
Technical Report, April 2013

On Integrating Deductive Synthesis and Verification Systems

Etienne Kneuss Viktor Kuncak Ivan Kuraj Philippe Suter
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

firstname.lastname@epfl.ch

Abstract
We describe techniques for synthesis and verification of re-
cursive functional programs over unbounded domains. Our
techniques build on top of an algorithm for satisfiability
modulo recursive functions, a framework for deductive syn-
thesis, and complete synthesis procedures for algebraic data
types. We present new counterexample-guided algorithms
for constructing verified programs. We have implemented
these algorithms in an integrated environment for interac-
tive verification and synthesis from relational specifications.
Our system was able to synthesize a number of useful recur-
sive functions that manipulate unbounded numbers and data
structures.

1. Introduction
Software construction is a difficult problem-solving activity.
It remains a largely manual effort today, despite significant
progress in software development environments and tools.
The development becomes even more difficult when the goal
is to deliver verified software, which must satisfy specifica-
tions such as assertions, pre-conditions, and post-conditions.

We believe that quick feedback and error reports are
essential for practical verification. Verifying programs af-
ter they have been developed is extremely time-consuming
[19, 23] and it is difficult to argue its cost-effectiveness.
Our research therefore explores approaches that support in-
tegrated software construction and verification. An impor-
tant aspect of such approaches are modular verification tech-
niques which can check that a function conforms to its local
specification. In such approach, the verification of an indi-
vidual function against its specification can start before the
entire software system is completed, so tools can provide
rapid feedback that allows specifications and implementa-
tions to be developed simultaneously. Quoting [3], who re-
port on the experience with Spec#,

“If verification ever makes it into the daily rhythm of
mainstream programming, it will be through a design-
time interface providing online verification.”

We choose a functional language as the core language for
the development of verified software. Functional languages
strike an appealing balance between executability and ver-
ifiability, predicted already in [27]. Although the problem

of delivering verified software has been explored through
a number of different approaches, in a number of success-
ful cases the development relies heavily on a functional lan-
guage. In some cases [19] the researchers have even written
the entire software system once in a functional language for
verifiability, and once in a lower-level language for execu-
tion efficiency.

Based on the ideas of suitability of a functional paradigm
and the importance of rapid feedback, we have developed
a verifier that quickly detects errors in functional programs
and reports concrete counterexamples, but can also prove the
correctness of programs [40–42]. Furthermore, we have in-
tegrated such countexample-generating verifier into a web-
browser-based IDE, resulting in a tool for convenient devel-
opment of verified functional programs. This verifier is the
starting point of the tool we present in this paper.

Moving beyond verification, we believe that a produc-
tive development of verified software requires techniques
for synthesis from specifications. Specifications in terms of
properties generalize existing declarative programming lan-
guage paradigms by allowing the statement of constraints
between inputs and outputs as opposed to always specifying
outputs as functions of inputs [13, 20]. Unlike deterministic
specifications, constraints can be composed using conjunc-
tions, which enables description of the problem as a combi-
nation of orthogonal requirements.

This paper introduces synthesis algorithms, techniques
and tools that integrate synthesis into the development pro-
cess for functional program. We present a synthesizer that
can construct the bodies of functions starting solely from
their postconditions. The programs that our synthesizer pro-
duces typically manipulate unbounded data types, such as
algebraic data types and unbounded integers. Thanks to the
use of deductive synthesis and the availability of a verifier,
when the synthesizer succeeds, the generated code is guar-
anteed to be correct for all possible input values.

Our synthesizer uses specifications as the description of
the synthesis problems. While it could additionally accept
input/output examples to illustrate the desired functionality,
we view such illustration as a special form of input/output
relation: whereas input/output examples correspond to tests
and provide a description of a finite portion of the desired
functionality, we primarily focus on symbolic descriptions,

On Integrating Deductive Synthesis and Verification Systems 1 2013/4/18

which ensure the desired behavior over an arbitrarily large
or even infinite domain. From such descriptions, our syn-
thesizer can automatically generate input/output examples
when needed, but can also use them and transform them di-
rectly into executable code.

A notable degree of automation in our synthesizer comes
from synthesis procedures [12, 21, 22], which compile spec-
ification fragments expressed in decidable logics. Our work
is the first implementation of the synthesis procedure for al-
gebraic data types [40].

Note however, that, to capture a variety of scenarios in
software development, we also support the general problem
of synthesis of Turing-complete programs. The result is a
framework for cost-guided application of deductive synthe-
sis rules, which decompose the problems into subproblems.

Our synthesizer tightly cooperates with the underlying
verifier, which allows it to achieve orders of magnitude bet-
ter performance than using simpler generate-and-test ap-
proaches. Techniques we use include symbolic transforma-
tion based on synthesis procedures, as well as synthesis of
recursive functions using counterexample-guided strategies.
We have evaluated a number of system architectures and
trade-offs between symbolic and concrete reasoning in our
implementation and arrived at an implementation that is suc-
cessful despite the large space of possible programs.

We believe that we have achieved a new level of automa-
tion for a broad domain of recursive functional programs.
We consider a particular strength of our system that it can
synthesize code that satisfies a given relational specification
for all values of inputs, and not only given input/output pairs.

Despite aiming at a high automation level, we are aware
that any general-purpose automated synthesis procedure will
ultimately face limitations of scalability and the ability to
control the development process. We deployed the synthesis
algorithm as an interactive assistance that allows the devel-
oper to interleave manual and automated development steps.
In our system, the developer can decompose a function and
leave the subcomponents to the synthesizer, or, conversely,
the synthesizer can decompose the problem, solve some of
the subproblems, and leave the remaining open cases for the
developer. To facilitate such synergy, we deploy an anytime
synthesis procedure, which maintains a ranked list of current
problem decompositions. The user can interrupt the synthe-
sizer at any time to display the current solution and continue
manual development. This is possible thanks to the fact that
synthesis problems and specification problems are both ex-
pressed in a unified language based on the construct resem-
bling non-deterministic choice.

1.1 Contributions
The overall contribution of this paper is an integrated syn-
thesis and development system for automated and interac-
tive development of verified programs. A number of tech-
niques from deductive and inductive reasoning need to come
together to make such system usable.

Verifier. Our automated verification environment is the en-
abler of synthesis. We use SMT solvers, specifically Z3 [28],
and a fair function unfolding strategy that is effective for suf-
ficiently surjective abstractions [41, 42]. We have achieved
substantial speed-ups of this technique for satisfiable con-
straints through the use of code generation and fair enu-
meration of structured values. The improvements in verifi-
cation and falsification have transferred to the improvements
in synthesis times.

Implemented synthesis framework. We developed a de-
ductive synthesis framework that can accept a given set of
synthesis rules and applies them according to a cost function.
The framework accepts 1) a path conditions that encode pro-
gram context, and 2) a relational specifications. It returns the
function from inputs to outputs as a solution, as well as any
necessary strengthening of the precondition needed for the
function to satisfy the specification. We have deployed the
framework in a web-browser-based environment with con-
tinuous compilation and the ability to interrupt the synthesis
to obtain a partial solution in the form of a new program with
a possibly simpler synthesis problem.

Data type synthesis. Within the above framework we have
implemented rules for synthesis of algebraic data type equa-
tions and disequations [40], as well as a number of general
rules for decomposing specifications based on their logical
structure or case splits on commonly useful conditions. We
have developed program simplification techniques that post-
process the generated code and make it more readable.

Support for recursion schemas and symbolic term genera-
tors. One of the main strengths in our framework is a new
form of counterexample-guided synthesis that arises from a
combination of several rules.

• A set of built-in recursion schemas can solve a problem
by generating a fresh recursive function. To ensure well-
foundedness we have extended our verifier with termi-
nation checking, and therefore generate only terminating
function calls in this rule.
• To generate bodies of functions, we have symbolic term

generators that systematically generate well-typed pro-
grams built from selected set of operators (such as alge-
braic data type constructors and selectors). To test candi-
date terms against specifications we use the Leon’s veri-
fier. To speed up this search, the rule accumulates previ-
ously found counterexamples. Moreover, to quickly boot-
strap the set of examples it uses systematic generators
that can enumerate in a fair way any finite prefix of a
countable set of structured values. The falsification of
generated bodies is done by direct execution of code. For
this purpose, we have developed a lightweight compiler
for our subset of Scala into bytecodes, replacing many
constraint reasoning steps by code execution.

On Integrating Deductive Synthesis and Verification Systems 2 2013/4/18

Function generation by condition abduction. We also
present and evaluate an alternative counterexample-guided
rule tailored towards synthesis of recursive conditional func-
tions, with the following characteristics.

