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Abstract
Salamanders are capable of a variety of locomotor behaviors including swimming, underwater

stepping, and forward and backward land stepping. According to electromyographic and

kinematic recordings of the trunk, each of these behaviors is characterized by a pattern

of muscle activation and body curvature with specific values of cycle duration and trunk

intersegmental phase lag. A wider, continuous range of intersegmental phase lags is also

observed in recordings of isolated spinal cords. Previous models have typically been limited

to the generation of two stereotypical behaviors and transitions between them. In contrast,

the present work specifically addresses the flexibility of the spinal cord locomotor networks.

We investigate how a flexible central pattern generator (CPG) can be modulated by a higher

regulation mechanism to generate appropriate patterns of muscle activation. We then look at

the effect of the muscles properties and interactions with the environment on the kinematic

pattern, and how local proprioceptive feedback can shape the CPG activity. We propose a

CPG model based on abstract oscillators that reproduces the main features of recordings from

isolated spinal cords, and that scales well to the higher frequencies of locomotion in the intact

animal. The model reproduces the distribution of intersegmental phase lags, the correlation

between phase lags and cycle frequencies, and the spontaneous switches between slow and

fast rhythms. Using numerical simulations of a salamander robot with a simple muscle model

and proprioceptive sensory feedback, we show that the CPG model can reproduce the different

motor behaviors of the animal. We find that local proprioceptive feedback, together with the

mechanical properties of the muscles, can play an important role in reducing the variability

of intersegmental phase lags towards values appropriate for locomotion. To validate the

simulation results in the real world, we implement the CPG model as a completely distributed

controller on a salamander robot. We show that the animal behaviors can be reproduced using

only two simple drive signals and local sensory feedback. We find that local proprioceptive

sensory feedback can reduce or replace the need for different levels of drive. In particular,

good swimming gaits are achieved with the robot using only one level of drive by introducing

a strong proprioceptive feedback in the axial oscillators. The model suggests that the same

principles govern the shaping of the motor pattern by descending drive signals and local

sensory feedback.

Keywords : salamander, locomotion, central pattern generator, multifunctional circuits, sen-

sory feedback, coupled oscillators, robotics.
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Résumé
Les salamandres sont capable d’une variété de comportements locomoteurs, dont notam-

ment la nage, la marche aquatique, et la marche avant et arrière sur terre. Les enregistrements

myographiques et cinématiques montrent que chacun de ces comportements est caractérisé

par un déphasage intersegmental et une fréquence de cycle spécifiques. Une gamme de

déphasages, plus large et continue, est également observée dans les enregistrements de la

moelle épinière isolée. Les travaux de modélisation précédents se sont typiquement limités à

la génération de deux comportements stéréotypés et au transitions entre ces comportements.

La présente étude se démarque en s’intéressant spécifiquement à la flexibilité des réseaux

locomoteurs de la moelle épinière. Nous explorons les principes par lesquels un générateur

central de rythme ou CPG (central pattern generator) peut voir son activité modulée par des

commandes descendantes afin de générer les séquences d’activation musculaire appropriées

à la reproduction du comportement désiré. Nous étudions ensuite l’influence des propriétés

musculaires et des interactions avec l’environnement sur la cinématique et, à travers un retour

sensoriel proprioceptif local, sur le CPG. Nous proposons un modèle de CPG basé sur des os-

cillateurs abstraits, capable de reproduire les caractéristiques principales des enregistrements

effectués sur la moelle épinière isolée, ainsi que les rythmes nettement plus rapides observés

durant la locomotion. Le modèle reproduit la distribution des déphasages intersegmentaux, la

corrélation entre déphasage et fréquence de cycle, et les transitions spontanées entre rythmes

lents et rapides. À l’aide de simulations numériques d’un robot de salamandre doté d’un

modèle de muscle et de retour sensoriel proprioceptif, nous montrons que le modèle de CPG

peut reproduire les différents comportements moteurs observés chez l’animal. Nous trouvons

que le retour sensoriel local et les propriétés mécaniques des muscles peuvent jouer un rôle

important dans la réduction de la variabilité du déphasage intersegmental vers des valeurs

appropriées à la locomotion. Afin de valider les résultats obtenus en simulation, nous implé-

mentons le modèle de CPG sur un robot de salamandre sous forme de contrôleur distribué.

Nous montrons que les comportements de l’animal peuvent être reproduits à l’aide de seule-

ment deux signaux de commande descendants ainsi que du retour sensoriel. Nous trouvons

que le retour sensoriel proprioceptif local peut réduire la différence nécessaire entre les deux

signaux de contrôle, voire s’y substituer. En particulier, des nages efficaces sont obtenues à

l’aide d’un unique signal de commande suite à l’introduction d’un retour sensoriel proprio-

ceptif relativement fort sur les oscillateurs axiaux. Le modèle suggère que les mêmes principes

gouvernent la modulation de l’activité motrice par les signaux de commande descendants et

par le retour sensoriel local.
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Résumé

Mots-clés : salamandre, locomotion, générateur central de rythme, circuits multifonctionnels,

retour sensoriel, oscillateurs couplés, robotique.
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1 Introduction

Animal locomotion relies on the constant interactions between the neural centers, the mus-

cles, the passive tissues such as the bones, skin and tendons, and the environment. The

interactions occur at many levels. The nervous system activates the muscles, and its own

activity is modulated by the muscle response through sensing of the muscle force, length, and

contraction rate. The muscles exert a force on the passive body parts, and the interactions

between these parts and the environment will determine the contraction rate and future

length of the muscles, which will in turn affect the activity of the neural centers. Given these

complex interaction loops, locomotion cannot be fully understood by studying the individual

components in isolation. Numerical and physical models that integrate all components of

the control loops are essential to the formulation and validation of hypotheses regarding the

interactions between these components.

The same principles of interaction between the control centers, the actuators, the passive

parts and the environment apply to robotic locomotion. Mechanical designs and control

principles of robots are often inspired by biology [Pfeifer et al., 2007, Floreano and Mattiussi,

2008]. Reciprocally, biologically inspired robots can bring new insights in biology [Webb, 2002].

While the present work is mainly concerned with the understanding of animal locomotion

control, we hope that some of the principles outlined in our models can find a use in robotics.

The object of this thesis is to investigate the general principles that underlie the coordination

of the trunk and tail muscles and the limbs in the salamander. We seek to understand how

a single neural circuit in the spinal cord can generate a variety of behaviors, each of them

requiring a different kind of muscle coordination; how the body mechanics and interactions

with the environment affect the spinal circuits through sensory feedback; and how the brain

can control the activity of these circuits and select between different coordination patterns to

achieve the desired behavior. We mostly limit ourselves to the control of locomotion; we will

address to a small extent other motor behaviors by including struggling among the behaviors

we reproduce. 1

1. Here, struggling refers to a motor behavior where the animal tries to escape a hand holding it a the pelvic
girdle.
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Chapter 1. Introduction

The salamander is a particularly interesting subject for the study of locomotion control, for

several reasons. As one of the living animals closest to the early tetrapods—its morphology

has been relatively stable for the last 150 million years [Gao and Shubin, 2001]—and as an

amphibian, it constitutes a good opportunity to investigate the neural and morphological

changes that accompanied the transition of vertebrates from the sea to the land. Its nervous

system is relatively simple for a tetrapod [Nieuwenhuys et al., 1998], showing remarkable

similarities to that of the lamprey [Ryczko et al., 2010b], a primitive jaw-less fish that uses

an anguilliform swimming gait close to that of the salamander. These similarities allow us to

build on a lot of research done on the lamprey, which has one of the best documented and

most extensively modeled central nervous system among vertebrates. The simplicity of these

nervous systems makes them more tractable for modeling, and yet much of the knowledge

gained from these studies applies to all vertebrates [Grillner et al., 2003]. Finally, salamanders

have impressive regenerating capabilities. They are the only adult limbed vertebrates that are

known to recover completely from a lesion at any level of the spinal cord [Chevallier et al.,

2004, Davis et al., 1990, Piatt, 1955].

The general architecture of locomotion control in vertebrates is known [Grillner et al., 2008]:

the brain selects a motor program and activates the central pattern generator (CPG) in the

spinal cord, as described in the next section. The CPG coordinates the activation of the muscles

that enable locomotion. The resulting motion determines the sensory feedback signals that are

received by the CPG and modulate its activity. The brain also receives sensory inputs e.g. from

the vestibular system, affecting the commands it sends to the CPG. However, while the main

information pathways are known, as well as many details of the interactions between particular

components, a global understanding of the interaction between the CPG, the descending

commands from the brain and sensory feedback is still missing.

1.1 Central Pattern Generators

Neural networks capable of generating a rhythmic output signal without receiving a rhythmic

input are called central pattern generators (CPG). Such networks play an important role in the

generation of rhythmic movements in most animals [Grillner and Wallen, 1985], but there is

only indirect evidence for locomotor CPGs in humans—see Duysens and van de Cromment

[1998] and MacKay-Lyons [2002] for reviews. The part of our work concerned with the nervous

system consists essentially in a high level model of the salamander CPG.

CPGs are particularly well documented in the spinal cord of the lamprey and, to a smaller

extent, the salamander. For example, an isolated salamander spinal cord can be pharmaco-

logically stimulated by bath application of N-methyl-D-aspartate (NMDA), a molecule that

activates specific neural receptors. The global excitation of the spinal network by NMDA

leads to periodic bursts of activity in the spinal neurons, similar to the bursts of activity that

cause the contraction of muscles during locomotion in an intact animal [Delvolvé et al., 1999].

Moreover, the bursts observed in different parts of the isolated spinal cord are coordinated in
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1.2. Our Approach

a way that closely mirrors the activity of the network during locomotion: in each segment of

the spinal cord, 2 the activity alternates between the neural populations on the left and right

side of the cord. The coordination is also observed between segments, with waves of activity

propagating from one end of the spinal cord to the other, as observed in the intact animal

during swimming. These locomotor activity patterns in an unmoving preparation are referred

to as fictive locomotion.

Experiments have shown that the activity of the salamander CPG can be controlled by electrical

stimulation of a part of the brain called the mesencephalic locomotor region (MLR): The

frequency of a swimming gait can be increased or decreased by adjusting the strength of the

electrical stimulation. Below a certain stimulation threshold, a transition to a walking gait is

observed [Cabelguen et al., 2003].

There is a scarcity of experimental data regarding the role of proprioceptive feedback in

salamander locomotion. We are only aware of one study that identified stretch receptors in

the limb muscles [Bone et al., 1976], but their effect on locomotion was not investigated. In

contrast, there are many studies investigating the influence of intraspinal stretch-sensitive

neurons on the lamprey CPG (see section 5.3). These studies show that proprioceptive feedback

can have an accelerating or decelerating effect on the CPG rhythm.

These biological data motivated our investigation into the principles of interaction between

the CPG, descending signals from the brain and proprioceptive sensory feedback.

1.2 Our Approach

In Ijspeert et al. [2007], a salamander robot driven by a model of the salamander spinal cord

could reproduce swimming and walking gaits, and the corresponding gait transitions. The

model led to new hypotheses that were verified in biological experiments, e.g. that neural cen-

ters controlling the limbs tend to generate slower rhythms than the neural centers controlling

the axial muscles, at the same level of excitation.

In the present thesis, we build on this work to create a more flexible model that reproduces

the variety of behaviors documented in the animal: Recent recordings of the kinematics and

muscle activities during swimming, underwater stepping, forward land stepping, backward

land stepping and struggling show that the CPG produces specific intersegmental coordination

patterns in each case. These biological data are summarized in chapter 2. We incorporate

virtual muscles and sensory feedback in the model, in order to specifically address the question

of the interactions between the CPG, the descending commands from the brain, and sensory

feedback, and how they change from one motor behavior to another. We consider exclusively

local proprioceptive feedback. By local, we mean feedback that affects directly only the neural

2. The spinal cord can be divided in a number of segments, each segment corresponding to a vertebra. The
salamander species that we model, Pleurodeles waltl, has about 40 segments.
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centers close to the source of the signal. 3 While proprioceptive feedback refers to the sensing

of joint positions, joint velocities and muscle forces, in this work we limit ourselves to the

sensing of joint positions.

Our general approach is to first build a model of the isolated CPG that reproduces the main

observations made in the isolated spinal cord; then to interface this model with a musculo-

mechanical model of the salamander in simulation to reproduce the behaviors of the intact

animal; finally to validate these results by using the CPG and muscle models to control a sala-

mander robot. The validation of simulation results with a real physical model—the robot—is

important due to the difficulty of simulating accurately the interactions with the environment,

for example the friction effects and the hydrodynamic forces.

The compliance introduced by the virtual muscles increases the sensitivity of our model to

environmental interactions, compared with typical robotic systems that control directly the

position of the motors. These interactions determine the sensory feedback signals that are sent

to the CPG; their accuracy is therefore particularly important in our case, and the tests with an

actual robot particularly useful to validate the simulations. The robot platform, with its limi-

tations in the maximal motor torques and in the reliability of inter-module communication,

also serves to demonstrate the robustness of the control architecture.

Finally, we should note that while we address the integration of sensory feedback and de-

scending signals in the CPG of the salamander, these questions are of great importance for all

vertebrates. Sensory feedback has been shown to play a significant role in locomotion control

in many vertebrates, not only as a mechanism to respond to external perturbations, but also as

a contributor to the generation of the normal locomotor pattern [Rossignol et al., 2006]. Gait

transitions induced by MLR stimulation have also been observed in all classes of vertebrates

[Grillner et al., 1997].

1.3 Organization of the Thesis

We begin in chapter 2 with the presentation of recent biological data showing that the various

coordination patterns observed during fictive locomotion correspond to distinct behaviors in

the intact animal. The state of the art in the modeling of salamander locomotion is reviewed

in chapter 3, together with relevant work in lamprey modeling and robotics.

In chapter 4, we propose different approaches to the modeling of the salamander CPG, with

a focus on the flexibility of muscle activation patterns. One approach seeks to maximize

the flexibility of the network by redefining the role of the CPG: The activity pattern, rather

than being defined by the network parameters, would be part of the state of the dynamical

system. The CPG would not resist a change to the activity pattern triggered e.g. by higher

neural centers, but memorize the new pattern and strive to preserve its consistency across the

whole network. Another approach takes a more conservative route, extending the model of

3. Long-range indirect influences are not excluded.
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Ijspeert et al. [2007] to support a variety of activity patterns and to include a mechanism for

the independent control of cycle frequency and intersegmental coordination by higher neural

centers. This second approach is successful in reproducing important features from biological

recordings of the isolated salamander spinal cord. In particular, the model reproduces the

distribution of intersegmental coordination patterns and their correlation with the cycle

frequency.

In chapter 5, we show how the second approach was used to drive the virtual muscles actuating

a salamander robot. Sensory feedback was included in the form of axial proprioceptive feed-

back and—to a small extent—excitatory proprioceptive feedback from the limbs. Numerical

simulations were used to explore the muscle and feedback parameter space and verify that the

model could reproduce the different behaviors observed in the salamander. The simulation

results were validated by reproducing the salamander behaviors on a real robot.

The mechanisms by which sensory feedback interacts with the CPG are analyzed in detail in

chapter 6. We show that the principles governing the regulation of the CPG activity by higher

neural centers, detailed in chapter 4, also apply to the modulation of the CPG pattern by

local sensory feedback. We also find that local feedback can correct a variety of inappropriate

activity patterns in the CPG during swimming. This optimizing effect of sensory feedback

relies on increasing delays, from the head to the tail, between muscle activation and body

curvature. These increasing delays, which are a consequence of the mechanical properties of

muscles, and of the interactions with the environment, are also observed in the animal (see

section 3.1).

Finally, the robotic platform is described in detail in chapter 7. In particular, we present

the design of our distributed controller, in which the relevant part of the CPG model and

the muscle model are calculated locally in each module. The distributed architecture allows

us to distribute the cost of computation among the robot modules, and to minimize the

communications between the different parts of the robot. It also improves the reliability of the

muscle model, as it is not subject to inter-module transmission errors.
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2 Experimental Data on the Salamander

In this chapter, we present the experimental data that motivated our work and defined our

objectives. We begin with some definitions. Section 2.2 reviews the experimental data on the

behaviors in the intact animal. Section 2.3 describes the organization of the salamander CPG

and reviews data from experiments on the isolated spinal cord.

2.1 Some Definitions

We use mainly two measurements to characterize the CPG and kinematic patterns: the inter-

segmental phase lag and the cycle frequency. The intersegmental phase lag is a quantification

of the intersegmental coordination. It corresponds to the delay between events occurring in

consecutive spinal segments, expressed as a percentage of the cycle duration. For electromyo-

graphic (EMG) recordings, 1 we measure the delay between the bursts in two segments i and

j (numbered from head to tail) and divide the result by j − i . For kinematic recordings, we

measure the times of zero or maximal body curvature at different sites along the body and

divide the result by the approximate number of segments separating these sites.

Most of the data presented here and used for modeling concern the salamander mid-trunk,

which comprises the 6th to 12th segments of the spinal cord. One advantage of this approach

is that the intersegmental phase lag is relatively uniform in this region of the trunk.

Animal experiments are of two kinds: in vivo and in vitro. The former refers to an intact, living

animal. The latter refers for example to an isolated spinal cord preparation.

Head-to-tail and tail-to-head directions are referred to as rostrocaudal and caudorostral

respectively. Body parts or neural connections relating to the same side (left or right) of the

body are described as ipsilateral. Parts or connections relating to opposite sides are described

as contralateral.

1. Electromyographic recordings are obtained by implanting small electrodes in the muscles of the salamander
and recording their electrical activity.
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2.2 A Diversity of Motor Behaviors

The kinematics of salamander locomotion has been documented for several behaviors includ-

ing swimming, forward stepping and backward stepping, as reviewed by Karakasiliotis et al.

[2012]. Most studies have focused on the axial bending and hindlimb kinematics.

During swimming, salamanders fold their limbs backward and use an anguilliform gait like

the lamprey: axial undulations are such that a wave of body curvature propagates from the

head to the tail (rostrocaudal wave, figure 2.1 left), with approximately one full wave visible on

the body at any time [Frolich and Biewener, 1992, Delvolvé et al., 1997]. Backward swimming

has never been reported.

When stepping on land, salamanders typically use a walking trot: diagonal limbs move in

phase, with a duty factor 2 above 70% [Ashley-Ross, 1994, Ashley-Ross and Bechtel, 2004,

Ashley-Ross et al., 2009]. A walking gait with only one limb at a time in the swing phase has

also been reported [Edwards, 1976, Frolich and Biewener, 1992], but is less common. In the

remainder of this chapter, “walking” will always refer to the walking trot.

In this gait, the body axis displays an S-shaped standing wave with nodes 3 at the girdles: the

trunk joints between the girdles bend in unison and in anti-phase with respect to the tail joints

(figure 2.1 right). The timing of forelimb protraction coincides with ipsilateral stretching of

the trunk. This coordination of the limb and trunk motion maximizes the stride length [Roos,

1964, Daan and Belterman, 1968].

The kinematic patterns observed in the trunk are reflected in EMG recordings, where traveling

and standing waves of muscle activation are observed during swimming and forward stepping

respectively [Frolich and Biewener, 1992, Delvolvé et al., 1997]. The EMG patterns however

show additional complexity compared to the kinematics. During walking, double bursting

is observed in the neck and tail regions. During swimming, the rostrocaudal wave of muscle

activation shows discontinuities around the shoulder and pelvic girdles [Delvolvé et al., 1997].

This is in contrast to the lamprey where smooth traveling waves of muscle activation are

observed during swimming [Wallen and Williams, 1984, Williams et al., 1989].

During underwater stepping, salamanders use either a slight rostrocaudal traveling or a

standing wave of muscle activation and body curvature [Ashley-Ross et al., 2009, Deban and

Schilling, 2009]. In this case the duty factor is reduced to about 40%, and periods of suspension

with no ground contact are observed [Ashley-Ross et al., 2009].

Recently, systematic EMG and kinematic recordings were obtained of the salamander Pleu-

rodeles walt for five motor behaviors: swimming, underwater stepping, forward land stepping,

backward land stepping and struggling. These five behaviors are illustrated with image se-

quences in figure 2.2. The results of the EMG and kinematic recordings are summarized in

2. The percentage of time that a given limb spends touching the ground.
3. The nodes of a standing wave are the points where the oscillation amplitude is minimal.
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2.2. A Diversity of Motor Behaviors

Figure 2.1 – Kinematic recordings of a salamander (Pleurodeles waltlii), reconstructed from individual
video frames. Squares indicate the girdles. Dots at the limb extremities indicate estimated foot contacts.
Body configurations from successive frames are aligned according to the direction of overall forward
motion. Left: Swimming gait. Arrows indicate the points of minimal displace- ment from the overall
forward direction. A traveling wave of body curvature propagates down the body. Right: Walking gait.
The body displays a standing wave of body curvature with nodes close to the girdles. Adapted from
Ijspeert et al. [2007].
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figure 2.3. In addition to the behaviors already described, we see that backward stepping and

struggling are characterized by strong rostrocaudal and caudorostral traveling waves respec-

tively. They both show significantly lower cycle frequencies than the other motor behaviors.

We note that tail muscles are mostly silent during underwater stepping.

2.3 A Flexible Central Pattern Generator

As in other vertebrates, the coordinated activation of muscles in the salamander is generated

by neural networks called central pattern generators (CPG) located in the spinal cord (Wheatley

et al. [1994], Delvolvé et al. [1999], see also section 1.1). A CPG network can be decomposed

into several oscillatory units, where each unit corresponds to a group of neurons that exhibit

periodic bursting. In the salamander, these oscillatory units are distributed along the spinal

cord, as in the lamprey [Cohen and Wallen, 1980, Grillner et al., 1995]. Recent experiments on

the salamander suggest that an oscillatory unit might be as small as a hemisegment [Ryczko

et al., 2010a]. In the next section, we will show that the isolated salamander CPG can produce

many different patterns of coordination between oscillatory units that control trunk muscles.

This range of coordination patterns includes and exceeds the range of EMG patterns observed

in the intact animal.

The neural centers that control the limb movements are located between the first and fifth

segments (for the forelimbs) and between the fourteenth and eighteenth segments (for the

hindlimbs) of the spinal cord [Székely and Czéh, 1976, Wheatley et al., 1992, Cheng et al., 1998].

Each of these regions can be decomposed in left and right parts that control the corresponding

limb [Brändle and Székely, 1973, Székely and Czéh, 1976]. It has been suggested that the neural

center for a given forelimb can further be decomposed into independent flexor and extensor

centers [Cheng et al., 1998, 2002].

The salamander brainstem 4 includes a mesencephalic locomotor region (MLR). This region is

involved in locomotion control and in particular gait selection in many vertebrates [Ryczko and

Dubuc, 2013]. In the salamander, electrical stimulation of the MLR can control the transition

between swimming and stepping [Cabelguen et al., 2003]. A low intensity stimulus yields a

stepping gait. Increasing the current or frequency of the electrical stimulus causes an increase

of the stepping frequency. Above a certain stimulation threshold, the preparation switches to

a swimming gait. Further increases of the stimulus strength lead to faster swimming. These

results are consistent with the observations in the intact animal, where swimming frequencies

are always higher than walking frequencies for a particular individual [Delvolvé et al., 1997]

(see figure 2.3).

4. The lower part of the brain in vertebrates, adjoining the spinal cord.
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Figure 2.3 – Kinematic and electromyographic patterns for five motor behaviors in the salamander
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2.4 Analysis of the in vitro Recordings

We summarize here some important observations from recent in vitro experiments. We ob-

tained raw electrical recordings from the laboratory of Jean-Marie Cabelguen at INSERM

(Bordeaux, France) and proceeded to our own analysis, except for figure 2.5. The recordings

were obtained from the ventral roots of isolated spinal cords activated by bath-application of

NMDA, as described by Delvolvé et al. [1999].

The recording were processed automatically in Matlab. An example of this process is shown

in figure 2.4. The data were smoothed using a cubic spline fit (red line). The local minima

and maxima of the spline were used to identify the cycles. In each cycle, the start of the burst

was determined by considering a straight line from the local maximum to the local minimum

on the left side of the burst. The burst start was set at the point on the spline that lied the

furthest away from this line. The end of the burst was calculated in the same way, with the line

joining the local maximum to the local minimum on the right side of the burst. The time of

the burst was calculated from the centroid of the area enclosed by the burst (circular markers

in figure 2.4).

430 440 450 460 470
0

0.1

0.2

0.3

0.4

0.5

Time (s)

Figure 2.4 – Burst identification in recordings in vitro. The raw electrical data are shown in gray. The red
line shows the result of a cubic spline filter. The onset and offset of each burst are estimated by tracing
a line from the local maximum to the local minima on both sides (green dashed lines) and finding the
points on the spline curve that are furthest away from these lines (green open markers). The burst time
is calculated as the centroid (red filled marker) of the surface (light red) delimited by the spline curve
and the two open markers.
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2.4.1 Distribution of Phase Lags in vitro

There is a great variety of intersegmental phase lags observed in vitro. Before looking at

the experimental data, we propose some definitions to distinguish between several types of

variability.

Terminology of Phase Lag Variability

We distinguish the following types of phase lag variability in recordings in vitro:

– Between preparations: different recording sessions (whether on the same individual or

different ones) give different phase lags. We refer to this as phase lag diversity.

– Between ventral roots: in a given preparation, the phase lag can vary along the body. We

refer to this as phase lag inconsistencies. Conversely, the absence of variability along the

cord is referred to as the uniformity of phase lags.

– Between cycles: in a given preparation, for two given ventral roots, the phase lag can vary

from a cycle to another. We refer to this as cycle to cycle variability.

Finally, in modeling experiments, we are interested in the possibility of adjusting the phase lag

through simple control signals. We refer to this as phase lag flexibility.

