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ABSTRACT
This paper presents a novel mechanism to adapt surrogate-
assisted population-based algorithms. This mechanism is
applied to ACM-ES, a recently proposed surrogate-assisted
variant of CMA-ES. The resulting algorithm, s∗ACM-ES,
adjusts online the lifelength of the current surrogate model
(the number of CMA-ES generations before learning a new
surrogate) and the surrogate hyper-parameters.
Both heuristics significantly improve the quality of the

surrogate model, yielding a significant speed-up of s∗ACM-
ES compared to the ACM-ES and CMA-ES baselines. The
empirical validation of s∗ACM-ES on the BBOB-2012 noise-
less testbed demonstrates the efficiency and the scalability
w.r.t the problem dimension and the population size of the
proposed approach, that reaches new best results on some
of the benchmark problems.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Evolution Strategies, CMA-ES, self-adaptation, surrogate-
assisted optimization, surrogate models, ranking support
vector machine, black-box optimization

1. INTRODUCTION
Evolutionary Algorithms (EAs) have become popular tools

for optimization mostly thanks to their population-based
properties and the ability to progress towards an optimum
using problem-specific variation operators. A search directed
by a population of candidate solutions is quite robust with
respect to a moderate noise and multi-modality of the op-
timized function, in contrast to some classical optimization
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methods such as quasi-Newton methods (e.g. BFGS method
[25]). Furthermore, many bio-inspired algorithms such as
EAs, Differential Evolution (DE) and Particle Swarm Opti-
mization (PSO) with rank-based selection are comparison-
based algorithms, which makes their behavior invariant and
robust under any monotonous transformation of the objec-
tive function. Another source of robustness is the invariance
under orthogonal transformations of the search space, first
introduced into the realm of continuous evolutionary opti-
mization by Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [9]. CMA-ES, winner of the Congress on
Evolutionary Computation (CEC) 2005 [5] and the Black-
Box Optimization Benchmarking (BBOB) 2009 [8] compe-
titions of continuous optimizers, has also demonstrated its
robustness on real-world problems through more than one
hundred applications [7].

When dealing with expensive optimization objectives, the
well-known surrogate-assisted approaches proceed by learn-
ing a surrogate model of the objective, and using this sur-
rogate to reduce the number of computations of the objec-
tive function in various ways. The best studied approach
relies on the use of computationally cheap polynomial re-
gression for the line search in gradient-based search meth-
ods, such as in the BFGS method [25]. More recent ap-
proaches rely on Machine Learning algorithms, modelling
the objective function through e.g. Radial Basis Functions
(RBF), Polynomial Regression, Support Vector Regression
(SVR), Artificial Neural Network (ANN) and Gaussian Pro-
cess (GP) a.k.a. Kriging. As could have been expected,
there is no such thing as a best surrogate learning approach
[14, 20]. Experimental comparisons also suffer from the fact
that the results depend on the tuning of the surrogate hyper-
parameters. Several approaches aimed at the adaptive se-
lection of surrogate models during the search have been pro-
posed [27, 28, 1]; these approaches focus on measuring the
quality of the surrogate models and using the best one for
the next evolutionary generation.

This paper, aimed at robust surrogate-assisted optimiza-
tion, presents a surrogate-adaptation mechanism (s∗) which
can be used on top of any surrogate optimization approach.
s∗ adapts online the number of generations after which the
surrogate is re-trained, referred to as the surrogate lifelength;
further, it adaptively optimizes the surrogate hyper-parame-
ters using an embedded CMA-ES module. A proof of prin-
ciple of the approach is given by implementing s∗ on top of
ACM-ES, a surrogate-assisted variant of CMA-ES, yielding
the s∗ACM-ES algorithm. To our best knowledge, the self-
adaptation of the surrogate model within CMA-ES and by



CMA-ES is a new contribution. The merits of the approach
are shown as s∗ACM-ES show significant improvements com-
pared to CMA-ES and ACM-ES on the BBOB-2012 noiseless
testbed.
The paper is organized as follows. Section 2 reviews some

surrogate-assisted variants of Evolution Strategies (ESs) and
CMA-ES. For the sake of self-containedness, the ACM-ES
combining CMA-ES with the use of a Rank-based Support
Vector Machine is briefly described. Section 3 discusses
the merits and weaknesses of ACM-ES and suggests that
the online adjustment of the surrogate hyper-parameters is
required to reach some robustness with respect to the op-
timization objective. The s∗ACM-ES algorithm, including
the online adjustment of the surrogate lifelength and hyper-
parameters on top of ACM-ES, is described in section 4.
The experimental validation of s∗ACM-ES is reported and
discussed in section 5. Section 6 concludes the paper.

