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Abstract. The Steady State variants of the Multi-Objective Covariance
Matrix Adaptation Evolution Strategy (SS-MO-CMA-ES) generate one
offspring from a uniformly selected parent. Some other parental selection
operators for SS-MO-CMA-ES are investigated in this paper. These op-
erators involve the definition of multi-objective rewards, estimating the
expectation of the offspring survival and its Hypervolume contribution.
Two selection modes, respectively using tournament, and inspired from
the Multi-Armed Bandit framework, are used on top of these rewards.
Extensive experimental validation comparatively demonstrates the mer-
its of these new selection operators on unimodal MO problems.

1 Introduction

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [9, 8] is con-
sidered today as the state-of-the art method for continuous optimization at large,
at least for small to medium-sized search space (up to dimension 100) [7]. Its
efficiency mostly derives from its invariance properties; not only is it invari-
ant with respect to monotonous transformations of the objective function, like
all comparison-based optimization algorithms; it is also invariant with respect to
orthogonal transformations of the coordinate system, thanks to the on-line adap-
tation of the covariance matrix of the Gaussian mutation. The multi-objective
version of CMA-ES proposed by Igel et al. [10], called MO-CMA-ES, benefits
from these invariance properties (though the hypervolume indicator is not in-
variant) and performs very well on non-separable problems like the IHR family.
MO-CMA-ES proceeds as a (µ + µ) algorithm, where µ parents give birth to
µ offspring, and the best µ individuals in the sense of Pareto dominance (out
of parents plus offspring) become the parents of the next generation. As shown
by [4] however, Evolutionary Multi-Objective Optimization can benefit from
steady-state strategies. Accordingly, two steady state variants, hereafter called
SS-MO-CMA-ES, have been proposed by Igel et al. [12], implementing some
(µ+ 1) selection strategy: a parent is selected uniformly (either from the whole
parent population, or among the non-dominated parents), and is used to gen-
erate a single offspring, which is inserted back into the population at each time
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step. Significant improvements over the generational version were reported on
unimodal benchmark problems.

The present paper investigates some alternative choices of the fertile parent
in SS-MO-CMA-ES, based on the conjecture that not all (non-dominated) par-
ents are equal. Several indicators, estimating the expectation of offspring survival
or its hypervolume contribution, are considered. These indicators are exploited
within a simple tournament selection, or borrowing Multi-Armed Bandits prin-
ciples [2] to deal with the Exploration vs Exploitation dilemma.

This paper is organized as follows. Section 2 recalls the basics of MO-CMA-
ES; the generational and the steady state variants are described within a generic
scheme. Section 3 details the proposed parent selection operators and how they
fit in the generic scheme. These operators involve a rewarding procedure estimat-
ing the goodness of parents, and a selection procedure. In Section 4 the resulting
algorithms are experimentally assessed on some well-known benchmark func-
tions, comparatively to the previous versions of MO-CMA-ES, and the paper
concludes with some perspectives for further research in Section 5.

2 State of the art

This section briefly recalls the formal background of multi-objective optimiza-
tion, and the basics of MO-CMA-ES and SS-MO-CMA-ES, referring the reader
to [10] and [12] for a more comprehensive description.

Let D ⊆ IRd be the decision space, and let f1, . . . , fm denote m objectives
defined on the decision space (fi : D 7→ IR). The objective space is given by IRm

and the image of x in the objective space is defined as ox = (f1(x), . . . fm(x)).
Given a pair of points (x, y) ∈ D, it is said that x dominates y (denoted x ≺ y)
iff x is not worse than y over all objectives, and x is strictly better than y on at
least one objective. It is said that ox ≺ oy iff x ≺ y.

2.1 MO-CMA-ES

Originally, MO-CMA-ES involves a set of µ (1 + 1)-CMA-ES, each of which
performs step-size and covariance matrix updates based on its own evolution
path, and a Pareto-based survival selection mechanism that selects µ individuals
from the population of size 2µ built from all parents and offspring.