We will now look at the different types of variability as exhibited by the experimental data.

Phase Lag Diversity

A great variability of phase lags has been observed between different preparations, with values

ranging from about -13% to 12%. This range was observed in the whole spinal cord, the isolated

mid-trunk and the isolated mid-trunk hemicord, as shown in figure 2.5.

The distribution of phase lags shows three peaks, one in positive lags, one in negative lags,

and one around zero. This variability was also observed in preparations which included the

brainstem, though only two peaks were reported [Delvolvé et al., 1999].

Phase Lag Inconsistencies

A more constrained variability is observed in individual recordings, when considering different

electrodes along the spinal cord. Unfortunately, data could be only be recorded simultaneously

from four ventral roots. This means that we have at most three phase lag values to compare for

a given preparation (when the four electrodes were recording from ipsilateral ventral roots),

and in many case we have only one or two values (as some electrodes were used to record

from limb nerves or contralateral roots).

Based on those recordings that include four ipsilateral ventral roots, we calculated the distri-

bution of phase lags for each root pair. Results are shown in figures 2.6 and 2.7.
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Figure 2.5 – Variability of intersegmental phase lags in vitro. Each dot represents the average phase lag
for one preparation. Top: whole spinal cord. Center: isolated mid-trunk. Bottom: isolated mid-trunk
hemicord. From (Ryczko et al prepa).

Some preparations (e.g. the top right one in figure 2.6) show a significant difference between

recording sites. In most cases (e.g. top left in figure 2.6 and top in figure 2.7), recording sites

show small differences, consistent with a slight increase or decrease of phase lag along the

body. Large differences (> 5%) are rare, and phase lags are normally the same sign for different

recording positions (see the upper-left preparation for an exception). After calculating the

median phase lag for each pair of ventral roots, we plotted the standard deviation of the

medians in figure 2.8. The variability of the median appears to be rather low, with most values

below 3%.
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Preparation 1 Preparation 2

Preparation 3 Preparation 4

Figure 2.6 – Histograms of intersegmental phase lags for three pairs of ventral roots, in four in vitro
preparations (first set). Each histogram shows the distribution of cycle to cycle phase lags between two
ventral roots, during one recording session.
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Preparation 5 Preparation 6

Preparation 7 Preparation 8

Figure 2.7 – Histograms of intersegmental phase lags for three pairs of ventral roots, in four in vitro
preparations (second set). Each histogram shows the distribution of cycle to cycle phase lags between
two ventral roots, during one recording session.

17



Chapter 2. Experimental Data on the Salamander

−20−1001020
0

5

10

15

20

Phase lag [%]

S
ta

nd
ar

d 
de

vi
at

io
n 

[%
]

Figure 2.8 – Standard deviation of intersegmental phase lags between pairs of ventral roots, using
recordings with four ipsilateral ventral roots.

Cycle to Cycle Variability

During one recording session, the phase lags show some noise in the form of cycle to cycle

variability, but are generally stable: there is no continuous drift. To illustrate this, we show the

cycle per cycle phase lags of our two longest recordings in figure 2.9.

There is no drift in phase lag values. As we will see in chapter 4, this observation will be

important in deciding between two types of CPG models. There is however a variable amount

of noise. To quantify this noise and its variation between recordings, we plotted the standard

deviations of the phase lag in figure 2.10. We merged data from all recordings in our possession;

one point is plotted for each pair of ventral roots between which a phase lag was calculated. We

deemed important to calculate standard deviations on individual pairs of ventral roots, rather

than lumping together all phase lags from the same preparation: As presented in the previous

section, phase lags from the same preparation can show systematic differences depending

on the electrode position, an effect we wanted to exclude from the analysis of cycle to cycle

variations.

Cycle to cycle standard deviations are rather high (between 0% and 15%), compared to the

standard deviations along the spinal cord (below 3%, see section 2.4.1).

Note that high standard deviations don’t necessarily amount to high noise levels: there can be

consistent phase lag changes (i.e. the switches described in section 2.4.2) that would lead to

high standard deviations. Another factor is illustrated in figure 2.9 (left): in that case, recordings

from ventral roots 6 and 10 gave a median intersegmental phase lag of 10.3%. This means

an effective phase lag (between the electrodes) of 4×10.3 = 41.2%. Due to fluctuations, the
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2.4. Analysis of the in vitro Recordings

cycle to cycle value might get slightly over 50%. In that case, it would be detected as a negative

phase lag (e.g. a lag of 52% would be detected as -48%), leading to very big standard deviations.

This explains the points at the bottom of figure 2.9 (left).

To exclude these effects, we tried restricting the analysis to data with four ipsilateral ventral

roots, where switches happen to be rare, and electrodes are close enough to avoid confusions

between positive and negative phase lags. We found the same range of standard deviations

(data not shown), suggesting that cycle to cycle variations are indeed greater than variations

along the spinal cord.
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Figure 2.9 – Intersegmental phase lag time series for two long recordings, showing noise but no drift.
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Figure 2.10 – Standard deviation of intersegmental phase lag timeseries. Phase lags calculated from
each pair of ventral roots were treated independently (see text for details).
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2.4.2 Rhythm Switches

An important feature of biological data is that they show spontaneous switches between

different phase lag values. Most of the switches share the following characteristics:

– Sign switch: phase lags switch between positive and negative values.

– Correlated period: cycles with positive lags are significantly faster than cycles with negative

lag.

– Memory: when switching back, the spinal network recovers the original cycle period and

intersegmental phase lag.

We illustrate these points with one nice example in figure 2.11.

Figure 2.11 – Activity pattern during a back-and-forth switch between negative and positive phase lags.
The rhythm accelerates as the lag becomes positive. The network then switches back to the original lag
and period.

The cycle to cycle periods, phase lags and duty cycles 5 are shown in figures 2.12, 2.13 and 2.14

respectively. We see a clear correlation between phase lag and period, and the recovery of

original values after the back-switch. Interestingly, the duty cycle is virtually not affected by

the switch.

5. The width of the burst as a percentage of the cycle duration.
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Figure 2.12 – Cycle to cycle periods during the phase lag switch of figure 2.11. Following the second
switch, the rhythm returns to its original cycle period.

Figure 2.13 – Intersegmental phase lags during the phase lag switch of figure 2.11. Following the second
switch, the rhythm returns to its original phase lag.
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Figure 2.14 – Duty cycles during the phase lag switch of figure 2.11. The duty cycle is almost not affected
by the switch.
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2.4.3 Phase Lag and Frequency

We mentioned in the previous section that there is a strong correlation between phase lag

and frequency during spontaneous switches: negative lags are associated with slow rhythms.

But is this effect limited to slow and fast rhythms in a given preparation, or is there a more

general correlation between phage lag and frequency? We analyzed this effect in a more

general context using the recordings in our possession that include four ipsilateral ventral

roots. These recordings were chosen primarily because they allow us to calculate the average

phase lag based on three values covering most of the mid-trunk. They also have the advantage

of showing few lag switches. The median period and phase lag was calculated for each ventral

root. Averages and standard deviations were calculated by pooling the medians of the different

ventral roots.

Results are shown in figure 2.15 (top). It appears that in these data, the period is a monotonous

function of the phase lag. The trend is very clear, but there are few data points (eight). We show

the same plot using all data in our possession (i.e. including preparations with less than four

ipsilateral recordings) in the bottom panel. The trend is much less clear.

25



Chapter 2. Experimental Data on the Salamander

−20−1001020
0

5

10

15

20

Phase lag [%]

P
er

io
d 

[s
]

Figure 2.15 – Period as a function of intersegmental phase lag. Top: Using recordings with four ipsilateral
ventral roots. Bottom: Using all available recordings. In both plots, error bars show the variability
between ventral roots.
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3 State of the Art

We give here an overview of past studies that are relevant to the modeling of gait generation

and gait transitions in salamanders. We begin with a summary of the models of the lamprey

swimming circuitry and body mechanics, which were often used as a source of inspiration for

salamander models. We then review previous research on CPG and mechanical models of the

salamander. In the last section, we briefly mention related work from robotics.

3.1 Lamprey Models

Due in part to its simplicity, the lamprey spinal circuitry has been studied extensively [Buchanan

and Grillner, 1987, Grillner et al., 1988, 1991, 1995], giving rise to numerous models of the swim-

ming CPG. These models can be classified according to their level of abstraction. At the lowest

level, biophysical models use relatively realistic (e.g. multi-compartment Hodgkin-Huxley)

neuron models. Such models can be used to validate our understanding of the physiological

processes involved in rhythm generation [Ekeberg et al., 1991, Wallén et al., 1992, Huss et al.,

2007, Kozlov et al., 2009]. At an intermediate level, connectionist models use less realistic neu-

ron models such as leaky integrators, abstracting the complexity of internal neuron dynamics

to focus on the interneuronal connectivity and how it can account in itself for the generation

of different patterns of oscillations [Buchanan, 1992, Williams, 1992, Ekeberg, 1993]. At the

highest, most abstract level, the CPG is modeled as a chain of mathematical oscillators, where

each oscillator typically represents a whole population of biological neurons grouped in an

oscillatory unit. These models are used to investigate very general properties of the network

without relying on the details of the biological implementation. Such network properties

include the possible dominance of rostrocaudal coupling over caudorostral coupling (or vice

versa), and the kind of network structure capable of producing a constant intersegmental

phase lag independently of the frequency of oscillations [Kopell, 1995, Williams and Sigvardt,

1995]. These models can also be used to investigate the interactions between the CPG, sensory

feedback and descending signals from the brain.

The work of Ekeberg [1993] is notable for combining the neural and musculoskeletal aspects
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of locomotion in simulations of the swimming lamprey. Local proprioceptive feedback from

axial stretch receptors was present in this study but its effect was not specifically investigated.

The role of sensory feedback was addressed in a later study [Ekeberg et al., 1995]. It was found

that feedback from the stretch receptors had no significant effect on a normal swimming

pattern, but that it had a stiffening effect on the body that could be useful in overcoming

perturbations such as when swimming through a region of water with current flowing in

the opposite direction. In this case, sensory feedback would help prevent bending of the

body, which in absence of feedback causes the animal to turn away from the current barrier.

This model of the neural circuits, muscles and stretch receptors was an important source of

inspiration for subsequent modeling work on the salamander, including ours.

An area that has been the subject of a lot of research is the relationship between muscle prop-

erties, the hydrodynamic forces and the timing between muscle activation and body curvature

in fishes. It appears that in most species, the wave of muscle activation travels faster from the

head to the tail than the wave of body contraction [Wardle et al., 1995]. This conclusion has

been cast into doubt for relying on the assumption that curvature is proportional to deflection

from the center line [Katz and Shadwick, 1998], but there is ample evidence in various species,

and based on different techniques, that the effect is real [Altringham and Ellerby, 1999].

The phenomenon is documented in the lamprey [Williams et al., 1989] and the salamander

[Blight, 1977, Frolich and Biewener, 1992, D’Août et al., 1996]: the delay between muscle

activity and body bending gets larger towards the tail. This change of timing along the body

has been assimilated to a change of muscle function [Altringham et al., 1993]. The muscle

generates positive work when it is activated during the contraction phase, as is the case in the

rostral part of the body. It would generate negative work when activated during the stretching

phase, which can occur in the caudal part. In that case, the resistance of muscles to stretch

helps in transmitting caudally the power generated in the trunk. Altringham et al. [1993] also

propose that the larger EMG-kinematic lag in the caudal part optimizes force generation in

those muscles.

The observation of an increasing EMG-kinematic lag in many species has triggered a lot of

modeling effort to understand its cause and purpose, if any. In a recent study, McMillen et al.

[2008] have shown the equivalence of a joint-link model of the lamprey body with passive

stiffness and damping and an active torque generated by a muscle model, to a discretized

viscoelastic rod with preferred curvature determined by the output of the muscle model. Using

the discretized rod, a Hill-type muscle model [McMahon, 1984], and the Taylor model for

hydrodynamics [Taylor, 1952], they find that the speed difference between EMG an mechanical

waves requires body taper 1 and passive viscoelasticity.

In related work, Tytell et al. [2010] use a 2D Navier-Stokes model for the hydrodynamics,

and a simple muscle model based on linear springs that do not resist compression, with an

active force term taken directly from the muscle activation dynamics (without velocity or

1. I.e. that the body gets thinner towards the tail. But the important point is that the muscles get weaker.
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length dependence). No damping is included besides that from water. The muscle model is

attached to a mechanical structure that includes normal springs along the notochord 2 as

well as perpendicularly to the notochord to connect to the muscles. They find that the speed

difference between EMG and mechanical waves during swimming appears when muscles

generate low forces relatively to fluid forces. The article highlights the importance of having

a good hydrodynamic model. The results obtained with the 2D Navier-Stokes model are in

agreement with Lighthill’s theory [Lighthill, 1971] and suggest that Taylor’s model gives wrong

phase relationships between muscle activation and body contraction. However the authors

warn that the very good agreement with Lighthill’s theory might be an artifact of using a two-

dimensional Navier-Stokes model, where vortices can only be shed at the tail tip and not along

the dorsal and ventral surfaces. We address the question of the EMG-kinematic lag during

salamander swimming in chapter 5. By validating our simulation results with swimming

experiments using a real robot, we show that our results do not depend on hydrodynamic

simulation artifacts.

3.2 Salamander Models

We know of six modeling studies concerning the neural circuits involved in the generation of

various gaits of the salamander, and one involved in the neurophysiological details of rhythm

generation.

In Ermentrout and Kopell [1994], a chain of phase oscillators was used as an abstract model of

a vertebrate’s CPG. The ability of the chain to produce stable traveling waves and S-shaped

standing waves was investigated analytically and numerically. Nearest-neighbor couplings,

designed to induce synchrony, were supplemented by two kinds of long-range couplings:

inward coupling from the extremities to the middle of the chain, and outward coupling from

the middle to the extremities. Both inward and outward couplings were designed to induce

antiphase between the parts that they connected. Their strengths determined the stable

patterns of oscillations, which included synchrony, traveling waves, S-shaped standing waves,

and anti-waves (two waves traveling in opposite directions in different parts of the chord).

The ranges of strengths allowing for stable traveling waves and stable standing waves did

not overlap. In other words, traveling and standing waves could be generated with the same

network connectivity, but with different coupling strengths. The other models presented next

explored other, more realistic possibilities to explain the transitions between traveling and

standing waves, in particular without the need for the specific long-range couplings and

without the need for changing coupling strengths between modes of locomotion.

In Ijspeert [2001], a connectionist model of the salamander CPG was developed based on

leaky integrator neurons. The network was inspired by a model of the lamprey CPG [Ekeberg,

1993], with the major addition of limb centers, represented by two additional segments: one

2. Although classified as a vertebrate, the lamprey does not develop vertebrae. It retains instead the embryonic
notochord, a flexible rod-shaped body, into adulthood.
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Figure 3.1 – Models of the salamander spinal circuitry for locomotion. A Segmental network in Bem et al.
[2003]. Four populations of leaky integrator neurons are present in the left and right side of the spinal cord:
motoneurons (M), excitatory interneurons (E), inhibitory interneurons projecting ipsilaterally (L) and inhibitory
interneurons projecting contralaterally (C). Stretch-sensitive edge cells (gray triangles) send excitatory connections
to ipsilateral populations and inhibitory connections to contralateral populations. The E and L populations have
axons extending ipsilaterally to 2-5 and 5 segments respectively, in both directions. The C population has axons
extending to 1 segment rostrally and 10 segments caudally; these extents were reversed in the rostral part of the
spinal cord to reproduce EMG recordings of the walking trot. B Segmental network in Harischandra et al. [2011],
also based on leaky integrator neurons. Both E and C populations have axons extending longer in the caudal
direction. C Segmental network in Bicanski et al. [2011]. The E populations also project to the contralateral E
population. D The model in Bicanski et al. [2011] uses Hodgkin-Huxley neurons made of three compartments: the
axon’s initial segment (IS), the soma that receives NMDA and glycynergic synapses, and the dendrites that receive
AMPA synapses. E A CPG network with global coupling between limb and axial oscillators, as used in Ijspeert
et al. [2005] and Ijspeert et al. [2007]. Axial and limb oscillators are represented in white and gray respectively.
The Ijspeert et al. [2005] model has 40 segments while Ijspeert et al. [2007] has 8. F A CPG network with global
ipsilateral limb->body coupling and local contralateral body->limb coupling, as used in Harischandra et al. [2011].
Each limb is modelled with separate oscillators for the abductor (Ab), adductor (Ad), protractor (Pro), retractor
(Ret), knee extensor (KE) and knee flexor (KF) muscles. The model includes 40 segments but only 9 are shown. G A
CPG network with local coupling between limb and axial oscillators, as used in Ijspeert et al. [2005]. This model
includes 40 segments but only 9 are shown.
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for the forelimbs and one for the hindlimbs. The segmental network was modeled using six

inhibitory interneurons. The range of intersegmental connections was limited to five segments.

Forelimbs and hindlimbs projected to all the trunk and tail segments, respectively. A genetic

algorithm was used to adjust the synaptic weights of the intrasegmental, intersegmental,

and limb-body connections. Standing waves were generated by the network when a tonic

excitatory drive was applied to both body and limb oscillators. Traveling waves were released

by suppressing the drive to the limb segments. 3 This work therefore served as a proof of

concept that a lamprey-like network could be extended with limb CPGs to produce both

swimming and walking gaits.

Another study by Bem et al. [2003] focused on reproducing the complexity of the salamander

EMG patterns (described in section 2.2) in a model of the lamprey CPG [Ekeberg, 1993]. The

connectivity of the model is shown in figure 3.1A. The generation of the walking pattern,

with double-bursting in the neck and tail regions, required the reversal of the intersegmental

inhibitory connections in the rostral part of the network, as well as an increase of the tonic

drive at the girdles and a phasic drive outside the girdle regions. Generation of the swimming

pattern also required drive adjustments. Because of its modified connectivity, the rostral

part of the network generated a caudorostral wave under uniform tonic excitation. This was

compensated for by increasing the tonic drive in the rostral part of the network. Additional

increases in regions slightly caudal to the girdles were able to reproduce the discontinuities

in the salamander swimming pattern. The same effect could be achieved by suppressing the

sensory feedback in the girdle regions.

In Ijspeert et al. [2005], a neuromechanical simulation was used to explore more systematically

different potential body-limb CPGs configurations underlying salamander locomotion. In

particular, local and global connectivity patterns between the limb and body CPGs were

compared. In configurations with local connectivity, the limb oscillators are connected only to

the nearest segments of the body (figure 3.1F). With the global connectivity, forelimb oscillators

are connected to all trunk oscillators, and hindlimb oscillators to all tail oscillators (figure 3.1D).

Inhibitory connections were used between limb oscillators, and between the left and right

oscillator of the same segment, in order to induce antiphase behavior. Excitatory connections

were used between limb and body oscillators to induce in-phase behavior. Ascending and

descending connections were both excitatory and inhibitory, which allowed for arbitrary

phase relationships. The simulation results showed that, in the absence of sensory feedback,

only the configurations with global coupling can produce standing waves as observed during

walking. Local coupling configurations always resulted in traveling waves in the CPG output.

However, using these traveling waves as the control signal for the mechanical simulation on

the ground still resulted in quasi-standing waves of body undulation. This was attributed to

the environment interaction forces on the ground, which differ from interaction forces in

water. The addition of sensory feedback then entrained the CPG itself to standing wave-like

patterns of oscillations. The discontinuities observed in the rostrocaudal phase lags during

3. An inhibitory drive to the limb segments was actually used to prevent slow oscillation in the limb networks
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swimming could also be reproduced by making the intersegmental coupling stronger in the

rostral direction and setting the girdle segments to slightly lower intrinsic frequencies.

In a subsequent study [Ijspeert et al., 2007], the mechanisms of automatic transitions between

swimming and walking were investigated. A network of amplitude-controlled phase oscillators

was used, with global connections from limb to body oscillators, and bidirectional connections

between nondiagonal limbs (figure 3.1D). This work sought to reproduce the MLR stimulation

experiments described in section 2.3, where a switch from low-frequency stepping to high-

frequency swimming could be induced by increasing the intensity of the electrical stimulation

in the MLR. This was achieved through the introduction of two hypotheses. First, that limb

oscillators saturate at high frequencies: They stop oscillating at high levels of stimulation.

Second, that for the same level of stimulation, limb oscillators have lower intrinsic frequencies

than the body oscillators. Numerical simulations showed that the first hypothesis provides

a mechanism for the automatic transition between walking and swimming similar to that

observed in MLR stimulation experiments. It also explains why walking frequencies are always

lower than swimming frequencies, as shown by kinematic recordings [Frolich and Biewener,

1992]. The second hypothesis explains the rapid increase of frequencies observed when the

salamander switches from walking to swimming: During walking, the lower frequency of the

limb oscillators slows down the rhythm of the body CPG. When the limb oscillators saturate,

the body oscillators suddenly become free to oscillate at their higher intrinsic frequency. This

mechanism also explains a gap observed between the walking and swimming frequencies.

The second hypothesis was verified in vitro: The mid-trunk and limb segments were isolated

by transections of the spinal cord, and an identical tonic drive applied pharmacologically

to all parts resulted in slower rhythms in the limb segments than in the mid-trunk (see

supplementary material in Ijspeert et al. [2007]). In the present thesis, we seeked to extend

this model to account for the diversity of motor patterns observed in vitro and in vivo, while

retaining the achievements of this study.

This CPG model was tested on Salamandra robotica, an amphibious salamander robot capable

of swimming and walking and the precursor to the robot used in this thesis. The robot was

used to demonstrate that the CPG model can generate forward locomotion with variable speed

and heading, as this requires a mechanical body and cannot be studied at the neuronal level

alone. The robot also allowed for the quantitative comparison of the gaits generated by the

model to the gaits of the animal.

Recently, Harischandra et al. [2010] developed a 3D musculo-mechanical model of the sala-

mander Pleurodeles waltl, made of 15 axial segments and three degrees of freedom per leg. The

muscle model is a small variation of the linear spring-damper model with variable stiffness

used by Ekeberg [1993], that we use in the present work. The model was used to reproduce a

walking gait with traveling wave in the trunk, and a walking trot gait with standing wave in the

trunk, using predefined muscle activation patterns. The relative role of the trunk and legs in

turning was explored. It was found that side-stepping with the legs without trunk-bending

was the most efficient for turning in the walking gait, while a combination of side-stepping
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and trunk-bending was more efficient during trotting. Trunk bending without side stepping

always performed the worst. In a later study [Harischandra et al., 2011], the same model was

driven with a spiking neuron-based CPG derived and simplified from the lamprey model of

Kozlov et al. [2009]. The axial connectivity of the model is represented in 3.1B. The segmental

model is also used for each of the three flexor-extensor or retractor-protractor pairs in each

limb, with the E neuron on the flexor or retractor side receiving additional tonic excitation.

The connectivity between limb networks and between limb and axial networks is represented

in 3.1F. The CPG model coupled to the musculo-mechanical model was used to investigate

the role of sensory feedback in generating walking, trotting, and the transitions between these

gaits. Axial proproceptive feedback from putative stretch-sensitive edge cells in the spinal cord

was included, as well as excitatory feedback from limb stretch receptors most active at the

end of the stance phase. It was found that the trotting gait could easily be generated centrally

without sensory feedback, using the global coupling scheme from limb to axial networks as

in Ijspeert et al. [2007]. On the other hand, the walking trot required a weakening of these

connections to allow for a traveling wave in the trunk. It also required the addition of excitatory

feedback to the limb networks from limb and axial stretch receptors, in order for the retractor

muscles to display the 75% duty cycle appropriate for walking. The study thus suggests that

sensory feedback could play a significant role in in the walk-trot gait transition.

Finally, one recent study investigated the neurophysiological mechanisms of rhythm gen-

eration specific to the salamander [Bicanski et al., 2011]. This is the most detailed model

of the salamander locomotor circuits to date, but it is restricted to the simulation of one

segment. The model is built on Hodgkin-Huxley neurons each comprising 3 compartments

(figure 3.1D) with up to 7 ionic channels. It is based on a lamprey model [Wallén et al., 1992] but

includes some unique features, such as the excitatory connections between the left and right

hemisegments (figure 3.1C). The model reproduces rhythmic bursting by simulated NMDA ex-

citation, as well as the behavior of in vitro preparations subject to a variety of pharmacological

conditions.

3.3 Related Work in Robotics

For completeness, we briefly present here other efforts to build salamander robots, and to

integrate sensory feedback in robot locomotion in general.

The GEO robot (Lewis [1996], figure 3.2, top right) implements a sprawling posture and

includes a single-link flexible spine. The robot was designed for stepping on land only, and

was controlled with an abstract CPG model that matched its kinematic structure, such that

there was no notion of intersegmental coordination. The Robo-Salamander prototype from

Breithaupt et al. [2002] (figure 3.2, bottom right) shows a similar kinematic structure. It was

driven by a minimal neural controller evolved using a genetic algorithm to solve a simple

walk-to-target task. It is also restricted to land locomotion.

The Chigon robot (Yin et al. [2012], figure 3.2, top left) is a recent amphibious salamander
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Figure 3.2 – Pictures of previously published salamander robots. Top left: Chigon [Yin et al., 2012]. Bot-
tom left: Salamandra robotica [Ijspeert et al., 2007]. Top right: GEO [Lewis, 1996]. Bottom right: Robot-
Salamander [Breithaupt et al., 2002].
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robot that includes one joint in the trunk and three joints in the tail. It is driven by a sine

controller.

The Salamandra robotica robot of Ijspeert et al. [2007] (figure 3.2, bottom left) was the first

amphibious salamander robot, and with its successor the Salamandra robotica II, it is still the

only amphibious salamander robot with several axial joints in the trunk. This characteristic

is important for our work, as we are particularly interested in the coordination of muscles at

different levels of the trunk during various aquatic and terrestrial behaviors. For the present

work we used Salamandra robotica II, which is described in detail in chapter 7.