• Instead of specialized term evaluators, the rule uses a
general expression enumerator based on generating all
expressions of a given type [10]. This results in a broad
coverage of expressions that the rule can synthesize. It
uses a new lazy enumeration algorithm for such expres-
sions with polynomial-time access to the next term to
enumerate [?]. Similarly to the previous rule, it filters
well-typed expressions using counterexamples generated
from specifications and previous function candidates, as
well as based on structured value genererators.
• The most distinctive aspect of this rule is the handling of

conditional expressions. The expressions are synthesized
by collecting relevant terms that satisfy a notable number
of derived test inputs, and then trying to synthesize pred-
icates that imply the correctness of candidate terms. This
is an alternative to relying on existing rules to perform
splitting on simple conditions. Effectively, the additional
rule performs abduction of conditions until it covers the
entire input space with a partition of conditions, where
each partition is associated with a term.

Evaluation. We evaluate the current reach of our synthe-
sizer in fully automated mode by synthesizing functions
such as those that merge, partition, and sort lists of objects,
where lists are defined using a general mechanism for alge-
braic data types. This paper presents a description of all the
above techniques and a snapshot of our results. We believe
that the individual techniques are interesting by themselves,
but we also believe that having a system that combines them
is essential to understand the potential of these techniques
in addressing the difficult problem as synthesis. To gain full
experience of the feeling of such development process, we
therefore invite the reader to explore the system themselves.

2. Interactive Synthesis and Verification in
the Leon System

We start by illustrating through a series of examples how
developers can leverage our system to write programs that
are correct by construction.

Unary numerals. As a first example, we will consider
tasks related to Unary numerals. While these examples are
simple in nature, they illustrate some very important points.
In particular, they show how, using a combination of veri-
fication and synthesis, one can program functions manipu-
lating data types in one representation while specifying the
operations using an abstract view.

Consider a standard definition of unary numerals as a re-
cursive data type, with a base case “zero” and a “successor”
constructor.

sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

Because it is more convenient to think of these numerals
in term of their integer value, we can define an abstraction
function that computes it:

def value(n:Num) : Int = (n match {
case Z ⇒ 0
case S(p) ⇒ 1 + value(p)
}) ensuring (≥ 0)

The ensuring clause is Scala notation for a postcondi-
tion [?]. These postconditions are defined by an anonymous
function, whose single argument denotes the result of the
function. The underscore notation is a shorthand for x⇒x≥0,
so this annotation simply specifies that the integer represen-
tation of a unary numeral is never negative, and Leon in-
stantly proves this simple verification condition.

Using our (verified) abstraction function, we can start
specifying operations on unary numerals. Consider for in-
stance the addition operation. Its contract in terms of the
value function is clear, so we can write it as:

def add(x : Num, y : Num) : Num = choose { (r: Num) ⇒
value(r) == value(x) + value(y)
}

Here, choose is a special function defined by Leon to rep-
resent a computation that needs to be synthesized. Similarly
to the postcondition, it is defined by an anonymous func-
tions whose result represents the desired output. Contrary to
postconditions, though, the function (or synthesis predicate)
can admit multiple arguments, in which case the synthesized
program should return a tuple of values of the appropriate
types.

Upon invocation of the Leon synthesis component, the
following recursive implementation is derived:

def add(x : Num, y : Num) : Num = (x match {
case Z ⇒ y
case S(p) ⇒ add(p, S(y))
}) ensuring(r ⇒ value(r) == value(x) + value(y))

We can continue expanding on these results, and define a
synthesis predicate for multiplication:

def mult(x : Num, y : Num) : Num = choose { (r: Num) ⇒
value(r) == value(x) ∗ value(y)
}

Leveraging the previous results for add, our synthesis algo-
rithm derives the following program:

def mult(x : Num, y : Num) : Num = (x match {
case Z ⇒ Z
case S(p) ⇒ add(y, mult(p, y))
}) ensuring(r ⇒ value(r) == value(x) ∗ value(y))

Both functions are generated within three seconds.

On Integrating Deductive Synthesis and Verification Systems 3 2013/4/18

List manipulation. We believe this rapid feedback is
mandatory when developing from specifications. One rea-
son is that, since contracts are typically partial, results ob-
tained from under-specifications can be remote from the de-
sired output. Thus, a desirable strategy is to rapidly iterate
and refine specifications until the output matches the expec-
tations.

As an example, we will consider the task of synthesizing
the split function necessary in merge sort. We start from
a standard recursive definition of lists, and we assume the
existence of recursive functions computing their size (as a
non-negative integer), and their content (as a set of integers).

sealed abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

def size(lst : List) : Int = . . .
def content(lst : List) : Set[Int] = . . .

As a first attempt to synthesize split, we try the following
specification:

def split(lst : List) : (List,List) = choose { (r : (List,List)) ⇒
content(lst) == content(r. 1) ++ content(r. 2)
}

Leon instantly generates the following function which, while
it satisfies the contract, is not particularly useful:

def split(lst : List) : (List,List) = (lst, Nil)

To avoid getting a single list with an empty one, we can
refine the specification by enforcing that the sizes of the
resulting lists should not differ by more than one:

def split(lst : List) : (List,List) = choose { (r : (List,List)) ⇒
content(lst) == content(r. 1) ++ content(r. 2)
&& abs(size(r. 1)−size(r. 2)) ≤ 1
}

Again, Leon instantly generates a correct, useless, program:

def split(lst : List) : (List,List) = (lst, lst)

We can further refine the specification by stating that the sum
of the sizes of the two lists should match the size of the input
one:

def split(lst : List) : (List,List) = choose { (r : (List,List)) ⇒
content(lst) == content(r. 1) ++ content(r. 2)
&& abs(size(r. 1) − size(r. 2)) ≤ 1
&& (size(r. 1) + size(r. 2)) == size(lst)
}

We then finally obtain a useful split function:

def split(lst: List): (List, List) = lst match {
case Nil ⇒ (Nil, Nil)
case Cons(h, Nil) ⇒ (Nil, Cons(h, Nil))
case Cons(h1, Cons(h2, t2)) ⇒
val r = split(t2)
(Cons(h1, r. 1), Cons(h2, r. 2))

}

We observe that in this programming style, users can write
(or generate) code by conjoining orthogonal requirements,
such as constraints on the sizes and contents, which are only
indirectly related. The rapid feedback make it possible to
go through multiple candidates rapidly, strengthening the
specification as required.

Sorting. A typical example of a task that is easier to spec-
ify than to implement is sorting. We conclude this overview
of Leon’s synthesis capabilities by showing how to derive
an insertion sorting algorithm. We start from the straightfor-
ward definition of isSorted, a function that checks whether a
list is sorted:

def isSorted(lst : lst) : Boolean = lst match {
case Nil ⇒ true
case Cons(, Nil) ⇒ true
case Cons(x1, xs @ Cons(x2,)) ⇒ x1 ≤ x2 && isSorted(xs)
}

Using this function, the problem of sorting can be stated as
simply as:

def sort(lst : List): List = choose { (r: List) ⇒
isSorted(r) && content(r) == content(lst)
}

To achieve this goal, we start by specifying the helper func-
tion insertSorted:

def insertSorted(lst : List, v: Int): List = {
require(isSorted(lst))
choose { (r: List) ⇒

isSorted(r) && content(r) == content(lst) ++ Set(v)
}
}

From this, Leon generates the following solution:

def insertSorted(lst: List, v: Int): List = {
require(isSorted(lst))
lst match {
case Nil ⇒ Cons(v, Nil)
case Cons(h, tail) ⇒
val r = insertSorted(t, v)
if (v > h) Cons(h, r)
else if (h == v) r
else Cons(v, Cons(h, t))

}

With the help of this insertion function, we can proceed to
synthesizing sort with the simple specification mentioned
above. Within five seconds, Leon generates the following
implementation of insertion sort:

def sort(lst : List): List = lst match {
case Nil ⇒ Nil
case Cons(h, t) ⇒ insertSorted(sort(t), h)
}

On Integrating Deductive Synthesis and Verification Systems 4 2013/4/18

3. The Leon Verifier
The results presented in this paper focus on the synthesis
component of Leon. The language of Leon is a subset of
Scala, as illustrated through the examples of Section 2. Be-
sides integers and user-defined recursive data types, Leon
supports booleans, sets and maps.

Solver algorithm. At the core of Leon is an algorithm to
reason about formulas that include user-defined recursive
functions, such as size, content, and isSorted in Section 2.
The algorithm proceeds by iteratively examining longer and
longer execution traces through the recursive functions. It al-
ternates between an over-approximation of the executions,
where only unsatisfiability results can be trusted, and an
under-approximation, where only satisfiability results can be
concluded. The status of each approximation is checked us-
ing the state-of-the-art SMT solver Z3 from Microsoft Re-
search [28]. The algorithm is a semi-decision procedure,
meaning that it is theoretically complete for counterexam-
ples: if a formula is satisfiable, Leon will eventually produce
a model [42]. Additionally, the algorithm works as a decision
procedure for a certain class of formulas [41].

In the past, we have used this core algorithm in the con-
text of verification [42], but also as part of an experiment in
providing run-time support for declarative programming us-
ing constructs similar to choose [20]. We have in both cases
found the performance in finding models to be suitable for
the task at hand. 1

Throughout this paper, we will assume the existence of an
algorithm for deciding formulas containing arbitrary recur-
sive functions. Whenever completeness is an issue, we will
mention it and describe the steps to be taken in case of, e.g.
timeout.