Regarding the (1 + 1)-ES, the general rules used for the adaptation of the
step-size and the covariance matrix in CMA-ES [9, 8] cannot be used within the
(1+1) setting. Specific rules have hence been proposed [11], based on the success
rate of the previous evolution steps, à la 1/5th rule [16]. The detailed description
of those rules fall outside the scope of this paper, though their formal description
is given in lines 8-16 in Algorithm 1 for the sake of reproducibility.

Regarding the survival selection mechanism, it is inspired by the Non-dominated
Sorting procedure first proposed within the NSGA-II algorithm [6]. Two hier-
archical criteria are used in turn: the Pareto rank, and the hypervolume con-
tribution [4], that replaces the original crowding distance. Let A = {a1, . . . , ap}
denote a set of p points of the objective space.
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Pareto Ranking The Pareto ranks w.r.t. A of the points in A are itera-
tively determined. All non-dominated points in A (denoted ndom1(A) or simply
ndom(A)), are given rank 1. The set ndom(A) is then removed from A; from
this reduced set, the non-dominated points (denoted ndom2(A)) are given rank
2; the process continues until all points of A have received a Pareto rank. The
Pareto rank of point a ∈ A is denoted PR(a,A).

Hypervolume contribution The Hypervolume of a set of points A is some-
times also called “S-Metric” [18]. Let aref denote a reference point, dominated
by all points in A. The hypervolume of A is then the volume of the union of the
hypercubes defined by one point of the set and aref . Formally,

H(A) = V olume(

i=p
⋃

i=1

Rect(ai, aref ))

where Rect(a, b) is the hyper-rectangle whose diagonal is the segment [ab]. It is
clear that only the non-dominated points in A (i.e. the points in ndom(A))
contribute to the hypervolume. The Hypervolume contribution of some non-
dominated point a is defined as the difference between the hypervolume of the
whole set A and that of the set from which a has been removed.

∆H(a,A) = H(A)−H(A\{a})

For dominated points, the hypervolume contribution can also be defined by
considering only the points that have the same rank. More precisely, if PR(a) =
k, i.e. a ∈ ndomk(A), then

∆H(a,A) = H(ndomk(A))−H(ndomk(A)\{a})

Survival Selection in MO-CMA-ES All above definitions are extended to
points in the decision space as follows. Given a set X = {x1, . . . xp} in the
decision space, given the set A = {ox1, . . . , oxp} of their image in the objective
space, the Pareto rank (resp. hypervolume contribution) of any point x in X is
set to the Pareto rank (resp. hypervolume contribution) of ox in A.

Using Pareto ranking as first criterion, and the hypervolume contribution
as secondary criterion (rather than the crowding distance proposed with the
original NSGA-II, as advocated in [4]), a total preorder relation ≺X is defined
on any finite subset X of the decision space, as follows:

x ≺X y ⇔ PR(x,X) < PR(y,X) // lower Pareto rank

or // same Pareto rank and higher HC

PR(x,X) = PR(y,X) and ∆H(x,X) > ∆H(y,X)

(1)

Ties on hypervolume contributions are broken at random.
Specific care must be taken with the extreme points of the set, i.e. the points

for which the hypervolume contribution depends on the choice of the reference

3



Algorithm 1 (µ+λ)-MO-CMA-ES Generic MO-CMA-ES scheme

1: g ← 0, initialize parent population Q(0);
2: repeat

3: for k = 1, . . . , λ do

4: ik ← ParentSelection(Q(g), k);

5: a
′(g+1)
k ← a

(g)
ik

;

6: x
′(g+1)
k ∼ x

(g)
ik

+ σ
(g)
ik
N

(

0,C
(g)
ik

)

;

7: Q(g) ← Q(g) ∪
{

a
′(g+1)
k

}

;

8: for k = 1, . . . , λ do

9: p̄′
(g+1)
succ,k, p̄

(g)
succ,ik

← (1− cp)p̄′
(g+1)
succ,k + cpsuccQ(g)

(

a
(g)
ik

, a
′(g+1)
k

)

;

10: σ
′(g+1)
k , σ

(g)
ik
← σ

′(g+1)
k exp

(

1
d

p̄′
(g+1)
succ,k

−ptargetsucc

1−p
target
succ

)

;