Proprioceptive sensory feedback for locomotion in robotics has mostly been used in erect-

posture quadrupeds [Kimura et al., 1999, Fukuoka et al., 2003] and in bipeds [Taga et al., 1991,

Taga, 1998], where it contributes to the stability of locomotion. A notable exception is the

work of Umedachi et al. [2010], who developed a methodology for incorporating local sensory

feedback in a distributed controller, based on the discrepancy function. In this framework, a

deviation between the control signal and the robot motion is fed back to the oscillator-based

controller. The form of the feedback term is derived mathematically to act on the phase of

the oscillator in a way that reduces the discrepancy between the control signal and the state

of the mechanical system. Kano et al. [2010] have applied this methodology to the control

of a compliant snake robot moving on ground with variable friction and up a slope. They

found that sensory feedback helped in stabilizing the direction of motion and in decreasing

the energy consumption.

Also relevant is the work of Aoi et al. [2011], were numerical simulations were used to study

sensory feedback-induced gait transitions in a quadruped body driven by coupled phase

oscillators. The mechanical model was composed of a front body and a back body connected

by a torsional spring-damper system. Each limb was governed by one oscillator and received

feedback from a tactile sensor which triggered a resetting of the phase in the oscillator. The

couplings between oscillators were such that an antiphase relationship was enforced between

the left and right limbs in each body (front and back). The coupling strengths between bodies

however were left to zero. It was found that the model could transition from a trotting to a

walking gait by increasing the stiffness of the torsional joint.

3.4 Outstanding issues

The model of the salamander spinal cord published in Ijspeert et al. [2007], our starting

point, was successful in reproducing important features of salamander locomotion, including

the generation of traveling waves for swimming and standing waves for stepping, and a

mechanism of transition between these gaits similar to that observed in MLR stimulation

experiments. However, the model does cannot reproduce recent experimental data from

recordings in vitro and in vivo that show a high flexibility in the spinal network. It also does

not address the role of sensory feedback, the dynamics of muscles and how they interact

with the environment. Finally, the mechanisms of selection and transition between behaviors
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remains to be explored in the context of a larger repertoire that includes underwater stepping,

backward stepping and struggling.

3.4.1 A More Flexible Network

In the model of Ijspeert et al. [2007], the formation of standing waves and the gap in frequencies

between swimming and stepping are due to the influence of the limb centers on the axial

(trunk and tail) centers. In particular, the extensive connections from limb to axial centers,

where each forelimb oscillator connects to all the ipsilateral trunk oscillators, mean that limb

activity is inseparable from standing waves in the trunk. The axial network is also rather rigid

in this model: When limbs are inactive, the CPG produces an intersegmental phase lag of

exactly 12.5% (corresponding to a phase lag of 2.5% in the animal 4).

Recent in vitro preparations show a great diversity of phase lags between individuals, with

values distributed between -13% and 12% per spinal segment (see section 2.4). This is what we

will refer to as the open-loop range of intersegmental phase lags. Similarly, recent electromyo-

graphic data from swimming, underwater stepping, forward land stepping, backward stepping

and struggling salamanders have shown that the intact animal uses different intersegmental

phase lags for different behaviors, in a range of roughly -5% to 5% (see section 2.2). This is

what we call the closed-loop range of phase lags.

The biological data suggest that connections from the limb centers to the axial centers force

the frequency but not the phase of trunk and tail oscillators. In terms of couplings, this suggests

a strong local coupling of the limbs to only a few oscillators of the trunk and the tail, resulting

in the frequency locking of axial oscillators at the girdles, which would entrain other oscillators

in the trunk and the tail without restricting the formation of traveling waves.

The design of a flexible CPG network is addressed in chapter 4.

3.4.2 The Mechanisms of Regulation

A diversity of intersegmental phase lags is observed in vitro and in vivo. However the in vivo

range is significantly smaller (-5% to 5% vs. -13% to 12%), and more importantly, the in vivo

range represents the union of recordings from different behaviors that are each character-

ized by a specific phase lag (see section 2.2). For example, EMG recordings show that intact

salamanders swim with a specific intersegmental phase lag of 2% to 2.5%.

In the model of Ijspeert et al. [2007], the phase lag is specified explicitly for each ascending

and descending coupling. In the absence of limb activity, this intrinsic phase lag is directly

reflected in the output of the CPG, and thus in the motor patterns. Generating a specific motor

pattern from diverse intrinsic phase lags requires the addition of a mechanism to reduce this

4. The model of Ijspeert et al. [2007] includes only 8 segments while the animal has about 40. An intersegmental
of 12.5% in the model therefore translates to a values five times smaller in the animal.
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variability (i.e. to explain how a large variety of in vitro patterns are transformed into more

stereotyped in vivo patterns).

We show in chapter 5 how a flexible network can be regulated by simple drive signals from the

brain and sensory feedback to generate five different behaviors. The role of sensory feedback

as a regulation mechanism is explored in more details in chapter 6.

Regarding the regulation by drive signals from the brain, the question remains as to how to

properly adjust the drive levels to generate the desired behavior. It is also not clear how these

drive levels will interact with sensory feedback in shaping the activity of the CPG.

3.4.3 The Role of the Body Viscoelastic Properties

Another point missing from the model of Ijspeert et al. [2007] is the role of the mechanical

properties of muscles and how their interaction with the environment affects the motion of

the joints. This is interesting on its own as a part of the locomotion control architecture, but

it is also crucial to the modeling of the closed-loop system, where the activity of the CPG is

shaped by feedback signals calculated for example from the joint positions.

In chapter 5, we introduce a mechanical model of the salamander that includes virtual mus-

cles, and show what modifications to the muscle parameters are necessary to reproduce

different behaviors. The EMG-mechanical delay, which is due to the muscle dynamics, plays

an important role in the closed-loop system during swimming. This is further analyzed in

chapter 6.

Finally, in chapter 7, we present a distributed robot controller that implements the virtual

muscles locally in each robot module, allowing for reduced communications and smaller

time-steps.
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4 Flexible Models of the Isolated CPG

This chapter presents different approaches to the modeling of a flexible salamander CPG

network based on coupled abstract oscillators. By flexible, we mean that the network can

easily be made to generate arbitrary patterns, i.e. arbitrary intersegmental phase lags and

cycle frequencies, in a range that corresponds to recent observations in the animal. The notion

of controllability 1 is therefore essential. However we will also strive to design networks that

spontaneously generate a variety of patterns, in order to reproduce the diversity observed in

vitro (see section 2.3). Note that such a network only makes controllability more important.

Regarding the variability of phase lags observed during in vitro experiments, we should note

that the nature of the excitation could contribute to the variability of the fictive locomotor

patterns. Most of the data collected with salamander in vitro preparations use NMDA to excite

the spinal network (see section 1.1). In the lamprey spinal cord, NMDA-induced rhythms show

a variability of phase lags [Matsushima and Grillner, 1992], whereas D-glutamate-induced

patterns are very close to EMG patterns recorded on intact lampreys [Wallen and Williams,

1984]. Unfortunately, there is no published evidence of a successful use of D-glutamate to

induce fictive swimming in the salamander spinal cord (see Lavrov and Cheng [2004] for

D-glutamate-induced limb activity). The extreme phase lags observed in vitro might thus be

an artifact of NMDA excitation; it would be interesting to see if they can be reproduced using

other sources of excitation (e.g. D-glutamate or MLR stimulation). Nevertheless, we chose

to aim for models that can reproduce the whole range of phase lags observed with NMDA

excitation.

4.1 Features Required of the Model

We want our isolated CPG model to reproduce the diversity of phase lags observed in vitro

(2.3), possibly with a similar distribution. In accordance with the findings in our analysis in

1. Controllability has different meanings in different contexts. Here, by controllability we mean the ease with
which the activity pattern of the network can be controlled by external inputs such as descending commands from
the brainstem.
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section 2.4, the phase lags produced by our model should be stable in time and reasonably

uniform along the cord. The model should account for the correlation observed between phase

lags and frequencies. Ideally, it should also reproduce the spontaneous switches observed

in the isolated spinal cord between slow rhythms with negative lags and fast rhythms with

positive lags (2.4.2).

Finally, since the variety of patterns observed in vitro is reflected in the behaviors of the animal

in vivo, another concern is to which extent this diversity can be managed e.g. by higher centers

in the brainstem, to select a pattern depending on the desired behavior. For example, the

model of Ijspeert et al. [2007] allows for the transition between swimming and walking by

modulating a single drive signal from the brainstem.

In a first stage, will consider the axial network in isolation. Once we have a model of the axial

network that fits the requirements described above, we will add limb oscillators and look at

how they interact with the axial network.

4.2 Difficulties with a Previous Model

In the model of Ijspeert et al. [2007], the strong global coupling from limb to axial oscillators

imposes a standing wave on the trunk and tail whenever the limbs are rhythmically active.

An obvious first step is to revert to a local coupling scheme such as in figure 3.1G. However

we will show here that even when relaxing this constraint by considering the isolated axial

network, the model is ill-suited to the production of diverse activity patterns.

4.2.1 General Approach

A straightforward solution to the problem of generating a diversity of phase lags with the

isolated CPG model is to encode this diversity explicitly in the model, by choosing randomly

a value for the intersegmental phase bias in successive simulations. In this way it would

be trivial to achieve any desired distribution of phase lags. However, such a solution would

provide no insight into the mechanisms of intersegmental coordination. More importantly, it

provides no mechanism for the brainstem to select a particular pattern, and it clashes directly

with the observed correlation between phase lag and cycle frequency. Instead, we will mainly

investigate models where the diversity of phase lags is coupled to a diversity of frequencies.

This should also help reproducing the spontaneous switches in phase lags and frequencies.

Below, we show various attempts at generating a diversity of phase lags based on the introduc-

tion of a random factor in the intrinsic frequencies of the oscillators, which could correspond

to some variability in the biological oscillatory neuronal pools. The model used is a variation
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of that in Ijspeert et al. [2007], using the following oscillator equations:

ṙi = a(Ri − ri )

θ̇i = 2πνi +
N∑

j=1
wi j r j sin(θ j −θi −φi j )

xi = ri cosθi

(4.1)

with ri the oscillator amplitude of oscillator i , θi the phase, a a gain for the convergence of

the amplitude, Ri the target amplitude, νi the intrinsic frequency, wi j and φi j the coupling

weights and phase biases, and xi the output of the oscillator. N is the number of oscillators.

In the model of Ijspeert et al. [2007], the oscillator output was xi = ri (1+ cosθi ) (always

positive), and the amplitude was controlled by a critically damped second-order differential

equation: r̈i = a
( a

4 (Ri − ri )− ṙi
)
.

All the results described in the rest of this investigation are based on these equations, with

the topology of a single chain of 8 oscillators (N = 8), such as one side of the axial network in

Ijspeert et al. [2007] (figure 3.1G). We will refer to this model as the Original Hemicord model.

The hemicord topology was chosen for simplicity—all results apply to the double chain, with

the caveat that random effects are attenuated in the double chain (since the two oscillators

in each segment average-out the random effects to some extent) so that the amplitude of

random processes must be increased in compensation. The gain a was set to 5 and the target

amplitude R to 1. Due to the simple topology of the network, the only remaining parameters

aside from the intrinsic frequencies are the coupling strengths wi ,i+1 = wi+1,i = 10 between

neighboring oscillators, and the phase biases φi ,i+1 = −φi+1,i = φ. In the following, we will

often refer to the wave number k instead of the phase bias φ. It represents the number of

waves visible at any time on the body. The two quantities are related by the equation k = Nφ
2π .

We will also refer to the phase lag as a percentage, which is always a percentage of the whole

cycle, so that 100% = 2π.

4.2.2 Random Intrinsic Frequencies

The first approach we tried was to pick each intrinsic frequency νi from a random distribution.

We chose arbitrarily a flat distribution in the range of 0.5 to 1.5 Hz. An example pattern

obtained with this network is shown in figure 4.1. We see important irregularities in the phase

lag along the chain of oscillators.

The distribution of phase lags based on 50 simulations is shown in figure 4.2 (left), together

with the lag–period plot. The distribution is a sharp peak centered on the nominal phase

lag (12.5% for 8 segments with a wave number k = 1). The period is almost not affected. The

standard deviation is calculated between pairs of ventral roots (using the median value for

each pair). It is close to the biological values of figure 2.8.
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Figure 4.1 – Top left: One pattern obtained with the Original Hemicord model and random intrinsic
frequencies in (0.5,1.5) Hz, with intrinsic phase lags of 12.5% and coupling strengths wi j = 10. Black
lines represent the outputs of the oscillators. The centroids of the surfaces delimited by the positive
and negative parts of the oscillation (light red and light purple respectively) are used to determine
the phase of the oscillation twice per cycle (red and purple circular markers). The phase lags are
represented graphically by connecting the markers between neighboring oscillators (red and purple
lines). Bottom left: Phase lag average and standard deviation over 5 seconds windows, as a fraction of a
cycle. Right: Intrinsic frequencies for each oscillator.

We corrected for the extreme phase bias by using a nominal phase lag of 0 instead of 12.5%

(we could also have used a slightly positive lag). We were also able to obtain a range of phase

lags of about -10% to 10%, either by halving the coupling strength, or by doubling the range

of random frequencies. Further increases in frequencies or decreases in coupling strengths

led to loss of synchronization or unstable rhythms. Results for 100 repetitions with decreased

coupling strengths (w = 5) are shown in figure 4.3.

The (−10%,10%) range obtained is close to the biological range, but the inconsistencies

(intersegmental variability) are very high, as can be seen from the errorbars. This variability is

further illustrated in figure 4.4. Again, the phase lag is very irregular, with positive values in the

first half of the chain and negative values in the second half. Tests with the addition of longer

couplings up to the 5th nearest neighbors gave better phase lag consistency but in a reduced

range (data not shown).
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Figure 4.2 – Distribution of intersegmental phase lags in the Original Hemicord model with random
intrinsic frequencies. Parameters as in figure 4.1.

4.2.3 Flexibility by Brainstem Input

It has been proposed early on [Matsushima and Grillner, 1992] that differences in the un-

coupled (intrinsic) frequencies of the oscillators could be used to control the intersegmental

phase lag from the brainstem, by provided different levels of excitation to different segments.

We tried modulating the frequency of the most rostral segment to control the phase lag along

the spinal cord. We find stable patterns when multiplying the rostral frequency by a factor

between 0.5 and 1.5. This allows for some control (up to half a cycle, i.e. a 7% average phase

lag with 8 segments), but results in gradients of phase lags . This is illustrated in figure 4.5.

4.2.4 Random Walks on the Frequencies

Rather than setting each segment frequency to a random but fixed value, we tried applying

damped random walks on these (now time varying) variables. A sample result is given in

figure 4.6.

As can be seen, this model has drifting phase lags and frequencies, and thus cannot be

controlled by a simple brainstem action on rostral segments. Given these limitations, and the

stability of phase lags observed in the animal in vitro, we did not explore it further.
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Figure 4.3 – Distribution of intersegmental phase lags in the Original Hemicord model with random
intrinsic frequencies, w = 5 and k = 0 (i.e. nominal phase lag of 0).

4.2.5 Conclusions on the Ijspeert et al. [2007] Model

Even in the absence of strong, extensive couplings from limb to axial oscillators, we were

unable to generate a diversity of uniform phase lags based on the model from Ijspeert et al.

[2007] by playing randomly with the intrinsic frequencies of the oscillators. The diversity

of phase lags that we did obtain came at the expense of lag consistency. These results are

consistent with the findings of Cohen et al. [1982], which concluded that a chain of oscillators

with symmetric ascending and descending couplings requires a very specific adjustment to

the intrinsic frequencies in order to maintain a uniform lag: the frequency of the oscillator

at one boundary must be adjusted by an amount opposite to the adjustment at the other

boundary. While this could be an option for controllability in vivo, it can hardly account for the

diverse but uniform phase lags observed in vitro: no basis exists for such differential excitation

in arbitrary portions of the spinal cord.

We note that it remains a possibility that this model with or without extensive couplings from

limbs oscillators could generate a range of intersegmental phase lags through the action of

sensory feedback. However this is not relevant to the reproduction of the in vitro observations.

Following these results, in the rest of this thesis, we investigated models that depart signifi-

cantly from the model of Ijspeert et al. [2007].
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Figure 4.4 – Original Hemicord model with random intrinsic frequencies, w = 5 and k = 0. See figure 4.1
for a general description. The lower intrinsic frequencies in oscillators 4 and 5 (right panel) lead to a
positive phase lag in the first part of the chain (top panel). The relatively higher frequencies of oscillators
6–8 lead to a negative phase lag in the second half of the network. These irregularities of the phase lag
along the chain are reflected in the high standard deviations in the bottom panel.
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Figure 4.5 – Original Hemicord model with random intrinsic frequencies, w = 5 and k = 0. Top: All
oscillators drawing their frequency from the same distribution. Middle: Rostral frequency multiplied by
0.5. Bottom: Rostral frequency multiplied by 1.5. The different intrinsic frequency of the first oscillator
has a strong effect on the phase lag. However this effect attenuates towards the end of the chain, leading
to non-uniform phase lags.
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Figure 4.6 – Original Hemicord model with time-varying intrinsic frequencies subject to a damped
random walk and with k = 0. Top: Oscillation at each joint, with the fluctuations in the intrinsic
frequencies (noisy lines in magenta). Only the last 17 seconds of simulation are shown. Bottom: Phase
lag average over 5 seconds windows, as a fraction of a cycle, for the whole simulation. The fluctuations
in the intrinsic frequencies of the oscillators lead to fluctuations in the intersegmental phase lags.

47



Chapter 4. Flexible Models of the Isolated CPG

4.3 A Radically Different Approach to Flexibility

Until here, we have tried to build a network with some randomness in the parameters that

would set its natural (unforced) intersegmental phase lag to different values. To each set of

parameter values (which could vary with time in the case of the random walk) corresponds

one stable pattern, the idea being that descending commands from the brain could adjust the

parameters to select a different pattern.

But if the objective is to have a flexible network, why should the pattern be determined by the

values of the network parameters? Should not the pattern be part of the network state, just like

the phase, for which the oscillator does not have a natural or preferred value?

In such a network, the role of the intersegmental couplings would not be to establish any given

phase lag, but to ensure the uniformity of the phase lag—any phase lag—along the body. The

initial pattern would then be determined by the initial conditions, i.e. the initial values of the

state variables. The phase lag could be altered at any time by perturbing the state variable θi

somewhere in the chain of oscillators. This would cause a modification of the local phase lag

which the couplings would then replicate in the rest of the network. In a sense, the network

acts as a memory, keeping the phase lag that was applied externally to a part of the network,

until the next perturbation.

In the following sections, we investigate couplings that maintain a consistent phase lag along

the spinal cord, without constraining the value of the actual phase lag. We call them flexible

couplings. We first derive different forms of flexible couplings. We show simulation results for

some of them in section 4.3.3.

4.3.1 Polar Coordinates

To design a completely flexible coupling, it suffices to use a coupling linear in the phase lag

difference, of appropriate sign, and which vanishes for identical phase lags. For example, the

following equations describe a flexible hemicord model with descending couplings, as shown

in figure 4.7 (left):

θ̇i =ω+φi−1
i −φi−2

i−1

=ω+2θi−1 −θi−2 −θi i >= 3

θ̇i =ω i = 1,2

(4.2)

with φ j
k = θ j −θk .

The coupling is diffusive, as it vanishes when φi−2
i−1 =φi−1

i . The resulting phase lag in the whole

chain is determined by the initial conditions: it is the initial phase lag between the first two

oscillators. Indeed, these oscillators receive no coupling, so their phase relationship φ1
2 will

not change, but will be propagated down the chain. Possible values depend on the range of
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Figure 4.7 – Network topologies for flexible hemicord models.
Left: Descending coupling scheme. Each oscillator receives pro-
jections from its two closest rostral neighbors, except for the first
two oscillators (dark gray) which receive no coupling. right: Bidi-
rectional coupling scheme. Each oscillator receives couplings
from its rostral and caudal neighbors, except for the boundary
oscillators (dark gray) which receive no coupling.

initial conditions. With fully random initial phases, φ1
2 can take any value in (π,π), and the

chain will converge to that.

The corresponding ascending coupling is

θ̇i =ω+φi+1
i+2 −φi+1

i

=ω+2θi+1 −θi+2 −θi
(4.3)

It appears that a linear combination of these two couplings (even with different weights) is

unstable. However we know e.g. from the lamprey entrainment experiments described in

chapter 3 that the coupling is bidirectional. We can easily design a bidirectional coupling by

making each oscillator a target of its two nearest neighbors, as shown in figure 4.7 (right):

θ̇i =ω+φi−1
i −φi

i+1

=ω−2θi +θi−1 +θi+1
(4.4)

This coupling has the same properties as the descending and ascending couplings, with one

important difference: here, it is the first and last oscillators that receive no coupling. Therefore,

absent external inputs, their initial phase relationship θ1 −θn will stay constant and constrain

the phase lag along the chain: φi
i+1 = θ1−θn

n−1 (modulo 2π). With θ1 −θn ∈ (pi ,π] mod 2π, a

network with random initial phases generally converges to a uniform phase lag smaller than
π

n−1 . Higher phase lags are possible but very unlikely, as they require an arrangement of initial

phases close to the final pattern of uniform lags. However once the network has stabilized to

a small uniform phase lag, it is possible for perturbations to move the phase lag to a higher
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value.

Note that this bidirectional coupling is identical to that in Ijspeert et al. [2007] with target

phase lag φ= 0, except for the first and last oscillators receiving no coupling.

Interestingly, the bidirectional coupling can be combined with the ascending or descending

coupling, or both, without losing stability. Their relative weights determines the range of phase

lags.

Sine

Taking the sine of the coupling gives similar properties:

θ̇i =ω+ sin(2θi−1 −θi−2 −θi ) (4.5)

The main difference is that phase lags will converge modulo 2π, which is desirable.

Two Sines

We can also take the sine of the two lags separately:

θ̇i =ω+ sinφi−1
i − sinφi−2

i−1

=ω+ sin(θi−1 −θi )− sin(θi−2 −θi−1)
(4.6)

This coupling has fixed points at

sinφi−1
i − sinφi−2

i−1 = 0

sinφi−1
i = sinφi−2

i−1

φi−1
i =

φi−2
i−1 +2kπ k ∈Z , or

π−φi−2
i−1 +2kπ

(4.7)

The stability of the fixed points is found by taking the derivative with respect to θi :

d

dθi
(sin(θi−1 −θi )− sin(θi−2 −θi−1)) =−cos(θi−1 −θi ) < 0 if φi−1

i ∈
(
−π

2
,
π

2

)
(4.8)

Thus stable lags are in (−π
2 , π2 ). However, boundary oscillators, which have different connectiv-

ity (e.g. upper boundary for descending-only coupling) sometimes synchronize to the second

fixed point, with the form π−φi−2
i−1 +2kπ.
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4.3.2 Cartesian Coordinates

It is sometimes desirable to have a dynamical system in Cartesian coordinates—for example

to simplify the introduction of Cartesian feedback signals. 2 The flexible coupling in the form

of equation (4.5) can be rewritten to Cartesian coordinates. To simplify the notation, we show

the development for the third oscillator:

θ̇3 =ω+ sin(2θ2 −θ1 −θ3)

ṙ3 = a(R3 − r3)
(4.9)

Here we include the differential equation governing the amplitude, as per equation (4.1). The

steps to rewrite the uncoupled oscillator equations to Cartesian coordinates are detailed in

section 5.3.2. Here we concentrate on the coupling term, i.e. the sine of equation (4.9). Using

the trigonometric relations

sin(α−β) = sinαcosβ−cosαsinβ (4.10)

sin2α= 2sinαcosα (4.11)

cos2α= cos2α− sin2α (4.12)

we find

sin(2θ2 −θ1 −θ3) = sin2θ2 cos(θ1 +θ3)−cos2θ2 sin(θ1 +θ3)

= 2sinθ2 cosθ2(cosθ1 cosθ3 − sinθ1 sinθ3)−
(cos2θ2 − sin2θ2)(sinθ1 cosθ3 +cosθ1 sinθ3)

(4.13)

and introducing the transformation

x = r cosθ

y = r sinθ
(4.14)

we find our coupling term in Cartesian coordinates. Equation (4.9) then becomes

ẋ3 = a(R3 − r3)
x3

r3
− ω̄3 y3

ẏ3 = a(R3 − r3)
y3

r3
+ ω̄3x3

ω̄3 =ω3 + 1

r1r 2
2 r3

(
2x2 y2(x1x3 + y1 y3)− (x2

2 − y2
2)(x3 y1 +x1 y3)

) (4.15)

2. By Cartesian signal we mean for example an oscillation such as cosθ rather than a phase such as θ.
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Two Sines

Alternatively, we can rewrite the coupling of equation (4.6) in Cartesian coordinates:

θ̇3 =ω3 + sin(θ2 −θ3)− sin(θ1 −θ2)

=ω3 + sinθ2 cosθ3 −cosθ2 sinθ3 − sinθ1 cosθ2 +cosθ1 sinθ2

=ω3 + y2x3

r2r3
− x2 y3

r2r3
− y1x2

r1r2
+ x1 y2

r1r2

=ω3 + 1

r2r3
(y2x3 −x2 y3)− 1

r1r2
(y1x2 −x1 y2)

(4.16)

Direct Cartesian Coupling

It would be interesting to have simpler couplings than the convoluted expressions of equa-

tions (4.15) and (4.16). Taking inspiration from the form of e.g. equation (4.4), we can write:

ẋi = a(Ri − ri )
xi

ri
−ωi yi −2xi +xi−1 +xi+1

ẏi = a(Ri − ri )
yi

ri
+ωi xi −2yi + yi−1 + yi+1

(4.17)

or, if we omit the coupling of the oscillator to itself:

ẋi = a(Ri − ri )
xi

ri
−ωi yi +xi−1 +xi+1

ẏi = a(Ri − ri )
yi

ri
+ωi xi + yi−1 + yi+1

(4.18)

Numerical simulations show that these two forms give good results (data not shown). In the

second case however we get different lags at the boundaries than in the rest of the network.

