Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed

In this paper, we study the performance of IPOP-saACM-ES and BIPOP-saACM-ES, recently proposed self-adaptive surrogate-assisted Covariance Matrix Adaptation Evolution Strategies. Both algorithms were tested using restarts till a total number of function evaluations of 10^6D was reached, where D is the dimension of the function search space. We compared surrogate-assisted algorithms with their surrogate-less versions IPOP-saACM-ES and BIPOP-saACM-ES, two algorithms with one of the best overall performance observed during the BBOB-2009 and BBOB-2010. The comparison shows that the surrogate-assisted versions outperform the original CMA-ES algorithms by a factor from 2 to 4 on 8 out of 24 noiseless benchmark problems, showing the best results among all algorithms of the BBOB-2009 and BBOB-2010 on Ellipsoid, Discus, Bent Cigar, Sharp Ridge and Sum of different powers functions.


Published in:
Genetic and Evolutionary Computation Conference (GECCO 2012), 175-182
Presented at:
Genetic and Evolutionary Computation Conference (GECCO 2012)
Year:
2012
Keywords:
Laboratories:




 Record created 2013-04-18, last modified 2018-09-13

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)