Compilation-based evaluator. Another component of
Leon on which we rely in this paper is an interpreter based
on on-the-fly compilation to the JVM. Function definitions
are typically compiled once and for all, and can therefore be
optimized by the JIT compiler. This component is used dur-
ing the search in the core algorithm, to validate models and
to sometimes optimistically obtain counterexamples. We use
it to quickly reject candidate programs during synthesis (see
sections 6 and 7).

Ground term generator. Our system also leverages Leon’s
generator of ground terms and its associated model finder.
Based on a generate-and-test approach, it can generate
small models for formulas by rapidly and fairly enu-
merating values of any type. For instance, enumerating
Lists will produce a stream of values Nil(), Cons(0, Nil()),
Cons(0, Cons(0, Nil())), Cons(1, Nil()), . . .

1 We should also note that since the publication of [42], our engineering
efforts as well as the progress on Z3 have improved running times by 40%.

4. Deductive Synthesis Framework
The approach to synthesis we follow in this paper is to derive
programs by a succession of independently validated steps.
In this section, we briefly describe the formal reasoning be-
hind these constructive steps and provide some illustrative
examples. A more extended exposition of this formal frame-
work is available in [12].

4.1 Synthesis Problems
A synthesis problem is given by a predicate describing a
desired relation between a set of input and a set of output
variables, as well as the context (program point) at which
the synthesis problem appears. We represent such a problem
as a quadruple

Jā 〈Π � φ〉 x̄K
where:

• ā denotes the set of input variables,
• x̄ denotes the set of output variables,
• φ is the synthesis predicate, and
• Π is the path condition to the synthesis problem.

The free variables of φ must be a subset of ā ∪ x̄. The
path condition denotes a property that holds for input at the
program point where synthesis is to be performed, and the
free variables of Π should therefore be a subset of ā.

As an example, consider the following call to choose:

def f(a : Int) : Int = {
if(a ≥ 0) {
choose((x : Int) ⇒ x ≥ 0 && a + x ≤ 5)
} else . . .
}

The representation of the corresponding synthesis problem
is:

Ja 〈a ≥ 0 � x ≥ 0 ∧ a+ x ≤ 5〉 xK (1)

4.2 Synthesis Solutions
We represent a solution to a synthesis problem as a pair

〈P | T̄ 〉

where:

• P is the precondition, and
• T̄ is the program term.

The free variables of both P and T̄ must range over ā. The
intuition is that, whenever the path condition and the precon-
dition are satisfied, evaluating φ[x̄ 7→ T̄] should evaluate to
true, i.e. T̄ are realizers for a solution to x̄ in φ given the
inputs ā. Furthermore, for a solution to be as general as pos-
sible, the precondition must be as weak as possible.

Formally, for such a pair to be a solution to a synthesis
problem, denoted as

Jā 〈Π � φ〉 x̄K ` 〈P | T̄ 〉

On Integrating Deductive Synthesis and Verification Systems 5 2013/4/18

the following two properties must hold:

• Relation refinement:

Π ∧ P |= φ[x̄ 7→ T̄]

This property states that whenever the path- and precon-
dition hold, the program T̄ can be used to generate values
for the output variables x̄ such that the predicate φ is sat-
isfied.
• Domain preservation:

Π ∧ (∃x̄ : φ) |= P

This property states that the precondition P cannot ex-
clude inputs for which an output would exist such that φ
is satisfied.

As an example, a valid solution to the synthesis problem
(1) is given by:

〈a ≤ 5 | 0〉

The precondition a ≤ 5 characterizes exactly the input
values for which a solution exists, and for all such values,
the constant 0 is a valid solution term for x. Note that the
solution is in general not unique; alternative solutions for
this particular problem include for instance 〈a ≤ 5 | 5− a〉,
or 〈a ≤ 5 | if(a < 5) a+ 1 else 0〉.

A note on path conditions. Strictly speaking, the inclusion
of the path condition does not add expressive power to the
representation of synthesis problems. One can easily verify
that the space of solution terms for Jā 〈Π � φ〉 x̄K is isomor-
phic to the one for Jā 〈true� Π ∧ φ〉 x̄K. In the latter case,
the path condition Π, is simply included in the precondition
of the solution. On the other hand, from the definition it fol-
lows that if 〈P | T̄ 〉 is a solution and Π ∧ P is equivalent
to Π ∧ P ′ then 〈P ′ | T̄ 〉 is also a solution to the synthe-
sis problem. We can let, P ′ be, for example, Π ∧ P , or, as
another extreme, Π → P . We have therefore found it con-
venient in the implementation to explicitly keep track of the
path conditions and allow freedom in the representation of
the returned precondition P .

4.3 Inference Rules for Synthesis
Building on our correctness criteria for synthesis solutions,
we now describe inference rules for synthesis. Such rules de-
scribe relations between synthesis problems, capturing how
some problems can be solved by reduction to others. We
have shown in previous work how to design a set of rules to
ensure completeness of synthesis for a well-specified class
of formulas, e.g. integer linear arithmetic relations [21] or
simple term algebras [12]. In the interest of remaining self-
contained, we shortly describe some generic rules. We then
proceed to presenting inference rules which allowed us to
derive synthesis solutions to problem that go beyond such
decidable domains.

The validity of each rule can be established independently
from its instantiations, or from the context in which they it
is used. This in turn guarantees that the programs obtained
by successive applications of validated rules are correct by
construction.

Generic reductions. As a first example, consider the rule
ONE-POINT in Figure 1. It intuitively reads as follows; “if
the predicate of a synthesis problem contains a top-level
atom of the form x0 = t, where x0 is an output variable not
appearing in the term t, then we can solve a simpler problem
where t is substituted for x0, obtain a solution 〈P | T̄ 〉 and
reconstruct a solution for the original one by first computing
the value for t and then assigning as the result for x0”.

Another, perhaps simpler, example is given by GROUND
in Figure 1. This rule simply states that if a synthesis prob-
lem does not refer to any input variable, then it can be treated
as a satisfiability problem: any model for the predicate φ can
then be used as a ground solution term for x̄.

Conditionals. The rules we have seen so far generate
straight-line, unconditional expressions. In order to synthe-
size programs that include conditional expressions, we need
rules such as CASE-SPLIT in Figure 1. The intuition behind
CASE-SPLIT is that a disjunction in the synthesis predicate
can be handled by an if-then-else expression in the synthe-
sized code, and each subproblem (corresponding to predi-
cates φ1 and φ2 in the rule) can be treated separately. As
one would expect, the precondition for the final program is
obtained by taking the disjunction of the preconditions for
the subproblems. This matches the intuition that the disjunc-
tive predicate should be realizable if and only if one of its
disjunct is. Note as well that even though the disjunction is
symmetrical, in the final program we necessarily privilege
one branch over the other one. This has the interesting side-
effect that we can, as shown in the rule, add the negation
of the precondition P1 to the path condition of the second
problem. This has the potential of triggering simplifications
in the solution of φ2. An extreme case being when the first
precondition is true and the “else” branch becomes unreach-
able.

The CASE-SPLIT rule as we presented it applies to dis-
junctions in synthesis predicates. We should note that it is
sometimes desirable to explicitly introduce such disjunc-
tions. For instance, our system includes rules to introduce
branching on the equality of two variables, to perform case
analysis on the types of variables (pattern-matching), etc.
These rules can be thought of as introducing first a disjunct,
e.g. a = b ∨ a 6= b, then applying CASE-SPLIT.

Recursion Schemas. We now show an example of an in-
ference rule that produces a recursive function. A common
paradigm in functional programming is to perform a compu-
tation by recursively traversing a structure. The rule LIST-
REC captures one particular form of such a traversal for the
List recursive type used in the examples of Section 2. The

On Integrating Deductive Synthesis and Verification Systems 6 2013/4/18

ONE-POINT
Jā 〈Π � φ[x0 7→ t]〉 x̄K ` 〈P | T̄ 〉 x0 /∈ vars(t)

Jā 〈Π � x0 = t ∧ φ〉 x0 , x̄K ` 〈P | val x̄ := T̄ ; (t , x̄)〉
GROUND

M |= φ vars(φ) ∩ ā = ∅
Jā 〈Π � φ〉 x̄K ` 〈true | M〉

CASE-SPLIT
Jā 〈Π � φ1〉 x̄K ` 〈P1 | T̄1〉 Jā 〈Π ∧ ¬P1 � φ2〉 x̄K ` 〈P2 | T̄2〉

Jā 〈Π � φ1 ∨ φ2〉 x̄K ` 〈P1 ∨ P2 | if(P1) {T̄1} else {T̄2}〉

LIST-REC

(Π1 ∧ P) =⇒ Π2 Π2[a0 7→ Cons(h,t)] =⇒ Π2[a0 7→ t] Jā 〈Π2 � φ[a0 7→ Nil]〉 x̄K ` 〈true | T̄1〉
Jr̄ , h , t , ā 〈Π2[a0 7→ Cons(h,t)] ∧ φ[a0 7→ t, x̄ 7→ r̄] � φ[a0 7→ Cons(h,t)]〉 x̄K ` 〈true | T̄2〉

