turn makes them less applicable to highly irregular work-
loads. Such a scheduling approach is a direct consequence of the
choice of abstraction in alternative frameworks – Intel TBB re-
lies on the split operation, Scala Parallel Collections rely on
Splitters and the upcoming Java 8 parallel collections rely on
Spliterators. This is a potential cause for concern, since those
frameworks yield a suboptimal speedup for certain workloads.
In the same way as the parallel application authors using a high-
level data-parallel framework should not be concerned with the ab-
straction penalties in their code, they should not worry about opti-
mizing the code to fit a specific workload pattern, particularly when
that the irregularity is the property of the data itself.

6. REFERENCES
[1] Adnan and M. Sato. Efficient work-stealing strategies for

fine-grain task parallelism. In Proceedings of the 2011 IEEE
International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, IPDPSW ’11, pages
577–583, Washington, DC, USA, 2011. IEEE Computer
Society.

[2] O. Agesen, D. L. Detlefs, C. H. Flood, A. T. Garthwaite,
P. A. Martin, N. N. Shavit, and G. L. Steele, Jr. DCAS-based
concurrent deques. In Proceedings of the twelfth annual ACM
symposium on Parallel algorithms and architectures, SPAA
’00, pages 137–146, New York, NY, USA, 2000. ACM.

[3] K. Agrawal, C. E. Leiserson, and J. Sukha. Executing task
graphs using work-stealing. In IPDPS, pages 1–12, 2010.

[4] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress
Language Specification. Technical report, Sun
Microsystems, Inc., 2007.

[5] G. E. Blelloch. Nesl: A nested data-parallel language.
Technical report, Pittsburgh, PA, USA, 1992.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM,
46(5):720–748, Sept. 1999.

[7] Z. Budimlić, V. Cavé, R. Raman, J. Shirako, S. Tasirlar,
J. Zhao, and V. Sarkar. The design and implementation of the
Habanero-Java parallel programming language. In
Proceedings of the ACM international conference companion
on Object oriented programming systems languages and
applications companion, SPLASH ’11, pages 185–186, New
York, NY, USA, 2011. ACM.

[8] E. Burmako and M. Odersky. Scala Macros, a Technical
Report. In Third International Valentin Turchin Workshop
on Metacomputation, 2012.

[9] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce,
T. Smith, G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M.
Amato, and L. Rauchwerger. STAPL: Standard template
adaptive parallel library. In Proceedings of the 3rd Annual
Haifa Experimental Systems Conference, SYSTOR ’10,
pages 14:1–14:10, New York, NY, USA, 2010. ACM.

[10] C. Cascaval, L. D. Rose, D. A. Padua, and D. A. Reed.
Compile-time based performance prediction. In LCPC, pages
365–379, 1999.

[11] B. L. Chamberlain. A brief overview of Chapel, 2013.
[12] B. L. Chamberlain, S. Choi, S. J. Deitz, and L. Snyder. The

high-level parallel language ZPL improves productivity and
performance. In In Proceedings of the IEEE International
Workshop on Productivity and Performance in High-End
Computing, 2004.

[13] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. Flumejava: easy, efficient
data-parallel pipelines. In Proceedings of the 2010 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’10, pages 363–375, New York, NY,
USA, 2010. ACM.

[14] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster computing.
In Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’05, pages 519–538,
New York, NY, USA, 2005. ACM.

[15] D. Chavarria-Miranda, J. Mellor-Crummey, and T. Sarang.

Data-parallel compiler support for multipartitioning, 2001.
[16] G. Cong, S. B. Kodali, S. Krishnamoorthy, D. Lea, V. A.

Saraswat, and T. Wen. Solving large, irregular graph
problems using adaptive work-stealing. In ICPP, pages
536–545, 2008.

[17] P. Costanza, B. De Fraine, and T. Van Cutsem. Improving the
data locality of work stealing – a domain-specific approach.
2010. SPLASH 2010 Workshop on Concurrency for the
Application Programmer.

[18] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
Jan. 2008.

[19] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha. Scalable work stealing. In Proceedings of
the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages
53:1–53:11, New York, NY, USA, 2009. ACM.

[20] I. B. M. C. R. Division and R. Treiber. Systems
Programming: Coping with Parallelism. Research Report
RJ. International Business Machines Incorporated, Thomas
J. Watson Research Center, 1986.

[21] I. Dragos and M. Odersky. Compiling generics through
user-directed type specialization. In Proceedings of the 4th
workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems,
ICOOOLPS ’09, pages 42–47, New York, NY, USA, 2009.
ACM.