2. SURROGATE MODELS
This section discusses the various techniques used to learn

surrogate models, their use within EAs and specifically CMA-
ES, and the properties of surrogate models in terms of in-
variance w.r.t. monotonous transformations of the objective
function [24], and orthogonal transformations of the instance
space [21].

2.1 Surrogate-assisted Evolution Strategies
As already mentioned, many surrogate modelling approa-

ches have been used within ESs and CMA-ES: RBF network
[11], GP [29, 4], ANN [6], SVR [30, 19], Local-Weighted
Regression (LWR) [18, 3], Ranking SVM [24, 21, 12]. In
most cases, the surrogate model is used as a filter (to select
λPre promising pre-children) and/or to estimate the objec-
tive function of some individuals in the current population.
The impact of the surrogate, controlled by λPre, should
clearly depend on the surrogate accuracy; how to measure it
? As shown by [15], the standard Mean Square Error (MSE)
used to measure a model accuracy in a regression context is
ill-suited to surrogate-assisted optimization, as it is poorly
correlated with the ability to select correct individuals. An-
other accuracy indicator, based on the (weighted) sum of
ranks of the selected individuals, was proposed by [15], and
used by [30, 11].

2.2 Comparison-based Surrogate Models
Taking advantage of the fact that some EAs, and particu-

larly CMA-ES, are comparison-based algorithms, which only
require the offspring to be correctly ranked, it thus comes
naturally to learn a comparison-based surrogate. Compari-
son-based surrogate models, first introduced by Runarsson
[24], rely on learning-to-rank algorithms, such as Ranking
SVM [17]. Let us recall Ranking SVM, assuming the reader’s
familiarity with Support Vector Machines [26].
Let (x1, . . . , xN ) denote an N -sample in instance space X,

assuming with no loss of generality that point xi has rank i.
Rank-based SVM learning [17] aims at a real-valued function

f̂ on X such that f̂(xi) < f̂(xj) iff i < j. In the SVM frame-
work, this goal is formalized through minimizing the norm

of f̂ (regularization term) subject to the N(N − 1)/2 or-
dering constraints. A more tractable formulation, also used
in [24, 21], only involves the N − 1 constraints related to

consecutive points, f̂(xi) < f̂(xi+1) for i = 1 . . . N − 1.

Using the kernel trick1, ranking function f̂ is defined as
a linear function w w.r.t. some feature space Φ(X), i.e.

f̂(x) = 〈 w,Φ(x) 〉. With same notations as in [26], the
primal minimization problem is defined as follows:

Minimize{w, ξ}
1
2
||w||2 +∑N

i=1 Ciξi

subj. to

{
〈 w,Φ(xi)− Φ(xi+1) 〉 ≥ 1− ξi (i = 1, ...N − 1)
ξi ≥ 0 (i = 1 . . . N − 1)

(1)
where slack variable ξi (respectively constant Ci) accounts
for the violation of the i-th constraint (resp. the violation
cost). The corresponding dual problem, quadratic in the La-
grangian multipliers α, can be solved easily by any quadratic

programming solver. The rank-based surrogate f̂ is given as

f̂(x) =
∑N−1

i=1 αi(K(xi, x)−K(xi+1, x))

By construction, f̂(x) is invariant to monotonous transfor-
mations of the objective function, which preserve the rank-
ing of the training points.