Ja0 , ā 〈Π1 � φ〉 x̄K ` 〈P | rec(a0,ā)〉

Figure 1. Selected synthesis inference rules.

goal of the rule is to derive a solution consists of a single in-
vocation to a recursive function rec. The recursive function
has the following form:

def rec(a0, ā) = {
require(Π2)
a0 match {
case Nil ⇒ T̄1

case Cons(h, t) ⇒
val r̄ = rec(t, ā)
T̄2

}
} ensuring(r̄ ⇒ φ[x̄ 7→ r̄])

where a0 is of type List. The function iterates over the list a0
while preserving the rest of the input variables (the environ-
ment) ā. Observe that its postcondition corresponds exactly
to the synthesis predicate of the original problem. We now
go over the premises of the rule in detail:

• The condition (Π1 ∧ P) =⇒ Π2 is necessary to ensure
that the initial call to rec in the final program will satisfy
its precondition.
• The condition Π2[a0 7→ Cons(h,t)] =⇒ Π2[a0 7→ t]

states that the precondition of rec should be inductive,
i.e. whenever it holds for a list, it should also hold for its
tail. This is necessary to ensure that the recursive call will
satisfy the precondition.
• The subproblem Jā 〈Π2 � φ[a0 7→ Nil]〉 x̄K corresponds

to the base case (Nil), and thus does not contain the input
variable a0.
• The final subproblem is the most interesting, and corre-

sponds to the case where a0 is a Cons, represented by
the fresh input variables h and t. Because the recursive
structure is fixed, we can readily represent the result of
the invocation rec(t,ā) by another fresh variable r. We
can assume that the postcondition of rec holds for that
particular call, which we represent in the path condition
as φ[a0 7→ t, x̄ 7→ r̄]. The rest of the problem is obtained
by substituting a0 for Cons(h,t) in the path condition and
in the synthesis predicate.

5. Exploring the Space of Subproblems
In the previous section, we described a general formal frame-
work in which we can describe what constitutes a synthe-
sis problem and a solution. In particular, we have shown
how synthesis rules decompose synthesis problems into sub-
problems. In this section, we describe how we automatically
search across rule instantiations to derive a complete solu-
tion to a problem.

Inference rules are non-deterministic by nature. They jus-
tify the correctness of a solution, but do not by themselves
describe how one finds that solution. Our search for a solu-
tion alternates between considering 1) which rules apply to
given problems, and 2) which subproblems are generated by
rule instantiations.

The task of finding rules that apply to a problem intu-
itively correspond to finding an inference rule whose con-
clusion matches the structure of a problem. For instance,
to apply GROUND, the problem needs to mention only out-
put variables. Similarly, to apply LIST-REC to a problem, it
needs to contain at least one input variable of type List.

Computing the subproblems resulting from the applica-
tion of a rule is in general straightforward, as they corre-
spond to problems appearing in its premise. The GROUND
rule, for instance, generates no subproblem, while LIST-REC
generates two.

AND/OR search. To solve one problem, it suffices to find
a complete derivation from one rule application to that prob-
lem. However, to fully apply a rule, we need to solve all
generated subproblems. This corresponds to searching for a
closed branch in an AND/OR tree [26].

We now describe the expansion of such a tree using an
example. Consider the problem of removing a given element
e from a list a. In our logical notation –using α as an abbre-
viation for content– the problem is:

Ja , e 〈true� α(x) = α(a) \ {e}〉 xK

We denote this problem by 1 in the tree of Figure 2. While
we haven’t given an exhaustive list of all rules used in our

On Integrating Deductive Synthesis and Verification Systems 7 2013/4/18

1

2

3

4

5

A

B

C

. . .

D

E

F

G

. . .

. . .

. . .

. . .

H

I7

6

Figure 2. An AND/OR search tree used to illustrate our
search mechanism. Circles are OR nodes and represent prob-
lems, while boxes are and nodes and represent our rule ap-
plications. Nodes in grey are closed (solved).

system, it is fair to assume that more than one can apply to
this problem. For instance, we could case-split on the type of
a, or apply LIST-REC to a. We represent these two options
by A and B respectively in the tree.

Following the option B and applying LIST-REC with the
path condition Π2 ≡ true trivially satisfies the first two
premises of the rules, and generates two new problems (5
and 6). Problem 5 is:

Je 〈true� α(x) = α(Nil) \ {e}〉 xK

where the predicate simplifies to α(x) = ∅. This makes it
possible to apply the GROUND rule (node G). This generates
no subproblem, and closes the subbranch with the solution
solution 〈true | Nil〉. Problem 4 has the form:

Jr , h , t , e 〈α(r) = α(t) \ {e}�
α(x) = α(Cons(h,t)) \ {e}〉 xK

Among the many possible rule applications, we can choose
to case-split on the equality h = e (node F). This generates
two subproblems. Problem 6

Jr , h , t , e 〈α(r) = α(t) \ {e} ∧ e = h�

α(x) = α(Cons(h,t)) \ {e}〉 xK

and a similar problem 7, where e 6= h appears in the path
condition instead of e = h. Both subproblems can be solved
by using a technique we will describe in Section 6 to derive
a term satisfying the synthesis predicate, effectively closing
the complete branch from the root. The solutions for prob-
lem 6 and 7 are 〈true | r〉 and 〈true | Cons(h,r)〉 respec-
tively. A complete reconstruction of the solution given by
the branch in gray yields the program:

def rec(a : List) : List = a match {
case Nil ⇒ Nil
case Cons(h,t) ⇒
val r = rec(t)
if(e == h) r
else Cons(h,r)

}

In the interest of space, we have only described the
derivations that lead to the search. In practice of course, not
all correct steps are taken in the right order. The interleaving
of expansions of AND and OR nodes is driven by the esti-
mated cost of problems and solutions.

Cost models. In order to drive the search, we assign to
each problem and to each rule application an estimated cost,
which is supposed to under-approximate to actual final cost
of a closed branch. For OR nodes (problems), the cost is
simply the minimum of all remaining viable children, while
for AND nodes (rule applications) we take the sum of the cost
of each children plus a constant. That constant intuitively
corresponds to the extra complexity inherent to a particular
rule.

A perfect measure for cost would be the running time
of the corresponding program. However, this is particularly
hard to estimate, and valid under-approximations would
most likely be useless. We chose to measure program size
instead, as we expect it to be an reasonable proxy for com-
plexity. We measure the size of the program as the number of
branches, weighted by their proximity to the root. We found
this to be have a positive influence on the quality of solu-
tions, as it discourages near-top-level branching.

Using this metric, the cost inherent to a rule application
roughly corresponds to the extra branches it introduces in the
program. We use a standard algorithm for searching for the
best solution [26], and the search thus always focuses on the
current most promising solution. In our example in Figure 2,
we could imagine that after the case split at F, the B branch
temporarily became less attractive. The search then focuses
for a while on the A branch, until expansion on that side (for
instance by case-splitting on the type of the list) reached a
point where the minimal possible solution was worse than
the B branch. We note that the complete search takes about
two seconds.

Anytime synthesis. Because we maintain the search tree
and know the current minimal solution at all times, we can
stop the synthesis at any time and obtain a partial program
that is likely to be good. This option is available in our im-
plementation, both from the console mode and the web in-
terface. In such cases, Leon will return a program containing
new invocations of choose corresponding to the open sub-
problems.

6. Symbolic Term Exploration
In previous sections, we have introduced the notion of syn-
thesis inference rules, and described how to search over rule
applications that generate subproblems. In this section, we
describe one of our most important rules, which is responsi-
ble for closing most of the branches in search trees. We call
it Symbolic Term Exploration (STE).

The core idea behind STE is to symbolically represent
many possible terms (programs), and to iteratively prune

On Integrating Deductive Synthesis and Verification Systems 8 2013/4/18

them out using counterexamples and test case generation
until either 1) a valid term is proved to solve the synthesis
problem or 2) all programs in the search spaces have been
shown to be inadequate. Since we already have rules that
take care of introducing branching constructs or recursive
functions, we focus STE on the search for terms consisting
only of constructors and calls to existing functions.

Recursive generators. We start from a universal non-
deterministic program that captures all the (deterministic)
programs which we wish to consider as potential solutions.
We then try to resolve the non-deterministic choices in such
a way that the program realizes the desired property. Resolv-
ing the choices consists in fixing some values in the pro-
gram, which we achieve by running a counterexample driven
search.

