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Abstract. Mainstream surrogate approaches for multi-objective prob-
lems build one approximation for each objective. Mono-surrogate ap-
proaches instead aim at characterizing the Pareto front with a single
model. Such an approach has been recently introduced using a mixture
of regression Support Vector Machine (SVM) to clamp the current Pareto
front to a single value, and one-class SVM to ensure that all dominated
points will be mapped on one side of this value. A new mono-surrogate
EMO approach is introduced here, relaxing the previous approach and
modelling Pareto dominance within the rank-SVM framework. The re-
sulting surrogate model is then used as a filter for offspring generation
in standard Evolutionary Multi-Objective Algorithms, and is compara-
tively validated on a set of benchmark problems.

1 Introduction

This paper is concerned with evolutionary Multi-Objective Optimization (EMO)
[2], and most specifically focuses on designing and using surrogate models in
order to speed up the evolutionary search. Surrogate models, namely compu-
tationally light estimates of the objective function, have been extensively used
in Evolutionary Algorithms (EAs) since the 1990’s [6], as the Achilles’s heel of
EAs is known to be the high number of times the objective function has to be
computed. This high number forbids using mainstream EAs in some application
domains, e.g. Optimal Design and Numerical Engineering where the objective
functions are computationally demanding. Surrogate-based EAs alleviate this
limitation by iteratively estimating the objective function, fueling the EA with
the estimate (aka surrogate model), acquiring new examples of the objective
function and revising the surrogate model accordingly; the reader will find a
comprehensive review of surrogate evolutionary optimization in [6].

Surrogate models are equally useful in evolutionary Multi-Objective Opti-
mization, all the more so when EMO involves several computationally heavy
objectives [8]. Current surrogate-based EMO approaches, with the notable ex-
ception of [13] and [10], basically extend surrogate-based standard EAs, building
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one surrogate for each objective function and replacing the objective by its sur-
rogate. The main limitation of such approaches is due to the approximation noise
as the number of objectives increases. The estimation cost indeed increases lin-
early with the number of objectives; but the Pareto dominance test, checking
whether one individual is dominated by another one, requires comparing their
surrogate values over all objectives; the error thus exponentially increases in the
worst case with the number of objectives.
The first mono-surrogate EMO approach was proposed by [13], aimed at char-
acterizing the already visited region of the objective space, although this char-
acterization hardly enables to guide evolution in the decision space. Addressing
this limitation, another mono-surrogate approach defined in the decision space
aimed at characterizing the current Pareto front and dominated region in the
decision space in order to guide further evolution [10] (more in section 2). While
this approach, referred to as Aggregated Surrogate Model (ASM), yields signifi-
cant savings in terms of computational cost on benchmark problems, it relies on
a complex adaptation of the Support Vector Machine framework [12], involving
regression- and one-class-like constraints. The ASM limitations, related to the
diversity of the Pareto front or the care to be exerted when using the surrogate
model to filter the offspring, are blamed on the over-constrained formulation of
the mono-surrogate model.

A new and relaxed version of Aggregated Surrogate Model for EMO is pro-
posed in this paper, inspired from rank-based SVM [4, 7]. Basically, the new
surrogate model referred to as RASM (Rank-based ASM) is only required to
locally approximate the Pareto dominance relation, enabling to rank neighbor
points within the objective space. RASM is still used to filter the offspring,
through estimating whether they improve on their parents in terms of approxi-
mated Pareto-dominance.

This paper is organized as follows. Section 2 briefly discusses Aggregated
Surrogate Models in EMO, detailing the approach proposed in [10] for the sake of
self-containedness. Section 3 presents and discusses the RASM approach, which
is experimentally validated in Section 4. Section 5 concludes and presents some
perspectives for further research.