2.3 Invariance w.r.t. Orthogonal Transforma-
tions

As already mentioned, CMA-ES is invariant w.r.t. orthog-
onal transformations of the search space, through adapting a
covariance matrix during the search. This invariance prop-
erty was borrowed by ACM-ES [21], using the covariance
matrix C learned by CMA-ES within a Radial Basis Func-
tion (RBF) kernel KC , where C−1 is used to compute Ma-
halanobis distance:

KC(xi, xj) = e
−

(xi−xj)
tC−1(xi−xj)

2σ2 (2)

For the sake of numerical stability, every training point x is
mapped onto x′ such as

x′ = C−1/2(x−m), (3)

where m is the mean of the current CMA-ES distribution.
The standard RBF kernel with Euclidean distance is used
on top of this mapping. By construction, ACM-ES inherits
from CMA-ES the property of invariance under orthogonal
transformations of the search space; the use of the covari-
ance matrix C brings significant improvements compared to
standard Gaussian kernels after [21].

3. DISCUSSION
This section analyzes the weaknesses of ACM-ES. Fol-

lowing the characterization proposed in [16], ACM-ES is a
surrogate-assisted optimizer with an individual-based evolu-
tion control. As in other pre-selection methods, at each gen-
eration ACM-ES generates λPre individuals, where λPre is
much larger than population size λ. Then λPre pre-children

are evaluated and ranked using surrogate model f̂ . The most
promising λ′ pre-children are selected and evaluated using
the true expensive function, yielding new points (x, f(x)).
When the objective function of λ′ individuals is known, the
ranking of other λ− λ′ points can be approximated.

1The so-called kernel trick supports the extension of the
SVM approach from linear to non-linear model spaces, by
mapping instance space X onto some feature space Φ(X).
The actual mapping cost is avoided as the scalar product
in feature space Φ(X) is computed on instance space X
through a kernel function K: 〈 Φ(x),Φ(x′) 〉 =def K(x, x′).



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evaluations

M
o

d
e

l E
rr

o
r

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of generations

S
pe

ed
up

Dimension 10

 

 
F1 Sphere
F6 AttractSector
F8 Rosenbrock
F10 RotEllipsoid
F11 Discus
F12 Cigar
F13 SharpRidge
F14 SumOfPow

Figure 1: Left: Rank-based surrogate error vs number of evaluations, during a representative run of active
CMA-ES on 10-D Rotated Ellipsoid. Right: The speedup of IPOP-aACM-ES over IPOP-aCMA-ES, where
speedup = 2.0 means that IPOP-aACM-ES with a given lifelength n̂ of the surrogate model, requires 2.0
times less computational effort SP1 (i.e. average number of function evaluations of successful runs divided
by proportion of successful runs) than IPOP-aCMA-ES to reach the target objective value of ft = fopt +10−8.

While our experimental results confirm the improvements
brought by ACM-ES on some functions (about 2-4 times
faster than CMA-ES on Rosenbrock, Ellipsoid, Schwefel,
Noisy Sphere and Ackley functions up to dimension 20 [21]),
they also show a loss of performance on the multi-modal Ras-
trigin function. Complementary experiments suggest that:

1. on highly multi-modal functions the surrogate model
happens to suffer from a loss of accuracy; in such cases
some control is required to prevent the surrogate model
from misleading the search;

2. surrogate-assisted algorithms may require a larger pop-
ulation size for multi-modal problems.

The lack of surrogate control appears to be an important
drawback in ACM-ES. This control should naturally reflect
the current surrogate accuracy. A standard measure of the
rank-based surrogate error is given as the fraction of violated
ranking constraints on the test set [17]. Accuracy 0 (respec-
tively .5) corresponds to a perfect surrogate (resp. random
guessing).
However, before optimization one should be sure that the

model gives a reasonable prediction of the optimized func-
tion. Fig. 1 (Left) illustrates the surrogate model error dur-
ing a representative run of active CMA-ES (with re-training
at each iteration, but without any exploitation of the model)
on 10 dimensional Rotated Ellipsoid function. After the first
generations, the surrogate error decreases to approximately
10%. This better than random prediction can be viewed as a
source of information about the function which can be used
to improve the search.
Let n̂ denote the number of generations a surrogate model

is used, referred to as surrogate lifelength. In so-called
generation-based evolution control methods [16], the sur-