We describe our non-deterministic programs as a set of
recursive non-deterministic generators. Intuitively, a gener-
ator for a given type is a program that produces arbitrary
values of that type. For instance, a generator for positive in-
tegers could be given by:

def genInt() : Int = if(?) 0 else (1 + genInt())

where ? represents a non-deterministic boolean value. Sim-
ilarly a non-deterministic generator for the List type could
take the form:

def genList() : List = if(?) Nil else Cons(genInt(), genList())

It is not required that generators can produce every value
for a given type; we could hypothesize for instance that our
synthesis solutions will only need some very specific con-
stants, such as 0, 1 or −1. What is more likely is that our
synthesis solutions will need to use input variables and ex-
isting functions. Our generators therefore typically include
variables of the proper type that are accessible in the synthe-
sis environment. Taking these remarks into account, if a and
b are integer variables in the scope, and f is a function from
Int to Int, a typical generator for integers would be:

def genInt() : Int = if(?) 0 else if(?) 1 else if(?) −1
else if(?) a else if(?) b else f(genInt())

From generators to formulas. Generators can in principle
be any function with unresolved non-deterministic choices.
For the sake of the presentation, we assume that they are
“flat”, that is, they consist of a top-level non-deterministic
choice between n alternatives. (Note that the examples given
above all have this form.)

Encoding a generator into an SMT term is straightfor-
ward: introduce for each invocation of a generator an un-
interpreted constant c of the proper type, and for each non-
deterministic choice as many boolean variables b̄ as there are
alternatives. Encode that exactly one of the b̄ variables must
be true, and constrain the value of c using the b̄ variables.

Recursive invocations of generators can be handled simi-
larly, by inserting another c variable to represent their value

and constraining it appropriately. Naturally, these recursive
instantiations must stop at some point: we then speak of
an instantiation depth. As an example, the encoding of the
genList generator above with an instantiation depth of 1 and
assuming that genInt generates 0 or a is:

(b1 ∨ b2) ∧ (¬b1 ∨ ¬b2)

∧ b1 ⇒ c1 = Nil ∧ b2 ⇒ c1 = Cons(c2,c3)

∧ (b3 ∨ b4) ∧ (¬b3 ∨ ¬b4)

∧ b3 ⇒ c2 = 0 ∧ b4 ⇒ c2 = a

∧ (b5 ∨ b6) ∧ (¬b5 ∨ ¬b6)

∧ b5 ⇒ c3 = Nil ∧ b6 ⇒ c3 = Cons(c4,c5)

∧ ¬b6

The clauses encode the following possible values for c1: Nil,
Cons(0, Nil) and Cons(a, Nil). Note the constraint ¬b6 which
encodes the instantiation depth of 1, by preventing the values
beyond that depth (namely c4 and c5) to participate in the
expression.

For a given instantiation depth, a valuation for the b̄ vari-
ables encodes a determinization of the generators, and as a
consequence a program. We solve for such a program by
running a refinement loop.

Refinement loop: discovering programs. Consider a syn-
thesis problem Jā 〈Π � φ〉 x̄K, where we speculate that a
generator for the types of x̄ can produce a program that real-
izes φ. We start by encoding the non-deterministic execution
of the generator for a fixed instantiation depth (typically, we
start with 0). Using this encoding, the problem has the form:

φ ∧B(ā, b̄, c̄) ∧ C(c̄, x̄) (2)

where φ is the synthesis problem, B is the set of clauses
obtained by encoding the execution of the generator and C
is a set of equalities tying x̄ to a subset of the c̄ variables.
Note that by construction, the values for c̄ (and therefore for
x̄) are uniquely determined when ā and b̄ are fixed.

We start by finding values for ā and b̄ such that (2) holds.
If no such values exist, then our generators at the given
instantiation depth are not expressive enough to encode a
solution to the problem. Otherwise, we extract for the model
the values b̄0. They describe a candidate program, which we
put to the test.

Refinement loop: falsifying programs. We search for a
solution to the problem:

¬φ ∧B(ā, b̄0, c̄) ∧ C(c̄, x̄) (3)

Note that b̄0 are constants, and that c̄ and x̄ are therefore
uniquely determined by ā this intuitively comes from the
fact that b̄0 encodes a deterministic program, that c̄ encodes
intermediate values in the execution of that program, and
that x̄ encodes the result. With this in mind, it becomes clear
that we are really solving for ā.

On Integrating Deductive Synthesis and Verification Systems 9 2013/4/18

If no such ā exist, then we have found a program that
realizes φ and we are done. If on the other hand we can
find ā0, then this constitutes an input that witnesses that our
program does not meet the specification. In this case, we can
discard the program by asserting ¬

∧
b̄, and going back to

(2).
Eventually, because the set of possible assignments to b̄ is

finite (for a given instantiation depth) this terminates. If we
have not found a program, we can increase the instantiation
depth and try again. When the maximal depth is reached, we
give up.

Filtering with concrete execution. While termination is
in principle guaranteed just by successive elimination of
programs in the refinement loop, the formula encoding the
non-deterministic program typically grows exponentially as
instantiation depth increases. As the number of programs
grows, the difficulty for the solver to satisfy (2) or (3) also
increases. As an alternative to symbolic elimination, we can
often use concrete execution on a set of inputs to rule out
many programs. We rely on Leon’s capability for small
model finding (see Section 3) to generate inputs that satisfy
the path condition. We then use on-the-fly code generation
to compile the symbolic program into a function that takes
as arguments the input variables as well as a boolean ar-
ray encoding the non-deterministic choices. This allows us
to rapidly discard hundreds or even thousand of programs.
Whenever the change is substantial, we regenerate a new
formula for (2) with much fewer boolean variables and con-
tinue from there. Note that very often, when STE is applied
to a problem it cannot solve, concrete execution rules out all
programs in a fraction of a second and symbolic reasoning
is never applied.

7. Type-Driven Counterexample-Guided
Synthesis with Condition Abduction

Our second larger rule focuses on synthesizing recursive
functions that satisfy a given specification. We assume that
we are given a function header and a postcondition, and that
we aim to synthesize a recursive function body. Note that
the expression must be 1) a well-typed term with respect
to the context of the program and 2) valid according to
the imposed formal specification. Therefore, an approach
to solve this kind of synthesis problems could be based on
searching the space of all expressions that can be built from
all declarations visible at the corresponding place in the
program, i.e. in the scope of choose, while limiting attention
to those that type-check, have the desired type, and satisfy
the given formal specification.

An obvious drawback of such approach is that, unless the
process is carefully guided, the search becomes unfeasible
due to search space explosion. In practice we indeed found
that trivial generate-and-test strategies scale poorly with the
number of visible declarations and the search becomes prac-
tically unfeasible even for small programs.

7.1 Condition Abduction
Our idea for guiding the search and incremental construction
of correct expressions comes from the area of abductive
reasoning [16, 17]. Abductive reasoning, sometimes also
called “inference to the best explanation”, is a method of
reasoning in which one chooses a hypothesis that would
explain the observed evidence in the best way.

The motivation behind the approach to applying abduc-
tive reasoning to program synthesis comes from examining
implementations of practical purely functional, recursive al-
gorithms. The key observation is that recursive functional al-
gorithms share a similar pattern. They implement behaviour
through a combination of case analysis with control flow ex-
pressions (e.g. if-then-else) and recursive calls. This pattern
is encoded with a branching control flow expression that par-
titions the space of input values such that each branch repre-
sents a correct implementation for a certain partition. Such
partitions are defined by conditions that guard branches in
the control flow.

This allows synthesizing branches separately by search-
ing for implementations that evaluate correctly only for cer-
tain inputs while restricting the search space. Rather than
speculatively applying CASE-SPLIT rule to obtain subprob-
lems and finding solutions for each branch by case analy-
sis (as described in Section 4), this idea applies a similar
strategy in the reverse order – getting a candidate program
and searching for a condition that would make it correct.
Thus, the idea of abductive reasoning can be applied to guess
the condition that defines a valid partition, i.e. “abduce” the
explanation for a partial implementation, with respect to a
given candidate program. The rule progressively applies this
technique and enables effective search and construction of a
control flow expression that represents a correct implemen-
tation for more and more input cases, eventually construct-
ing an expression that is a solution to the synthesis problem.

7.2 The Algorithm Used in the Rule
Based on these observations, we present our rule that em-
ploys a new technique for guiding the search with ranking
and filtering based on counterexamples, as well as construct-
ing expressions from partially correct implementations. It is
presented in Algorithm 1.

The algorithm applies the idea of abducing conditions to
progressively synthesize and verify branches of a correct im-
plementation for an expanding partition of inputs. The input
to the algorithm is a path condition Π, a predicate φ (defined
by synthesis problem Jā 〈Π � φ〉 x̄K), and a collection of
expressions s.

