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La tradition ne consiste pas à conserver des cendres,
mais à entretenir la flamme.

–Jean Jaurès–



Abstract

Image Processing problems are notoriously di�cult. To name a few of these di�culties, they
are usually ill-posed, involve a huge number of unknowns (from one to several per pixel!), and
images cannot be considered as the linear superposition of a few physical sources as they contain
many di�erent scales and non-linearities. However, if one considers instead of images as a whole
small blocks (or patches) inside the pictures, many of these hurdles vanish and problems become
much easier to solve, at the cost of increasing again the dimensionality of the data to process.

Following the seminal NL-means algorithm in 2005-2006, methods that consider only the vi-
sual correlation between patches and ignore their spatial relationship are called non-local methods.
While powerful, it is an arduous task to define non-local methods without using heuristic formu-
lations or complex mathematical frameworks. On the other hand, another powerful property has
brought global image processing algorithms one step further: it is the sparsity of images in well
chosen representation basis. However, this property is di�cult to embed naturally in non-local
methods, yielding algorithms that are usually ine�cient or circonvoluted.

In this thesis, we explore alternative approaches to non-locality, with the goals of i) developing
universal approaches that can handle local and non-local constraints and ii) leveraging the qualities
of both non-locality and sparsity. For the first point, we will see that embedding the patches of an
image into a graph-based framework can yield a simple algorithm that can switch from local to non-
local di�usion, which we will apply to the problem of large area image inpainting. For the second
point, we will first study a fast patch preselection process that is able to group patches according to
their visual content. This preselection operator will then serve as input to a social sparsity enforcing
operator that will create sparse groups of jointly sparse patches, thus exploiting all the redundancies
present in the data, in a simple mathematical framework.

Finally, we will study the problem of reconstructing plausible patches from a few binarized
measurements. We will show that this task can be achieved in the case of popular binarized image
keypoints descriptors, thus demonstrating a potential privacy issue in mobile visual recognition ap-
plications, but also opening a promising way to the design and the construction of a new generation
of smart cameras.

Keywords: Image processing, Inverse problems, Non-local algorithms, Social sparsity, Local bi-
nary descriptors, Privacy
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Résumé

Malgré la banalisation croissante des images numériques, leur traitement et leur exploitation
restent des problèmes compliqués. Ils impliquent généralement de une à quelques inconnues par
pixel (soit plusieurs millions avec les dispositifs actuels !) dégradés par l’application d’opéra-
teurs non-inversibles et non-linéaires. De plus, même une image simple contient plusieurs textures
d’échelles et de caractéristiques di�érentes. Toutefois, si l’on considère une image comme l’assem-
blage de petits blocs de pixels (ou patches), beaucoup de ces di�cultés disparaissent au prix d’une
augmentation de la dimensionnalité des données à manipuler.

Depuis l’introduction de l’algorithme des moyennes non-locales vers 2005-2006, les méthodes
qui exploitent les corrélations visuelles entre les patches d’une image et ignorent leurs relations
spatiales sont désignées sous le vocable de méthodes non-locales. Bien que conceptuellement puis-
santes, ces méthodes sont di�ciles à formuler sans recourir à des heuristiques ou à des équations
mathématiques alambiquées. Parallèlement, l’introduction d’un autre concept a permis aux mé-
thodes locales de réaliser un bond en performance : il s’agit de la représentation parcimonieuse des
images dans des bases bien choisies. Toutefois, ce concept est délicat à appliquer aux approches
non-locales, conduisant le plus souvent à des algorithmes numériquement peu e�caces.

Dans cette thèse, nous explorons des approches non-locales alternatives, afin de primo déve-
lopper des algorithmes universels capables d’embrasser simultanément contraintes locales et non-
locales et secundo allier les qualités des approches non-locales et parcimonieuses. Pour le premier
point, nous verrons que considérer les données à traiter comme les nœuds d’un graphe conduit à
un algorithme simple de di�usion locale et non-locale que nous appliquerons à la restauration de
larges zones dans une image. Pour le second point, nous étudierons une méthode rapide de tri des
patches par leur contenu visuel qui alimentera un processus de création de groupes parcimonieux
de patches parcimonieux. Ce double niveau de parcimonie, ou parcimonie sociale, nous permettra
d’exploiter toute l’information visuelle contenue dans les patches.