rogate f̂ is directly optimized for n̂ generations, without
requiring any expensive objective computations. The fol-
lowing generation considers the objective function f , and
yields instances to enrich the training set, relearn or refresh
the surrogate and adjust some parameters of the algorithm.
The surrogate lifelength n̂ is fixed or adapted.
The impact of n̂ is displayed on Fig. 1 (Right), show-

ing the speedup reached by direct surrogate optimization on
several 10 dimensional benchmark problems vs the number

of generations n̂ the surrogate is used. A factor of speedup
1.7 is obtained for n̂= 1 on the Rotated Ellipsoid function,
close to the optimal speedup 2.0. A speedup ranging from
2 to 4 is obtained for IPOP-aCMA-ES with surrogates for
n̂ in [5, 15]. As could have been expected again, the optimal
value of n̂ is problem-dependent and widely varies. In the
case of the Attractive Sector problem for instance, the sur-
rogate model is not useful and n̂ = 0 should be used (thus
falling back to the original aCMA-ES with no surrogate) to
prevent the surrogate from misleading the search.

4. SELF-ADAPTIVE SURROGATE-BASED
CMA-ES

In this section we propose a novel surrogate adaptation
mechanism which can be used in principle on top of any
iterative population-based optimizer without requiring any
significant modifications thereof. The approach is illustrated
on top of CMA-ES and ACM-ES. The resulting algorithm,
s∗ACM-ES, maintains a global hyper-parameter vector θ =
(θopt, θsur, n̂,A, α), where:
• θopt stands for the optimization parameters of the CMA-
ES used for expensive function optimization;
• θsur stands for the optimization parameters of the CMA-
ES used for surrogate model hyper-parameters optimization;
• n̂ is the number of optimization generations during which
the current surrogate model is used;
• A is the archive of all points (xi, f(xi)) for which the true
objective function has been computed, exploited to train the
surrogate function;
• α stands for the surrogate hyper-parameters.
All hyper-parameters are indexed by the current generation
g; by abuse of notations, the subscript g is omitted when
clear from the context.

The main two contributions of the paper regard the ad-
justment of the surrogate hyper-parameters (section 4.2)
and of the surrogate lifelength n̂ (section 4.3).

4.1 Overview ofs∗ACM-ES
LetGenCMA(h,θh,A) denote the elementary optimization

module (here one generation of CMA-ES) where h is the
function to be optimized (the true objective f or the sur-

rogate f̂), θh denotes the current optimization parameters



Figure 2: Optimization loop of the s∗ACM-ES.

(e.g. CMA-ES step-size and covariance matrix) associated
to h, and A is the archive of f . After each call of GenCMA,
optimization parameters θh are updated; and if GenCMA

was called with the true objective function f , archive A
is updated and augmented with the new points (x, f(x)).
Note that GenCMA can be replaced by any black-box op-
timization procedure, able to update its own optimization
parameters and the archive.

s∗ACM-ES starts by calling GenCMA for gstart number of
generations with the true objective f , where θopt and A are
respectively initialized to the default parameter of CMA-
ES and the empty set (lines 4-7). In this starting phase,
optimization parameter θopt and archive A are updated in
each generation.
Then s∗ACM-ES iterates a three-step process (Algorithm

1, illustrated on Fig. 2):

1 learning surrogate f̂ (procedure BuildSurrogateModel,
line 9; section 4.2);

2 Optimizing surrogate f̂ during n̂ generations (lines 11-

13). This step classically calls GenCMA(f̂ ,θopt,A) for
n̂ consecutive generations; θopt is updated accordingly
while A is unchanged since this step does not involve
any computation of the expensive f .

3 Adjusting the surrogate lifelength n̂ (section 4.3).

4.2 Learning a Surrogate and Adjusting its Hy-
per-parameters

The surrogate model learning phase proceeds as in ACM-
ES (section 2.3). GenCMA(f ,θopt,A) is launched for one
generation with the true objective f , updating and augment-
ing archive A with new (x, f(x)) points.

f̂ is built using Ranking SVM [17] with archive A as train-
ing set, where the SVM kernel is tailored using the current
optimization parameters θopt such as covariance matrix C.