Condition p′ defines which inputs are left to consider at
any given point in the algorithm; these are the inputs that
belong to the current partition. The initial value of p′ is
true, so the algorithm starts with a partition that covers the
whole initial input space constrained only by the path con-
dition Π. Let p1, . . . , pk, where k > 0, be conditions ab-

On Integrating Deductive Synthesis and Verification Systems 10 2013/4/18

Algorithm 1 Synthesis with condition abduction
Require: path condition Π, predicate φ, a collection of

expressions s . synthesis problem Jā 〈Π � φ〉 x̄K
1: p′ = true . maintain the current partition
2: sol = (λx.x) . maintain a partial solution
3: M = SAMPLEMODELS(ā) . set of example models
4: repeat
5: get a set of expressions E from s . candidates
6: for each e in E do . count passed examples pe for e
7: pe = |{m ∈M | e(m) is correct}| . evaluate
8: r̄ = arg max e∈E pe . the highest ranked expression
9: if solution 〈Π ∧ p′ | r̄〉 is valid then

10: return 〈Π | (sol r̄)〉 . a solution is found
11: else
12: extract new counterexample model m
13: M =M∪m . accumulate examples
14: c = BRANCHSYN(r̄, p, q, s) . call Algorithm 2
15: if c 6= FALSE then . a branch is synthesized
16: sol = (λx. (sol (if c then r̄ else x)))
17: p′ = p′ ∧ ¬c . update current partition
18: until s is not empty

duced up to a certain point in the algorithm. Then p′ repre-
sents the conjunction of negations of abduced conditions, i.e.
p′ = ¬p1 ∧ . . . ∧ ¬pk. Together with the path condition, it
defines the current partition which includes all input values
for which there is no condition abduced (nor correct imple-
mentation found). Thus, the guard condition for the current
partition is defined by Π ∧ p′. The algorithm maintains the
partial solution sol, encoded as a function. sol encodes an
expression which is correct for all input values that satisfy
any of the abduced conditions and this expression can be re-
turned as a partial solution at any point. Additionally, the al-
gorithm accumulates example models in the setM. Ground
term generator, described in Section 3, is used to construct
the initial set of models inM. To construct a model, for each
variable in ā, the algorithm assigns a value sampled from the
ground term generator. Note that more detailed discussion
on how examples are used to guide the search is deferred to
Section 7.3.

The algorithm repeats enumerating all possible expres-
sions from the given collection until it finds a solution. In
each iteration, a batch of expressions E is enumerated and
evaluated on all models from M. The results of such eval-
uation are used to rank expressions from E. The algorithm
considers the expression of the highest rank r̄ as a candidate
solution and checks it for validity. If r̄ represents a correct
implementation for the current partition, i.e. if 〈Π ∧ p′ | r̄〉
is a valid solution, then the expression needed to complete
a valid control flow expression is found. The algorithm re-
turns it as solution for which Jā 〈Π � φ〉 x̄K ` 〈Π | (sol r̄)〉
holds. Otherwise, the algorithm extracts the counterexample
model m, adds it to the set M, and continues by trying to

synthesize a branch with expression r̄ (it does so by call-
ing Algorithm 2 which will be explained later). If BRANCH-
SYN returns a valid branch condition, the algorithm updates
the partial solution to include the additional branch (thus ex-
tending extending the space of inputs covered by the partial
solution), and refines the current partition condition. New
partition condition reduces the synthesis to a subproblem,
ensuring that the solution in the next iteration covers cases
where c does not hold. The algorithm eventually, given the
appropriate terms from s, finds an expression that forms a
complete correct implementation for the synthesis problem.

Algorithm 2 Synthesize a branch
Require: expression r̄, condition p′, predicate q, and a

collection of expressions s . passed from Algorithm 1
1: function BRANCHSYN(r̄, p′, q, s)
2: M′ = ∅ . set of accumulated counterexamples
3: get a set of expressions E′ from s . candidates
4: for each c in E′ do
5: if for each model m inM′, c(m) = false then
6: if solution 〈Π ∧ c | r̄〉 is valid then
7: return c . a condition is abduced
8: else
9: extract the new counterexample model m

10: M′ =M′ ∪m . accumulate counterexamples
11: return FALSE . no condition is found

Algorithm 2 tries to synthesize a new branch by abducing
a valid branch condition c. It does this by enumerating a set
of expressions E′ from s and checking whether it can find a
valid condition expression, that would guard a partition for
which the candidate expression r̄ is correct.The algorithm
accumulates counterexamples models in M′ and considers
a candidate expression c only if it prevents all accumulated
counterexamples.The algorithm checks this by evaluating c
on m, i.e. c(m), for each accumulated counterexample m.
If a candidate expression c is not filtered out, the algorithm
checks if c represents a valid branch condition, i.e. whether
〈Π ∧ c | r̄〉 is a valid solution. If yes, the algorithm returns
c which, together with r̄, comprises a valid branch in the
solution to Jā 〈Π � φ〉 x̄K. Otherwise, it adds a new coun-
terexample model to M′ and continues with the search. If
no valid condition is in E′, the algorithm returns FALSE.

7.3 Organization of the Search
For getting the collection of expressions s, the rule uses term
generators that generate all well typed terms according to
type constraints derived from the context of a program [10?
]. This has the advantage of initial search space restriction
inherent to the generator that limits enumerated expressions
only to those that are well typed. The completeness prop-
erty of such generators ensures systematic enumeration of
all candidate solutions that are defined by the set of given
type constraints. For verification, the rule uses the Leon veri-
fier, that allows checking validity of expressions that are sup-

On Integrating Deductive Synthesis and Verification Systems 11 2013/4/18

ported by the underlying theories and obtaining counterex-
ample models.

The context of the algorithm as a rule in the Leon synthe-
sis framework imposes limits on the portion of search space
explored by each rule instantiation. This allows incremental
and systematic progress in search space exploration and, due
to the mixture with other synthesis rules, offers benefits in
both expressiveness and performance of synthesis. The rule
offers flexibility in adjusting necessary parameters and thus
a fine-grain control over the search - for our experiments, the
size of candidate sets of expressions enumerated in each it-
eration n is 50 (and is doubled in each iteration) and 20, in
the case of Algorithm 1 and 2, respectively.

Using (counter-)examples. A technique that brings signif-
icant performance improvements when dealing with large
search spaces is guiding the search and even avoid con-
sidering candidate expressions according to the information
from examples generated during synthesis. As described ear-
lier, after checking an unsatisfiable formula, the rule queries
Leon for the witness model and accumulates examples that
are used to narrow down the search space.

Algorithm 2 uses accumulated counterexamples to filter
out unnecessary candidate expressions when synthesizing a
branch. It makes sense to consider a candidate expression
for a branch condition, c, for a check whether c makes r̄ a
correct implementation, only if c prevents all accumulated
counterexamples that already witnessed unsatisfiability of
the correctness formula for r̄, i.e. if ∀m ∈ M′. c → ¬m.
Otherwise, if ∃m ∈ M′.¬(c → ¬m), then m is a valid
counterexample to the verification of 〈Π ∧ c | r̄〉. This ef-
fectively guides the search by the results of previous veri-
fication failures while filtering out candidates before more
expensive verification check are made.

Algorithm 1 uses accumulated models to quickly test
and rank expressions by evaluating models according to the
specification. The current set of candidate expressions E is
evaluated on the set of accumulated examples M and re-
sults of such evaluation are used to rank the candidates. We
call an evaluation of a candidate e on a model m correct, if
m satisfies path condition Π and the result of the evaluation
satisfies given predicate q. The algorithm counts the num-
ber of correct evaluations, ranks the candidates accordingly
and considers only the candidate of the highest rank. The ra-
tionale is that the more correct evaluations, the more likely
the candidate represents a correct implementation for some
partition of inputs. Note that evaluation results may be used
only for ranking but not for filtering, because each candidate
may represent a correct implementation for a certain parti-
tion of inputs, thus incorrect evaluations are expected even
for valid candidates. Since the evaluation amounts to execut-
ing the specification this technique is efficient in guiding the
search toward correct correct implementations while avoid-
ing unnecessary verification checks.

Operation Syn Size Calls sec. Proved
List.Insert

√
3 0 0.3

√

List.Delete
√

19 1 2.0
√

List.Union
√

12 1 2.0
√

List.Diff
√

12 2 7.0
√

List.Split
√

27 1 2.0
√

SortedList.Insert
√

34 1 8.9
√

SortedList.InsertAlways
√

36 1 12.5
√

SortedList.Delete
√

23 1 8.7
SortedList.Union

√
19 2 5.0

√

SortedList.Diff
√

13 2 6.8
SortedList.InsertionSort

√
10 2 5.1

√

SortedList.MergeSort
√

11 4 87.7
√

StrictSortedList.Insert
√

34 1 9.9
√

StrictSortedList.Delete
√

21 1 16.1
StrictSortedList.Union

√
19 2 4.1

√

UnaryNumerals.Add
√

11 1 1.6
√

UnaryNumerals.Distinct
√

12 0 1.9
√

UnaryNumerals.Mult
√

12 1 2.5
√

Figure 3. We consider a problem as synthesized if the so-
lution generated is correct after manual inspection. For each
generated program, we provide the size of its syntax tree and
the number of function calls it contains. Proved problems are
those for which the synthesized program can be automati-
cally proven to match its specification.