11: if p̄′
(g+1)
succ,k < pthresh then

12: p
′(g+1)
c,k ← (1− cc)p

′(g+1)
c,k +

√

cc(2− cc)
x
′(g+1)
k

−x
(g)
ik

σ
(g)
ik

;

13: C
′(g+1)
k ← (1− ccov)C

′(g+1)
k + ccovp

′(g+1)
c,k p

′(g+1)T

c,k ;
14: else

15: p
′(g+1)
c,k ← (1− cc)p

′(g+1)
c,k ;

16: C
′(g+1)
k ← (1− ccov)C

′(g+1)
k + ccov

(

p
′(g+1)
c,k p

′(g+1)T

c,k + cc(2− cc)C
′(g+1)
k

)

;

17: Q(g+1) ←
{

Q
(g)
≺:i|1 ≤ i ≤ µ

}

; // Deterministic Selection according to ≺Q(g)

18: ComputeRewards(Q(g), Q(g+1));
19: g ← g + 1;
20: until stopping criterion is met.

point. By convention, they are associated an infinite hypervolume contribution,
and they thus dominate in the sense of Eq. (1) all points with same Pareto rank.

The survival selection in MO-CMA-ES finally proceeds as the standard de-
terministic selection of the (µ + µ)-ES algorithm: at generation g, after each
of the µ parents has generated one offspring, let Q(g) denote the union of the
µ parents and the µ offspring. Then the best µ individuals according to ≺Q(g)

become the parents of generation g + 1.

2.2 Generational and Steady State MO-CMA-ES Algorithms

Algorithm 1 is a generic description of all MO-CMA-ES algorithms, where µ

parents generate λ offspring. Borrowing Igel et al’s notations [12], a
(g)
i denotes

some structure containing the ith point xi of the population at generation g to-
gether with its parameters related to the mutation (step-size, covariance matrix,
average success rate, . . . ).

Lines 3-7 is the loop of offspring generation: at line 5 the parent is copied onto
the offspring together with its parameters. It is mutated at line 6 (and evaluated).
Then, depending on the success of the offspring (its performance compared to
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its parents’), the parameters of both individuals are updated between lines 8
and 16 (update of the covariance matrix in the case of successful offspring3, and
update of success rate and mutation step in any case).

The original MO-CMA-ES thus instantiates the generic Alg. 1 by taking
λ = µ and having the parent selection on line 4 simply return its second argument
(ik = k, i.e., all parents generate exactly one offspring in turn).

In SS-MO-CMA-ES, λ = 1: only one offspring is generated at each generation.
The parent selection (line 4 of Algorithm 1) proceeds by uniformly selecting
either one from the µ parents (variant (µ+1)-MO-CMA in the following); or one
from the non-dominated parents (variant (µ≺ + 1)-MO-CMA in the following).

The survival selection (line 17) then amounts to replacing the worst parent xw

with the offspring if the latter improves on xw according to ≺Q(g) , or discarding
the offspring otherwise.

3 New Parent Selections for Steady-State MO-CMA-ES

After [12], the more greedy variant (µ≺ + 1)-MO-CMA outperforms all other
variants on all unimodal problems. In contrast, on multi-modal problems such
as ZDT4 and IHR4, (µ+1)-MO-CMA performs better than (µ≺+1)-MO-CMA
[12], but it does not perform too well, and neither does the generational version
of MO-CMA-ES, comparatively to other MOEAs.

These remarks naturally lead to propose more greedy parent selection op-
erators within SS-MO-CMA-ES (line 4 of Alg. 1), in order to further improve
its performances on unimodal problems, leaving aside at the moment the multi-
modality issue. A parent selection operator is based on i) a selection mechanism;
and ii) a rewarding procedure (line 18). A family of such operators is presented
in this section; the selection procedure either is based on a standard tourna-
ment selection (section 3.1), or inspired from the Multi-Armed Bandit paradigm
(section 3.2). The rewarding procedures are described in section 3.3.