[22] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language. In
Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, PLDI
’98, pages 212–223, New York, NY, USA, 1998. ACM.

[23] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous java performance evaluation. In OOPSLA, pages
57–76, 2007.

[24] B. Goetz. State of the lambda: Libraries edition, Nov. 2012.
[25] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable

lock-free stack algorithm. In Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and
architectures, SPAA ’04, pages 206–215, New York, NY,
USA, 2004. ACM.

[26] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2008.

[27] S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: a
method for scheduling parallel loops. Commun. ACM,
35(8):90–101, Aug. 1992.

[28] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM.

[29] K. E. Iverson. A programming language. John Wiley & Sons,
Inc., New York, NY, USA, 1962.

[30] J. JáJá. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[31] M. Joyner, B. L. Chamberlain, and S. J. Deitz. Iterators in
Chapel. In Proceedings of the 20th international conference
on Parallel and distributed processing, IPDPS’06, pages
226–226, Washington, DC, USA, 2006. IEEE Computer
Society.

[32] C. P. Kruskal and A. Weiss. Allocating independent subtasks
on parallel processors. IEEE Trans. Softw. Eng.,
11(10):1001–1016, Oct. 1985.

[33] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and
C. Casçaval. How much parallelism is there in irregular
applications? In Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, PPoPP ’09, pages 3–14, New York, NY, USA,
2009. ACM.

[34] D. Lea. A java fork/join framework. In Java Grande, pages
36–43, 2000.

[35] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. Steal tree:
Low-overhead tracing of work stealing schedulers. In
Proceedings of the 2013 ACM SIGPLAN conference on
Programming language design and implementation, PLDI
’13, 2013.

[36] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert.
Abstraction mechanisms in clu. Commun. ACM,
20(8):564–576, Aug. 1977.

[37] P. Mehrotra, J. V. Rosendale, and H. Zima. High
Performance Fortran: History, status and future, 1997.

[38] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet,
B. Emir, S. McDirmid, S. Micheloud, N. Mihaylov,
M. Schinz, L. Spoon, E. Stenman, and M. Zenger. An
Overview of the Scala Programming Language (2. edition).
Technical report, 2006.

[39] C. D. Polychronopoulos and D. J. Kuck. Guided
self-scheduling: A practical scheduling scheme for parallel
supercomputers. IEEE Trans. Comput., 36(12):1425–1439,
Dec. 1987.

[40] A. Prokopec, P. Bagwell, and M. Odersky. Lock-free
resizeable concurrent tries. In LCPC, pages 156–170, 2011.

[41] A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky. A
generic parallel collection framework. In Proceedings of the
17th international conference on Parallel processing -
Volume Part II, Euro-Par’11, pages 136–147, Berlin,
Heidelberg, 2011. Springer-Verlag.

[42] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky.
Concurrent tries with efficient non-blocking snapshots. In
Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, PPoPP
’12, pages 151–160, New York, NY, USA, 2012. ACM.

[43] A. Prokopec and M. Odersky. Near optimal work-stealing
tree scheduler for highly irregular data-parallel workloads.
2013. To appear.

[44] J. Reinders. Intel threading building blocks. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, first edition, 2007.

[45] V. Sarkar. Optimized unrolling of nested loops. In
Proceedings of the 14th international conference on
Supercomputing, ICS ’00, pages 153–166, New York, NY,
USA, 2000. ACM.

[46] V. Sarkar and J. Hennessy. Compile-time partitioning and
scheduling of parallel programs. In Proceedings of the 1986
SIGPLAN symposium on Compiler construction, SIGPLAN
’86, pages 17–26, New York, NY, USA, 1986. ACM.

[47] K. Streit, C. Hammacher, A. Zeller, and S. Hack. Sambamba:
a runtime system for online adaptive parallelization. In
Proceedings of the 21st international conference on
Compiler Construction, CC’12, pages 240–243, Berlin,
Heidelberg, 2012. Springer-Verlag.

[48] B. Stroustrup. The C++ Programming Language, Third

Edition. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 3rd edition, 1997.

[49] O. Tardieu, H. Wang, and H. Lin. A work-stealing scheduler
for X10’s task parallelism with suspension. In Proceedings
of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages
267–276, New York, NY, USA, 2012. ACM.

[50] M. Tchiboukdjian, V. Danjean, T. Gautier, F. L. Mentec, and
B. Raffin. A work stealing scheduler for parallel loops on
shared cache multicores. In Euro-Par Workshops, pages
99–107, 2010.

[51] T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A
practical scheduling scheme for parallel compilers. IEEE
Trans. Parallel Distrib. Syst., 4(1):87–98, Jan. 1993.