Enfin, nous étudierons le problème de la reconstruction de patches à partir de quelques mesures
binaires. Nous montrerons qu’il est possible, pour une certaine famille de descripteurs, de recréer
correctement le contenu visuel à leur origine. Si ce résultat révèle une faiblesse dans la protection
de la vie privée des utilisateurs d’applications mobiles de reconnaissance visuelle, il permet aussi
d’envisager la création d’une nouvelle génération de caméras réellement intelligentes.

Mots-clés : Traitement d’images, Problèmes inverses, Algorithmes non-locaux, Parcimonie so-
ciale, Descripteurs binaires locaux, Vie privée
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Introduction 1
1.1 Motivations

Blocks taken inside images, or patches, are at the very heart of many Image Processing ap-
plications. Examples include compression standards such as JPEG decompose images into small
blocks of pixels, movie compression algorithms add a step of block motion estimation to this,
and block matching is still a competitive approach to motion estimation and structure-from-motion
tasks. Patches are indeed handy because they allow us to assume local properties of images that
have little chance to be true when looking at the big picture: locally, colors are almost constant,
textures almost periodic, or 3D transforms become a�ne. Hence, considering only small image
parts does greatly help to simplify and justify the assumptions about the nature of the said data.

Furthermore, images have an important property: their content is highly redundant, and for
small enough blocks the chances are that similar patches can be found all over the entire image
or group of video frames to process and even inside other non-related images. This is of course
even stronger with movies, and we experience it almost daily since this redundancy is leveraged by
highly e�ective compression schemes such as those described in the H.264 standard and that allow
for the transmission of small sized video files over wireless networks such as 3G mobile phone
networks.

This phenomenon is emphasized by the current trend in the imaging sensor industry, which is
packing more and more pixels into the same light-sensitive area. For example, in 1999 the Nikon
Corporation released to market a digital camera, the Nikon D1, embedding 2.7 Millions of Pixels
(MP) on a sensor of 23.7-by-15.6 mm. Its 2012 distant sibling, the D3200 model, still has a sensor of
the exact same physical size but filled with 24.2 MP. This higher density of photosensitive elements
leads to a better sampling (in the Shannon-Nyquist sense) of the captured scenes, but many of the
additional pixels are actually used to capture slowly-varying quantities such as the color of the sky,
hence bringing ever more redundancy into the acquired data.

1



2 Chapter 1. Introduction

Besides redundancy, there is another important property of image patches that can be (and is
more and more often) exploited: it is their sparsity. In some well chosen basis, patches from natural
images will have sparse representations, i.e., few non-zero coe�cients are required to correctly
describe their content. This fact is now widely accepted for basis like the harmonic functions (DCT)
or wavelets and has been successfully applied to various problems such as image denoising [1],
MRI reconstruction or people detection [2]. In the case of Image Processing problems, the sparsity
property is usually enforced on the image as a whole, with the significant exception of compression.
If you think however of an image depicting a group of people, then intuitively the decomposition
in a DCT basis of small patches is going to be much more sparse (e.g. due to periodic patterns on
clothes or the bricks of a wall) than the coe�cients computed on the entire image (superposition of
several textures separated by sharp edges).

In this thesis, our main goal is to explore the use of patches as the principal primitives of inter-
est. By exploiting their redundancy and imposing di�erent forms of sparsity, we will revisit some
classical Image Processing problems with a patch-centric viewpoint in a mathematical framework
that allows leveraging of both local patch-wise and global constraints. Finally, we will take our re-
flection even further by considering a case where only some binarized measures, and not pixel data,
is available. We will demonstrate that, under certain conditions and with the proper regularized
inverse problem approach, it is actually feasible to reconstruct plausible image patches from these
few measurements, which not only has practical implications but should also help the community
in assessing how much information is actually contained inside these binary descriptors.