3.1 Tournament Selection

Standard tournament selection is parameterized from a tournament size t ∈
IN. Given a set X, t-tournament selection proceeds by uniformly selecting t
individuals (with or without replacement) from X and returning the best one
according to criterion at hand (here, the ≺Q(g) criterion, see Eq. (1)). The parent

selection procedure (line 4 of Alg. 1) thus becomes TournamentSelection(Q(g)).
The rewarding procedure (line 18 of Alg. 1) only computes for each parent

its Pareto rank and Hypervolume contribution4.
The Steady-State MO-CMA-ES using t-size Tournament Selection is denoted

(µ +t 1)-MO-CMA in the following, or (µ +t 1) for short. Parameter t thus

3 The formulation of Algorithm 1 was chosen for its genericity. In practice however,
only the surviving offspring will actually adapt their parameters; the update phase
thus takes place after the survival selection (line 17).

4 It is thus redundant with the Survival Selection (line 17), and can be omitted.

5



controls the selection greediness; the larger t, the more often points with high
Hypervolume contribution will be selected on average.

3.2 Multi-Armed Bandit-inspired Selection

Another parent selection procedure (line 4 of Alg. 1) inspired from the Multi-
Armed Bandit (MAB) paradigm is described here. How to define the underlying
rewards (line 18) will be detailed in next subsection.

The standard MAB setting considers several options, also called arms, each
one with an (unknown but fixed) reward distribution [2]. The MAB problem is
to find a selection strategy, selecting an arm i(t) in each time step t and getting
an instance of the corresponding reward distribution, such that this strategy
optimizes the cumulative reward.

An algorithm yielding an optimal result has been proposed by Auer et al.
[2]; this algorithm proceeds by selecting the arm which maximizes the sum of an
exploitation term (the empirical quality, or average of rewards the arm has ever
actually received) and an exploration term (enforcing that non-optimal arms be
selected sufficiently often to enforce the identification of the truly optimal arm).

Considering that our setting is a dynamic one (as evolution proceeds toward
the Pareto front), no algorithm with theoretical guarantees is available, and some
heuristic adaptation of the above MAB algorithm is used:

1. The average reward of an arm (a parent) is replaced by its average reward
along a time window of size w;

2. The exploration is enforced by selecting once every arm which i) occurs only
once in the time window and ii) is about to disappear from the time window
(it was selected w time steps ago);

3. In all other cases, the selection is on the exploitation side, and the arm with
best average reward along the last w time steps is selected.

In summary, the MAB-like selection (line 4 of Alg. 1) always selects the parent
with best average reward in the last w time steps, except for case 2 (a current
parent is about to disappear from the time window). Parameter w thus controls
the exploration strength of the selection. Experimentally however, the sensitivity
of the algorithm w.r.t. w seems to be rather low, and w was set to 500 in all
experiments (section 4).

3.3 Defining Rewards

This subsection describes the rewards underlying the MAB-like selection mech-
anism (line 18 of Alg. 1). A key related issue is how to share the reward between
parents and offspring. On the one hand, if an offspring survives, it is better that
some old parents and might thus be a good starting point for further advances
toward the Pareto front. The offspring must thus inherit a sufficient fraction of
its parent reward, to enable its exploitation. On the other hand, the reward of
a parent should be high when it yields good-performing offspring, and in partic-
ular no reward should be awarded to the parent if the newborn offspring does
not survive. Several reward indicators have been considered.
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(µ + 1succ) A first possibility is to consider boolean rewards. If an offspring
makes it to the next generation, both the offspring and the parent receives reward
1. Formally:

r(g) = 1 if a
′(g+1)
1 ∈ Q(g+1)

Such boolean rewards entail a very greedy behavior. The newborn offspring,
receiving 1 as instant reward, gets 1 as average reward over the time window; it
will thus very rapidly (if not immediately) be selected at next parent. Likewise,
its parent which already had a top average reward (it was selected), will improve
its average reward and tend to be selected again.

(µ + 1rank) A smoother reward is defined by taking into account the rank of
the newly inserted offspring:

r(g) = 1−
rank(a

′(g+1)
1 )

µ
if a

′(g+1)
1 ∈ Q(g+1)

where rank(a
′(g+1)
1 ) is the rank of the newly inserted offspring in population

Q(g+1) (using comparison operator ≺Q(g) defined by Eq. (1); the top individual
gets rank 0). Along this line, the reward ranges linearly from 1 (for a non-
dominated individual with best hypervolume contribution) to 0. A newborn
offspring will here be selected rapidly only if it makes it into the top-ranked
individuals of the current population. The average reward of the parent can
decrease if its offspring gets a poor rank, even if the offspring survives.