Moreover, the amplitude of the oscillators is affected by the coupling, unless we rescale the

coupling term to the local amplitude, which also fixes the lags at the boundaries.

4.3.3 Simulation Results

Phase lag histograms for the polar coordinate networks with descending couplings are shown

in figure 4.8. The range of initial phase lags can be adjusted by changing the range of random

initial phases. Subsequent perturbations however can push the network beyond the plotted

range. The exception is the network based on a two-sine coupling, which only admits phase

lags between -25% and 25%. This is consistent with our predictions in section 4.3.1.

In networks based on the bidirectional coupling, the phase lag is constrained by the phase dif-

ference between the two boundaries. The full range (−π,π) between the boundaries translates

to an intersegmental phase lag restricted to (− π
N−1 , π

N−1 ) where N is the number of segments.
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With identical frequencies, these networks can produce a range of perfectly smooth phase lags.

We show here results on a network in polar coordinates with descending 2-sines couplings.

We can reproduce the physiological range of phase lags by using initial phases in (0,1) radians.

As shown in figure 4.9, the standard deviation is close to zero.

To introduce some inconsistencies along the spinal cord, we used random values for the

intrinsic frequencies of the third and following segments (the frequencies of the first two

segments must be identical to avoid phase drifts). Using frequencies in (2π−2,2π+2), we

obtained results similar to biological observations (figure 4.10).

The controllability of the network phase lag by adjustments to the intrinsic frequency of the

first oscillator is illustrated in figure 4.11. Due to the random initial conditions, the network

activity displays a negative phase lag. At time t = 10s, a positive perturbation is added to

the phase derivative of the first oscillator, until t = 11s. The perturbation changes the phase

relationship between the first and last oscillators, causing the network to converge to a new,

positive phase lag. This is a significant novelty compared to the model of Ijspeert et al. [2007]:

the effect of the perturbation stays in the system after the perturbation ends.

4.3.4 Conclusions on the Flexible Couplings

Networks based on these flexible couplings are very sensitive to perturbations of the phase

or frequency of the boundary oscillators. Networks with descending or ascending coupling

are very sensitive at the two most rostral or most caudal oscillators, respectively. In all cases, a

slight difference in the frequency of a sensitive oscillator leads to a continuous drift in phase

lags. This precludes mechanical entrainment of the network frequency (where local sensory

feedback affects the frequency of a part of the network), as well as synchronization with e.g.

slower limb oscillators.

The flexible model thus better matches the biological data on diversity and inconsistencies

than the Original Hemicord models, but its robustness and entrainment properties are not

adequate. The model can accommodate noise with zero average, but even slight systematic

deviations in the rostral frequencies lead to continuous drifts in phase lags, which are not

observed in the animal (section 2.4.1). The observation with rhythm switches that the phase

lag reverts to its original value after a second switch is also clearly incompatible with this

model.
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Figure 4.8 – Range of phase lags obtained with intrinsically flexible hemicord networks in polar coor-
dinates using descending couplings. Left column: With a network based on the two-sine coupling of
equation (4.6). Middle column: With a network based on the sine coupling of equation (4.5). Right col-
umn: With a network based on the coupling of equation (4.2). Top row: Using random initial phases in
(0,2π). Middle row: Using random initial phases in (0,π/2). Bottom row: Using random initial phases
in (0,π/4).
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Figure 4.9 – Distribution of intersegmental phase lag in a flexible hemicord network in polar coordinates,
with descending 2-sines couplings and random initial phases in (0,1).
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Figure 4.10 – Flexible hemicord network in polar coordinates, with descending 2-sines couplings and
random intrinsic frequencies in (2π−2,2π+2) for the third and following oscillators. Top: distribution
of intersegmental phase lags. Bottom: One activity pattern.
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Figure 4.11 – Control of the phase lag in a flexible hemicord network with bidirectional sine coupling,
using a transient perturbation of the intrinsic frequency in the first oscillator. Top: Perturbation added
for 1 second to the phase derivative θ̇1 of the first oscillator. Bottom: The perturbation temporarily
increases the frequency of the first oscillator. This changes the phase relationship between the first and
last oscillators, causing the network to switch from a negative to a positive phase lag.
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4.4 A Flexible Network that is Robust to Variations in Frequencies

We present here our most successful attempt at designing a flexible CPG network. The ap-

proach is much more conservative than that of the previous section. It proved successful

in modeling the diversity of phase lags observed in vitro (including the three peaks of the

phase lag distribution), the correlation between phase lag and cycle frequency, and the spon-

taneous switches between slow and fast rhythms. It also proved easily controllable. We show

in chapter 5 how the model was used to reproduce the five salamander behaviors with a

salamander robot. In this chapter, we will illustrate the controllability with a simplified model

that reproduces the main results of Ijspeert et al. [2007] (section 4.4.5).

The model is based on the findings that the salamander axial CPG is organized as a double

chain of oscillators, similar to the lamprey, and that limb segments are intrinsically slower

than other segments [Ijspeert et al., 2007]. Compared to the work of Ijspeert et al. [2007], the

model was modified to support the range of intersegmental phase lags observed in vitro, with

and without simultaneous rhythmic activity in the limb centers. The main hypotheses are

1) that limb oscillators project mostly to axial oscillators close to the girdles, as opposed to

extensive projections from the limbs to all trunk and tail oscillators 2) that intersegmental

couplings are stronger in the rostrocaudal direction, and 3) that limb oscillators saturate at

lower excitatory drives than axial oscillators.

4.4.1 Design Considerations

Without considering the phase lag switches, the Original Hemicord model with random

intrinsic frequencies (section 4.2) has three issues:

– Phase lags are too variable along the spinal cord.

– Phase lags are not flexible enough: changing the activity of rostral segments results in

irregular phase lags along the chain.

– There is no correlation between phase lags and frequencies.

We can address these issues by making one important change to the network: breaking the

ascending/descending symmetry 3. Indeed, either adding longer descending connections, or

increasing the descending coupling weights is sufficient: in such asymmetric networks, the

phase lag can be controlled by tuning the rostral segment frequencies, with no significant

increase of the inconsistencies along the spinal cord. The resulting model is closer to recent

models of the lamprey CPG, both in terms of coupling scheme and controllability [Kozlov

et al., 2009].

As in the work of Kozlov and coauthors, we decided to use a dominantly descending coupling.

This has the advantage of making the network controllable through differential excitation of

the first segment (closest to the head), which seems more natural than differential excitation

3. By symmetric we mean here that the coupling strength and the extent of the projections are identical in
the rostral and caudal directions. The Original Hemicord model does include a coupling asymmetry in the phase
biases.
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of the last segment. Note that there is ample experimental evidence for a coupling asymmetry

in the lamprey, but there is conflicting evidence regarding the nature of the asymmetry (i.e.

the direction of the dominant coupling) [Hill et al., 2003].

The model was developed using the Codyn framework (http://www.codyn.net). The framework

provides a language designed for the concise description of coupled dynamical systems.

Networks can be exported to raw C files that can be compiled to run on a robot microcontroller.

We took advantage of this feature to implement the robot controller described in chapter 7.

4.4.2 Model Description

Only the 25 most rostral segments of the salamander spinal cord are modeled, corresponding

to the active part of the robot (the caudal half of the robot tail is made of a passive piece of

plastic). As in the model of Ijspeert et al. [2007], each hemisegment and each limb is modeled

as a phase oscillator with controllable amplitude, and the connections between oscillators are

functions of the phase difference between sender and receiver:

θ̇i = 2πνi +
∑

j
r j wi j sin(θ j −θi −φi j )

ṙi = ai (Ri − ri )

xi = ri (1+cosθi )

νi = di ei

Ri = di P (di ,d th
i )

(4.19)

A positive output xi for oscillator i is calculated from the instantaneous phase θi and am-

plitude ri . The intrinsic frequency νi is proportional to the oscillator excitability ei and to a

drive di that represents the excitation from descending pathways. The intrinsic amplitude Ri

increases with increasing drive until it approaches a saturation threshold d th
i after which it

decreases progressively to zero due to the sigmoid function P (d ,d th) = 1/(1+eb(d−d th
)) with b

the saturation rate. The excitability and saturation threshold of each oscillator is drawn from a

Gaussian distribution with different mean for forelimb, hindlimb and axial oscillators. The

coupling from oscillator j to oscillator i is characterized by a strength wi j and phase bias φi .

The gain ai determines the speed of convergence for the amplitude. Note that the differential

equation controlling the amplitude is simplified compared to the oscillator model of Ijspeert

et al. [2007] (see section 4.2.1).

The network connectivity is described in figure 4.12 and table 4.1. Other parameter values are

provided in table 4.2.

The oscillator and coupling parameters were tuned to obtain the range of intersegmental

phase lags and cycle durations observed in vitro. Multiple simulations were performed. Some

parameters were picked from a Gaussian distribution to reflect the diversity of in vitro prepa-
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Table 4.1 – Coupling parameters in the asymmetric model

Coupling type Strength wi j Phase bias φi j

Intersegmental, rostrocaudal 5 2π ·0.066
Intersegmental, caudorostral 1 −2π ·0.066
Intrasegmental, lateral 10 π

Interlimb, rostrocaudal 3 π

Interlimb, caudorostral 30 π

Interlimb, lateral 10 π

Limb to axial oscillators 30 4
Axial to limb oscillators 2.5 −4

rations. In particular, the parameter that determines the intrinsic frequency of an oscillator

as a function of the external drive, and which we call excitability, was picked randomly for

each oscillator. Different means were used for the excitability and saturation thresholds of the

forelimb, hindlimb and axial oscillator, as shown in table 4.2.

Table 4.2 – Other parameters in the asymmetric model

Name Symbol Value

Excitability ei 1.1±0.07 (axis)
0.8±0.05 (forelimbs)
0.5±0.03 (hindlimbs)

Drive d 0.1±0.01
Drive random walk conv. factor c 0.001
Drive random walk step size 0.03
Saturation threshold d th 0.3 (axis)

0.09±0.02 (limbs)
Saturation rate b 500

4.4.3 Results

We performed 10’000 simulations with the isolated CPG model to have a good approximation

of the phase lag distribution. The results are shown in figure 4.13. The model was tuned to

reproduce the three peaks in the distribution of intersegmental phase lags with a similar range

of values and median. The peaks are centered on phase lags of 6.9%, 1.5% and -7.2%. The

model also reproduces the correlation between phase lag and cycle duration (figure 4.14) and

the reversible switches between slow and fast rhythms (see section 4.5.1).
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4.4.4 Discussion

The absence of strong connections from limb oscillators to the mid-trunk (the limbs project

only to axial oscillators close to the girdles, hypothesis 1) is important for the flexibility of

the CPG: such connections would impose a fixed phase pattern during limb activity [Ijspeert

et al., 2007]. 4 Removing them allows for the expression of more activity patterns, such as the

rostrocaudal wave of activity observed during backward stepping.

The intersegmental phase lag is modulated through adjustments of the frequencies of the

uncoupled oscillators. Because rostrocaudal couplings are stronger than caudorostral cou-

plings, a segment will entrain a slower or faster caudal neighbor to its own frequency. However

the faster segment will lead the slower one with a delay that increases with the difference in

uncoupled frequencies (this delay being in addition to the coupling’s natural phase bias). This

effect will propagate down the chain of oscillators, such that the frequency and phase lag of

the whole chain can be controlled by adjusting two values: the uncoupled frequency of the

first segment, and that of the other segments.

This mechanism of phase lag modulation is similar to the trailing oscillator hypothesis pro-

posed in a model of the lamprey CPG [Matsushima and Grillner, 1992]. An important difference

is that the lamprey model assumes symmetrical rostrocaudal and caudorostral couplings,

while we find that the asymmetry of the couplings (hypothesis 2) is important to maintain a

uniform phase lag along the chain of oscillators. If the intersegmental couplings were symmet-

ric, the effect of the frequency difference would attenuate as it propagates down the chain, as

each segment would not take on the frequency of its rostral neighbor, but a value between that

and its own frequency. This attenuation leads to non-uniform phase lags along the chain and

must be compensated by adjusting the uncoupled frequency of the first and last segments in

opposite amounts [Cohen et al., 1982].

An alternative to this asymmetry between ascending and descending couplings would be

to have a different effective coupling strength when accelerating vs. decelerating the target

oscillator. For example, when additional excitation is provided to the first segments, a coupling

that has a stronger effect when accelerating the target oscillator is equivalent to a stronger

descending coupling (since the rostral oscillators accelerate their caudal neighbors). However

this scheme works only in one direction. To maintain uniform phase lags while decreasing the

excitation of the first segments would require a coupling that has a stronger effect when slowing

down the target oscillator. The asymmetry between ascending and descending intersegmental

couplings therefore constitutes the more general solution.

While the abstract nature of the oscillator model makes it easy to reason about the mechanism

4. We assume here that global connections from the limb centers to the trunk and the tail are incompatible with
the diversity of synchronization patterns observed in salamanders. We conclude that limb centers must connect
only locally to the axial centers. However, the functional coupling between limb and axial centers could also be
altered dynamically by neuromodulators, allowing the network to switch between different connectivity patterns
to produce different behaviors [Harris-Warrick and Marder, 1991]. Modulations of functional coupling in the spinal
network by neuromodulators were recently identified in the Xenopus [Rauscent et al., 2009].
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of phase lag generation, we note that the same principles apply to more detailed models of

the spinal cord. For example, Kozlov et al. [2009] built a model of the lamprey CPG based on

the Hodgkin-Huxley formalism and found similarly that intersegmental coupling asymmetry

was important to generate a uniform phase lag along the cord. There is ample experimental

evidence for such asymmetry in the lamprey [Hill et al., 2003].

This basic principle of phase lag modulation, together with the differences in excitabilities

and saturation thresholds between forelimb, hindlimb and axial oscillators (hypothesis 3),

account for the three peaks in the distribution of phase lags in vitro: When all oscillators are

active, the hindlimb oscillators slow down the forelimbs, and the strong local connections

from limb to axial oscillators slow down the girdle segments, leading to a very low phase lag in

the trunk and tail axial networks. This corresponds to the rightmost peak of the distribution.

When the hindlimb oscillators saturate, the forelimb oscillators accelerate a bit but continue

to slow down the first segments, yielding the phase lags that make up the middle peak of the

distribution. When all limb oscillators saturate, the axial network generates the even higher

phase lags found in the leftmost peak. This connection between phase lag and frequency also

explains the correlation observed between these two measures in vitro. The switches between

slow and fast rhythms correspond to the transitions between active and saturated limbs.

The transitions are triggered by the small fluctuations in the excitatory drive (section 4.5.1,

figure 4.18), which represents NMDA excitation in this case.
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Figure 4.12 – Connectivity of the model with asymmetric intersegmental couplings. Axial and limb
oscillators are shown in blue and green respectively. Thicker arrows denote stronger couplings. The full
model is made of 25 segments.
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Figure 4.13 – Distribution of intersegmental phase lags in the asymmetric model. The figure shows
the result of 10’000 simulations with different random seeds, sorted by decreasing phase lag. For each
simulation, the intersegmental phase lags are measured in the mid-trunk and a median value calculated
for each pair of ventral roots. The plot shows the average and standard deviation calculated across all
mid-trunk ventral roots. The distribution of phase lags is shown in insert.

Figure 4.14 – Correlation between intersegmental phase lag and cycle duration in the asymmetric
model. Each dot corresponds to one simulation of figure 4.13. The coefficient of determination R2 of a
linear regression and the corresponding F -test P value are indicated on the figure.
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4.4.5 Application to the Swimming-Walking Transition

The network proposed in section 4.4.2 produces very different intersegmental phase lags

depending on the (random) intrinsic frequencies of the oscillators, yet at the same time the

phase lag can easily be controlled by using differential excitation of the first and other segments.

To illustrate the point, we reproduce the main results of Ijspeert et al. [2007] using a similar

network topology: the axial network is made of 8 axial segments, and axial oscillators do not

project to limb oscillators (figure 4.15). Compared to Ijspeert et al. [2007], the only significant

differences are that limb oscillators project only locally to the axis, and that descending axial

connections are stronger than their ascending counterparts.

Figure 4.15 – Simplified model with asymmetric couplings. The network is made of a double chain
of axial oscillators (blue) with nearest-neighbor couplings, plus 4 oscillators for the limbs (green)
that connect locally to the axial oscillators. Limb and axial oscillators receive different drive signals.
Couplings from limbs oscillators are the strongest (w = 20, in purple), followed by descending and
ascending couplings (w = 5, red and w = 1, light red respectively). The interlimb and intrasegmental
phase biases are set to π. Descending and ascending intersegmental phase biases are set to 2π

7 and − 2π
7

respectively.
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The equations are also simplified; we kept only the parts that are essential to the mechanism

of controllability:

ṙi = a(Ri − ri )

θ̇i = 2πνi +
N∑

j=1
wi j r j sin(θ j −θi −φi j )

Ri = di

νi = di ei

xi = ri cosθi

The excitability of limb and axial oscillators is 0.5 and 1 respectively. The saturation of limb

oscillators in not shown in the equations; it is implemented simply by setting Ri = 0 in these

oscillators when di >= 2.5.

The principle of phase lag modulation detailed in section 4.4.4 also applies to this network. The

phase lag can be controlled by differential drive levels between the limb and axial oscillators:

the frequency of the first segments is forced by the strong couplings from the limb oscillators.

The lag can thus be controlled by adjusting the drive to the limb oscillators. The controllability

of the network is demonstrated in figure 4.16. We see that the frequency and phase lag can be

controlled independently when limbs are active, by first setting the limb drive to obtain the

desired frequency and then setting the axial drive to obtain the desired phase lag.

Although the network is perfectly controllable through differential activation of the limb and

axial oscillators, differential drives are not needed to reproduce the results of Ijspeert et al.

[2007]: the swim-to walk transition can be reproduced while applying a common drive to all

oscillators (figure 4.17). When the drive is low, the lower excitability of the limb oscillators

causes the first segment to be slowed down, which plays the role of a differential drive. The

excitabilities and coupling strengths have been chosen so that the slow down will be in the

right amount to yield a standing wave in the trunk and the tail. When the drive goes over 2.5,

the limb oscillators saturate and the “differential drive” effect vanishes, which releases the

traveling wave and faster rhythm that are natural to the axial network.

We see in figure 4.17 that the phase lag during either swimming or stepping stays the same as

the frequency increases.

Note that in contrast to the stereotypical behaviors of figure 4.17, differential activation of

axial and limb oscillators in figure 4.16 allow for the production of a wide, continuous range of

phase lags.
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Figure 4.16 – Controllability in the simplified asymmetric model. The cycle frequency increases with
increasing limb drive. The intersegmental phase lag decreases with increasing axial drive. Above a drive
of 2.5, the limb oscillators saturate and the swimming pattern is released; in this regime the swimming
(intrinsic) phase lag is maintained for all values of the axial drive. A clear gap in frequencies is observed
between the stepping and swimming regions along the daxis = dlimb line. Black regions with white
crosses correspond to cases where the limb and axial frequencies are too far apart for the oscillators to
reach frequency locking.

66



4.4. A Flexible Network that is Robust to Variations in Frequencies

Figure 4.17 – Swim-to-walk transition in the simplified model with asymmetric couplings. Top: By
using a uniform drive for the whole network and decreasing it linearly from 3.5 to 1, we observe a
transition from a swimming pattern (wave number = 1) to a walking pattern (wave number = 0, i.e.
standing wave). Axial and limb outputs are shown in blue and green respectively. The timing of each
"burst" is calculated from the centroids of the colored patches. Middle: The drive and overall network
frequencies as functions of time. When the drive gets under 2.5, the limbs come out of saturation and
suddenly slow down the network. Bottom: As the limbs come out of saturation and slow down the
network, the pattern suddenly switches from a traveling wave (wave number = 1) to a standing wave
(wave number = 0).
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4.5 Modeling Spontaneous Rhythm Switches

We propose here different mechanisms that could account for the spontaneous switches

observed in vitro, between slow rhythms with negative phase lags and fast rhythm with

positive phase lags (see section 2.4.2).

We first show that these switches can be a natural consequence of drive fluctuations in the

asymmetric model of section 4.4. We then mention an alternative based on loops in the

network couplings that might replace or complement the mechanism described for the asym-

metric model. Finally, we briefly discuss some other possibilities.

4.5.1 Rhythm Switches in the Asymmetric Model

To produce a switch in the model with asymmetric intersegmental couplings, we need to

introduce some stochasticity in the global level of drive. The same drive d is used for all

oscillators, with small fluctuations added in the form of a mean reverting random walk:

ḋ = c(d0−d)+σ with d0 the drive picked from a Gaussian distribution, c a convergence factor,

and σ a random process yielding positive and negative steps with equal probability. The

random walk parameters are given in table 4.2.

The random fluctuations in the drive cause the limb oscillators to go in and come out of

saturation. When the limb oscillators are saturated, the axial network displays a traveling wave

of activity. When the limb oscillators come out of saturation, they force their slow frequency

on the axis, at the same time a drop in frequencies and a switch to negative phase lags. The

effect is illustrated in figure 4.18. Note that residual oscillations remain in the limb oscillators

even after the switch. This is due to the small size of the drive fluctuation and the fact that limb

saturation is not implemented as a discrete event but through a sigmoid (see section 4.4.2).

However their influence on the axial oscillators quickly wanes as their amplitude decreases,

due to the term r j in the coupling in equation (4.19).
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Figure 4.18 – Rhythm switch in the asymmetric model. Top: As the drive decreases (top), the limb
oscillators (lF and lH for left forelimb and left hindlimb, in blue) come out of saturation, and they start
to impose their slow frequency on the axial oscillators (green). The black and white markers indicate the
centroids of the slow and fast “bursts” respectively. Bottom: Filtered data of a similar switch observed
in the animal in vitro [Ryczko et al., in preparation].
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Table 4.3 – Four regimes in a simple network loop

Phase lag [%] Period [s]

−10.68±0.06 24.75±0.00
−3.58±0.01 13.83±0.00
3.62±0.02 9.29±0.00

10.66±0.01 7.16±0.00

4.5.2 Network Loops

Another possibility to explain the occurrence of rhythm switches is the presence of multi-

stability due to coupling loops. It is known that multiple stable regimes, with different phase

lags and frequencies, can coexist in neural network loops [Briggman and Kristan Jr, 2008].

Note that a network with this type of multi-stability would be quite sensitive to transient

perturbations, which would suffice to radically change the activity pattern. We have not

observed this effect with the asymmetric model proposed in section 4.4, despite the presence

of network loops through the limb oscillators. However we did observe multi-stability when

using some other parameter values, with stronger couplings from axial to limb oscillators.

Here we analyze a simple network loop as a proof of concept. We first show that the network can

stabilize around different intersegmental phase lags, with lower phase lags being associated

with lower cycle frequencies, as observed in the in vitro recordings. We then show that the

stable patterns can easily be predicted based on the conditions of 1) frequency locking and

2) loop consistency, i.e. the fact that the sum of the phase lags around the loop must be a

multiple of 2π.

Observations

We considered the network of figure 4.19, made of phase oscillators θ̇i = 2πνi and couplings

of the form θ̇i = 2πνi +wi j sin(θ j −θi −φi j ). We ran 50 simulations and measured the period

and average phase lag. Results sorted by phase lag are shown in figure 4.20.

We found that phase lags and periods were concentrated around four values, listed in table 4.3,

with lower phase lags corresponding to longer periods.

Period Consistency

Since the intrinsic periods are identical, frequency locking implies that the coupling terms are

equal. With our coupling, the coupling value depends on the difference between the desired

and actual phase lag: calling this difference ∆φ, the coupling value is w sin∆φ. The conditions
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1 2 3 4 5 6 7 8 9 10 11 12

FL HL

Figure 4.19 – Loop network. All oscillators have the same intrinsic frequency 0.09 Hz. All couplings have
the same strength wi j = 0.5 and phase bias φi j = 0 except for φF L,HL =π.

for all oscillators to have the same frequency are:

wi ,i−1 sin∆φi ,i−1 = wHL,n sin∆φHL,n

= wF L,HL sin∆φF L,HL

= w1,F L sin∆φ1,F L

(4.20)

with i = 2, . . . ,n (n = 12).

Loop Consistency

The phase lag between an oscillator and itself must be 0+2kπ. Adding the lags over one full

loop, we find

n∑
i=2

(φi ,i−1 +∆φi ,i−1)+ (φHL,n +∆φHL,n)

+ (φF L,HL +∆φF L,HL)

+ (φ1,F L +∆φ1,F L) = 0+2kπ k ∈Z

(4.21)

Application

With our values of φi j , equation (4.21) reduces to

(n −1)∆φi ,i−1 +∆φHL,n +∆φF L,HL +∆φ1,F L =π+2kπ

With our equal weights wi j , equation (4.20) implies that all ∆φi j are equal (modulo 2π, and

excluding unstable solutions of the form π−∆φi j ). We thus have

(n +2)∆φ=π+2kπ

∆φ= π+2kπ

n +2

θ̇ = 2πν+w sin
π+2kπ

n +2
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giving the following periods and phase lags:

Phase lag [%] Period [s]

−10.71 24.76

−3.57 13.83

−3.57 9.28

10.71 7.16

which correspond to the observations in table 4.3.