Algorithm 1 s∗ACM-ES

1: g ← 0; Err← 0.5; Ag ← ∅;
2: θopt ← InitializationCMA(); { to optimize f(x) }
3: θsur ← InitializationCMA(); { to optimize h(α) }
4: repeat
5: {θopt,Ag+1} ← GenCMA(f ,θopt, Ag);
6: g ← g + 1;
7: until g = gstart ;
8: repeat

9: f̂(x) ← BuildSurrogateModel(α, Ag, θopt);
10: gprev ← g;
11: for i = 1, . . . , n̂ do

12: {θopt,Ag+1 = Ag} ← GenCMA(f̂ ,θopt, Ag);
13: g ← g + 1;
14: {θopt,Ag+1} ← GenCMA(f ,θopt, Ag);
15: g ← g + 1;

16: Err(α) ← MeasureSurrogateError(f̂ ,θopt);
17: Err← (1− βErr)Err + βErrErr(α);

18: n̂←
⌊
τerr−Err

τerr n̂max

⌋
;

19: // adjust surrogate hyperparameters
20: θsur ← GenCMA(Err,θsur);
21: α← θsur.m;
22: until stopping criterion is met ;

Algorithm 2 Objective function Err(α) of surrogate model

1: Input: α

2: f̂(x) ← BuildSurrogateModel(α, Agprev , θsur,gprev );

3: Err(α) ← MeasureSurrogateError(f̂ , θopt,gprev );
4: Output: Err(α);

The contribution regards the adjustment of the surrogate
hyper-parameters α (e.g. the number and selection of the
training points in A; the weights of the constraint violations
in Ranking SVM, section 2.3), which are adjusted to opti-
mize the quality of the surrogate Err (Eq. 4). Formally,
to each surrogate hyper-parameter vector α is associated a
surrogate error Err(α) defined as follows: hyper-parameter

α is used to learn surrogate f̂α using Ag−1 as training set,

and Err(α) is set to the ranking error of f̂α, using the most
recent points (Ag −Ag−1) as test set.

Letting Λ denote the test set and assuming with no loss of

generality that the points in Λ are ordered after f , Err(f̂α)
is measured as follows (procedure MeasureSurrogateError,
line 16):

Err(α) =
2

|Λ|(|Λ| − 1)

|Λ|∑

i=1

|Λ|∑

j=i+1

wij .1
f̂α,i,j

(4)

where 1
f̂α,i,j

holds true iff f̂α violates the ordering con-

straint on pair (i,j). In all generality, the surrogate error
can be tuned using weight coefficients wij to reflect the rel-
ative importance of ordering constraints. Only wij = 1 will
be used in the remainder of the paper. For a better numer-
ical stability, the surrogate error is updated using additive
relaxation, with relaxation constant βErr (lines 16-17).

Finally, the elementary optimization module
GenCMA(Err,θsur) (in this study we do not use archive pa-
rameter here) is launched for one generation (line 20), and
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Figure 3: Number of generations n̂ versus surro-
gate error Err. Linear interpolation (bold curve)
has been used in the experimental validation.

the mean of the CMA-ES mutation distribution is used (line
21) as surrogate hyper-parameter vector in the next surro-
gate building phase (line 9).

4.3 Adjusting Surrogate Lifelength
Lifelength n̂g is likewise adjusted depending on the error

made by the previous surrogate f̂g−1 on the new archive

points (Ag −Ag−1). If this error is 0, then f̂g−1 is perfectly
accurate and could have been used for some more genera-

tions before learning f̂g. In this case lifelength n̂g is set to
the maximum value n̂max, which corresponds to the maxi-
mum theoretical speedup of the s∗ACM-ES.

If the error is circa .5, surrogate f̂g−1 provides no better
indications than random guessing and thus misleads the op-
timization; n̂g is set to 0. More generally, considering an
error threshold τerr, n̂ is adjusted between n̂max and 0, pro-
portionally2 to the ratio between the actual error and the
error threshold τerr (line 18, bold curve on Fig. 3).