2 Aggregated Surrogate Models

Without pretending to exhaustivity, and referring the reader to [8] for a com-
prehensive review of surrogate-based EMO approaches, this section focuses on
mono-surrogate EMO algorithms. As mentioned in the introduction, the first
ever mono-surrogate EMO algorithm proposed by Yu et al. aimed at charac-
terizing the region of the objective space visited so far [13]. The rationale for
this approach, based on One-Class SVM [11], is that the envelope of the visited
region excludes the Pareto front. In the general case however, the Pareto front
in the objective space does not tell much about the Pareto set in decision space
(except for specific problems where the Pareto front in the objective space cor-

in
ria

-0
05

22
65

3,
 v

er
si

on
 1

 - 
1 

O
ct

 2
01

0



responds to a set of rectangles in the decision space) and thus hardly allows one
to guide the EMO search.

The only mono-surrogate EMO approach in the decision space, to our best
knowledge, was referred to as Aggregate Surrogate Model [10]; it combines sev-
eral variants of the Support Vector Machine framework.

In their initial formulation [12], Support Vector Machines aim at a linear
model on the instance space X ⊂ IRd, solution of a quadratic optimization
problem:

Argmin{w,ξ} (
1

2
||w||2 + C

∑
k

ξk)

where the norm of the sought linear solution w ∈ IRd is minimized for the sake
of good generalization guarantees, and each ξk stands for the violation of one
learning constraint, to be minimized3

Typically, mapping a point xi ∈ IRd onto a desired value yi up to some
tolerance threshold ϵ (regression problem) amounts to four constraints:

< w, xi > −yi ≤ ϵ+ ξupi ξupi ≥ 0
< w, xi > −yi ≥ −ϵ− ξlowi ξlowi ≥ 0

Likewise, mapping a point xi onto a half space [a,∞) (one-class problem)
involves two constraints:

< w, xi > ≥ a− ξi ξi ≥ 0

The ASM approach presented in [10] hybridizes the above two types of con-
straints as follows. Let the training set be defined as E = {x1, . . . xℓ, xℓ+1, . . . xm}
where the first ℓ points belong to the current Pareto front and the following
points xℓ+1, . . . xm are dominated ones (possibly sub-sampling the current pop-
ulation to preserve the diversity in the objective or decision space). The ASM is
obtained from the following learning constraints:

– All Pareto points x1 . . . xℓ are mapped on some value ρ up to tolerance ϵ
(regression constraints);

– All dominated points are mapped onto (−∞, ρ+ ϵ[ (one-class constraints).

The intuition behind this formulation is that the true Pareto front would then
expectedly lie in the ‘half space, ]ρ+ ϵ,+∞), thus enabling to guide the explo-
ration of the search space.

The ASM problem finally reads:

Argmin{w,ξ} (
1

2
||w||2 + C

ℓ∑
i=1

(ξupi + ξlowi ) + C
m∑

i=ℓ+1

ξupi )

3 The extension of the SVM approach to non-linear search spaces relies on the so-
called kernel trick, implicitly mapping the instance space X onto a feature space
[12]. See section 3 and [12] for more details.
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subject to

< w, xi > ≤ ρ+ ϵ+ ξupi ξupi ≥ 0 i = 1 . . . ℓ
< w, xi > ≥ ρ− ϵ− ξlowi ξlowi ≥ 0 i = 1 . . . ℓ
< w, xi > ≤ ρ− ϵ+ ξupi ξupi ≥ 0 i = ℓ+ 1 . . .m

As mentioned in the introduction, the ASM problem is overconstrained as
all Pareto points must be mapped on a narrow interval ]ρ − ϵ, ρ + ϵ[. Another
issue is that it should make no difference whether the dominated points are
mapped onto (−∞, ρ − ϵ[ or ]ρ + ϵ,+∞). Still, the experimental validation on
problems ZDT1:3-6 [14] and their rotated variants IHR1:3-6 [5] shows that the
most effective variant depends on the underlying benchmark problem. Whereas
one can proceed by trying both variants and retaining the most effective one, the
approach is clearly unsatisfactory. Some attempts at a symmetrical formulation
of the ASM problem failed to address this issue.

3 Rank-based Aggregate Surrogate Model

This section gives an overview of the Rank-based Aggregate Surrogate Model
(RASM), meant to address the ASM limitations. After stating the RASM formu-
lation and sketching its resolution, it details its use within the EMO framework.