4.5.3 Other Possibilities

There are certainly other ways of modeling rhythm switches. One option would be to have

some sort of bistability at the level of the hemisegments or segments themselves, which we

could model using oscillators with two limit cycles in the (x, y) space. Transient perturbations

on x or y could push the system from one limit cycle to the basin of attraction of the other.

Another option would be to have the frequency itself be a state variable with two stable fixed

points for a given level of drive. A perturbation of the frequency would then cause a rhythm

switch. In both cases, the intersegmental couplings should be designed in a way such that a

switch in one oscillator propagates to the rest of the network, since in vitro recordings show

that the whole preparation switches in one cycle.

We could also model the switch as a bifurcation where one limit cycle replaces another. In this

case we would need to add a random process to the bifurcation parameter to have switches

occurring randomly. The bifurcation parameter could be shared by all oscillators, allowing the

whole network to switch at the same time (this would be similar to what happens in our model

with the drive fluctuations and the saturation of the limb oscillators, but with the bifurcation

happening at the level of the individual oscillators rather than at the network level).

Finally, multi-stability in the network might be a consequence of delays in the intersegmental

couplings [Ermentrout and Ko, 2009]. Even just two phase oscillators coupled as in equa-

tion (4.19) show several stable oscillation patterns when delays are introduced in the couplings

[Schuster and Wagner, 1989]. We look at this phenomenon in some detail for the implementa-

tion of the controller in the robot (section 7.3.3).
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Figure 4.20 – Results for 50 simulations with the loop network of figure 4.19, with wi j = 0.5, νi = 0.09Hz,
φi j = 0 except for φF L,HL =π. The network can converge to four different rhythms, depending on the
initial conditions.
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5 The Flexible CPG in its Body: A Diver-
sity of Behaviors

We have seen in chapter 4 that the model with asymmetric intersegmental couplings was suc-

cessful in reproducing many observations from in vitro recordings, including the distribution

of intersegmental phase lags and the correlation between phase lag and cycle frequency. The

controllability of the network through differential drive signals to the limb and axial oscillators

was demonstrated in section 4.4.5.

Our next step was to connect the CPG model to a musculo-mechanical model of the salaman-

der, in order to reproduce the various behaviors observed in vivo. The mechanical body also

allows for the introduction of sensory feedback in the CPG. The control architecture is shown

in figure 5.1. The new components are described in the following sections.

The CPG network equations and parameter values are the same as during simulations of in

vitro experiments (see equations (4.19) and tables 4.1 and 4.2), except for the drive, saturation

thresholds and limb→axis phase bias. These are given in table 5.1. The saturation thresholds

were increased from their in vitro values to match the higher frequencies observed in vivo.

Table 5.1 – CPG parameters adjusted for in vivo simulations.

Name Symbol Value

Drive d Behavior dependent
Drive random walk conv. factor c 0
Drive random walk step size 0
Saturation threshold d th 3 (axis)

1.27±0.02 (limbs)
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Figure 5.1 – Control architecture for the simulation of in vivo behaviors. Left: the CPG model is limited
to the first 25 segments of the spinal cord, of which 19 are shown in the figure. The axial CPG is
represented by a double chain of oscillators (black circles), numbered 1-25 and 26-50 for the left and
right sides respectively. The limbs are represented by four additional oscillators, numbered 51-54. Black
lines indicate a bidirectional coupling between two oscillators. Each oscillator also receives a drive
signal representing excitation from the MLR. Different drives can be applied to the limb oscillators
(blue), the trunk segments (green) and the tail segments (yellow). A stretch receptor (orange triangle)
on each side of each joint projects ipsilaterally and contralaterally to the three nearest segments. The
outputs xi , xi+25 of one segment close to each joint is used as activation signal for the corresponding
muscle (light purple lines, though they look gray on this paper); the phase θi of each limb oscillator
(light red) is used directly as a representation of the desired limb position. Middle: a delay is applied to
the CPG outputs xi , xi+25 to generate the left and right muscle activities M l

i , M r
i , to account for the

muscle activation dynamics. The muscle model also takes as input the joint position ϕi and velocity
ϕ̇i to determine the joint torque Ti , as shown in equation (5.1). Right: the torque Ti is applied at each
axial joint (orange circles). The joint positions and velocities are measured and fed back to the muscle
model (light orange lines) and the stretch receptors (joint positions only).
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5.1 Virtual Muscles

In the model of Ijspeert et al. [2007], the output of the CPG oscillators was used as a repre-

sentation of the desired trajectory of the robot joints. A PD controller was used to adjust the

voltage of each motor to follow this trajectory. In the animal however, the output of the CPG is

the activity of the motoneurons that innervate the muscles. It is thus more closely related to

the joint torque than to the joint position.

Due to the muscle activation dynamics, it can take 20 to 50 milliseconds for the muscle to

respond to a motoneuron action potential and adjust its activation state [Loeb and Ghez,

2000]. Even so, the activation state does not in itself determine the force generated by the

muscle. The force is a non-linear function of the current state of stretching of the muscle, its

current rate of stretching, and the activation [McMahon, 1984]. The dependence on the state

and rate of stretching are similar to the effect of a non-linear spring and damper respectively.

The force generated by the muscle at the joint will add to the internal forces due to other

muscles and passive body tissues, and to the external forces due to the interactions with the

environment. The sum of these forces determines the angular acceleration of the joint and

thus its future velocity and position.

From the above it follows that the relationship between the output of the CPG and the motion

at the joints is very indirect. Incorporating the dynamics of muscles is therefore necessary to an

accurate depiction of locomotion control by the CPG, and doubly so if we want to reproduce

a variety of behaviors, between which the interactions with the environment might be very

different. It is especially important if we want to investigate the role of sensory feedback in

the control loop: because sensory feedback is typically related to the motion of the body, the

dynamics of muscles will have a great impact on the shape of the feedback signal, and on its

phase relative to the CPG activity.

For all these reasons, we decided to incorporate a muscle model in our control architecture.

We use a spring-damper model with variable stiffness, rewritten as a rotational spring-damper

system with an active element [Ekeberg, 1993], such that two antagonist muscles are combined

in one viscoelastic joint (see figure 5.2):

Ti =α(M l
i −M r

i )−β(M l
i +M r

i +γ)ϕi −δϕ̇i (5.1)

where Ti is the torque generated by the muscle in joint i , M l
i and M r

i are the left and right mus-

cle activation signals coming from the CPG,and ϕi is the joint angle. The muscle parameters

α, β, γ and δ represent the active gain, stiffness gain, tonic stiffness and damping respectively.

The β and δ terms in equation (5.1) represent nlinear approximations to the dependence of

the muscle force on its state and rate of stretching.

In order to minimize the number of parameters, we started by using the same muscle param-

eter values in all joints. This is of course a gross approximation, and we found that weaker
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muscles towards the end of the tail were necessary to maintain a uniform phase lag along the

body, as shown in section 5.5. However, taper was not required for uniform lags in the real

robot and actually led to poor performance (section 5.8).

α

β,γ

δ

Figure 5.2 – Diagram of the rotational spring-damper muscle model. The parameters α, β, γ and δ

represent the active gain, stiffness gain, tonic stiffness and damping respectively.

The outputs xi , xi+25 of the oscillators in selected segments were delayed by 10 milliseconds

and the result used as inputs M l
i , M r

i to the muscle model (figure 5.1). The delay was introduced

as a minimum to account for the muscle activation dynamics. This was only done in simulation

since on the robot, the motor torque controller already introduces a much larger delay of the

order of 100 ms (see section 7.2).

5.1.1 Relation to a PD Controller

With its linear stiffness and damping properties, our muscle model is similar to the PD con-

trollers typically used for position control in robotics. PD controllers with low stiffness have

actually been used as an approximation of virtual muscles in robots [Fukuoka et al., 2003].

Here we explore in more details the similarities and differences between the two systems.

The Muscle Model as a PD Controller With Forcing Term

A PD controller attempts to minimize the error θ̃ = θ−θ0 between some measured variable θ

and the target value θ0, by adjusting its output y as a linear combination of the error and its

time derivative:

y = Kp (θ−θ0)+Kd
d

d t
(θ−θ0) (5.2)

where Kp and Kd are the proportional and derivative gains respectively.

Equation (5.1) has an active part (the α term) acting against a passive part (the second and
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third terms). The passive part can be read as a PD controller. Indeed, introducing

y = T

θ =ϕ
θ0 =ϕ0

Kp =β(M f +Me +γ)

Kd = δ

(5.3)

in equation (5.2), we find the passive part of the muscle model:

T =β(M f +Me +γ)(ϕ−ϕ0)+δ d

d t
(ϕ−ϕ0)

The active part is then acting as a forcing term on the PD controller.

The Muscle Model as a Variation of the PD Controller

The whole equation of the muscle model can also be considered as a PD controller where the

stiffness (proportional gain) and rest position are determined by the motoneuron activities

M f and Me . Introducing

y = T

θ =ϕ
θ0 =ϕ0

Kp =β(M f +Me +γ)

Kd = δ
X =− α

Kp
(M f −Me )

(5.4)

in equation (5.1), we find

y = Kp (θ−θ0 −X )+Kd
d

d t
(θ−θ0) (5.5)

or

y = Kp (θ−θ0 −X )+Kd
d

d t
(θ−θ0 −X )+Kd

d

d t
X (5.6)

If d
d t X = 0, then equation (5.6) corresponds exactly to a PD controller with target value θ0 +X .

The variable X =− α(M f −Me )
β(M f +Me+γ) thus corresponds to an offset from the original target.

If X is varied, the muscle model doesn’t quite correspond to a PD controller, because of the last

term of equation (5.6), or because of the absence of X in the derivative term of equation (5.5).
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In a PD controller, the derivative term reacts to changes in the error θ−θ0. Changes to the

offset θ0 would affect the output through both the proportional and derivative terms (see

equation (5.2)), whereas in a muscle model with constant θ0 and varying X , changes in the

offset X have no impact on the derivative term (see equation (5.5)); the derivative term only

reacts to changes in the actual joint velocity (not the “error velocity”). This corresponds to a

damping behavior, whereas the derivative term of the PD controller doesn’t behave exactly like

a damping term when the offset θ0 is changing. Of course, the target in equation (5.6) of the

muscle model could be varied by changing θ0 instead of X , but a nice feature of the muscle

model is that both the stiffness and the trajectory are controlled by the muscle activities M f

and Me ,

To summarize, the PD controller damps the motion relative to the target, whereas the muscle

model damps the absolute motion. In a PD controller, if the measured and target values

move in the same direction but with the target moving faster, the derivative term will have

and “anti-damping” effect due to the increasing error. By contrast, in the muscle model, the

damping will always counteract the actual motion of the joint.

Let’s express the muscle activities M f and Me as functions of X and Kp . From (5.4) we have

X =− α(M f −Me )

β(M f +Me +γ)

M f −Me =−Xβ

α
(M f +Me +γ)

M f +
Xβ

α
M f =−Xβ

α
(Me +γ)+e

and finally

M f =
Me (1− Xβ

α )−γ Xβ
α

1+ Xβ
α

(5.7)

Inserting (5.7) in the expression of the stiffness Kp in (5.4), we find:

Kp = 2Me +γ
1
β + X

α

(5.8)

From (5.8) and (5.7), we find expressions of the muscle activities as functions of the offset X

and stiffness Kp :

Me =
Kp

2

(
1

β
+ X

α

)
− γ

2

M f =
Kp

2

(
1

β
− X

α

)
− γ

2

(5.9)
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Equation (5.9) gives the values of Me and M f for any desired stiffness Kp , and as long as X is

kept constant, the muscle model will behave exactly like a PD controller. If X is varied, the

effect of the additional term in equation (5.6) can be mitigated by decreasing the damping Kd

or increasing the stiffness Kp .

5.2 The Mechanical Model in Simulation

The muscle model was used to actuate the joints of a mechanical body in simulation. The

idea was to use numerical simulations to explore systematically the muscle and feedback

parameter space, then to validate specific results on the robot Salamander robotica II. We

therefore decided to simulate the robot morphology rather than the morphology of the animal.

The robot is described in chapter 7. The geometry and kinematic structure of the robot

was closely reproduced, except for the limbs, as shown in figure 5.3. The simulations were

performed in the Webots 6 environment (Cyberbotics). The 3D physical simulation is based

on Open Dynamics Engine (ODE, www.ode.org). The density of the modules was set to 920

kg/m3. The Coulomb friction parameter for the body was set to 0.04, and that of the feet to

0.4. The passive caudal fin was modeled as a chain of 10 small segments with passive stiffness

[Grizou, 2011].

Robot controllers in Webots are limited to a time-step of 1 millisecond. However for an

accurate simulation of the spring and damping properties of the body, smaller time-steps

were necessary: the simulation was numerically stable only with a time-step of 0.5 millisec-

onds or less. The Webots limitation was bypassed by implementing the muscle model in a

physics plugin. Muscle activation signals were sent from the controller (which integrates the

CPG model) to the physics plugin using the libwebots framework 1. The torque calculated

as the output of the muscle model was added directly to the joint using the ODE function

dJointAddHingeTorque().

The same plugin was also responsible for the calculation of hydrodynamic forces.

5.2.1 The Hydrodynamic Model

The hydrodynamic forces were calculated using a recent extension of Lighthill’s Elongated

Body Theory [Boyer et al., 2008, 2010]. The model is basically the superposition of a 3D Lighthill

model with a Taylor-like model for resistive forces. This model has been used successfully to

model the hydrodynamics of the Amphibot III robot, which is a limbless version of our robot.

In that work, the hydrodynamic model coefficients were fitted to the robot using data from a

large number of swimming experiments.

We implemented the model in the Webots physics plugin, using the coefficients fitted to

Amphibot III. The limbs were modeled as small body segments, without wake.

1. https://ponyo.epfl.ch/redmine/projects/libwebots
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The Archimedes force was initially calculated using a simple approximation of the immersed

volume of each segment, and the result applied to the center of mass. This lead to unrealistic

behaviors in the model when the robot was coming partially out of water. In particular, an

almost fully immersed passive robot would capsize for no apparent reason.

We implemented a more accurate calculation of the Archimedes to remediate this problem,

based on the following steps:

1. The intersections between the edges of the parallelepiped 2 and the water surface are

calculated.

2. The intersection points are ordered using a simple Gift wrapping algorithm to form the

top face of the immersed polyhedron.

3. The volume and centroid of the immersed polyhedron are calculated using Mirtich’s

formulas [Eberly, 2002].

4. The Archimedes force is calculated from this volume and applied at the centroid.

The polyhedra used in this calculation are represented with a blue overlay on the swimming

robot in figure 5.3. Thanks to the more accurate calculation of the Archimedes force, the unre-

alistic behaviors disappeared. The stability of the robot was also increased when swimming at

the surface of water.

2. Note that the force is only calculated for the parallelepiped in each module . The final value is multiplied by a
constant factor to compensate for the cylindrical volumes that were omitted.
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Figure 5.3 – Simulations of swimming and forward land stepping in the Webots environment. In
the swimming simulation, the Archimedes and hydrodynamic forces are represented in yellow and
magenta respectively (with different scales). A blue overlay on the modules highlights the immersed
parts, the volume of which is used to calculate the Archimedes force.
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5.3 Integrating Local Sensory Feedback in the CPG

Taking the combined model composed of the CPG, the virtual muscles and the mechanical

model, we can close the loop by introducing sensory feedback. We first discuss the nature of

the feedback that we will use, then the ways of integrating this feedback in the CPG equations.

5.3.1 The Nature of the Feedback

We are specifically interested in local feedback distributed along the body of the animal, in

contrast to descending signal feedback from the vestibular system for example. Indeed, it

seems particularly interesting to investigate how local feedback interacts with descending

commands to shape the activity of the CPG. In choosing a form of sensory feedback to include

in the model, we again took inspiration from work on the lamprey. The best documented

form of local feedback in the lamprey is probably the feedback from stretch-sensitive edge

cells in the spinal cord [Viana Di Prisco et al., 1990]. Cells of similar morphology have been

observed in the salamander [Schroeder and Egar, 1990] but their sensitivity to stretching has

not been verified. These findings form the basis for the inclusion of proprioceptive feedback

in many lamprey and salamander models [Ekeberg, 1993, Ekeberg et al., 1995, Ijspeert et al.,

2005, Harischandra et al., 2011], including ours.

The local proprioceptive feedback si for oscillator i is calculated from the joint angle ϕi :

si = w ipsi
i sipsi

i +wcontra
i scontra

i (5.10)

with sipsi
i and scontra

i the positive part of ϕi and −ϕi respectively, for the left side (−ϕi and ϕi i

for the right side). The same feedback signal is sent to the 3 segments closest to each joint

(see figure 5.1). This leaves segments 3 and 16 without feedback, which is reasonable since the

amplitude of the body curvature is smallest at these positions in the animal [Karakasiliotis

et al., 2012].

To reduce the number of parameters, we decided to use the same feedback strengths in all

segments:

w ipsi
i = w ipsi

wcontra
i = wcontra

(5.11)

We conducted initial tests regarding the relative strengths of ipsilateral and contralateral

feedback, and found that the two parameters were mostly redundant for our purpose. We did

find that changing their relative values was useful to compensate for varying delays in the

control loop (data not shown), but we had no use for this capability. We chose to set:

wcontra =−w ipsi (5.12)
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5.3.2 Incorporating a Cartesian Feedback in a Polar Oscillator

We incorporate local proprioceptive feedback by reading the joint angle from the simulation

and sending it back to the CPG . Given two oscillators in Cartesian coordinates, with state

variables xi and yi for i ∈ 1,2, we know that adding x2 to ẋ1 for example will allow for the

entrainment of oscillator 1 by oscillator 2, provided that their intrinsic frequencies are not too

different [Pikovsky et al., 2003]. This motivated our choice to have the feedback act on the CPG

like a direct coupling between two Cartesian oscillators, as it should allow us to reproduce

another important finding in biology: numerous experimental studies in vitro have shown that

subjecting the lamprey spinal cord to discrete or periodic bending has a strong effect on the

fictive locomotion pattern [McClellan and Sigvardt, 1988, Williams et al., 1990, Kiemel et al.,

2003, Tytell and Cohen, 2008]. In particular, periodic bending can entrain the CPG rhythm in a

typical a range of 90% to 140% of the resting frequency [Williams et al., 1990, Tytell and Cohen,

2008]. This capability is attributed to the presence of the stretch-sensitive edge cells in the

spinal cord. In keeping with the idea of a phylogenetic conservatism between the lamprey and

the salamander, we wanted to be able to reproduce this effect in our model.

Note that it would be difficult to have the joint angle signal act on an oscillator like a regular

coupling, i.e. another term in the sum of equation (4.19): for this we would need to know

explicitly the phase of the joint angle. By using a Cartesian coupling, we avoid this difficulty

but create another: we now need to incorporate a Cartesian coupling in a Polar oscillator.

We start with the isolated oscillator equation from the system (4.19),

ṙ = a(R − r )

θ̇ =ω
(5.13)

with ω= 2πν, and rewrite it in Cartesian coordinates using the transformation

x = r cosθ

y = r sinθ
(5.14)

We find generic differential equations for the Cartesian states ẋ and ẏ by taking the time-

derivative of (5.14):

ẋ = ṙ cosθ− r θ̇ sinθ = ṙ

r
x − y θ̇

ẏ = ṙ sinθ+ r θ̇cosθ = ṙ

r
y +xθ̇

(5.15)

85



Chapter 5. The Flexible CPG in its Body: A Diversity of Behaviors

Introducting (5.13) in (5.15) gives us the Cartesian equations for our oscillator:

ẋ = a(R − r )

r
x − yω

ẏ = a(R − r )

r
y +xω

(5.16)

with r =
√

x2 + y2. We can now introduce the Cartesian feedback signal s in the oscillator:

ẋ = a(R − r )

r
x − yω+ s

ẏ = a(R − r )

r
y +xω

(5.17)

The remaining part of the work is to convert (5.17) back to Polar coordinates. We start with the

relation

r 2 = x2 + y2 (5.18)

and differentiate with respect to time:

2r ṙ = 2xẋ +2y ẏ

ṙ = xẋ + y ẏ

r

(5.19)

Replacing ẋ and ẏ from (5.17) gives

ṙ = x

r

(
a(R − r )

r
x − yω+ s

)
+ y

r

(
a(R − r )

r
y +xω

)
ṙ = 1

r 2 a(R − r )(x2 + y2)+ x

r
s

(5.20)

and using (5.18) and (5.14) we find

ṙ = a(R − r )+ s cosθ (5.21)

To find the expression of θ̇ with feedback, we use a linear combination of (5.15),

ẋ = ṙ

r
x − y θ̇

∣∣ · (−y)

ẏ = ṙ

r
y +x θ̇

∣∣ · x
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which gives us

x ẏ − ẋ y = x2θ̇+ y2θ̇ (5.22)

θ̇ = x ẏ − ẋ y

r 2 (5.23)

and introducing ẋ and ẏ from (5.17):

θ̇ = 1

r 2

( x y

r
a(R − r )+x2ω− x y

r
a(R − r )+ y2ω− y s

)
θ̇ = x2 + y2

r 2 ω− y s

r 2

(5.24)

and finally, with (5.18) and (5.14):

θ̇ =ω− s

r
sinθ (5.25)

Introducing the new feedback terms from equations (5.21) and (5.25) into the CPG equations

of (4.19), we find the CPG equations with feedback:

θ̇i = 2πνi +
∑

j
r j wi j sin(θ j −θi −φi j )− si

ri
sinθi

ṙi = ai (Ri − ri )+ si cosθi

xi = ri (1+cosθi )

νi = di ei

Ri = di P (di ,d th
i )

(5.26)

The influence of this feedback on the dynamics of the CPG is analyzed in detail in chapter 6.

5.4 Systematic Exploration of the Muscle and Feedback Parameter

Space

The simplicity of our CPG and mechanical models allows us to run tens of thousands sim-

ulations in a few days. We were thus able to explore the muscle and feedback parameter

spaces systematically, and choose parameter values based on the global picture of the fitness

landscapes, rather than by trusting an optimization algorithm.

Rather than exploring the whole six-dimensional space (α,β,γ,δ, w ipsi, wcontra) in one time,

we used an iterative process, fixing some parameters while others were varied. Compared with

an optimization algorithm, we are not guaranteed to settle on an (locally) optimal value, but

we get a better intuition of the effect of each parameter on the dynamics of the system. We

show here some results around our final parameter values.
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5.4.1 Fitness Measurements

In our search for good muscle and feedback parameters, we tried to optimize the following

fitness measurements:

1. Speed: This is an obvious measure of fitness for any particular gait.

2. Feedback effect: This is a rather intuitive, ill-defined fitness. It relates to one of our core

motivations: we want to investigate the role of muscle dynamics and sensory feedback

in salamander locomotion. Therefore we are interested in parameter values that show

an interesting effect of feedback on the CPG, e.g. such that feedback modulates the

intersegmental phase lag.

3. Intersegmental phase lag: The model is supposed to reproduce the five salamander

behaviors described in section 2.2, which are characterized by specific cycle frequencies

and CPG and kinematic intersegmental phase lags. We generally have no problem

reproducing an arbitrary cycle frequency, but phase lags can be problematic. We want

at least that the qualitative differences in phase lags between the five behaviors be

reproduced with the model. All the measures of phase lag along the body that we

present below are calculated as a lag between two consecutive segments, in percentage

of a cycle duration. The kinematic phase lags that we measure between two modules are

always converted to the equivalent intersegmental values. Also, since the biological data

at our disposal concerns mostly the mid-trunk, we perform all our measurements on

the second, third and fourth axial joints. The fifth joint is excluded as it is under strong

mechanical influence from the second girdle.

4. Periodicity: When (strong) feedback is introduced in the CPG, periodicity becomes a

concern as the CPG pattern can become erratic. We try to avoid aperiodic gaits.

5. Maximal torques: Since we want to eventually reproduce our results on the robot, we

look for parameter values that stay in its range of operation. Our robot is capable of

generating up to 0.7 Nm in each axial joint (see section 7.2).

Regarding the feedback effect fitness, our CPG model provides a natural benchmark: the

intrinsic intersegmental phase of 6.6% is quite inappropriate for swimming. In an open-

loop model we would adjust it through differential drive signals. However we found early on

that with appropriate muscle parameter values and feedback strengths, this open-loop CPG

pattern could be significantly decreased by sensory feedback, leading to a dramatic increase in

swimming speed. However this effect often led to unstable gaits, in the sense that swimming

was aperiodic, with transient phases showing poor performance.

We therefore started to explore systematically the parameter space with the swimming gait,

looking for a large region where feedback would have the beneficial effect of decreasing the

phase lag and at the same time cause no loss of periodicity.

All the tests in this section were made using “average individuals”: the standard deviations

of the excitabilities were set to 0. This gave us more reproducible results while searching for
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good muscle and feedback parameters. This restriction was relaxed at the time of validating

the simulation results on the robot (see section 5.8).

5.4.2 Selection of the Muscle Damping Constant

The damping parameter δ is critical to the stability of the model. If it is too low, the energy of

the system is not sufficiently dissipated and the simulation is mechanically unstable. If it is too

high, the simulation becomes numerically unstable, requiring a smaller time-step. This is not

a problem with the model per se, but limits the possibilities of exploration of the parameter

space depending on the simulation time constraints. In our case the time-step was not the

limiting factor, but we found that large damping constants led to decreased performance. This

is to be expected, since a high damping amounts to a lot of lost energy.

As explained previously, we focused on the effect of feedback in choosing our parameter values.

Figure 5.4 shows a beneficial effect of feedback in a large region of the (β, w ipsi) parameter

space (dark regions in the bottom panels), with stronger feedback needed when β (i.e. the

stiffness) increases. However only a very small part of this region corresponds to perfectly

periodic rhythms (upper right panel).