5. EXPERIMENTAL VALIDATION
The experimental validation of the approach proceeds by

comparing the performance of s∗ACM-ES to the original [9]
and active [13] CMA-ES versions, considering the restart
scenario with increasing population size (IPOP [2, 10]).
The active IPOP-aCMA-ES [10] with weighted negative

covariance matrix update is found to perform equally well or
better than IPOP-CMA-ES, which is explained as it more
efficiently exploits the information of the worst λ/2 points.
We use IPOP-aCMA-ES as challenging baseline, more diffi-
cult to speed up than the original IPOP-CMA-ES.
Specifically, s∗ACM-ES is validated on the noiseless BBOB

testbed by comparing IPOP-aACM-ES with fixed hyper-
parameters, and IPOP-s∗aACM-ES with online adaptation
of hyperparameters of the surrogate model3.
After detailing the experimental setting, this section re-

ports on the offline tuning of the number Ntraining of points

2Complementary experiments omitted for brevity, show that
the best adjustment of n̂ depending on the surrogate error
is again problem-dependent.
3For the sake of reproducibility we used the Octave/MatLab
source code of IPOP-CMA-ES with default parameters,
available from its author’s page, with the active flag set to
1. The s∗ACM-ES source code is available at
https://sites.google.com/site/acmesgecco/.

Parameter Range for online tuning Offline tuned value

Ntraining

[
4d, 2(40 +

⌊
4d1.7

⌋
)
]

40 +
⌊
4d1.7

⌋

Cbase [0, 10] 6
Cpow [0, 6] 3
csigma [0.5, 2] 1

Table 1: Surrogate hyper-parameters, default value
and range of variation

used to learn the surrogate model, and the online tuning of
the surrogate hyper-parameters.

5.1 Experimental Setting
The default BBOB stopping criterion is reaching target

function value ft = fopt + 10−8. Ranking SVM is trained
using the most recent Ntraining points (subsection 5.2); its
stopping criterion is arbitrarily set to a maximum number
of 1000Ntraining iterations of the quadratic programming
solver.

After a few preliminary experiments, the Ranking SVM
constraint violation weights (Eq. 1) are set to

Ci = 10Cbase(Ntraining − i)Cpow

with Cbase = 6 and Cpow = 3 by default; the cost of con-
straint violation is thus cubically higher for top-ranked sam-
ples. The σ parameter of the RBF kernel is set to σ =
csigmaσx, where σx is the dispersion of the training points
(their average distance after translation, Eq. 3) and csigma

is set to 1 by default. The number gstart of CMA-ES calls in
the initial phase is set to 10, the maximum lifelength n̂max

of a surrogate model is set to 20. The error threshold τerr
is set to .45 and the error relaxation factor is set to .2.

The surrogate hyper-parameters θsur are summarized in
Table 1, with offline tuned value (default for IPOP-aACM-
ES) and their range of variation for online tuning, (where d
stands for the problem dimension). Surrogate hyper-para-
meters are optimized with a population size 20 (20 surro-
gate models), where the Err function associated to a hyper-
parameter vector is measured on the most recent λ points in
archive A, with λ the current optimization population size.

5.2 Offline Tuning: Number of Training Points
It is widely acknowledged that the selection of the train-

ing set is an essential ingredient of surrogate learning [16].
After some alternative experiments omitted for brevity, the
training set includes simply the most recent Ntraining points
in the archive. The study thus focuses on the tuning of
Ntraining. Its optimal tuning is of course problem- and sur-
rogate learning algorithm-dependent. Several tunings have
been considered in the literature, for instance for 10-dimen-
sional problems: 3λ for SVR [30]; 30 for RBF [29]; 50 for

ANN [6]; λ, 2λ for Ranking SVM[24, 12]; d(d+1)
2

+ 1 = 66

for LWR in the lmm-CMA-ES [3]; 70
√
d = 221 for Ranking

SVM in the ACM-ES [21].
In all above cases but ACM-ES, the surrogate models aim

at local approximation. These approaches might thus be
biased toward small Ntraining values, as a small number of
training points are required to yield good local models (e.g.
in the case of the Sphere function), and small Ntraining val-
ues positively contribute to the speed-up. It is suggested
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Figure 4: The speedup of IPOP-aACM-ES over
IPOP-aCMA-ES w.r.t. (fixed) number of training
points.

however that the Sphere function might be misleading, re-
garding the optimal adjustment of Ntraining.
Let us consider the surrogate speed-up of IPOP-aACM-