3.1 A surrogate modelling Pareto dominance

A new learning setting aimed at preference learning, a.k.a. learning to rank, has
been addressed within the SVM framework [7]. While preference learning can
be cast as a classification problem on X ×X (the class of (x, x′) is positive iff
x is to be preferred to x′), it offers better generalization guarantees to formalize
preference learning as an underconstrained regression problem, where the hy-
pothesis h mapping X onto the real-valued space IR is only required to satisfy
h(x) > h(x′) whenever x is preferred to x′.

Let E = {x1, . . . , xm} and let P denote the set of pairs (i, j) such that xi

is preferred to xj ; the original formulation of rank-based SVM, involving all
preference constraints, is as follows:

Argmin{w,ξ} (
1

2
||w||2 + C

∑
(i,j)inP

ξi,j) (1)

subject to
⟨w, xi⟩ − ⟨w, xj⟩ ≥ 1− ξi,j

ξi,j ≥ 0

}
∀(i, j) ∈ P (2)

where ξi,j stands for the slack variable associated to the violation of the pref-
erence constraint associated to (xi, xj) along the same lines as in Section 2.
However, for the sake of tractability, the resolution of Eq. (1-2) proceeds itera-
tively, considering a set Ωactive of active constraints which is initially empty. Eq.
(1)-(2) then only imply Ωactive instead of P. At each iteration, the most violated
constraint in P is added to Ωactive, and optimization proceeds [7].
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Fig. 1. Constraints involved in Rank-based Aggregated Surrogate Models. Left: The
current RASM. Right: Further extensions; see section 5.

Rank-SVM is adapted to the EMO framework as follows. Let E define the
current training set (population or archive), and consider the preference order
defined by non-dominated sorting. Several requirements on the rank-based sur-
rogate model are defined. First of all, the number of constraints should be linear
or sub-linear in the population size for the sake of tractability. Secondly, the
constraints should enforce an accurate model in terms of generality w.r.t. Pareto
dominance. Lastly, the model should support the diversity of the population
along the Pareto front. To comply with these requirements, only dominance
constraints have been considered so far (Fig. 1.left)4. Specifically, let primary
dominance constraints be associated to pairs (xi, xj) such that xj is the near-
est neighbor of xi conditionally to the fact that xi dominates xj (continuous
arrow, Fig. 1.left), and let secondary dominance constraints be associated
to pairs (xi, xj) such that xi belongs to the current Pareto front and xj belongs
to another front from non-dominated sorting (dotted arrow, Fig. 1.left).

Formally, the RASM is built by solving the dual problem associated to Eqs.(1-
2); due to space limitations the reader is referred to [10] for more details. Let
Ka,b denote the scalar product < Φ(xa), Φ(xb) > where Φ denotes the mapping
from the initial to the feature space (kernel trick), and let αa,b denote the La-
grange multiplier associated to the constraint relating xa and xb. Then it comes:

Dual form:

Argmax{α}
∑m

i,j=1 αij − 1
2

∑m
i,j,u,v=1 αijαuv (Kiu −Kiv −Kju +Kjv)

subject to 0 ≤ αij ≤ C
(3)

The Lagrangian (Eq. 3) is maximized iteratively by optimizing a single αij

multiplier (uniformly selected in Ωactive) in each iteration. Taking inspiration
from [7], RASM maintains a set Ωactive of active constraints which is initialized
to the set of primary dominance constraints. After the first 1000 × |Ωactive|
4 Other possibilities, illustrated in Fig. 1.right, will be discussed in section 5.
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iterations, every 10× |Ωactive| iterations the most violated secondary constraint
is thereafter added to Ωactive, until a given number of secondary constraints have
been added (typically 10% the number of primary constraints in the presented
experiments, see Section 4).

3.2 RASM-based EMO

The RASM is integrated within existing EMO algorithms along the same lines
as the ASM [10]. Two different EMO algorithms have been considered, respec-
tively NSGA-II and MO-CMA-ES. At each generation, the training set is built
from the current population and an archive of points that have been visited
by the algorithm (more in Section 4.1). The standard variation operators of
the underlying EMO are used to generate many offspring; these offspring are
thereafter filtered according to the RASM as follows. Formally, the quality of an
offspring z is estimated as RASM(z) − RASM(xz) where xz is the individual
from population nearest to z in decision space.