Figure 5.5 shows the results obtained after increasing the damping constant to 0.1. The periodic

region is larger, and the speed a bit lower as expected. Figure 5.6 shows the results for δ= 0.15.

The periodic region has shrunk again, and the speeds are even lower.

From these observations we decided to set δ= 0.1.
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Figure 5.4 – Systematic exploration of the (β, w ipsi) parameter space in swimming simulations with
α = 0.4, γ = 0 and δ = 0.05. Upper left and bottom: Without feedback w ipsi = 0) the CPG produces
patterns with phase lags of 6.6%, leading to very small speeds. Increasing the feedback leads to a drop
in the CPG and kinematic phase lags (bottom left and bottom right) and an increase in swimming
speed. Higher β values, which correspond to stiffer bodies, require stronger feedback for the same
effect on the CPG. Upper right: Maximum standard deviation of the cycle period among the oscillators.
Only a small region of the parameter space (in black) gives perfectly periodic rhythms.
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Figure 5.5 – Systematic exploration of the (β, w ipsi) parameter space in swimming simulations with
α= 0.4, γ= 0 and δ= 0.1.
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Figure 5.6 – Systematic exploration of the (β, w ipsi) parameter space in swimming simulations with
α= 0.4, γ= 0 and δ= 0.15.
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5.4.3 Selection of the Muscle Stiffness and Feedback Strength

We have seen in the previous section that appropriate feedback strengths depend strongly on

the stiffness. We therefore explored the corresponding parameters together.

Figure 5.7 shows the result of a systematic exploration of the (β,γ) space with w ipsi = 19. These

simulations were performed with a drive of 1.34, corresponding to an intrinsic frequency of

1.47 Hz. We first note that in this case β and γ are mostly redundant, as both can be varied to

adjust the stiffness. We see again a small region of periodic rhythms (upper right panel, black

region) where feedback has a strong effect on the CPG pattern (lower left panel, same area).

Looking at the results obtained with w ipsi = 21 and w ipsi = 24 (figures 5.8 and 5.9 respectively)

we see that a feedback strength of 21 maximizes the size of the periodic region. We therefore

set w ipsi = 21. 3

Figure 5.8 also provides us with an optimal stiffness, with a degree of freedom due to the

redundancy of β and γ. Remembering that the salamander shows passive tail undulations

during underwater stepping (chapter 2), we decided on a small but non-zero value for the

tonic stiffness with β= 1.2 and γ= 0.2.

3. For this level of drive. The scaling of the feedback strength with the drive is addressed in chapter 6.
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Figure 5.7 – Systematic exploration of the (β,γ) parameter space in swimming simulations with α= 0.4,
δ= 0.1 and w ipsi = 19.
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Figure 5.8 – Systematic exploration of the (β,γ) parameter space in swimming simulations with α= 0.4,
δ= 0.1 and w ipsi = 21.
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Figure 5.9 – Systematic exploration of the (β,γ) parameter space in swimming simulations with α= 0.4,
δ= 0.1 and w ipsi = 24.
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5.4.4 Selection of the Muscle Gain

The active gain α controls the amplitude of the joint oscillations: larger values allow the

muscles to push further on each side at a given cycle frequency. Larger amplitudes (up to a

point) lead to higher swimming speeds. Alternatively, α can be increased together with the

stiffness (through either β or γ) to produce the same joint angles with more rigidity, in order

to resist perturbations for example.

The previous results were obtained with an active gain α= 0.4. This value was selected as a

trade-off between the maximization of the speed and the minimization of the muscle torques:

the periodic region in figure 5.8 is at the limit of our robot’s capabilities, with maximum torques

between 0.67 Nm (β= 1.65, γ= 0) and 0.85 Nm (β= 0, γ= 1.8).

5.5 Salamander Behaviors in Simulation

Having selected muscle and feedback parameter values for swimming, our next step was to

try and reproduce all five behaviors with the same model. The excitatory drives to the CPG

oscillators were tuned to reproduce typical EMG patterns for each behavior, in terms of cycle

frequency and intersegmental phase lags. In accordance with the principles of controllability

described in section 4.4.5, we were able to reproduce the CPG patterns for the five behaviors

using differential activation of only two parts of the network, with one level of drive used for

the limb oscillators and another used for the axial oscillators.

The cycle frequencies targeted with the model were set to half that of the EMG recordings.

This was chosen to reflect the scaling of locomotion frequency with body mass observed in

animals [Bejan and Marden, 2006].

As described in the next section, we found it necessary to introduce body taper in the form of

weaker muscles in the tail. This is in agreement with a simulation study of the lamprey from

McMillen et al. [2008] which found that taper was necessary to reproduce the CPG-kinematic

phase lags observed in the animal. We implemented taper by multiplying the parameters α

and β in modules 6, 7 and 8 by a factor 0.7, 0.5 and 0.3 respectively.

For behaviors involving the limbs, a transfer function on the phase θi of the limb oscillators was

used to adjust the duty factor to 77%, as observed during forward and backward land stepping

in the salamander [Ashley-Ross and Lauder, 1997, Ashley-Ross et al., 2009]. An optimal phase

bias, in terms of speed, was determined for the limb→body CPG couplings. A value φi j = 1.83

was found to be a compromise that gave good performance for underwater stepping as well as

forward and backward land stepping.

In the next sections we show typical CPG and kinematic patterns that were obtained, and the

adjustments that were sometimes necessary to reproduce a particular behavior.
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5.5.1 Swimming

Swimming patterns for four conditions are shown in figure 5.10, using the same muscle

parameters: α= 0.4, β= 1.2, γ= 0.2 and δ= 0.1. The drive was set to 1.34, corresponding to an

intrinsic frequency of 1.47 Hz.

The bottom-left panel shows the closed-loop pattern obtained with the feedback strength

w ipsi = 21 selected in section 5.4.3, with the same level of drive applied to all oscillators. The

local sensory feedback has an accelerating effect on the CPG, increasing the frequency to 1.54

Hz. Apart from a deviation at joint 2, the CPG phase lag is quite uniform along the body. The

CPG-kinematic delay increases towards the tail, as observed in the animal (see section 3.1).

The phase lag deviation around joint 2 is due to the absence of sensory feedback in segment 3

(see figure 5.1). As discussed in chapter 6, the absence of feedback leads to a relative decrease

of excitation in this segment. This has the effect of increasing the lag between segments 2 and

3. The late oscillation of segment 3 also causes the following segments to be delayed, which

explains the high lag between joints 1 and 2 (segments 1 and 5) in the figure. Interestingly, a

similar irregularity in the CPG activity has been observed in the animal (see section 2.2). A

previous modeling study also found that sensory feedback was a likely explanation [Bem et al.,

2003].

The bottom-right panel shows the same simulation with the body taper removed, so that all

muscles have the same strength. In this case the muscles in the tail are too strong; the last

active joint in particular is seen to catch-up with the CPG, giving a smaller CPG-kinematic lag

locally. As explained in chapter 6, this smaller CPG-kinematic lag, close to π
2 , has a maximal

accelerating effect on the corresponding joints, causing a decrease of the CPG phase lag

towards a quasi-standing wave. We note also from the trajectories of the neck joint, at the top,

that the first segment is not frequency-locked with the rest of the body. A stable gait without

taper would thus require an adjustment to the feedback strength.

In the upper-left panel, we show how large the intersegmental phase lag would be in absence

of feedback. This large phase lag can also be decreased by giving less excitation to the first

segment than to the rest of the body (here 1.03 and 1.34 respectively).
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Open-loop with uniform drives Open-loop with differential drives
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Figure 5.10 – Swimming patterns in simulation. Thin lines represent the left CPG oscillator (red)
and kinematic (black) oscillations at each joint. Circular markers are placed at the centroid of the
positive half of the oscillation in each cycle. The centroids are used to calculate the phase lag between
consecutive modules. The phase lags are proportional to the slope of the thick lines that connect the
centroids. Top left: With the same drive to all oscillators, the CPG network without feedback produces
a very large intersegmental phase lag of 6.6%. Top right: Using a 23% lower drive for the first segment
gives a much more natural phase lag close to 2%. The kinematic phase lag is significantly higher.
Bottom left: With a strong sensory feedback, the phase lag is also reduced to about 2% in spite of the
uniform drives. Here also the kinematic phase lag is greater than the CPG phase lag. Bottom right: Same
condition as in the left panel, but with uniform muscle strengths along the body. The absence of taper
causes great irregularities at the level of the last active joint.
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5.5.2 Forward Land Stepping

Good open-loop patterns for forward land stepping were obtained with limb and axial drives

of 1.21 and 0.657 respectively (figure 5.11 left). The kinematics however displayed significant

deviations from the CPG pattern, which are not observed in the animal. This could be reme-

diated by increasing the tonic stiffness γ from 0.2 to 0.6 (figure 5.11 right). Interestingly, this

increased stiffness was not necessary with the robot (section 5.8).
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Figure 5.11 – Open-loop forward stepping in simulation. See figure 5.10 for a general description. Here
the output of the limb oscillators is shown in dashed red. Left: CPG and kinematic patterns using the
same muscle parameters as for swimming. Right: The kinematic pattern follows the CPG more closely
after increasing the tonic stiffness γ from 0.2 to 0.6.

Next, the effect of sensory feedback on forward land stepping was analyzed. Figure 5.12 (top

left) shows that without differential drive or feedback, the CPG with active limbs produces

backward traveling waves with large negative phase lags. These correspond to the right peak

of the in vitro distribution of section 4.4.3. However, introducing a similar (but weaker) axial

proprioceptive feedback as in swimming has a counter-productive effect. This is illustrated

in the top-right panel, using the open-loop pattern of figure 5.11 and setting w ipsi = 1.4. The

CPG phase lag is again negative. The kinematic pattern deviates significantly from the CPG

pattern and shows positive lags.

Since a positive ipsilateral and negative contralateral feedback had a counter-productive effect,

we tried inverting the ipsilateral and contralateral weights. With w ipsi =−wcontra =−1.4, we

get a nearly standing wave in the trunk even when using uniform drives.

Finally, we considered introducing excitatory feedback signals from the limbs, as proposed in

[Harischandra et al., 2011]. We used the following simplified expression, introduced directly in

the equation for the phase derivative θ̇ in the limb oscillators:

θ̇ =ω+w limb max

(
0,1− |ϕ−ϕ0|

π
2

)
(5.27)

where ϕ is the angle of the rotational limb joint and ϕ0 the angle at the transition from stance
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to swing. The feedback is maximal at the end of the stance and decreases linearly on either side

until it reaches zero. The rate of decrease is such that the feedback is non-zero for a quarter of

the leg rotation.

We found that this limb feedback with a strength w limb = 5 could almost generate a standing

wave in a network with uniform drives (figure 5.12 bottom-right).
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Figure 5.12 – Feedback effect in forward land stepping. In all four cases γ was set to 0.2. In cases of
uniform drive, the drive was 0.9. Top left: Without differential drive or feedback, the CPG with non-
saturated limb oscillators produces caudorostral waves of activity. Top right: Using the same drives
as in figure 5.11, the axial proprioceptive feedback (here w ipsi = 1.4) has a counter-productive effect
of reducing the phase lag. Bottom left: Inverting the ipsilateral and contralateral weights (i.e. setting
w ipsi =−1.4) leads to an increase in phase lags such that differential drives are not necessary. Bottom
right: Good patterns can also be obtained with uniform drives using excitatory feedback from the
limbs.

We decided to disable sensory feedback when simulating the other behaviors, and use dif-

ferential activation of the limb and axial oscillators exclusively. It is likely that similar results

could be obtained by replacing partially or completely the drive difference with limb sensory

feedback.
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5.5.3 Underwater Stepping

Underwater stepping is particularly interesting due to the passive tail undulations observed in

the animal (chapter 2). This behavior required adapting the buoyancy of the robot to keep it at

the bottom of the pool. This was achieved by decreasing all Archimedes forces by 8%.

We simulated underwater stepping with active and passive tails (without feedback), using

differential drives to the limb and axial oscillators (0.84 and 0.44 respectively) to generate

an almost standing wave in the axis, in agreement with the EMG recordings. The passive

tail was simulated by setting the drive to zero in the tail oscillators. We then looked at the

hydrodynamic forces in both cases. We note that this is an example of a study that was possible

in simulation, that we could not have done on the real robot.

Figure 5.13 – Comparison of hydrodynamic forces during water stepping in simulation with active vs.
passive tail.

Figure 5.13 shows the result of this analysis. We see that the passive tail generates much more

thrust than the active tail. It actually generates enough thrust to mostly overcome the drag

generated in the rest of the body. The low efficiency of the active tail can be understood

intuitively: When the tail is passive, the oscillations induced by the almost standing wave in

the trunk propagate down the tail, generating a traveling wave that helps moving forward.
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When the tail is active, it actively tried to generate a quasi-standing wave, which is not as

efficient as the passive traveling wave.

The oscillation patterns in both cases are shown in figure 5.14. The tail oscillations look

remarkably similar despite the significant difference observed in hydrodynamic forces.

18 20 22 24 26 28

1

2

3

4

5

6

7

8

Time [s]

Jo
in

ts
pa

ss
iv

e

18 20 22 24 26 28

1

2

3

4

5

6

7

8

Time [s]

Jo
in

ts
pa

ss
iv

e

Figure 5.14 – Underwater stepping in simulation. Left: Passive tail. Right: Active tail.

5.5.4 Backward Stepping

The simulation of backward stepping required two adaptations. First, the direction of rotation

of the limbs had to be inverted. This was done by multiplying the phase θi of the limbs by -1 at

the output of the CPG. Second, the muscles had to be made stronger.

Figure 5.15 (left) shows that with the muscle parameters used in the previous behaviors, the

CPG fails to impose a traveling wave in the trunk. Good results were obtained by multiplying

the muscle gain α and stiffness β by 10 (right panel). The differential drives were set to 0.51

and 0.22 for the limb and axial oscillators respectively.
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Figure 5.15 – Backward stepping in simulation. Left: Normal muscle parameters. Right: Muscle gain α
and stiffness β multiplied by ten.
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5.5.5 Struggling

The simulation of struggling required fixing the hind girdle to the floor. However the robot

should be free to adjust its pitch angle depending on the rotation of the limbs. This was

implemented in ODE by removing the tail and using a hinge joint between the hind girdle and

the world.

Friction between the robot and the floor was reduced by a factor 2, to mirror the experimental

conditions with the animal, which was moving on a table covered with oil.

Finally, the simulation of struggling also required stronger muscles, as shown in figure 5.16.

We used the same parameters as for backward stepping, multiplying α and β by a factor 10.
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Figure 5.16 – Struggling in simulation. Left: Normal muscle parameters. Only five joints are shown as
the tail was not simulated. The kinematics deviate wildly from the CPG pattern. Right: Muscle gain α
and stiffness β multiplied by ten.

5.6 Turning

The study of Ijspeert et al. [2007] showed that turning gaits could be generated by using

differential drive signals between the left and right sides in a double chain of oscillators.

However it is not obvious to what extent the principle applies to our control architecture based

on virtual muscles. It is also not clear how the differential drive between each side would

interact with the local sensory feedback.

We did not investigate turning gaits in detail, but we performed a few tests to verify that the

left-right differential drive mechanism also works in our model. The results are shown in

figure 5.17. We see that the mechanism works very well, with and without feedback. Note that

with feedback (right panels), the robot does not swim quite straight even before the turning

begins. It appears that the controller with local sensory feedback but no steering is more

sensitive to the initial conditions.
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Figure 5.17 – Turning during swimming in simulation. An imbalence in the drives between the left and
right chains of oscillators was introduced after 10 seconds of simulation. The trajectory of the head
is shown without and with axial proprioceptive feedback (left and right side respectively. In the cases
without feedback, a differential drive of 1.03 in the neck vs 1.34 in the rest of the body was used. For the
top panels, the drive in the left and right chains of oscillators was multiplied by 1.2 and 0.8 respectively,
yielding a ratio of 1.5. For the bottom panels the drives were multiplied by 1.5 and 0.5 respectively (ratio
of 3).

5.7 Gait Transitions

To conclude the simulation study, we show two transitions from in figure 5.18. For the top

panel, differential drives were used for the swimming gait. The forward stepping drives were

replaced with the swimming drives after 10 seconds of simulation. For the bottom panel, the

forward stepping drives were replaced with a uniform drive, and axial feedback was enabled

(it was disabled during forward stepping).

In both cases, the transition is made in about one cycle. However, the open-loop network

needs about 7 cycles for the intersegmental phase lags to converge to their final value. The

closed-loop network converges in 2 or 3 cycles.
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Figure 5.18 – Walk-swim gait transitions in simulation. Top: Transition to swimming without feedback.
After 10 seconds, the forward stepping drives are replaced with a differential drive of 1.03 in the neck
vs 1.34 in the rest of the body. The network needs about 7 cycles to converge to its final phase lag
after the transition, as seen from the CPG-kinematic lag in joint 8. Bottom: Transition to swimming
feedback. After 10 seconds, the forward stepping drive are replaced with a uniform drive of 1.34 and
axial feedback is enabled with a strength w ipsi = 21. The network needs only 2 or 3 cycles to converge
after the transition.
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5.8 Robot Experiments

We used the CPG model of section 4.4 and the muscle parameters of section 5.4 to drive the

robot Salamandra robotica II [Crespi et al., 2013]. Chapter 7 describes the robotic platform

from a control perspective. The control architecture in figure 7.5 can be compared to that used

in simulations, shown in figure 5.1. The speed was measured in each experiment using an

external video tracking system described in section 7.4. The tracking system was also used to

record the trajectory of each module, in order to calculate the actual intersegmental kinematic

phase lag. 4

The robot model differs from the simulation in three respects. First, the control architecture

does not include an artificial delay between the output of the CPG and the input of the

virtual muscles, since the PI torque controller already introduces a larger delay (chapter 7).

Second, sensory feedback was removed in the neck, as it was destabilizing, leading to aperiodic

rhythms. Note that such feedback is presumably weak in the animal, since neck oscillations are

very small, while in the robot the neck oscillations are quite large, due to the uniform muscles

parameter values along the body that we have assumed for simplicity. A model that reproduces

the low amplitude of neck oscillations (for example by increasing the neck stiffness) and that

includes neck feedback would presumably gives qualitatively similar results. Figure 5.25 shows

that the inclusion or exclusion of neck feedback does not change the effect of feedback on the

CPG phase lag qualitatively, at least during forward land stepping. The effect of neck feedback

during swimming is addressed in chapter 6. The third modification is the removal of the body

taper that was used in simulation. As described below, we found that taper in the form of

weakened muscles in the tail was not necessary to produce nearly uniform phase lags in the

robot, and was actually detrimental to performance and stability.

Two adaptations were made to the robot to reproduce the different behaviors. During under-

water stepping, the buoyancy was adjusted by adding 72 g of lead inside the head. During

backward stepping, tape was added under the feet to increase slipping, mirroring the condi-

tions of the animal experiments.

As in simulations, the cycle frequencies targeted with the model were set to half that of the

EMG recordings. Due to the limits of operation of the robot, the target value for swimming

was further lowered down to 1.1 Hz.

Five different “individuals” were modelled with the robot, by initializing the CPG model param-

eters with different random seeds. The excitatory drives were adjusted for each “individual””

and each motor behavior. The same muscle parameter values could be used to reproduce

swimming, underwater stepping and forward land stepping, while backward land stepping

and struggling required stronger muscles (see table 5.2). The CPG and kinematic patterns

obtained with one individual are given in appendix A.

4. The actual kinematics differ from the estimation of the motor encoders due to the elasticity of the connectors
between the robot modules.
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Table 5.2 – Muscle and feedback parameters for robot experiments

Name Symbol Value

Feedback strength w ipsi 10 (swimming)
Muscle strength α 0.5

4 (backward stepping, struggling)
Muscle active stiffness β 1.2

12 (backward stepping, struggling)
Muscle tonic stiffness γ 0.2
Muscle damping δ 0.1

We found that compared to the simulations, the muscle gainα had to be increased on the robot

to obtain reasonable amplitudes of oscillation during swimming. The top panel in figure 5.19

shows that a 25% increase of α had a great impact on the swimming speed. However the tail

oscillations were still rather small. We therefore decided to remove the body taper and use the

same muscle parameters in the tail as in the trunk. This had an even greater impact on the

swimming speed, as can be seen in the figure. It also led to nicer, more periodic gaits, as shown

in the bottom-right panel. The bottom-left panel shows that the larger oscillations enhanced

the effect of feedback on the intersegmental phase lag, shifting the plot to the left.

During swimming, the same high level of drive could be used for limb and axial oscillators. The

strong drive would cause the limb oscillators to saturate. The axial network without sensory

feedback would produce a travelling wave with high mid-trunk intersegmental phase lags

of 6.1 ± 1.4 %, reflecting the main peak of the in vitro phase lag distribution. This is very

unlike the 2% EMG phase lag in the animal and leads to poor swimming. The CPG phase

lag could be decreased by lowering the drive to the most rostral oscillator, as proposed in

models of the lamprey CPG [Kozlov et al., 2009], and as shown in simulation in section 5.5.1.

Alternatively, we found that a strong axial proprioceptive feedback could significantly decrease

the CPG phase lag (phase lag 1.9 ± 1.1 %), leading to a dramatic improvement in swimming

speeds (figure 5.24). The effect of feedback on the intersegmental phase lags is illustrated in

figure 5.20. The slope of the lines connecting the circular markers in the figure represents the

intersegmental phase lags (with vertical lines corresponding to a phase lag of zero). Before

introduction of sensory feedback, the phase lag is too large for the robot to swim efficiently.

The introduction of feedback reduces the phase lags to appropriate values. The variability

between individuals is also reduced by the introduction of feedback: while the third individual,

in red, is an outlier in the open-loop case (dashed lines), it has a phase lag similar to the other

individuals in the closed-loop case (solid lines).

The remaining motor behaviors, which involve rhythmic limb activity, required setting the

limb→body phase bias to an appropriate value. Systematic tests with steps of 0.5 were con-

ducted to find an optimal limb→body CPG phase bias in terms of speed. The results are shown

in figure 5.21. For forward land stepping an underwater stepping, we found a common optimal
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Figure 5.19 – Effect of axial proprioceptive feedback during swimming. Results are shown for three
conditions: with the muscle gain α= 0.4 and body taper, as in simulations; with α= 0.5 and body taper;
with α= 0.5 and no body taper. The bottom-right plot shows the maximum, among the modules, of the
standard deviation of the cycle frequency. We use this quantity as a measure of the gait periodicity.

value φi j = 4. For backward stepping the limb→body phase bias was optimized separately,

yielding an optimal value φi j = 5.5. 5

The behaviors involving rhythmic limb activity were reproduced as in simulation, using

differential drive signals between the neck and the rest of the body. The drives used to achieve

the various behaviors are shown in figure 5.23. The nearly standing wave produced during

underwater stepping (CPG phase lag of 0.8 ± 0.3 %) resulted in slightly slower locomotion than

when the tail was left to oscillate passively as observed in the animal. The locomotion speeds

for each individual and each behavior are shown in figure 5.24.

The CPG intersegmental phase lags obtained for forward land stepping, backward land step-

ping and struggling were 0.3 ± 0.4 %, 3.5 ± 0.7 % and -4.1 ± 0.7% respectively. The CPG and

kinematic phase lags for all individuals and all behaviors are shown in figure 5.22. The CPG

intersegmental phase lag was smaller than the kinematic phase lag during swimming, under-

5. A value φi j = 6 actually gave slightly better speeds, but was at the edge of the optimal region.
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Figure 5.20 – CPG activity pattern during swimming with and without feedback (solid and dashed
lines resp.). For experiments with feedback, a strength w ipsi = 10 was used. Colors correspond to
different simulated individuals. The relative position of the ten lines on the horizontal axis is arbitrary.
Circular markers show the relative timing of the “bursts” in the left oscillators of 8 CPG segments
(the segments used to control the virtual muscles of the 8 robot joints). The lines joining the markers
illustrate the phase lags between the robot joints. The open-loop phase lags, which are too large for
efficient swimming, are reduced after introduction of sensory feedback. The variability of phase lags
between individual is also reduced (the third individual, in red, is an outlier in open-loop but not in
closed-loop).

water stepping and forward land stepping. It was larger (in absolute values) during backward

stepping and struggling. In all experiments but one, the motor encoders reported a phase lag

in between the value calculated with the external video tracking and the CPG phase lag.

Axial proprioceptive feedback similar to that used during swimming was found to have a

detrimental effect on rhythm stability during underwater stepping and forward land stepping,

with axial and limb oscillators often failing to reach frequency locking. Axial feedback was

also found to be counter-productive and decrease the phase lag in trunk during forward land

stepping, when differential drives are striving to increase it from negative values towards zero.

This is illustrated in figure 5.25, both in presence and in absence of feedback in the neck.

The results shown in figure 5.22, 5.23 and 5.24 were obtained using axial proprioceptive

feedback of strength 10 for swimming and only differential drive for the other behaviors.
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Figure 5.21 – Optimization of the limb→body phase bias in the robot. The tests were performed using
an “average individual” where the standard deviation of the oscillator excitabilities was set to 0. The
phase bias selected for each behavior is indicated with a circular marker (values in radians). The speeds
obtained with backward stepping were multiplied by 3 to increase the legibility of the plot.

5.9 Discussion

The robot experiments highlight the controllability of the asymmetric CPG model. During

swimming, the lag can be adjusted by changing the drive to the first segment, exactly like in

models of the lamprey CPG. Since the natural axial phase lag is around 6%, the drive to the

first segment must be reduced to get a lag of about 2%. In the other behaviors, the frequency

of the first segments is forced by the strong couplings from the limb oscillators. The lag can

thus be controlled by adjusting the drive to the limb oscillators. Since the mid-trunk lag in the

isolated network with active limbs is around -7% (rightmost peak of the in vitro distribution),

the limb drive must be increased compared to the axial drive to achieve a standing wave or a

rostrocaudal traveling wave, as shown in figure 5.23.