(µ + 1∆H1
) Another way of getting smooth rewards is based on the hyper-

volume contribution of the offspring. Let us set the reward to 0 for dominated
offspring (noting that most individuals are non-dominated in the end of evolu-
tion); for non-dominated offspring, one sets the reward to the increase of the
total Hypervolume contribution from generation g to g + 1:

r(g) =
∑

a∈Q(g+1)

∆H(a,Q(g+1))−
∑

a∈Q(g)

∆H(a,Q(g))

(µ + 1∆Hi
) In the early stages of evolution, many offspring are dominated

and the above Hypervolume-based reward thus gives little information. A relax-
ation of the above reward, involving a rank-based penalization is thus defined.
Formally, if k denote the Pareto rank of the current offspring, the reward is:

r(g) =
1

2k−1





∑

ndomk(Q(g+1))

∆H(a, ndomk(Q
(g+1)))−

∑

ndomk(Q(g))

∆H(a, ndomk(Q
(g)))
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#3:+0

#4:+1

#5:+1
#6:+0.4

#7:+1

#8:+0.3

#9:+0.5

#10:+1

Fig. 1. Reward-based multi-objective optimization with bounded population.
”#6:+0.4” means reward 0.4 on 6th iteration.

3.4 Discussion

The difficulty of associating a reward to a pair (parent, offspring) in Multi-
Objective optimization is twofold. On the one hand, defining absolute indicators
(e.g. reflecting some aggregation of the objective values) goes against the very
spirit of MO. On the other hand, relative indicators such as above-defined must
be taken with care: they give a snapshot of the current situation, which evolves
along the population progress toward the Pareto front. The well-founded Multi-
Armed Bandit setting, and its trade-off between Exploration and Exploitation,
must thus be modified to account for non-stationarity.

Another difficulty is related to the finiteness of the population: while new
arms appear, some old arms must disappear. The parent selection, e.g. based on
the standard deterministic selection (Eq. (1)) is biased toward exploitation as it
does not offer any way of “cooling down” the process. Such a bias is illustrated
in Fig. 1. Let the population size of steady-state EMOA be 5, and consider a
sequence of 10 evolution steps, generating 10 new points (oldest, resp. newest
points are black resp. white). At each iteration the parent with best reward
generates an offspring, then 6 points are compared using Eq. (1), and the worst
point (crossed out) is eliminated. The instant parent reward reflects the quality of
the offspring. Along evolution, some prospective points/arms are thus eliminated
because they progress more slowly than others, although they do progress, due
to the fixed population size. Expectedly, this bias toward exploitation adversely
affects the discovery of multi-modal and/or disconnected Pareto front. We shall
return to this issue in section 5.

4 Experimental Validation

This section reports on the validation of the proposed schemes, comparatively
to the baseline MO-CMA-ES algorithms, detailing the experimental setting in
section 4.1 before discussing the experimental evidence in section 4.2.
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4.1 Experimental Setting

Algorithms. The experimentation involves:

– The steady-state MO-CMA-ES with tournament-based parent selection, where
the tournament size t is set to 2 and 10 (respectively noted (µ +2 1) and
(µ+10 1));

– The steady-state MO-CMA-ES with MAB-based parent selection, consider-
ing the four rewards described in section 3.2 (respectively noted (µ+1succ),
(µ+ 1rank), (µ+ 1∆H1

) and (µ+ 1∆Hi
));

– The baseline algorithms include the generational (µ + µ)-MO-CMA [10],
and its steady-state variants (µ+1)-MO-CMA and (µ≺ +1)-MO-CMA [12]
(section 2.2).

All parameters of MO-CMA-ES are set to their default values [10] (in partic-
ular, µ = 100); all algorithms only differ by their parent selection procedure.
All reported results are based on 31 independent runs with at most 200,000 fit-
ness evaluations, and median results are reported when the target precision was
reached.