As could have been expected, greedily selecting the offspring with maximal
quality leads to premature convergence due to the approximation noise. The off-
spring are therefore ordered according to their quality estimate; a probabilistic
selection attached to the offspring indices is achieved, using a normal distribu-
tion with variance σ2

sel (Fig. 2.right). Granted that the number of offspring is
sufficiently large, parameter σ2

sel thus controls the selection pressure and the ex-
ploration vs exploitation trade-off. However we use at the moment a small value
σ2
sel = 0.001 for the normal distribution for the ranked point to be chosen (Fig.

2.right) to simulate the situation when new offspring always has the first rank,
and allow comparison with results from [10].

4 Experimental Validation

4.1 Experimental Setting

For the sake of a fair comparison between the presented RASM and the ASM
first presented in [10], the same experimental validation procedure is used: two
state-of-the-art EMO algorithms are considered as baselines, the (100+100)-S-
NSGA-II [3], NSGA-II with hypervolume indicator as second-sorting criterion,
and the 100× (1+ 1)-MO-CMA-ES, the multi-objective version of CMA-ES [5].
Both ASM and RASM are integrated within these algorithms.

Both ASM and RASM are based on the Radial Basis Functions kernel:
K(xi, xj) = e−∥xi−xj∥2/2σ2

, where the bandwidth σ is set as the average dis-
tance between all pairs of training points. The SVM penalization constant C is
set to 1000.

The training set E that is used at each generation to build the RASM model is
an archive that contains at most Narchive = 1000 points. The current population
is added to the archive at each generation. When this archive gets larger than
Narchive, it is pruned by removing the worst individuals after non-dominated
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Fig. 2. Left: Learning time of the proposed dominance-based RASM on ZDT1 function.
Right: Mapping the ranks of pre-children to a normal distribution.

sorting. Furthermore, in order to improve the diversity of the training set (many
points too close together can lead to poor surrogate model), an additional filter-
ing procedure is applied to the archive. The 2-objective space has been divided
into 100×100 boxes, and at most one point among the archived non-dominated
points of each box is retained in the archive.

As detailed in section 3, RASMmaintains the setΩactive of active constraints,
initialized to the set of primary dominance constraints. After an initial round
of 1000 |Ωactive| iterations, Ωactive is incrementally enriched every 10 |Ωactive|
iterations with the most violated constraint among the secondary dominance
constraints, until a total of 0.1 |Ωactive| secondary constraints have been added.

Performance Measures Many ways of measuring the performance of EMO
algorithms have been proposed. After [9], this study uses Pareto-compliant qual-
ity indicators, more particularly the widely used hypervolume indicator IH . Let
P be a µ-size approximation of Pareto front and let P ∗ be the approximate µ-
optimal distribution of optimal Pareto points [1]. The approximation error of the
Pareto front is defined by ∆H(P ∗, P ) = IH(P ∗) − IH(P ). All reported results
are averaged over 10 independent runs with at most 100,000 fitness evaluations.

4.2 Result Analysis

Some experiments are first conducted to estimate the complexity of the surro-
gate training on 30-dimensional ZDT1 problem. The empirical complexity with
respect to the number of training points is circa 2.2 (slope on Fig. 2-Left in log
scale). The fact that the complexity is super-quadratic is not surprising since
the SVM procedure relies on the Gram matrix K(xi, xj) for all points xi and xj

in the training set. The complexity however remains bounded as the size of the
training set (extracted from the archive) is less than 1,000, limiting de facto the
computational cost of the RASM learning.
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Table 1 shows the comparative results of all baseline, ASM and RASM-based
EMOs; in the latter cases, both p = 2 and p = 10 pre-offspring are considered.
These results first confirm that S-NSGA-II performs best on separable functions
ZDTx and MO-CMA-ES on non-separable functions IHRx5. They also show
that both RASM -NSGA and RASM -MO-CMA work nearly 1.5 times faster
with p = 2 and more than 2 times faster with p = 10 than the baseline versions
with regards to the ∆H value and the number of function evaluations.