1.2 The rise of non-locality

Before we describe in more detail in chapter 2 the seminal non-local means (NL-means) algo-
rithm [3], we briefly introduce here the intuition behind non-local image processing. Patch-based
methods were introduced first for texture synthesis, because they allow to bypass the important
di�culty of accurately and realistically modeling image textures. They were then adapted to the
problem of filling-in image regions (also called inpainting) because they don’t require a prior correct
identification of the di�erent textures.

1.2.1 The problem of textures

Surprisingly, the intrinsic redundancy in the image data was ignored by a large part of the
researchers involved in Image Processing (except of course for the compression) for a long time
period. People focused instead on the development of global mathematical models of images that
became more and more complex over the years, possibly involving layers of hidden dependancies
or additional functional spaces. This complexity race comes from the fact that these works faced
a major di�culty, which is creating and applying a mathematical model for image textures. They
are indeed very hard to consider in theoretical models: empirically, a texture is made of elementary
elements (or texton) that are reproduced almost identically, following an almost regular pattern and
at approximately the same scale.

The task of correctly handling all these almost true properties inside mathematical equations
is made even harder by the implicit scale selection that the human brain applies, picking up or
discarding frequencies depending on the task at hand. If we have a look at the scene depicted in



1.2. The rise of non-locality 3

Fig. 1.1, we can identify three main phenomenons with di�erent spatial scales:
– the gravel on the grounds makes a first, high frequency, texture;
– the sake barrels make a coarse scale texture of almost identical patterns since the drawing

on the side of each barrel varies. Furthermore, the di�erent groups of barrels can also be
considered as a coarser scale texture themselves;

– the fence is also an intermediate texture with a privileged direction of oscillation.
It is indeed an arduous task to find a unique mathematical framework (be it a filter bank, an as-
sociation of functional spaces...) to consider all these image areas at once. Consequently, texture
synthesis algorithms using such approaches were hardly successful beyond stationary stochastic
textures with very few geometric structures.

Figure 1.1: In this image, a viewer can identify at least three textures of very di�erent scales: the gravels on
the ground, the fence and the sake barrels. It is however a typical real image, not an image that was specifically
created for this purpose. Hence, Image Processing algorithms need the ability to adapt themselves to such varied
image content.

1.2.2 Prior patch-based methods

This situation gradually changed around the year 2000 with the appearance of the so-called ex-
ample based algorithms, that demonstrated that a single image could contain enough information to
address the problems of super-resolution [4], texture synthesis [5] and even large region inpainting
[6]. We briefly describe here these early works because they can help in intuitively understanding
the power of non-locality.
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When applied to texture synthesis [5, 6], the main idea of example-based methods is to bypass
the di�cult mathematical modeling of textures by considering the reference image content as an
example source. Instead of learning or training a local appearance model, the appearance of the
reference is duplicated by literaly copy-and-paste operations: smaller blocks (examples) are cho-
sen inside the reference data, then copied and merged in the area where the new texture should
be synthesized under the constraint of avoiding the introduction of visual discrepancies. For the
super-resolution task [4] 1, Freeman’s approach consists in a first training step where the correspon-
dences between the blurred low resolution patches and their sharp high resolution counterparts are
learned. Then, a global optimization process is applied in order to produce a zoomed image that is
plausible. This global step is required because several high resolution patches can yield the same
low resolution patch. Hence, one needs a way to find the correct one among these, i.e., , the one
that will not introduce further discrepancies when considering the whole image at once.

From this short description, it is easy to understand why these method are coined « example
based » : instead of explicitly modeling a complex mathematical process (usually a texture or its
degradation through an imaging system), they rely on learning examples either from the input image
itself or from a prior training step. The complex problem then becomes simpler as expressed as a
problem over the examples.