Problems. The well-known bi-criteria ZDT1:3-6 problems [17] and their rotated
variants IHR1:3-6 [10] have been considered. Note however that the true Pareto
front of all ZDT problems lies on the boundary of the decision space, which
might make it easier to discover it. For the sake of an unbiased assessment, the
true Pareto front is thus shifted in decision space: x′

i ← |xi − 0.5| for 2 ≤ i ≤ n,
where n is the problem dimension. The shifted ZDT problems are denoted sZDT.
The set of recently proposed benchmark problems LZ09-1:5 [14] have also been
used for their complicated Pareto front in decision space (Fig. 4).

Performance Measures. Following [13], the algorithmic EMO performance is
measured from the hypervolume indicator IH . Let P be a µ-size approximation
of Pareto front and let P ∗ be the approximate µ-optimal distribution of optimal
Pareto points [3]. The approximation error of the Pareto front is defined by
∆H(P ∗, P ) = IH(P ∗)− IH(P ).

Furthermore, to support an easy comparison of different algorithms across
different problems, all results will be presented ’the horizontal way’, i.e., report-
ing the number of function evaluations needed to reach a given precision. This
procedure rigorously supports claims5 such as algorithm A is 2 times faster than

algorithm B.

4.2 Result Analysis

All empirical results are displayed in Table 1. These results show that the pro-
posed algorithms generally outperform the baseline MO-CMA-ES approaches,

5 In opposition, a claim such as Algorithm A can reach a precision 10 times smaller
than algorithm B is hard to assess when considering different problems.
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Fig. 2. On-line performances of baseline and proposed variants of steady-state MO-
CMA-ES on sZDT1, IHR1, LZ09-3 and LZ09-4 problems (median out of 31 runs).

with the exception of problems sZDT3, IHR6 and LZ09-5. A first general remark
is that the steady-state variants of MO-CMA-ES outperform the generational
one on unimodal benchmark problems; as already noted in [12], the greedier
(µ≺ +1)-MO-CMA is usually faster than the original steady-state on sZDT and
IHR problems; in counterpart, it is too greedy on LZ09 problems (see below).
Another general remark is that (µ+1∆Hi

)-MO-CMA is usually more robust and
faster than (µ + 1∆H1

)-MO-CMA; this fact is explained as the former exploit
a better informed hypervolume contribution based reward, considering also the
contribution of dominated points.

The on-line performance of most considered algorithms on sZDT1, IHR1,
LZ09-3 and LZ09-4 shows the general robustness of (µ+1rank)-MO-CMA (Fig.2,
displaying ∆H(P ∗, P ) versus the number of function evaluations). The compar-
atively disappointing results of (µ + 1)-MO-CMA on IHR1 are explained from
the structure of the Pareto front, which includes an easy-to-find segment. This
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Fig. 3. Typical behavior of (µ + 1succ)-MO-CMA on sZDT2 (left) and IHR3 (right)
problems: premature convergence after 5,000 fitness function evaluations.

segment can be discovered by selecting the extreme parent (in objective space),
thus with probability 1/µ within a uniform selection scheme. Quite the contrary,
reward-based selection schemes quickly catch the fruitful directions of search.

The price to pay for this is depicted on Fig. 3, showing (µ+1succ)-MO-CMA
on sZDT2 and IHR3 problems. On these problems, a premature convergence
toward a small segment of the Pareto front is observed after circa 5,000 function
evaluations. The interpretation provided for this premature convergence goes
as follows. As one part of the Pareto front is easier to find than others, points
aiming at this part quickly reach their goal; due to non-dominated sorting (and
to the fixed population size), these eliminate other points, resulting in a very
poor diversity (in objective space) of the population. This remark suggests that
some additional diversity preserving technique should be used together with MO-
CMA-ES; note that, even in the original MO-CMA-ES, a premature convergence
is observed on IHR3.

LZ09 problems have also been considered because of their non-linear Pareto
front in decision space (Fig. 4), contrasting with the linear Pareto front of all
sZDT and IHR problems. The results depicted in Fig. 4 show that (µ+ 1rank)-
MO-CMA better approximates the Pareto front than (µ + 1) and (µ +10 1)-
MO-CMA, for all problems except LZ09-5. It is interesting to note that the
results of (µ+1rank)-MO-CMA after 100,000 fitness evaluations match those of
MOEA/D-DE after 150,000 fitness evaluations [14].