8. Implementation and Results
We have implemented these techniques in Leon, a system
for verification and synthesis of functional program, thus
extending it from the state described in Section 3. Our im-
plementation and the online interface are available from
http://lara.epfl.ch/leon/.

The front end to Leon is the standard Scala compiler (for
Scala 2.9). Scala compiler performs type checking and tasks
such as the expansion of implicit conversions, from which
Leon directly benefits. Leon programs also execute as valid
Scala programs. Leon checks that the syntax trees produced
conform to the subset that it expects and then performs
verification and synthesis.

We have developed several interfaces for Leon. Leon
can be invoked as a batch command-line tool that accepts
verification and synthesis tasks and outputs the results of the
requested tasks. If desired, there is also a console mode that
allows applying synthesis rules in a step-by-step fashion and
is useful for debugging purposes.

To facilitate interactive experiments and the use of the
system in teaching, we have also developed an interface that
executes in the web browser, using the Play framework of
Scala as well as JavaScript editors. Our browser-based in-
terface supports continuous compilation of Scala code, al-
lows verifying individual functions with a single keystroke
or click, as well as synthesizing any given choose expres-
sion. In cases when the synthesis process is interrupted, the

On Integrating Deductive Synthesis and Verification Systems 12 2013/4/18

http://lara.epfl.ch/leon/

synthesizer can generate a partial solution that contains a
program with further occurrences of the choose statement.

8.1 Results
In order to evaluate our system, we developed benchmarks
with reusable abstraction functions. These abstraction func-
tions allow for a concise specification of each operation
without requiring any insight on its resulting implementa-
tion. It is interesting to notice that these functions generally
abstract any structural invariant inherent to the underlying
data-structure. For instance, the synthesis of

def add(a: Num, b: Num) = choose {
(res: Num) ⇒ value(r) == value(a) + value(b)

}

would result in vastly different programs depending on the
implementation of Number.

Our set of benchmarks displayed in Figure 3 covers the
synthesis of various operations over custom data-structures
with invariants, specified through the lens of abstraction
functions. These benchmarks use specifications with are
both easy to understand and much shorter than resulting pro-
grams (except in trivial cases). We believe these are key fac-
tors in the evaluation of any synthesis procedure. The defini-
tions and specifications of all the benchmarks can be found
in appendix.

Synthesis is performed in order, meaning that an opera-
tion will be able to reuse all previously synthesized ones,
thus mimicking the usual development process.

We can see in Figure 3 the list of programs we success-
fully synthesized. Every synthesized programs have been
manually validated. Often, our system will also be able to
automatically prove that the resulting program matches the
specification. In certain cases however, the lack of inductive
invariants will prevent this fully-automated proof from ever
concluding. We give up after a timeout of 3 seconds.

In almost all cases, the synthesis succeeds sufficiently fast
for a comfortable interactive experience.

9. Related Work
Our approach blends deductive synthesis [24, 25, 34], which
incorporates transformation of specifications, inductive rea-
soning, recursion schemes and termination checking, with
modern SMT techniques and constraint solving for exe-
cutable constraints. As one of our subroutines we include
complete functional synthesis for integer linear arithmetic
[22] and extend it with complete functional synthesis for al-
gebraic data types [12, 40]. This gives us building blocks
for synthesis of recursion-free code. To synthesize recursive
code we build on and further advance the counterexample-
guided approach to synthesis [35].

Deductive synthesis frameworks. Early work on synthesis
[24, 25] focused on synthesis using expressive and undecid-
able logics, such as first-order logic and logic containing the
induction principle.

Programming by refinement has been popularized as a
manual activity [2, 44]. Interactive tools have been devel-
oped to support such techniques in HOL [4]. A recent exam-
ple of deductive synthesis and refinement is the Specware
system from Kesterel [34]. We were not able to use the sys-
tem first-hand due to its availability policy, but it appears to
favor expressive power and control, whereas we favor au-
tomation.

A combination of automated and interactive development
is analogous to the use of automation in interactive theorem
provers, such as Isabelle [30]. However, whereas in verifica-
tion it is typically the case that the program is available, the
emphasis here is on constructing the program itself, starting
from specifications.

Work on synthesis from specifications [38] resolves some
of these difficulties by decoupling the problem of inferring
program control structure and the problem of synthesizing
the computation along the control edges. The work lever-
ages verification techniques that use both approximation and
lattice theoretic search along with decision procedures, but
appears to require more detailed information about the struc-
ture of the expected solution than our approach.

Synthesis with input/output examples. One of the first
works that addressed synthesis with examples and put induc-
tive synthesis on a firm theoretical foundation is the one by
Summers [39]. Subsequent work presents extensions of the
classical approach to induction of functional Lisp-programs
[11, 18]. These extensions include synthesizing a set of
equations (instead of just one), multiple recursive calls and
systematic introduction of parameters. Our current system
lifts several restrictions of previous approaches by supprot-
ing reasoning about arbitrary datatypes, supporting multiple
parameters in concrete and symbolic I/O examples, and al-
lowing nested recursive calls and user-defined declarations.

Inductive (logic) programming that explores automatic
synthesis of (usually recursive) programs from incomplete
specifications, most often being input/output examples [7,
29], influenced our work. Recent work in the area of pro-
gramming by demonstration has shown that synthesis from
examples can be effective in a variety of domains, such as
spreadsheets [33]. Advances in the field of SAT and SMT
solvers inspired counter-example guided iterative synthe-
sis [9, 35], which can derive input and output examples
from specifications. Our tool uses and advances these tech-
niques through two new counterexample-guided synthesis
approaches.

Synthesis based on finitization techniques. Program
sketching has demonstrated the practicality of program syn-
thesis by focusing its use on particular domains [35–37].
The algorithms employed in sketching are typically focused
on appropriately guided search over the syntax tree of the
synthesized program. The tool we presented shows one way
to move the ideas of sketching towards infinite domains. In

On Integrating Deductive Synthesis and Verification Systems 13 2013/4/18

this generalization we leverage reasoning about equations as
much as SAT techniques.

Reactive synthesis. Synthesis of reactive systems gener-
ates programs that run forever and interact with the envi-
ronment. However, known complete algorithms for reac-
tive synthesis work with finite-state systems [32] or timed
systems [1]. Such techniques have applications to control
the behavior of hardware and embedded systems or concur-
rent programs [43]. These techniques usually take specifi-
cations in a fragment of temporal logic [31] and have re-
sulted in tools that can synthesize useful hardware compo-
nents [14, 15]. Recently such synthesis techniques have been
extended to repair that preserves good behaviors [6], which
is related to our notion of partial programs that have remain-
ing choose statements.

10. Conclusions and Analysis
Software synthesis is a difficult problem but we believe
it can provide substantial help in software development.
We have presented a new framework for synthesis that
combines transformational and counterexample-guided ap-
proaches. Our implemented system can synthesize and prove
correct functional programs that manipulate unbounded data
structures such as algebraic data types. We have used the
system to synthesized algorithms that manipulate list and
tree structures. The algorithm can be combined with manual
transformations or run-time constraint solving to cover the
cases where static synthesis does not fully solve the prob-
lem. Our current counterexample-guided synthesis steps are
domain-agnostic, while somewhat limits their scalability, so
we expect improved results using domain-specific genera-
tors, such as the ones used in testing tools UDITA [8] and
Quickcheck [5]. Our framework leverages the state of the
art SMT solving technology and an effective mechanism
for solving certain classes of recursive functions. Thanks to
this technology, it was able to synthesize programs over un-
bounded domains that are guaranteed to be correct for all
inputs.

References
[1] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller

synthesis for discrete and timed systems. In Hybrid Systems
II, pages 1–20, 1995.

[2] R.-J. Back and J. von Wright. Refinement Calculus. Springer-
Verlag, 1998.

[3] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter. Specification and verification: the
Spec# experience. Commun. ACM, 54(6), June 2011.

[4] M. Butler, J. Grundy, T. Langbacka, R. Ruksenas, and J. von
Wright. The refinement calculator: Proof support for program
refinement. In Proc. Formal Methods Pacific ’97, 1997.

[5] K. Claessen and J. Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In ICFP, pages 268–279,
2000.

[6] C. V. Essen and B. Jobstmann. Program repair without regret.
In CAV, 2013.

[7] P. Flener and D. Partridge. Inductive programming. Autom.
Softw. Eng., 8(2):131–137, 2001.

[8] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak,
and D. Marinov. Test generation through programming in
UDITA. In ICSE, pages 225–234, 2010.

[9] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. In PLDI, pages 62–73, 2011.

[10] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete
completion using types and weights. In PLDI, 2013.

[11] M. Hofmann. IgorII - an analytical inductive functional pro-
gramming system (tool demo). In PEPM, pages 29–32, 2010.

[12] S. Jacobs, V. Kuncak, and P. Suter. Reductions for synthesis
procedures. In VMCAI, pages 88–107, 2013.

[13] J. Jaffar and J.-L. Lassez. Constraint logic programming. In
POPL, 1987.