ES w.r.t. IPOP-CMA-ES depending on (fixed) Ntraining, on
uni-modal benchmark problems from the BBOB noiseless
testbed (Fig. 4 for d = 10). While the optimal speed-up
varies from 2 to 4, the actual speed-up strongly depends on
the number Ntraining of training points.
Complementary experiments on d-dimensional problems

with d = 2, 5, 10, 20, 40 (Fig. 4) yield to propose an average
best tuning of Ntraining depending on dimension d:

Ntraining =
⌊
40 + 4d1.7

⌋
(5)

Eq. (5) is found to empirically outperform the one proposed

in [21] (Ntraining =
⌊
70
√
d
⌋
), which appears to be biased to

10-dimensional problems, and underestimates the number of
training points required in higher dimensions. Experimen-
tally however, Ntraining must super-linearly increase with d;
eq. (5) states that for large d the number of training points
should triple when d doubles.
Further, Fig. 4 shows that the optimal Ntraining value is

significantly smaller for the Sphere function than for other
functions, which experimentally supports our conjecture that
the Sphere function might be misleading with regard to the
tuning of surrogate hyper-parameters.

5.3 Online Tuning: Surrogate Hyper-parameters
The IPOP-s∗ACM-ES achieves the online adaptation of

the surrogate hyper-parameters within a specified range (Ta-
ble 1), yielding the surrogate hyper-parameter values to be
used in the next surrogate learning step.
Note that a surrogate hyper-parameter individual might

be non-viable, i.e. if it does not enable to learn a surrogate
model (Ranking SVM fails due to an ill-conditioned kernel).
Such non-viable individual is heavily penalized (Err(α) >>
1). In case no usable hyper-parameter individual is found
(which might happen in the very early generations as it is
shown on Fig. 5), θsur is set to its default value.
The online adaptation of surrogate hyper-parameters how-

ever soon reaches usable hyper-parameter values. The tra-
jectory of the surrogate hyper-parameter values vs the num-
ber of generations is depicted in Fig. 5, normalized in [0, 1]
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Figure 5: The median trajectories of normalized sur-
rogate hyper-parameters estimated on 15 runs of the
IPOP-s∗aACM-ES on Rotated Ellipsoid 20-D.

and considering the median out of 15 runs optimizing 20
dimensional Rotated Ellipsoid function.

The trajectory of Ntraining displays three stages. In a first
stage, Ntraining increases as the overall number of evaluated
points (all points are required to build a good surrogate).
In a second stage, Ntraining reaches a plateau; its value is
close to the one found by offline tuning (section 5.2). In
a third stage, Ntraining steadily decreases. This last stage
is explained as CMA-ES approaches the optimum of f and
gets a good estimate of the covariance matrix of the Ellipsoid
function. At this point the optimization problem is close to
the Sphere function, and a good surrogate can be learned
from comparatively few training points.

The trajectories of other surrogate hyper-parameters are
more difficult to interpret, although they clearly show non-
random patterns (e.g. Cpow).

5.4 Comparative Performances
The comparative performance of s∗ACM-ES combined with

the original and the active variants of IPOP-CMA-ES is
depicted on Fig. 6, on the 10-d Rotated Ellipsoid (Left)
and Rosenbrock (Right) functions. In both cases, the online
adaptation of the surrogate hyper-parameters yields a quasi
constant speed-up, witnessing the robustness of s∗ACM-ES.
On the Ellipsoid function, the adaptation of the covariance
matrix is much faster than for the baseline, yielding same
convergence speed as for the Sphere function. On the Rosen-
brock function the adaptation is also much faster, although
there is clearly room for improvements.

The performance gain of s∗ACM-ES, explained from the
online adjustment of the surrogate hyper-parameters, in par-
ticular Ntraining, confirms the fact that the appropriate sur-
rogate hyper-parameters vary along search, and can be ad-
justed based on the accuracy of the current surrogate model.
Notably, IPOP-s∗ACM-ES almost always outperforms IPOP-
ACM-ES, especially for d > 10.