Overall (see also Table 1), (µ + 1rank)-MO-CMA and (µ +10 1)-MO-CMA
perform best on most problems, while (µ + 1∆Hi

)-MO-CMA is slightly more
robust. Most generally, all greedy versions of MO-CMA-ES get better results
on problems with a convex Pareto front; on problems with a concave or discon-
nected Pareto front, they suffer from premature convergence, entailed by a loss
of diversity, due to non-dominated sorting and bounded population size.
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5 Conclusion and Perspectives

The goal and main contribution of the paper is to speed up MO-CMA-ES us-
ing new parent selection schemes, based on tournament and reward-based ap-
proaches inspired from the Multi-Armed Bandit framework, in order to quickly
identify the most fruitful directions of search. Experiments on several bi-objective
problems have shown a significantly speed-up of MO-CMA-ES on unimodal prob-
lems (for both generational and previous steady-state variants). However, the
proposed approach results in a poor convergence on multi-modal multi-objective
problems, or problems where some parts of the Pareto front are much easier to
reach than others, such as IHR3 (Fig. 3, and discussion in sections 3.4 and 4.2).

These remarks open some perspectives for further research, aimed at pre-
serving the benefits of parent selection schemes while addressing the premature
convergence on multi-modal landscapes. A first perspective is to maintain the
points located at the border of the already visited region, and to give them some
chance to produce offspring as well although they are dominated. The question
thus becomes to handle yet another exploitation vs exploration dilemma, and
distribute the fitness evaluations between the current population and the bor-
derline points; it also remains to extend the reward definition for the borderline
points. Such an approach is similar in spirit to the so-called BIPOP-CMA-ES de-
signed to overcome premature convergence within single-objective evolutionary
optimization [7]; BIPOP-CMA-ES proceeds by maintaining one large population
for exploration purposes, and a small one for fast and accurate convergence.

A second perspective is to design a more integrated multi-objective CMA-ES
based algorithm, by linking the reward mechanism used in the parent selection
and the internal update rules of CMA-ES. Indeed, the success rate used to control
the (1 + 1)-ES evolution and the empirical success expectation used in (µ +
1succ)-MO-CMA are strongly related. Further work will consider how to use the
success rate in lieu of reward for parental selection, expectedly resulting in a more
consistent evolution progress. Meanwhile, the CMA update rules might want to
consider the discarded offspring (possibly weighting their contribution depending
on their hypervolume contribution), since they might contain useful information
even though they are discarded. Again, similar ideas have been investigated
in the single objective case: the Active Covariance Matrix Adaptation [1] does
use unsuccessful trials to update the distribution of mutation parameters. Some
other recent proposals [5] might also help accelerating even further the MO-
CMA-ES on separable functions: mirrored sampling systematically evaluates two
symmetric points w.r.t. the mean of the Gaussian distribution, and sequential
selection stops generating offspring after the first improvement over the parent.

Last but not least, the MO-CMA-ES and the proposed parent selection
schemes must be analysed and compared with other state-of-the art MOEAs,
specifically SMS-EMOA [4], the first algorithm to advocate the use of steady
state within EMO to our best knowledge; it also proposed separable variation
operators, resulting in excellent results comparatively to MO-CMA-ES on sep-
arable problems. How to extend these variation operators in the non-separable
case, borrowing approximation ideas from [15] will be investigated.
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Fig. 4. Plots of all 10 populations found by (µ + 1)-MO-CMA (left), (µ +10 1)-MO-
CMA (center) and (µ+1rank)-MO-CMA (right) in the x1−x2−x3 space on LZ09-1:5
after 100,000 function evaluations.
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Table 1. Comparative results of two baseline EMOAs, namely generational and steady-
state MO-CMA-ES and several versions of steady-state MO-CMA-ES with different
parent selection schemes. Median number of function evaluations (out of 31 indepen-
dent runs) to reach ∆Htarget values, normalized by Best: a value of 1 indicates the
best result, a value X > 1 indicates that the corresponding algorithm needed X times
more evaluations than the best to reach the same precision.