ASM -NSGA and RASM -NSGA yield comparable performances. A more
thorough analysis shows that RASM -MO-CMA is usually faster at the beginning
(up to 10000-15000 function evaluations) though it might suffer from a prema-
ture convergence thereafter: experiments on concave IHR2 (and to some extent,
also on ZDT2) show that RASM -MO-CMA converges to the value ∆H = 0.1
nearly 1.5 times faster than with ASM model, and fails to go further. This failure
is blamed on the fact that the diversity of the population is hardly preserved;
a small part of the optimal Pareto front is sampled. Indeed, RASM learning
and the RASM-based offspring selection only aim at speeding up the conver-
gence; further work will be required to extend the approach and approximate
the µ-optimal distribution of nearly-optimal Pareto points.

5 Discussion and Perspectives

The main contribution of the present paper is to show how to train a single
surrogate model to reflect Pareto dominance in an EMO framework, using a
Learning to Rank framework. RASM, the resulting surrogate model, does not
require that all Pareto points are mapped onto the same value. It is thus both
more constrained in the dominated region, and less constrained on the Pareto
front, than ASM, previous work of the authors along similar lines [10].

Furthermore, this approach opens new and interesting perspectives for real
world multi-objective problems, enabling for instance to account for the user’s
preferences in a flexible way by simply adding user-defined constraints to the
order-based SVM formulation. Most importantly, the rank constraint formaliza-
tion enables to accommodate conflicting preferences: to the best of our knowl-
edge, this corresponds to a significant advance on the state of the art. This
property is likely to be important for simulated evolution, since the ability to
predict an environment is a prerequisite for intelligent behavior.

The experimental validation of the proposed approach shows that RASM-
EMO usually converges faster than ASM-EMO, with the caveat that it some-
times leads to premature convergence (e.g., on ZDT2 and IHR2 problems). This
premature convergence was blamed on the selection pressure and the adjustment
of parameter σ2

sel. A further work will explore the adaptation of the famed 1/5-th
rule to adjust σ2

sel, using the hypervolume indicator ∆H as measure of success.
The number of constraints that are added to the primary constraints could

also be made adaptive by considering the stability of the surrogate model. How-

5 MO-CMA-ES penalization parameter α is 1.0 for all problems in order to prevent
evolution from being biased toward exploring the boundaries of the decision space.
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ever, such potential improvement would require the computation of all ξij and
Fsvm values for all points of the archive at each generation, and would hence be
computationally costly.

Another shortcoming of Aggregate Surrogate Models is how to resist the loss
of diversity. It is emphasized that RASM might incorporate additional specific
constraints in each generation. Some possible constraints are described in Figure
1-Right: such non-dominance constraints involved points on the current Pareto
front, and include inequality constraints from the extremal points over their
neighbors (continuous arrows), and equality constraints for all neighbor pairs
on the Pareto front (continuous double arrow), as well as between extremal
points (dotted double arrows). Such equality constraints can be rewritten as two
symmetrical inequality constraints in order to preserve the particular form of
the formulation (Eq. 2). Along the same lines, constraints could be weighted,
e.g. the weight of constraints related to points with the largest hypervolume
contributions can be increased online. This is however a topic for further work.
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Table 1. Comparative results of two baseline EMOAs, namely S-NSGA-II and MO-
CMA-ES and their ASM and RASM variants. Median number of function evaluations
(out of 10 independent runs) to reach ∆Htarget values, normalized by Best: a value of
1 indicates the best result, a value X > 1 indicates that the corresponding algorithm
needed X times more evaluations than the best to reach the same precision.