5.5 Scalability w.r.t Population Size
The default population size λdefault is suggested to be the

only CMA-ES parameter to possibly require manual tuning.
Actually, λdefault is well tuned for uni-modal problems and
only depends on the problem dimension. Increasing the pop-
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Figure 6: Comparison of the proposed surrogate-assisted versions of the original and active IPOP-CMA-ES
algorithms on 10 dimensional Rotated Ellipsoid (Left) and Rosenbrock (Right) functions. The trajectories
show the median of 15 runs.
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Figure 7: Speedup of the IPOP-s∗aACM-ES over
IPOP-aCMA-ES for large population sizes λ =
γλdefault on 10-D problems.

ulation size does not decrease the overall number of function
evaluations needed to reach an optimum in general. Still, it
allows one to reach the optimum after fewer generations. In-
creasing the population size and running the objective func-
tion computations in parallel is a source of speed-up, which
raises the question of s∗ACM-ES scalability w.r.t. the pop-
ulation size.
Fig. 7 shows the speedup of the IPOP-s∗aACM-ES com-

pared to IPOP-aCMA-ES for unimodal 10 dimensional prob-
lems, when the population size λ is set to γ times the default
population size λdefault. For F8 Rosenbrock, F12 Cigar and
F14 Sum of Different Powers the speedup remains almost
constant and independent of γ, while for F10 Rotated Ellip-
soid, F11 Discus and F13 Sharp Ridge, it even increases with
γ. We believe that with a larger population size, “younger”
points are used to build the surrogate model, that is hence
more accurate.
The experimental evidence suggests that s∗ACM-ES can

be applied on top of parallelized versions of IPOP-s∗aACM-
ES, while preserving or even improving its speed-up. Note
that the same does not hold true for all surrogate-assisted
methods; for instance in trust region methods, one needs to
sequentially evaluate the points.
It is thus conjectured that further improvements of CMA-

ES (e.g. refined parameter tuning, noise handling) will trans-
late to s∗ACM-ES, without degrading its speed-up.

6. CONCLUSION AND PERSPECTIVES
This paper presents a generic framework for adaptive sur-

rogate-assisted optimization, which can in principle be com-
bined with any iterative population-based optimization, and
surrogate learning, algorithms. This framework has been
instantiated on top of surrogate-assisted ACM-ES, using
CMA-ES as optimization algorithm and Ranking SVM as
surrogate learning algorithm. The resulting algorithm,
s∗ACM-ES, inherits from CMA-ES and ACM-ES the prop-
erty of invariance w.r.t. monotonous transformations of the
objective function and orthogonal transformations of the
search space.

The main contribution of the paper regards the online
adjustment of i) the number n̂ of generations a surrogate
model is used, called surrogate lifelength; ii) the surrogate
hyper-parameters controlling the surrogate learning phase.
The surrogate lifelength is adapted depending on the qual-
ity of the current surrogate model; the higher the quality,
the longer the next surrogate model will be used. The ad-
justment of the surrogate hyper-parameters is likewise han-
dled by optimizing them w.r.t. the quality of the surrogate
model, without requiring any prior knowledge on the opti-
mization problem at hand.

IPOP-s∗aACM-ES was found to improve on IPOP-aCMA-
ES with a speed-up ranging from 2 to 3 on uni-modal d-
dimensional functions from the BBOB-2012 noiseless testbed,
with dimension d ranging from 2 to 40. On multi-modal
functions, IPOP-s∗aACM-ES is equally good or sometimes
better than IPOP-aCMA-ES, although the speed-up is less
significant than for uni-modal problems. Further, IPOP-s∗

aACM-ES also improves on IPOP-aCMA-ES on problems
with moderate noise from BBOB-2012 noisy testbed. All
these results as well as the computational complexity of the
algorithm are discussed in details in BBOB-2012 workshop
papers [22] and [23].

A long term perspective for further research is to bet-
ter handle multi-modal and noisy functions. A shorter-term
perspective is to consider a more comprehensive surrogate
learning phase, involving a portfolio of learning algorithms
and using the surrogate hyper-parameter optimization phase
to achieve portfolio selection. Another perspective is to de-
sign a tighter coupling of the surrogate learning phase, and
the CMA-ES optimization, e.g. using the surrogate model

f̂ to adapt the CMA-ES hyper-parameters during the opti-
mization of the expensive objective f .
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