Starting with NL-means, an algorithm is said to be non-local when the considered primitives
are patches, and examples of patches are searched in the entire input data, without considerations
of spatial relationship. The so called non-local algorithms will exploit the same ideas as example-
based methods: exploring the whole image in order to detect redundant patches (the examples) that
will be processed jointly, thus preserving the textures (because of their redundancy) while ignoring
the noise (that is itself too random to be captured as a redundancy).

Relations to Machine Learning. As a side note, please note that example-based algorithms usu-
ally do not belong to the Machine Learning world. While the input examples could be considered
at first glance as members of a training set, there is no patch or image model being trained here. An
objective function on the whole image is optimized instead, using only the input examples or some
smaller parts therein. In the works presented above, only the super-resolution algorithm of Freeman
relies on some Machine Learning background. It is however bounded to the low resolution - high
resolution correspondence process and to the global image formation smoothness. Hence, there is
no implicit or explicit texture content model training: everything is contained in the appearance of
the input examples.

1.3 Contributions of the thesis

In this thesis, we explore the possibilities o�ered by the patch-based approach for the processing
of digital images and movies. Our goal is to move the non-local algorithms from a heuristic to a
mathematical framework in order to allow their generalization to various image processing tasks.
Our main contributions are:

– a variational approach to non-local inpainting that can unify the previous di�usion based and
example based methods;

1. Or more accurately, the image zooming problem.
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– a fast and intuitive algorithm for similar patch queries, thus allowing real non-local algo-
rithms. We further apply this speed up method to a super-resolution problem where patch
queries happen in an image sequence;

– using the proposed patch retrieval algorithm as a clustering tool, we propose an e�cient
jointly sparse non-local denoising algorithm that avoids learning patch dictionaries before-
hand and that can be applied indi�erently to image and video data;

– considering then single patches, we demonstrate that plausible patches can be reconstructed
from a family of binary descriptors that are becoming more and more popular in Computer
Vision applications. This result can have many further implications, from the design of smart
cameras recording quantized descriptors to the development of better patch descriptors.

1.4 Thesis structure

This thesis is organized as follows: chapter 2 introduces non-locality as an example-based
approach by studying the seminal NL-means algorithm [3] and showing how example-based ap-
proaches can be embedded in a variational framework through the example of inpainting. Then,
chapter 3 presents the strategies that were proposed to reduce the computational burden of the naive
non-local algorithms. By identifying the desirable properties of such a strategy and the weaknesses
of the previous ones, we naturally arrive at the proposal of two algorithms for fast non-local patch
queries: the first one based on spectral hashing, which is the most e�cient and versatile, and the
second one which is best fitted for hardwares with limited capacity. In chapter 4, we start by intro-
ducing the notion of non-local sparsity through the example of the pioneering BM3D algorithm [7].
Then, we propose a simple jointly sparse non-local denoising algorithm that does not require any
additional dictionary training by interpreting the output of the spectral hashing as patch clusters.

Finally, chapter 5 moves away from non-local relationship to consider single patches instead.
We address the question of how much visual information some binarized patch descriptors contain
by reconstructing patches from them. We formulate this problem as an inverse problem in both the
binarized and non-binarized cases and propose iterative algorithms to solve them.

We conclude in chapter 6 with a summary of our contributions and proposals of future work
and investigations.
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In this chapter, we present the genuine Non-Local means (NL-means) algorithm. This algo-

rithm is important not only for the quality of its results but also because of its elegant and simple
formulation. Hence, it is a good entry point to non-local image processing and the intuitions behind
it.

While NL-means was presented as an exemplar-based method, we review several subsequent
variational interpretations that were proposed after its introduction. Finally, we build on one of
these variational frameworks to design a non-local image inpainting algorithm expressed as an
inverse problem.