[14] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis.
In FMCAD, 2006.

[15] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu:
A tool for property synthesis. In CAV, 2007.

[16] J. R. Josephson. Abductive Inference: Computation, Philoso-
phy, Technology. Cambridge University Press, 1994.

[17] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic
programming. J. Log. Comput., 2(6):719–770, 1992.

[18] E. Kitzelmann and U. Schmid. Inductive synthesis of func-
tional programs: An explanation based generalization ap-
proach. JMLR, 7:429–454, 2006.

[19] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal veri-
fication of an OS kernel. In SOSP, pages 207–220, 2009.

[20] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control.
In POPL, pages 151–164, 2012.

[21] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete
functional synthesis. In PLDI, pages 316–329, 2010.

[22] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Software
synthesis procedures. CACM, 55(2):103–111, 2012.

[23] D. Leinenbach and T. Santen. Verifying the microsoft hyper-v
hypervisor with VCC. In FM, 2009.

[24] Z. Manna and R. J. Waldinger. Toward automatic program
synthesis. Commun. ACM, 14(3):151–165, 1971.

[25] Z. Manna and R. J. Waldinger. A deductive approach to
program synthesis. ACM Trans. Program. Lang. Syst., 2(1):
90–121, 1980.

[26] A. Martelli and U. Montanari. Additive AND/OR graphs. In
IJCAI, pages 1–11, 1973.

[27] J. McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part 1. Comm. A.C.M., 3:184–
195, 1960.

[28] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, 2008.

On Integrating Deductive Synthesis and Verification Systems 14 2013/4/18

[29] S. Muggleton and L. D. Raedt. Inductive logic programming:
Theory and methods. J. Log. Program., 19/20:629–679, 1994.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer-Verlag, 2002.

[31] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1)
designs. In VMCAI, 2006.

[32] A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In POPL, 1989.

[33] R. Singh and S. Gulwani. Synthesizing number transforma-
tions from input-output examples. In CAV, pages 634–651,
2012.

[34] D. R. Smith. Generating programs plus proofs by refinement.
In VSTTE, 2005.

[35] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A.
Saraswat. Combinatorial sketching for finite programs. In
ASPLOS, 2006.

[36] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A.
Saraswat, and S. A. Seshia. Sketching stencils. In PLDI, pages
167–178, 2007.

[37] A. Solar-Lezama, C. G. Jones, and R. Bodı́k. Sketching
concurrent data structures. In PLDI, 2008.

[38] S. Srivastava, S. Gulwani, and J. S. Foster. From program
verification to program synthesis. In POPL, 2010.

[39] P. D. Summers. A methodology for LISP program construc-
tion from examples. JACM, 24(1):161–175, 1977.

[40] P. Suter. Programming with Specifications. PhD thesis, EPFL,
December 2012.

[41] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for
algebraic data types with abstractions. In POPL, pages 199–
210, 2010.

[42] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo
recursive programs. In SAS, pages 298–315, 2011.

[43] M. T. Vechev, E. Yahav, and G. Yorsh. Inferring synchroniza-
tion under limited observability. In TACAS, 2009.

[44] N. Wirth. Program development by stepwise refinement
(reprint). Commun. ACM, 26(1):70–74, 1983.

A. Benchmarks Definitions
A.1 List

object ListBenchmark {
sealed abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

def size(l: List) : Int = (l match {
case Nil ⇒ 0
case Cons(, t) ⇒ 1 + size(t)

}) ensuring(res ⇒ res ≥ 0)

def content(l: List): Set[Int] = l match {
case Nil ⇒ Set.empty[Int]
case Cons(i, t) ⇒ Set(i) ++ content(t)
}

def abs(i : Int) : Int = {
if(i < 0) −i else i
} ensuring(≥ 0)

def insert(in1: List, v: Int) = choose {
(out : List) ⇒

content(out) == content(in1) ++ Set(v)
}

def delete(in1: List, v: Int) = choose {
(out : List) ⇒

content(out) == content(in1) -- Set(v)
}

def union(in1: List, in2: List) = choose {
(out : List) ⇒

content(out) == content(in1) ++ content(in2)
}

def diff(in1: List, in2: List) = choose {
(out : List) ⇒

content(out) == content(in1) -- content(in2)
}

def split(list : List) : (List,List) = {
choose { (res : (List,List)) ⇒

val s1 = size(res. 1)
val s2 = size(res. 2)
abs(s1 − s2) ≤ 1 && s1 + s2 == size(list) &&

content(res. 1) ++ content(res. 2) == content(list)
}

}
}

On Integrating Deductive Synthesis and Verification Systems 15 2013/4/18

A.2 SortedList

object SortedListBenchmark {
sealed abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

def size(l: List) : Int = (l match {
case Nil ⇒ 0
case Cons(, t) ⇒ 1 + size(t)

}) ensuring(res ⇒ res ≥ 0)

def content(l: List): Set[Int] = l match {
case Nil ⇒ Set.empty[Int]
case Cons(i, t) ⇒ Set(i) ++ content(t)
}

def isSorted(list : List) : Boolean = list match {
case Nil ⇒ true
case Cons(, Nil) ⇒ true
case Cons(x1, Cons(x2,)) if(x1 > x2) ⇒ false
case Cons(, xs) ⇒ isSorted(xs)
}

def insert(in1: List, v: Int) = choose {
(out : List) ⇒

isSorted(in1) &&

(content(out) == content(in1) ++ Set(v)) &&

isSorted(out)
}

def insertAlways(in1: List, v: Int) = choose {
(out : List) ⇒

isSorted(in1) &&

(content(out) == content(in1) ++ Set(v)) &&

isSorted(out) &&

size(out) == size(in1) + 1
}

def delete(in1: List, v: Int) = choose {
(out : List) ⇒

isSorted(in1) &&

(content(out) == content(in1) -- Set(v)) &&

isSorted(out)
}

def union(in1: List, in2: List) = choose {
(out : List) ⇒

isSorted(in1) &&

isSorted(in2) &&

(content(out) == content(in1) ++ content(in2)) &&

isSorted(out)
}

def diff(in1: List, in2: List) = choose {
(out : List) ⇒

isSorted(in1) &&

isSorted(in2) &&

(content(out) == content(in1) -- content(in2)) &&

isSorted(out)

}

// In order to synthesize insertionSort, we let
// insert in the scope. Similarly for mergeSort,
// we keep only split and union in the scope.
def sort(list: List): List = choose {

(res: List) ⇒
isSorted(res) &&

content(res) == content(list)
}

}

A.3 StrictlySortedList

object Complete {
sealed abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

def size(l: List) : Int = (l match {
case Nil ⇒ 0
case Cons(, t) ⇒ 1 + size(t)

}) ensuring(res ⇒ res ≥ 0)

def content(l: List): Set[Int] = l match {
case Nil ⇒ Set.empty[Int]
case Cons(i, t) ⇒ Set(i) ++ content(t)
}

def isSorted(list : List) : Boolean = list match {
case Nil ⇒ true
case Cons(, Nil) ⇒ true
case Cons(x1, Cons(x2,)) if(x1 ≥ x2) ⇒ false
case Cons(, xs) ⇒ isSorted(xs)
}

def insert(in1: List, v: Int) = choose {
(out : List) ⇒

isSorted(in1) &&

(content(out) == content(in1) ++ Set(v)) &&

isSorted(out)
}

def delete(in1: List, v: Int) = choose {
(out : List) ⇒

isSorted(in1) &&

(content(out) == content(in1) -- Set(v)) &&

isSorted(out)
}

def union(in1: List, in2: List) = choose {
(out : List) ⇒

isSorted(in1) &&

isSorted(in2) &&

(content(out) == content(in1) ++ content(in2)) &&

isSorted(out)
}
}

On Integrating Deductive Synthesis and Verification Systems 16 2013/4/18

A.4 UnaryNumerals

object UnaryNumeralsBenchmark {
sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

def value(n:Num) : Int = {
n match {
case Z ⇒ 0
case S(p) ⇒ 1 + value(p)
}
} ensuring (≥ 0)

def add(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

value(r) == value(x) + value(y)
}
}

def distinct(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

value(r) != value(x) &&

value(r) != value(y)
}
}

def mult(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

value(r) == value(x) ∗ value(y)
}
}
}

On Integrating Deductive Synthesis and Verification Systems 17 2013/4/18

	Introduction
	Contributions

	Interactive Synthesis and Verification in the Leon System
	The Leon Verifier
	Deductive Synthesis Framework
	Synthesis Problems
	Synthesis Solutions
	Inference Rules for Synthesis

	Exploring the Space of Subproblems
	Symbolic Term Exploration
	Type-Driven Counterexample-Guided Synthesis with Condition Abduction
	Condition Abduction
	The Algorithm Used in the Rule
	Organization of the Search

	Implementation and Results
	Results

	Related Work
	Conclusions and Analysis
	Benchmarks Definitions
	List
	SortedList
	StrictlySortedList
	UnaryNumerals