As discussed in chapter 6, the differential drive principle also applies to the modulation of

the intersegmental phase lag by proprioceptive sensory feedback. Sensory feedback often has

an excitatory effect on the CPG activity, increasing the locomotion cycle frequency. In our

case, during swimming the local proprioceptive feedback in the axis increases the uncoupled

frequency of the trunk and tail segments. The first segment receiving no feedback, its un-

coupled frequency is comparatively reduced, which leads as expected to a decrease in phase

lags, here from 6.1 ± 1.4 % down to 1.9 ± 1.1 % (5.20). The corresponding improvement in
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Figure 5.22 – Intersegmental phase lag in the robot mid-trunk in 5 simulated individuals, each repro-
ducing the 5 motor behaviors (black: backward stepping, light blue: swimming, dark blue: underwater
stepping, green: forward land stepping, red:struggling). Each line corresponds to one experiment
and shows the mean and standard deviation of the CPG and kinematic phase lags. The square and
triangular markers show the kinematic lags as calculated from the internal motor encoders and external
video tracking respectively. The phase lags are calculated using data from the joints 2, 3 and 4, which
represent the robot’s mid-trunk.

swimming speeds is shown in figure 5.24. The same feedback strength was used with the five

“individuals”, showing that the effect does not rely on a fine tuning of the feedback strength.

However this particular feedback strength did not lead to perfectly periodic swimming in all

simulated individuals, as can be seen by the high standard deviation for the speed of the fifth

individual in figure 5.24 (yellow).

In the motor behaviors that involved rhythmic limb activity, the excitation from axial proprio-

ceptive feedback, added to the already high intrinsic frequency of the axial oscillators, often

prevented them from reaching frequency locking with the slow limb oscillators. When fre-

quency locking did occur, the additional axial excitation was counter-productive, decreasing

the phase lag instead of helping to increase it from -7% to 0 or positive values. We investigated

other forms of proprioceptive sensory feedback in simulation, and found that using opposite

feedback weights, where the oscillator is inhibited by an ipsilateral stretch and excited by a

contralateral stretch, could contribute to a slowdown of the axial oscillators and an increase

in phase lags. The effect was reproduced on the real robot (figure 5.25), although it was not

used to replace the differential drives as in simulation. Alternatively, simulations showed that
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Figure 5.23 – Differential drive signals used to reproduce the 5 motor behaviors, and resulting cycle
frequencies. From left to right: swimming with uniform drives and a feedback strength w ipsi = 10,
underwater stepping, forward land stepping, backward land stepping and struggling. The mean and
standard deviation among the 5 individuals is shown for each behavior. The overlap in limb drives
between swimming and forward land stepping is due to the reduced drives and limb saturation
thresholds used for swimming to accommodate for the robot’s limitations.

the extra limb drive could be partially or totally replaced with an excitatory proprioceptive

feedback from the limbs, with the same effect of increasing their uncoupled frequency, and

thus the intersegmental phase lag (figure 5.12). Such a feedback has been proposed as a way

of facilitating the transition from walking to trotting in the salamander [Harischandra et al.,

2011].

In the model, descending drives and various forms of proprioceptive feedback thus play a

similar role in increasing or decreasing the uncoupled frequency of the oscillators and thereby

modulating the intersegmental phase lag.
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Figure 5.24 – Speed of locomotion in the five individuals for each motor behavior. From left to right:
swimming with uniform drives in open-loop, swimming with uniform drives and a feedback strength
w ipsi = 10, underwater stepping, forward land stepping, backward land stepping and struggling. An
additional marker for underwater stepping (gray) shows the speed of an “average” individual a using an
active tail.

a. I.e. a network with the standard deviation of the oscillator excitabilities set to 0.
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Figure 5.25 – Effect of proprioceptive feedback on the intersegmental phase lag during forward land
stepping in an “average” individual where the standard deviation of the oscillator excitabilities was set
to 0. The green line shows results obtained with feedback enabled in all joints. The blue line shows
results obtained with feedback disabled in the neck. Feedback weights w ipsi ≥ 4 lead to aperiodic
rhythms in the tail. Locomotion becomes erratic for w ipsi beyond 6.
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6 Understanding the Effect of Local
Sensory Feedback

We have seen in the previous chapter that local proprioceptive feedback has an accelerating

effect on the CPG. When the neck receives no feedback, this effect amounts to a differential

drive between the neck which is left alone and the trunk and tail which receive additional

excitation from the feedback. The mechanism described in section 4.4.4 predicts that this

differential excitation will lead to a decrease in intersegmental phase lags, and indeed the phase

lag is reduced from over 6% to about 2%, leading to a dramatic improvement in swimming

performance. The same mechanism predicts that excitatory limb feedback will lead to an

increase in intersegmental phase lags, as observed in simulation (section 5.5.2).

More surprising is the observation of the same phenomenon in presence of neck feedback of

the same strength as in the rest of the axial network, as shown in simulation in section 5.5.1. In

our tests with the robot, we usually excluded neck feedback because it had an destabilizing

effect: many but not all experiments failed to reach a periodic regime. This could presumably

be alleviated by adapting the muscle model parameters in the neck to increase stiffness and

get lower, biologically more realistic amplitudes of motion. Still, in those cases were a periodic

regime was reached, we found again that feedback decreases the intersegmental phase lag

and improves swimming performance, as shown in figure 5.25.

Simulations show that the effect is valid over a large range of frequencies, though periodic

rhythms are only reached in a rather restricted range of feedback strengths. The appropriate

feedback strength w ipsi (=−wcontra) scales as a quadratic function of the drive d , and thus of

the frequency of locomotion frequency (figure 6.1):

w ipsi ' 6.5d 2 +7.6d (6.1)

Even more surprising, simulations show that while a large open-loop CPG phase lag is de-

creased by feedback, a zero or negative open-loop phase lag is actually increased. Figure 6.2

(top) shows the effect of local sensory feedback on a variety of open-loop patterns. The simu-

lations were repeated with a feedback strength w ipsi =−wcontra = 21 (solid lines). The range

117



Chapter 6. Understanding the Effect of Local Sensory Feedback

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

Drive

F
ee

db
ac

k 
st

re
ng

th

 

 
6.5x2+7.6x

Figure 6.1 – Scaling of appropriate feedback strength with the drive during swimming. The vertical bars
indicate the range of feedback strengths that allow for stable, periodic swimming at each drive level.
The ranges of weak feedback strengths that give stable swimming without significant modulation of
the CPG pattern are not represented. The light gray line represents a quadratic fit of the range center
(circular marker) at each level of drive.
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of CPG intersegmental phase lags was reduced from (-10%, 10%) to (-1.0%, 1.5%). This had a

dramatic effect on the speed (bottom panel): In the open-loop case, the speed had a strong

dependence on the CPG phase lag, with an optimum around lags of 1.3%. In the closed-loop

case however the speed is almost constant for intrinsic (open-loop) CPG lags between -2%

and 8%. Even with an intrinsic lag of -10%, the speed is still 46% of the maximum speed, after

correcting for the different swimming frequencies.

We remember from the previous chapter that without neck feedback, a feedback-induced

increase of the uncoupled frequency in the rest of the body amounts to a differential drive that

decreases the intersegmental phase lag. We can get a similar but weaker differential excitation

in presence of neck feedback, if we assume that for some reason, feedback does not accelerate

as much the neck oscillators as the rest of the axial network. This would explain the right half of

figure 6.2 (top). In the left half of the figure, however, the CPG lag is increased by feedback. This

suggests the neck oscillators get more feedback-induced acceleration than the rest of the axial

network in this case. More generally, the figure suggests that feedback-induced acceleration in

the neck is inversely proportional to the intrinsic CPG phase lag.

A consequence of the intersegmental coupling asymmetry is that the frequency of the network

is mostly determined by the frequency of the first oscillators. The feedback-induced accel-

eration of oscillators in the trunk and the tail therefore has almost no effect on the network

frequency. The acceleration of the neck oscillators however results in an acceleration of the

whole network. If the hypotheses made in the previous paragraph are correct, we expect the

neck frequency, and therefore the whole network frequency, to increase with decreasing CPG

phase lags. This is exactly what we observe in figure 6.2 (bottom): the closed loop frequency,

in solid purple, increases almost linearly with decreasing CPG phase lags.

Figure 6.2 provides a clue towards understanding this relationship between intrinsic CPG

phase lag and feedback-induced acceleration in the neck. In the top panel, the separation

between the solid red and blue lines represents the difference in speed between the CPG and

kinematic traveling waves. A small separation means that both waves travel almost at the same

speed, so that the CPG-kinematic lag is almost constant along the body. A large separation

means that the kinematic wave is much slower than the CPG wave, so that the CPG-kinematic

lag increases from the head to the tail.

The linear increase of the network frequency towards the left (i.e. at high negative CPG phase

lags) in the bottom panel is mirrored in the increase of the CPG-kinematic wave speed dif-

ference in the top panel. This suggests that the distribution of CPG-kinematic lags along the

body plays an important role in the effect of sensory feedback on the CPG. This is a nice

example where the body dynamics together with sensory feedback act as a beneficial filter

that “corrects” suboptimal CPG phase lags.
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Figure 6.2 – Effect of local sensory feedback on a variety of open-loop patterns in presence of neck
feedback during swimming. Top 40 simulations were made with CPG intersegmental phase biases
ranging from -10% to 10%, without sensory feedback (dashed lines). The simulations were repeated with
a feedback strength w ipsi =−wcontra = 21 (solid lines). Bottom The frequency (purple) and swimming
speed (green) in the open-loop and closed-loop conditions
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6.1. A Mathematical Analysis

6.1 A Mathematical Analysis

To further our understanding of the effect of feedback and confirm our hypotheses, we go

back to the equations of the CPG established in section 5.3.2. Rewriting the single oscillator

equation without couplings, we find

ṙ = a(R − r )+ s cosθ

θ̇ = 2πν− s

r
sinθ

x = r (1+cosθ)

(6.2)

with ν the intrinsic frequency and s the feedback signal. We write φkine
cpg the CPG-kinematic

lag, i.e. the fraction of a cycle by which muscle compression lags behind muscle activation.

Since the CPG output x varies as cosθ, the kinematic state varies as cos(θ−φkine
cpg ). And since

the feedback signal is positive (excitatory) not when the muscle is compressed but when it is

stretched, it is in antiphase with the kinematics and varies as cos(θ−φkine
cpg +π). We will use the

following approximation:

s ∼ A cos
(
θ−φkine

cpg +π
)

where A is a constant representing the amplitude of the feedback signal, which depends on

the amplitude of the joint rotation and the feedback weights. We can rewrite the differential

equations of (6.2) as

ṙ = a(R − r )+ A cos(θ−φkine
cpg +π)cosθ

θ̇ = 2πν− A

r
cos(θ−φkine

cpg +π)sinθ

To calculate the average effect of feedback on ṙ , we integrate the added term over a whole

period:

1

2π

∫ 2π

0
A cos(θ−φkine

cpg +π)cosθdθ =− A

2π

∫ 2π

0
cos(θ−φkine

cpg )cosθdθ

and using the trigonometric identity cosαcosβ= 1
2 (cos(α−β)+cos(α+β)):

− A

2π

∫ 2π

0
cos(θ−φkine

cpg )cosθdθ =− A

4π

∫ 2π

0
cos(−φkine

cpg )+cos(2θ−φkine
cpg )dθ

=− A

4π

(
θcosφkine

cpg +
sin(2θ−φkine

cpg )

2

)∣∣∣∣∣
2π

0

=− A

2
cosφkine

cpg

(6.3)

121



Chapter 6. Understanding the Effect of Local Sensory Feedback

The system will converge to an amplitude such that ṙ = 0:

a(R − r )− A

2
cosφkine

cpg = 0

r = R − A

2a
cosφkine

cpg

The amplitude will be decreased by the feedback for a CPG-kinematic lag inφkine
cpg ∈ (−π

2 , π2 ), and

increased otherwise. In particular, the amplitude is maximally decreased by feedback when

the CPG and kinematics are in phase, and maximally increased when they are in antiphase.

Similarly, the average effect on θ̇ is

1

2π

∫ 2π

0
− A

r
cos(θ−φkine

cpg +π)sinθdθ = A

2πr

∫ 2π

0
cos(θ−φkine

cpg )sinθdθ

and using the identity sinαcosβ= 1
2 (sin(α−β)+ sin(α+β)):

A

2πr

∫ 2π

0
cos(θ−φkine

cpg )sinθdθ = A

4πr

∫ 2π

0
sinφkine

cpg + sin(2θ−φkine
cpg )dθ

= A

4πr

(
θ sinφkine

cpg −
cos(2θ−φkine

cpg )

2

)∣∣∣∣∣
2π

0

= A

2r
sinφkine

cpg

(6.4)

The feedback-induced acceleration of the oscillator is maximal for a CPG-kinematic lagφkine
cpg =

π
2 . The feedback can also have a decelerating effect, which is maximal when φkine

cpg = 3π
2 . The

effect of feedback vanishes for CPG-kinematic lags of 0 or π. The amplitude of the effect,

either accelerating or decelerating, is proportional to the feedback amplitude and inversely

proportional to the oscillator amplitude.

The effect of feedback in the abstract oscillator model can be conceived as the entrainment

of the CPG by a “feedback oscillator”. The dependency of the feedback effect on the CPG-

kinematic lag is then quite intuitive. An illustration for the case φkine
cpg = π

2 is given in figure 6.3.

The figure also shows how the phenomenon relates to burst initiation and termination in a

spiking model.
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t

Bursting model (ipsilateral bursts)

Excit. feedback from ipsilateral stretch

Inhib. feedback from contralateral stretch

burst termination
accelerates the rhythm

Oscillator model (oscillator state)

Feedback accelerates the oscillator

EMG-kinematic lag

Ipsilateral compression lagging by 90◦

1

Figure 6.3 – Local effect of sensory feedback. Left: A hemisegment (green) receives excitatory feedback
(red) during stretching of the ipsilateral side and inhibitory feedback (blue) during stretching of the
contralateral side. Right: Effect of sensory feedback on the frequency in a hypothetical spiking CPG
model and in the abstract oscillator model. The bursts in a spiking model (top) correspond to the
positive parts of the sine wave in the abstract oscillator model (green line). The feedback signal (blue
in the inhibitory phase and red in the excitatory phase) is in antiphase with the kinematic wave
of compression (orange). Here there is a CPG-kinematic lag of π

2 (orange arrow) corresponding to
the feedback being in advance by π

2 with respect to the CPG oscillation. In this configuration the
entrainment of the CPG oscillator by feedback (black arrow) has the strongest accelerating effect. In
the bursting model the same acceleration occurs due to the early termination of bursting by inhibitory
feedback (dashed blue) and the early burst initiation promoted by excitatory feedback (not shown).
Salamander schematic from Delvolvé et al. [1997].
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6.2 Contributions to Feedback-Induced Modulations of Phase Lags

Based on the insight provided by the mathematical analysis in the previous section, we in-

vestigated how the CPG-kinematic lag, the feedback amplitude and the oscillator amplitude

affect the uncoupled frequency of the oscillators at each joint. We picked three simulations

among those represented in figure 6.2, corresponding to intrinsic CPG intersegmental phase

lags of 6.6%, 0% and -2%. To distinguish the different contributions to the oscillator acceler-

ation, we used the phase and feedback signals from each simulation to calculate, based on

equation (6.2), a hypothetical acceleration that does not depend on the oscillator amplitude:

θ̇i = 2πνi − si sinθi (6.5)

We calculated the average of the acceleration −si sinθi at each joint over the course of the

simulation. The result is shown in figure 6.4, where the blue line represents the actual feedback-

induced acceleration and the green lines the hypothetical acceleration based on equation (6.5).

The hypothetical accelerations were normalized to match the actual acceleration at the first

joint. Finally we calculated a second hypothetical acceleration based on equation (6.5), after

normalizing the feedback signals si to remove the effect of different feedback amplitudes

along the body. The result is shown as red lines on the figure.

We first observe that the blue line in each panel on the left confirms the hypotheses made at

the beginning of this chapter: the feedback-induced acceleration at the neck is lower than in

the rest of the body in the case of high intrinsic CPG phase lags (top panel), while in the case of

zero phase lag (middle panel) or negative phase lag (bottom panel), the acceleration is higher

at the neck. 1 This will provide the differential excitation that explains the decrease of phase

lag in the first case and the increase of phase lag in the other cases. The stronger acceleration

in the neck is also reflected in the closed-loop frequency of the network: while the intrinsic

frequency of the oscillators was 1.47 Hz in all three cases, the actual CPG frequency was

1.54±0.03 Hz, 1.72±0.02 Hz, 1.78±0.02 Hz in the top, middle and bottom panels respectively.

The top-left panel shows what happens in the case of a very high intrinsic CPG phase lag, such

as during the robot swimming experiments with the five simulated individuals (figure 5.20).

We see that the dominant contribution to the differential excitation between the neck and the

rest of the axial network comes from the increasing CPG-kinematic lag (the red marker at the

neck is much lower), as seen in the right panel: the CPG-kinematic lag is almost zero in the

neck, and close to π
2 in the tail. These correspond to minimal and maximal feedback effects

respectively, according to equation (6.4). An increasing feedback amplitude towards the tail

also helps maintain a high level of acceleration in that part of the network. This increasing

feedback amplitude can be read from the larger kinematic amplitudes in the right panel. The

1. In the middle panel, the acceleration at the second joint is actually even higher, but this only affects the
phase lag between the first and second joints; the oscillators at the second joint will take on the frequency of the
first segment anyway, which is what matters in determining the phase lag between the successive segments down
the chain. The irregularity at the second joint, also apparent in the right panels, is discussed in section 5.5.1.
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Figure 6.4 – Contributions to the feedback-induced acceleration at each joint during swimming, for
intrinsic CPG phase lags of 6.6% (top), 0% (middle) and -2% (bottom). Left: In each case the figure
shows the actual acceleration at each joint (blue), a hypothetical acceleration if oscillator amplitudes
were uniform along the body, normalized to the actual acceleration at the first joint (green), and a
hypothetical acceleration if both oscillator amplitudes and feedback amplitudes were uniform along
the body, similarly normalized (red). Right: The CPG (red) and kinematic (black) oscillation patterns
show an increasing CPG-kinematic lag along the body in each case. The CPG-kinematic lag reaches
about π

2 and π in the top and bottom panels respectively.
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Chapter 6. Understanding the Effect of Local Sensory Feedback

actual feedback effect (blue line) is more constant along the body than the hypothetical effect

based on equation (6.5). This tells us that the indirect influence of feedback on frequency

that goes through the modulation of the oscillator amplitude—the r in the denominator in

equation (6.2)—tends to counteract the higher excitation in the trunk and the tail.

With an intrinsic CPG phase lag of 0% (middle panel), the effect of the CPG-kinematic lag still

tends to give more excitation in the trunk than in the neck. Alone, this effect would cause the

CPG phase lag to become negative, but it is counterbalanced by the effect of the feedback

amplitude, which is lower in the trunk (9.2◦ in joint 4 compared to 14.2◦ in the neck). The

determining factor in giving more excitation to the neck than the rest of the body, is the effect

of feedback on the oscillator amplitude (see the difference between green and blue lines).

Finally, with a negative intrinsic CPG phase lag of -2% (bottom panel), the CPG-kinematic

lag tends to decrease the phase lag in the trunk (more excitation given than in the neck) and

increase it in the tail. From the shape of the red curve and based on equation (6.4), we can

predict that the CPG-kinematic lag will be close to π
2 at joint 4, and close to π at the last joint.

This is confirmed by the oscillation traces in the right panel. The actual lag values in degrees

are 94◦ and 161◦ respectively. Here also the higher excitation due to the CPG-kinematic lag

in the trunk is compensated by the lower feedback amplitude. The effect of feedback on

the oscillator frequencies explains the counter-intuitive observation that a negative lag is

transformed into a positive one thanks to the body dynamics and sensory feedback.

6.3 Conclusion

We have seen that local sensory feedback modulates the CPG phase lag towards the optimal

values for swimming: a large range of phase lags between -10% to 10% is reduced to a range

of -1% to 1.5%. However this whole reduced range of phase lags is appropriate for forward

swimming only thanks to the mechanical properties of the body. As shown in figure 6.2 (top),

the range of kinematic phase lags is further reduced to between 1.3% and 1.9% (the solid

blue line is flatter than the red). This contribution of the body mechanics is also apparent

in open-loop, where the speed is positive even with CPG phase lags of -2%. The mechanical

asymmetry, mostly due to the passive tail, makes it very hard for the robot to swim backwards.

The effect of local sensory feedback on the uncoupled oscillator frequency is not straightfor-

ward. It depends on the CPG-kinematic phase lag, the oscillator amplitude and the feedback

(i.e. kinematic) amplitude, as apparent in equation (6.4). But according to equation (6.3), the

oscillator amplitude itself is increased or decreased by the feedback, in an amount that is

function of the feedback amplitude and CPG-kinematic phase lag. Moreover, the direct effect

of feedback on the oscillator frequency is maximal when the CPG-kinematic lag is π
2 , while

the indirect effect on the frequency, through the oscillator amplitude, is maximal when the

CPG-kinematic lag is π.

The magnitude of the feedback effect is proportional to the feedback amplitude and inversely
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proportional to the oscillator amplitude. We might expect these two dependencies to com-

pensate for each other, as the feedback amplitude follows the kinematic amplitude, which we

expect to increase when the oscillator amplitude and therefore the muscle activation increases.

The analysis of three examples in section 6.2 show that they do not compensate for each other.

During swimming, the dominant contribution to the shaping of the CPG activity pattern by

feedback depends on the intrinsic CPG intersegmental phase lags. For a high intrinsic CPG

phase lag of 6.6%, the dominant factor is the speed difference between CPG and kinematic

waves. For an intrinsic CPG phase lag of 0%, the modulation of the oscillator amplitude, which

indirectly affects the acceleration of the oscillators, plays an important role. For an intrinsic

lag of -2%, a lower feedback amplitude in the trunk plays a dominant role in this part of the

body, while the effect of the increasing CPG-kinematic lag dominates in the tail.

It is then far from obvious how the feedback will affect the uncoupled frequency in each

segment along the body axis. However, once the effect on the uncoupled oscillator frequencies

is known—and that applies also to limb feedback—the differential drive mechanism allows

us to infer the overall impact on the intersegmental phase lags. In this sense a common

framework can be used to understand the interaction between descending drives and sensory

feedback and how they affect the CPG pattern.
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7 Robotic Platform

In this chapter, we present the robot platform used to reproduce the five salamander mo-

tor behaviors mentioned in chapter 2. Particular focus is given to the implementation of a

distributed controller for the CPG model and virtual muscles.

7.1 Robot Hardware

The hardware of Salamandra robotica II is described in detail in Crespi et al. [2013]. We give

only a brief description of the robot mechanics, and mention a modification to the electronics

that was necessary to the implementation of our controller.

7.1.1 Mechanical Design

The robot is made of a head module, eight active modules and a passive tail (figure 7.1). Each

module actuates an axial joint with motion restricted to the horizontal plane; the two girdle

modules also include rotational joints for the limbs. The full robot is 111 cm long and weighs

2.48 kg.

Figure 7.1 – The Salamandra robotica II amphibious robot. The axes of rotations for each degree
of freedom are shown with dashed lines. The dimensions of the head, trunk and tail modules are
A = 9.5 cm, B = 4.7 cm and C = 5.8 cm. The girdle modules have the same dimensions except for the
width, which is 6.4 cm. From [Crespi et al., 2013].
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Chapter 7. Robotic Platform

The modules have LEDs on the covers which were used to track the robot’s motion with

external video cameras (see section 7.4).

7.1.2 Electronics

One important modification was brought by Alessandro Crespi to the design described in

Crespi et al. [2013]: the electronics was upgraded to include in every module an LPC2129

ARM7TDMI microcontroller such as that already present in the head. The ARM microcontroller,

running at 60 MHz, is much more powerful than the PIC18F2580 available in the original

design; in particular it is able to integrate in real time a subset of our CPG model using floating-

point emulation, while the PIC18 would only support fixed-point arithmetic. The added

calculation power was required for the implementation of the fully distributed controller

described in section 7.3.

A PID controller capable of driving a motor in position, velocity or torque control is im-

plemented on a separate PIC16 microcontroller. The PID controller is used as a PI torque

controller for the axial joints and as a PD position controller for the rotational leg joints.

Inter-module communication is made over a single CAN bus running at 1 Mbps that connects

all the modules and the head. Communications internal to a module, such as between the

ARM microcontroller and the PID controller, are made over a local I2C bus running at 400 kbps.

7.2 Characterization of the PI Torque Controller

The PI torque controller was characterized to verify its linearity, operational range and re-

sponse time. The P and I gains of the PI torque controller were hand-tuned before the calibra-

tion based on a trade-off between response time and stability. We thank Dustin Li for doing

much of the work in these calibration experiments.

Before proceeding with the characterization of the PI controller, we needed to establish the

conversion factors that would allow us to convert between the SI units used in simulation and

the internal units of the PI controller. We calculated theoretical values for these factors and

compared them to empirical data. Details are given in appendix B.

7.2.1 Static Calibration

We show in figure 7.2 the results of the static torque calibration. Different torques were sent as

setpoints, and were read back from the PI controller (green line). 1 The actual torque exerted

on the environment was measured using a linear dynamometer and a measure of the lever

arm (blue line). Measurements were repeated 4 times for each setpoint value.