∆Htarget 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01

sZDT1 sZDT2 sZDT3 sZDT6
Best 2500 12000 47000 2500 15000 59000 3000 18500 70000 4500 141200 .

(µ+ µ) 7.3 4.3 2.2 8.6 4.3 2.1 5.5 3 1.5 8.2 1 .
(µ+ 1) 6.5 3.9 2.1 7.6 3.9 2 5.1 2.8 1.4 7.2 1.1 .
(µ≺ + 1) 1.5 2.2 1.7 1 2 1.5 1.3 1.8 1.2 1 . .
(µ+2 1) 3.7 2.4 1.5 4.4 2.4 1.4 3.1 1.7 1 4.3 . .
(µ+10 1) 1.2 1 1.1 1.4 1 1.3 1 1 . 1.3 . .
(µ+ 1∆H1) 3.5 1.5 1 3.4 1.6 1 2.5 . . 1.7 . .
(µ+ 1∆Hi

) 1.7 1.3 1 1.8 1.3 1 1.1 . . 1.5 . .
(µ+ 1succ) 1.2 1.7 1.1 1.6 . . 1 . . 2.1 . .
(µ+ 1rank) 1 1.4 1 1.4 . . 1 . . 1.7 . .

IHR1 IHR2 IHR3 IHR6
Best 500 1500 6000 1500 4000 8500 1000 . . 6000 . .

(µ+ µ) 8.4 8.8 6.9 6.4 4.8 3.3 8.2 . . 5.6 . .
(µ+ 1) 7 7.3 6.7 5.6 4.1 2.9 7 . . 5 . .
(µ≺ + 1) 1 1 3 1 1.6 1.7 1 . . 1 . .
(µ+2 1) 4 4.3 4 3.3 2.5 1.9 4 . . 3 . .
(µ+10 1) 2 1.6 1.1 1 1 1 1 . . 1 . .
(µ+ 1∆H1) 2 1.6 1 2 1.5 1.2 2.5 . . 1.4 . .
(µ+ 1∆Hi

) 2 2.3 1 1.3 1.3 1.1 1.5 . . 1.2 . .
(µ+ 1succ) 2 2.3 2 5.3 2.7 1.7 1.5 . . 1.9 . .
(µ+ 1rank) 2 2 1.5 1.6 1.7 1.3 1.5 . . 1.6 . .

LZ09-1 LZ09-2 LZ09-3 LZ09-4
Best 500 6000 17000 3500 144000 . 1500 35000 120500 1000 10000 40500

(µ+ µ) 11.4 5.1 3.2 3.6 . . 4.1 1.2 . 5.7 3.2 2.4
(µ+ 1) 9 4.7 3 3.2 . . 3.6 1 . 5 3.9 2.5
(µ≺ + 1) 2 2.5 2.2 1 . . 1 . . 1 4.3 2.3
(µ+2 1) 6 2.8 1.9 2.2 . . 2.3 1.7 . 3.5 2.7 1.9
(µ+10 1) 2 1 1 1 . . 1 1.4 1.4 1.5 1 2
(µ+ 1∆H1) 9 2.1 1.5 2 . . 1.6 5.6 . 2 1.8 1

(µ+ 1∆Hi
) 2 1.5 1.3 2.1 1 . 2 4.2 . 2.5 1.5 1

(µ+ 1succ) 1 2.1 1.4 3.5 . . 1.3 3.6 . 2 3.5 1.3
(µ+ 1rank) 1 1.9 1.3 5.8 1.1 . 1.3 1.6 1 1.5 2.4 1

LZ09-5
Best 1500 19000 .

(µ+ µ) 3.4 1.6 .
(µ+ 1) 3.3 1.4 .
(µ≺ + 1) 1 . .
(µ+2 1) 2 1 .
(µ+10 1) 1 1.7 .
(µ+ 1∆H1) 1.3 . .
(µ+ 1∆Hi

) 1.6 1.9 .
(µ+ 1succ) 1.3 . .
(µ+ 1rank) 1 . . 15