∆Htarget 1 0.1 0.01 1e-3 1e-4 1 0.1 0.01 1e-3 1e-4

ZDT1 ZDT2
Best 1100 3000 5300 7800 38800 1400 4200 6600 8500 32700

S-NSGA-II 1.6 2 2 2.3 1.1 1.8 1.7 1.8 2.3 1.2
ASM-NSGA p=2 1.2 1.5 1.4 1.5 1.5 1.2 1.2 1.2 1.4 1
ASM-NSGA p=10 1 1 1 1 . 1 1 1 1 .
RASM -NSGA p=2 1.2 1.4 1.4 1.6 1 1.3 1.2 1.2 1.5 1
RASM -NSGA p=10 1 1.1 1.1 1.5 . 1.1 1 1 1.2 .
MO-CMA-ES 16.5 14.4 12.3 11.3 . 14.7 10.7 10 10.1 .
ASM-MO-CMA p=2 6.8 8.5 8.3 8 . 5.9 8.2 7.7 7.5 .
ASM-MO-CMA p=10 6.9 10.1 10.4 12.1 . 5 . . . .
RASM -MO-CMA p=2 5.1 7.7 7.6 7.4 . 5.2 . . . .
RASM -MO-CMA p=10 3.6 4.3 4.9 7.2 . 3.2 . . . .

ZDT3 ZDT6
Best 1300 3500 7100 10100 15200 2500 3600 5200 12300 .

S-NSGA-II 1.4 1.9 1.6 1.9 2.2 2.1 3.4 3.8 2.7 .
ASM-NSGA p=2 1.1 1.3 1.1 1.2 1.3 1.4 2.4 2.6 2 .
ASM-NSGA p=10 1 1 1 1 1 1.1 1.8 2.3 2.3 .
RASM -NSGA p=2 1.1 1.3 1.2 1.4 1.6 1.5 2.4 2.8 2.1 .
RASM -NSGA p=10 1 1.1 1.1 2 . 1.4 2 2.3 1.8 .
MO-CMA-ES 15.4 17.8 . . . 2.5 2.6 2.5 2 .
ASM-MO-CMA p=2 9 . . . . 1.1 1.2 1.1 1 .
ASM-MO-CMA p=10 8 25.6 . . . 1 1.1 1.3 2.5 .
RASM -MO-CMA p=2 8.5 . . . . 1.5 1.2 1.2 1 .
RASM -MO-CMA p=10 8.1 . . . . 1 1 1 1.6 .

IHR1 IHR2
Best 500 2000 35300 41200 50300 1700 7000 12900 52900 .

S-NSGA-II 1.6 1.5 . . . 1.1 3.2 6.2 . .
ASM-NSGA p=2 1.2 1.3 . . . 1 3.9 4.9 . .
ASM-NSGA p=10 1 1.5 . . . 1.4 6.4 4.6 . .
RASM -NSGA p=2 1.2 1.2 . . . 1.5 . . . .
RASM -NSGA p=10 1 1 . . . 1.2 5.1 4.8 . .
MO-CMA-ES 8.2 6.5 1.1 1.2 1.2 5.8 2.7 2.1 1 .
ASM-MO-CMA p=2 4.6 2.9 1 1 1 3.1 1.6 1.4 1.1 .
ASM-MO-CMA p=10 9.2 6.1 1.3 1.2 . 5.9 2.6 2.4 . .
RASM -MO-CMA p=2 2.6 2.3 2.4 2.1 . 2.2 1 1 . .
RASM -MO-CMA p=10 1.8 1.9 . . . . . . . .

IHR3 IHR6
Best 800 . . . . . 16500 . . . .

S-NSGA-II 1.5 . . . . 5.4 . . . .
ASM-NSGA p=2 1.1 . . . . 3.8 . . . .
ASM-NSGA p=10 1 . . . . . . . . .
RASM -NSGA p=2 1.3 . . . . 2.2 . . . .
RASM -NSGA p=10 1.1 . . . . 2.6 . . . .
MO-CMA-ES 9.6 . . . . 2 . . . .
ASM-MO-CMA p=2 7.2 . . . . 2 . . . .
ASM-MO-CMA p=10 12.1 . . . . . . . . .
RASM -MO-CMA p=2 3.3 . . . . 1 . . . .
RASM -MO-CMA p=10 2.6 . . . . 1 . . . .
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