2.1 Non-Local means

2.1.1 The intuition behind non-local denoising

Denoising as averaging. Let us start with a simple example. We suppose that we want to estimate
the value of some constant phenomenon (a pressure, a temperature. . . ). We have taken n indepen-
dent measures fxig

n
i=1 that are corrupted by some additive random noise. How can we obtain a good

estimate of the underlying value ? A simple answer can be found in any introductory Probability
textbook: since the noise is random, the empirical mean M(x) defined by

M(x) =
1
n

nX
i=1

xi (2.1)

is a good estimator of the true value, and the variance of the noisy measurement is reduced by a
factor

p
n. Directly translated to images by assuming that connected pixels were likely to represent

the same object, this simple method has led to local averaging schemes, that e�ectively remove

7



8 Chapter 2. Exemplar-based non-locality

some noise but at the cost of introducing some undesirable blur on textures and at the edges of
objects (Fig. 2.1).

Why is it that this simple denoising approach is so destructive regarding the image content ? It is
because the images do not meet previously made fundamental assumptions: all the pixels acquired
do not represent the same physical phenomenon (color, amount of light) in the observed scene.
Hence, blindly averaging pixels just because they are spatially close leads to mixing unrelated
colors or light intensities and eventually introduces blur.

Beyond averaging: complexity. In order to tackle this problem, one might be tempted to use
some anisotropic di�usion, (by opposition to the isotropic di�usion taking place in the case of
spatial averaging), that is, the di�usion process is not allowed to jump above object boundaries
anymore. A famous example of this approach is the Rudin-Osher-Fatemi functional [8] that aims
at minimizing the Total Variation (TV) of an image, i.e., the sum of the magnitude of its gradient.
However, this approach ignores fine textures, hence also yielding undesirable artifacts (Fig. 2.1).
Again one can tackle this new problem by designing algorithms that separate the image structure
and texture parts [9, 10], then the image structure, texture and noisy parts [11], in a more and more
complicated process.

This everlasting process comes from a simple fact: it is mathematically very di�cult to define
what a texture is. As pointed out in the introduction (see chapter 1), even putting in words a correct
and accurate statement of what a texture is is a challenging task. Hence, separating an image into its
structural, textural and noisy components is an arduous task, thus justifying the need for alternative
approaches.

Redundancy and simplicity. Let us suppose that we want to come back to a simple denoising-by-
averaging procedure. To avoid the introduction of unwanted blur, we need to avoid mixing together
pixels that are unrelated, that is pixels that belong to di�erent textures or have di�erent colors. Since
we want to avoid the chicken-and-egg problem of segmenting the image into objects and textures
first, we will build a simple pixel descriptor by considering not only the pixel value but also a small
square around it in order to capture the particular texture element it belongs to. This small square
is called a patch.

As we saw at the beginning of this section that n measures yield an improvement of
p

n in
the quality of the mean estimator, we need to gather as many examples of our texture element as
possible. One can remark that the image content is usually highly redundant (especially at the patch
level) and there may be several occurrences of an object, thus we explore the entire image in order
to maximize our chances of finding similar patches.

Finally, we need a criterion to tell us that the currently explored patch depicts the same texture
element as the one to denoise. A simple and classical visual similarity measure is to take the
squared error between two patches. This squared error can be divided by a decay parameter to take
into account di�erent levels of noise, and filtered by a decreasing exponential to obtain a similarity
score between 0 (completely unrelated patches) and 1 (perfectly identical patches). Then, given
these similarity weights, we can replace the uniform averaging of Eq. (2.1) by a weighted mean, or
more accurately by a center of mass in order to preserve the range of the values.

This is exactly the intuition behind the NL-means algorithm, that we are going to describe
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(a) Original image (b) Noisy image

(c) Isotropic di�usion (d) Anisotropic di�usion

Figure 2.1: Top row: original image and with Gaussian additive noise. Bottom row: denoising with isotropic
di�usion or heat flow (left) and with anisotropic di�usion (right). The isotropic di�usion has removed some noise, at
the cost of having a blurred output. The anisotropic di�usion (obtained by minimization of the Rudin-Osher-Fatemi
functional) is less destructive but creates flat areas that damage the textures and the shadings (on the skin and the
hair for example).

formally now.
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