1. The PI controller needs an estimate of the torque to calculate an error term. The estimation is based on a
measure of the electrical current flowing through the motor.
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The actual torque is close to the estimation of the PI controller for setpoints up to a stagnation

level of 0.7 Nm. The PI controller however only sees a stagnation at 0.9 Nm.
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Figure 7.2 – Torque calibration on The Salamandra robotica II amphibious robot. The PI controller
estimation of torque based on a measure of the current (green) is compared to the actual torque
measured with a dynamometer (blue).

7.2.2 Lag between Setpoint and Torque

We also looked at the behavior of the PI controller in the case of time-varying torques. We were

most interested in estimating the lag between the setpoint signal and the actual torque. This

lag is particularly important in the context of a closed-loop controller, as adding a delay in the

control loop can have a significant effect on the dynamics of the system.

A rectified sine torque signal was generated in the head with a time-step of 30 ms and sent to a

module PI controller over the CAN bus. A read-back of the value was requested from the head

immediately afterwards. The PIC18 microcontroller in the module relays the communications

from the head over the local I2C bus to the PIC16 microcontroller that implements the PI

torque controller.

Rectified sines were used to allow for a condition where the module periodically pulls a spring.

Experiments were also conducted with the module held in a fixed position. The results for the

two conditions with various amplitudes and frequencies are shown in figure 7.3. We see that

the response of the PI controller is similar in all conditions.

The setpoint-torque lag was measured at the points where the signals were crossing their
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median values. We found a lag of 123±19 ms. Note that given the magnitude of the time-steps

and the communication delays between the head and the module PI controller, this method

can only give an upper bound for the setpoint-torque lag.
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Figure 7.3 – Rectified sine setpoints and torque values read back from the PI controller. The torques are
in arbitrary units. A: 0.5 Hz oscillations, module a held in fixed position. B: 0.5 Hz, module attached
to a spring. C: 0.5 Hz oscillations, double amplitude, module attached to a spring. D: Hz oscillations,
module held in a fixed position.

As described in section 7.3, we eventually decided to distribute the robot controller in all the

modules, in part to remove communication delays. We also eventually increased by a factor of

2 the P gain of the PI torque controller. Figure 7.4 shows the setpoint and read-back values

obtained during an actual swimming experiment with the distributed controller. We find a

setpoint-torque lag of 51±1 ms.
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Figure 7.4 – Torque setpoints and values read back from the PI controller in the robot swimming with
the muscle model at 1.1 Hz.
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7.3 A Distributed Robot Controller

The CPG and muscle models used in the robot are the same as those used in simulation and

presented in section 4.4 and chapter 5. The only difference, apart from the distributed nature

of the robot implementation, is that delays between the outputs of the CPG and the inputs to

the muscle model are not included in the robot controller (compare figures 5.1 and 7.5). As we

have seen in section 7.2.2, the PI torque controller already introduces a larger delay than the

10 ms that were used in simulation as a minimum to account for the muscle dynamics. The

delay of about 50 ms in the robot is actually closer to the biological values which are typically

in the 20-50 ms range.

The robot control software is distributed: each module implements its part of the CPG and the

muscle model for the axial joint, as shown in figure 7.5. Communications between modules

are restricted to drive signals from the head and couplings between adjacent modules and

between the two girdles. For example, the second girdle module sends at every time-step over

the CAN bus the states ri ,θi for oscillators 13, 38, 16, 41, 53 and 54.

The small CPG network in each module was implemented by isolating the relevant part of

the network described in section 4.4. We used the cdn-rawc tool distributed with the Codyn

framework to generate raw C files from the high level network description. These files can be

compiled directly to run on the ARM microcontroller. A header file exposes a simple API to get

and set CPG states and to perform an integration step with the specified time-step.
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Figure 7.5 – Control architecture for experiments with Salamandra robotica II. Left: the CPG model is
limited to the first 25 segments of the spinal cord, of which 19 are shown in the figure. The axial CPG is
represented by a double chain of oscillators (black circles), numbered 1-25 and 26-50 for the left and
right sides respectively. The limbs are represented by four additional oscillators, numbered 51-54. Black
lines indicate a bidirectional coupling between two oscillators. Each oscillator also receives a drive
signal representing excitation from the MLR. Different drives can be applied to the limb oscillators
(blue), the trunk segments (green) and the tail segments (yellow). The network is divided in eight groups
(gray rectangles, only 6 shown in the figure), corresponding to the eight axial joints of the robot. There
is a stretch receptor (orange triangle) on each side of each trunk and tail group. The stretch receptors
project ipsilaterally and contralaterally to the three nearest segments. The outputs xi , xi+25 of one
segment from each group is used as activation signal for the corresponding muscle (light purple lines);
the phase θi of each limb oscillator (light red) is used directly as a representation of the desired limb
position. Middle: The CPG outputs xi , xi+25 are fed directly as muscle activities M l

i , M r
i to the virtual

muscles. The muscle model also takes as input the joint position ϕi and velocity ϕ̇i to determine the
joint torque Ti , as shown in equation (5.1). Right: the torque Ti is applied at each axial joint (orange
circles). The joint positions and velocities are measured and fed back to the muscle model (light orange
lines) and the stretch receptors (joint positions only).
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7.3.1 First Implementation

In the first implementation of the controller, the state of each oscillator was sent in its own CAN

packet. This was due to the states ri ,θi being internally represented as 32-bit floats, and to the

CAN protocol restricting the payload of a packet to a maximum of 8 bytes (64 bits). Packets

were sent in extended CAN frames, which include a 29-bit packet identifier. The identifier was

used to include packet meta-data, such as the index of the sending module and the type of the

packet. An example identifier is:

0x05000301

where 0x05 is a constant identifying a coupling packet, 0x03 identifies the sender as the third

module, and 0x01 specifies the type of the couping packet. Simple modules were sending

4 types of packets: up-left, up-right, down-left and down-right, corresponding to the four

oscillators whose state had to be transmitted. Girdle modules had two more packet types for

the limb oscillators.

Initial tests were conducted with a chain of 7 simple (non-girdle) modules and a simplified

CPG model with symmetrical coupling weights and a uniform intrinsic phase lag of 5% along

the chain. The recorded pattern however displayed strongly non-uniform phase lags, with a

sharp decrease towards the end of the chain. This is illustrated in figure 7.6 (left) using the

output of the left oscillator from the middle segment of each module (see figure 7.5).
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Figure 7.6 – Phase lags and average coupling effects in the first implementation of the distributed
controller. Left: The intersegmental phase lags calculated from the middle segment of each module, as
a percentage of the cycle duration. Right: Average effect of the ascending and descending couplings on
the on the left oscillator of the middle segment in each module. The values shown correspond to the
coupling terms in the sum of equation (4.19), averaged over the whole recording. The red bars show the
net effect of both coupling types.

Analyzing the effect of ascending and descending couplings on the middle segment (figure 7.6

right), we see that the ascending couplings have a strong slow-down effect on all but the last
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module, where they are absent. The descending couplings partially compensate for this effect

in most modules, but cause a further slow-down in the last two. The net effect (red) is a de-

creasing slow-down towards the tail. As expected from the principles outlined in section 4.4.4,

the lesser slow-down in the more caudal segments is mirrored by smaller phase lags in the

left panel: the higher uncoupled frequency of the last segments allow them to “catch up” and

decrease the lag from their rostral neighbors.

We will see in section 7.3.3 that the slow-down is a consequence of delays in communication

between the modules. Figure 7.6 (right) suggests that ascending couplings are on average

more delayed than descending couplings. This is certainly a consequence of packets with a

higher identifier having a lower priority on the CAN bus. Caudal modules, which have a higher

module index, will send packets with higher identifiers.

Ideally, the priority of the packets on the CAN bus should not affect significantly the perfor-

mance of the controller. But with the four coupling packets described above, and if we assume

four additional packets used for data logging and debugging (as was the case during our

tests), a robot with eight modules would send 64 packets over the CAN bus at every time-step.

Each packet carries a 64-bit payload and 64 bits of additional data for the CAN protocol. At a

time-step of 10 ms, these numbers give a total of 819’200 bits per second, which is not very

far from the theoretical maximum for the bus running at 1 Mbps. It is therefore likely that

two modules will try to send packets at the same time, delaying the delivery of lower priority

packets.

We have also observed a high rate of transmission errors on the CAN bus whenever the ARM

microcontroller in the modules is active. We could not confirm whether this was due to a

software error or to a deficiency in the hardware CAN controller.

For all these reasons, it is desirable to minimize the number of packets sent on the bus, and to

increase the robustness of the distributed controller to communication issues. We describe

our solutions in the next section.

7.3.2 Second Implementation

The first change we brought to the controller to mitigate the effect of communication delays

was to introduce coupling extrapolation. For each type of coupling, we use the data from the

two latest coupling packets, and their times of arrival, to extrapolate in the receiver the current

value of sender’s state variables. A simple linear extrapolation is quite accurate, thanks to the

explicit representation of the sender’s phase θi in the coupling packet (the phase is expected to

grow linearly while the amplitude is expected to stay constant most of the time). This change

leads to a dramatic improvement of the controller, as can be seen in figure 7.7. The phase

lag is now almost uniform along the body (let panel) and the effect of the couplings on the

frequency of the oscillators has almost vanished (right panel).

While the distributed controller performed acceptably after the introduction of coupling
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extrapolation, we still observed a lot of error frames on the CAN bus, which translated to

difficulties when communicating with the modules from the head, for example to change

model parameters. We therefore decided to decrease the number of coupling and debug

packets. We where able to halve the number of packets by sending every floating-point number

such as ri and θi as a 16-bit float. 2. These half-floats still provide an absolute precision beyond

0.001 for numbers between -4 and 4, which is the case of our small amplitudes. The phases

also fit into this range after wrapping to (pi , pi ) (see section 7.3.4).

The effect of coupling extrapolation and of reducing the number of coupling packets can be

visualized in figure 7.9 (left). Coupling extrapolation provides the biggest benefit in terms of

attenuating the slow-down effect; the reduction from 8 to 4 coupling packets per time-step

provides a small additional attenuation.
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Figure 7.7 – Phase lags and average coupling effects in the distributed controller with coupling extrapo-
lation. See figure 7.6 for details.

The communication improvements following a decrease of the number of CAN packets are

also illustrated in figure 7.9.

7.3.3 CPG Slow-down Induced by Communication Delays

A slow-down induced by communication delays has been observed for example in a two-

dimensional grid of phase oscillators with sine couplings [Niebur et al., 1991]. Here we look at

the simple case of two phase oscillators with diffusive couplings of strength w :

θ̇1 =ω+w sin(θ2 −θ1 −φ)

θ̇2 =ω+w sin(θ1 −θ2 +φ)
(7.1)

We can drop the phase biases φ without loss of generality. A simple change of variable θ2 =
2. Recent versions of the GNU GCC compiler for the ARM architecture have built-in support for storing numbers

in 16-bit floats, using the __fp16 data type. Calculations however are always made with 32-bit floats.
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7.3. A Distributed Robot Controller

θ̃2 +φ gives

θ̇1 =ω+w sin(θ̃2 −θ1)

˙̃θ2 = θ̇2 =ω+w sin(θ1 − θ̃2)
(7.2)

A synchronous solution of this system with zero phase lag between θ1 and θ̃2 corresponds to a

frequency-locked solution of (7.1) with phase lag φ. In the rest of this section we will look for

in-phase solutions of (7.2), writing θ2 instead of θ̃2 to keep the notation simple. Introducing a

delay τ in the couplings, we have

θ̇1(t ) =ω+w sin(θ2(t −τ)−θ1(t ))

θ̇2(t ) =ω+w sin(θ1(t −τ)−θ2(t ))
(7.3)

In-phase solutions correspond to the case

θi (t ) =Ωt +θ0 +2kiπ ki ∈N (7.4)

whereΩ is the actual angular frequency θ̇i of the oscillations: θ̇i =Ω. Introducing (7.4) in (7.3),

we find thatΩ is determined by the following equation:

Ω=ω+w sin(−Ωτ) (7.5)

Earl and Strogatz [2003] have given a criterion for the stability of these solutions:

w sin′(−Ωτ) = w cos(Ωτ) > 0 (7.6)

The criterion applies to a wide range of topologies, but unfortunately not to finite chains of

more than 2 oscillators. The relation (7.5) can be rewritten as an equation in x =Ωτ:

− 1

wτ
x + ω

w
= sin x

We cannot solve the equation analytically, but we can see that the solutions are the inter-

sections between y = sin x and a line of slope − 1
wτ and horizontal intercept ωτ, as shown in

figure 7.8. According to (7.6), the stable solutions are the intersections that fall on a rising part

of the sine.

For a given delay τ, the coupling strength w determines the slope of the line and therefore the

number of intersections in such a way that stronger couplings will yield more solutions. We

see that with a positive coupling strength, a stable solutionΩτ= x0 is guaranteed if ωτ< π
2 .

This solution always satisfiesΩτ<ωτ. In other words, the delayed couplings lead to stable

oscillations at a frequency lower than the intrinsic value ω, which explains the slow-down we
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y = sin x

y =− 1
wτx + ω

w

x0 ωτ x =Ωτ

y
Stable
Unstable

Figure 7.8 – Solutions of the in-phase synchronous oscillations with coupling delays. The stable solution
at x = x0 is always present if w is positive and if the horizontal intercept ωτ satisfies ωτ< π

2 . In red, an
approximation of the situation in the robot controller, with a delay τ= 10 ms and a coupling strength
w = 5. Adapted from Earl and Strogatz [2003].

observe on the robot.

If we assume coupling delays of 25 ms, the condition ωτ< π
2 implies that we are guaranteed to

have the stable, slow solution for any intrinsic frequency lower than 1
2πτ · π2 = 10 Hz. The actual

frequency of the oscillations will depend on the coupling strength, with stronger couplings

yielding slower rhythms.

The coupling strengths and communication delays in the robot are actually pretty small in

terms of the stability analysis shown in figure 7.8. In red, we show an example for a delay of

10 ms and a coupling strength w = 5. We are clearly in a region of the parameter space where

the slow rhythm is the only stable solution for in-phase oscillations.

The analysis presented here does not formally apply to a finite chain of more than two oscil-

lators. Simulations show that the slow-down effect is stronger in longer chains of oscillators

(data not shown). This is intuitive since the total coupling strength received by an oscillator

increases with the length of the chain: In the case of two oscillators, each receives only one

projection. In a long chain, all but the boundary oscillators receive two.

The analysis also assumes that all couplings are identical, and in particular that the delays

are the same for all couplings. This is not the case in the robot, where couplings between two

segments are delayed only if they cross the module boundaries, which happens for about a

third of the intersegmental couplings (see figure 7.5). Finally, the analysis assumes a single

chain of oscillators, but simulations show that the slow-down effect is the same in a double
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7.3. A Distributed Robot Controller

chain, if the connections between left and right oscillators are without delay (apart from the

delay due to the integration time-step) as is the case in the robot.

With these limitations in mind, we can use equation (7.5) to get an estimation of the interseg-

mental coupling delays based on the intrinsic frequency ω= 2π ·1 and the observed frequency

Ω. The results are shown in figure 7.9 for different conditions.
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Figure 7.9 – CPG slow-down induced by communication delays, and estimation of equivalent uniform
delays. The robot was made of seven simple (non-girdle) modules and used a time-step of 10 ms. The
number of CAN packets sent by each module at every time-step is indicated in parentheses. Left: The
median deviations from the nominal frequency of 1 Hz, among all data from all modules, are indicated
for 4 conditions: before and after implementing coupling packet extrapolation (first two bars), after
reducing the number of emitted CAN packets from 8 to 4 (third bar), and after disabling the processing
of input packets (fourth bar). Right: Equivalent delays in a chain of two oscillators, that give the same
slow-down according to equation (7.5).

7.3.4 Controller Time-Step

In the full robot, one step of the controller loop takes 6.8±0.4 ms to run in girdle modules and

5.0±0.6 ms in other modules. These numbers were measured in the case of girdle modules

sending 3 coupling packets and 4 debug packets at each step (2 coupling packets and 3 debug

packets for the other modules). Of these, the CPG integration step and muscle model in a

simple (non-girdle) module take about 2.1 ms and 1.7 ms respectively. The number for the

muscle model includes the time for setting the desired torque and reading the torque, position

and velocity.

Initial tests with a CPG oscillating at 1 Hz showed that the computation time of one time-step

increased dramatically after about 30 seconds (figure 7.10). This turned out to be caused by

the trigonometric functions of the C math library, the execution time of which depends on the

value of their arguments. For example, it appears that the sin() function takes much more

time to execute for an argument greater than some critical value around 2π ·30 ' 188. 3 The

problem was solved by implementing phase-wrapping in the CPG, to have θi ∈ (−π,π) at all

3. The effect can be reproduced on a PC. Using the Embedded GNU C library version 2.15 (libc6 package
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times. Phase wrapping also has the advantage of maintaining a high absolute precision even

when the phase is encoded as a 16-bit floating-point number (see section 7.3.2).
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Figure 7.10 – Real-time duration of a CPG integration step using unwrapped phases. With a CPG
oscillating at 1 Hz, the computation duration increases dramatically after about 30 seconds.

For the reproducibility of results, it is desirable that the muscle model perform consistently,

and that the CPG show consistent numerical accuracy, even when minor changes are made

to the controller. We therefore decided against running the model with the smallest possible,

variable time-step. We chose to use a fixed time-step of 10 ms, and let the controller sleep for

the amount of time required to reach this duration.

We note that a time-step of 10 ms was made possible thanks to the distributed nature of the

controller. Given the computation time of over 2 ms for the CPG integration step in each

module, a centralized controller running in the head would need over 16 ms to compute one

step of the CPG model, not counting the time for communications between the head and the

modules.

7.3.5 Concluding Remarks

In the present configuration where all the modules communicate with each other over the

same CAN bus, the benefits of the distributed controller in terms of communication bandwidth

are limited. The next revision of the robot should include direct serial communication channels

between adjacent modules. The benefits of the distributed controller design will then be fully

realized. Still, as we have seen in section 7.3.4, the distributed architecture allows us to integrate

the CPG with a smaller time-step by sharing computations among the modules.

The architecture also shows an obvious advantage for the virtual muscle model, which can run

version 2.15-0ubuntu10.3 on Ubuntu 12.04) on an AMD64 architecture, the duration of a call to the sin() function
increases sharply for operands greater than 201.05.
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in a fast local loop rather than requiring the transmission of the joint position, velocity and

desired torque at every step over the CAN bus. It also increases the robustness of the muscle

model by avoiding the reliance on the CAN bus and its high rate of communication errors.

Finally, we can expect the architecture to greatly improve the robustness of the controller

to communication faults. For example, a simulation study with a snake robot showed a that

distributed controller with local sensory feedback could maintain a proper coordination

between the joints even when all communications were cut [Watanabe et al., 2009]. We still

have to characterize the behavior of our controller in such scenarios.
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7.4 External Video Tracking

The robot joint positions can be read from the motor encoders at each time-step. However

this gives no information about the speed of locomotion. To measure the speed, we use an

external video tracking system based on two Basler A622F cameras located 2 meters above the

pool (for swimming) or track (for other behaviors). The setup is shown in figure 7.11.

Figure 7.11 – External video tracking setup. Two cameras are placed two meters above a 600x150x30 cm
pool, such that their overlapping fields of view cover the whole length of 6 m. Image courtesy of Mathieu
Porez.

The cameras record the positions of the LEDs on the cover of each module at a rate of 15

images per second, with an accuracy of ±1 cm. By merging the data collected by the two

cameras, we are able cover a track length of 6 meters.

The video tracking system is also used to get a second estimation of the joint position. Due

to the compliance in the connectors between the robot modules, the position read from the

motor encoders cannot be trusted to reflect accurately the angle between the modules. The

joint angles are calculated by fitting in each frame the kinematic chain of the robot to the

positions of the LEDs.
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8 Conclusion

We designed a flexible CPG model that reproduces the main features of recordings from

isolated salamander spinal cords, including the distribution of intersegmental phase lags, the

correlation between phase lags and cycle frequencies, and the spontaneous switches between

slow and fast rhythms. The same model with minimal adjustments was used successfully to

reproduce the five motor behaviors documented in the animal, 1 first in simulation and then on

a robot. The robot tests for each behavior were conducted with five different “individuals”, that

is, using CPG networks with different values for the parameters that determine the intrinsic

frequency of each oscillator. This allowed us to reproduce the variability of muscle activation

patterns observed in the animals.

The model proved highly controllable: the five different behaviors could be reproduced using

only two different levels of excitatory drive, one for the limb oscillators and one for the axial

oscillators. The controllability also allowed for the compensation of the differences between

the simulated individuals: each individual, using its own set of drive levels, could reproduce

all CPG patterns.

We found that local proprioceptive feedback can have a strong optimizing effect on the CPG ac-

tivity pattern during swimming: while the simulated individuals would produce very different

CPG activity patterns in absence of feedback, some of them very inappropriate for swimming,

they all showed good swimming performance after the introduction of sensory feedback of

equal strength in all individuals. We showed in simulation that feedback, together with the

viscoelastic properties of the body, could reduce a range of intrinsic CPG intersegmental

phase lags as wide as (−10%,10%) to a range of kinematic phase lags of (1.3%,1.9%), all very

appropriate values for swimming.

Thanks to the abstract level of modeling, we were able to analyze mathematically the effect

of sensory feedback on the oscillator frequency, and highlighted the role of the increasing

CPG-mechanical delay along the body in the stabilization of the swimming gait by sensory

feedback. This finding also highlights the importance of muscle dynamics during swimming,

1. Swimming, underwater stepping, forward land stepping, backward land stepping and struggling.
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and in particular in the understanding of the CPG-muscles-environment-feedback loop. The

increasing delay between muscle activation and body curvature along the body of fishes has

been the focus of a lot of research, but it is the first time to our knowledge that it is shown to

interact with local sensory feedback in a way that is beneficial for locomotion. We note that all

these results could not have been obtained without an integrated modeling approach.

Our findings are also original in that they provide a common framework for reasoning about

the modulation of the CPG activity pattern by sensory feedback, descending commands from

the brainstem and differences in intrinsic cycle frequencies in different parts of the network.

Our work relies heavily on the principles outlined by Matsushima and Grillner [1992], but

highlight the importance of an asymmetry between ascending and descending intersegmental

couplings.

The model of course has its limits. For example, we could not find an expression for the axial

proprioceptive feedback that would be appropriate in all of the five salamander motor be-

haviors considered. We found instead that good stepping gaits were produced by exchanging

the ipsilateral and contralateral feedback weights compared to swimming. As far as we know,

there is no biological evidence for such an inversion of the effect of feedback between loco-

motor modes. The model was more successful in the integration of excitatory proprioceptive

feedback in the limbs. We found in simulation that such feedback could partially or totally

replace the need for a differential drive between limb and axial oscillators during forward land

stepping.

From a robotic perspective, our work led to the implementation of a completely distributed

controller. This distributed architecture allowed us to minimize the communications between

the robot modules and to decrease the CPG integration time-step by distributing the com-

putation cost. This also led to an enhanced response time of the muscle model. We note

that this distributed architecture shows an interesting similarity with biology. In animals also,

the computation cost is distributed along the body in the numerous segments of the spinal

cord, and local proprioceptive feedback loops allow for fast responses. Regarding the virtual

muscles, it would be interesting to investigate how their energy consumption compares with a

position controller generating a similar gait.

146



Final Words

We have investigated at a very high level the principles that govern the shaping of the mus-

cle activation patterns in the salamander, using abstract phase oscillators, a linear muscle

model and a gross approximation of the animal morphology. Our purpose was to explore the

phenomena that arise from the interaction between these simple elements. We think that our

project was successful in uncovering a general principle of interaction between the CPG, the

descending drives from the brainstem and local sensory feedback. However we should note

that our simple model cannot tell us what actually happens in the real, complex system. It

can only suggest possibilities, phenomena that these simple principles could underlie in the

animal. More accurate modeling work and experiments are required to verify whether the

principles we describe here still hold in a more realistic model. A first step would be to try and

reproduce our results with a similar model, but using a more concrete implementation of the

CPG, for example based on a spiking neuron model.

We should also mention that we only addressed a few aspects of the problem of locomotion

control in the salamander. Much work remains to be done even at our level of modeling, for

example on the coordination of muscles in the limbs, on the generation of discrete movements

and on the integration of other sensory feedback modalities.

147





A CPG and Kinematic Patterns in Robot
Experiments

We show here the CPG and kinematic patterns obtained with the robot for the five salamander

behaviors described in chapter 2. We only show the patterns obtained with the first simulated

individual, and only one for each behavior (out of three).
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Figure A.1 – Swimming pattern obtained with the first simulated individual, with feedback w ipsi = 10.
CPG oscillations and joint oscillations reconstructed from the external video tracking data are shown
in thin red and black lines respectively. Circular markers show the centroids of the positive halves of
the oscillations, which were used to calculate the phase lags between the joints, as shown by the thick
red and black lines. The centroid and phase lags are also shown, in gray, for the joint angles read from
the motor encoders.
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Appendix A. CPG and Kinematic Patterns in Robot Experiments
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Figure A.2 – Underwater stepping pattern obtained with the first simulated individual.
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Figure A.3 – Forward land stepping pattern obtained with the first simulated individual.
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Figure A.4 – Backward stepping pattern obtained with the first simulated individual.
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Figure A.5 – Struggling pattern obtained with the first simulated individual. The glitch in the CPG
oscillation in joint 2 is probably due to corrupted CAN packets in the communication between the
robot modules.
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B Conversion Factors for Internal Robot
Units

We give here for reference the detail of the calculation of the factors used to convert from the SI

units used in simulation to the internal units of the PI torque controller used on Salamandra

robotica II.

B.1 Position Units

The motor encoder emits 512 pulses per revolution. A 32 bits register ϕ32 gives the position of

the motor as a count of the number of pulses from the rest position, ie. ϕ32 = 512 corresponds

to a motor rotation of 360 degrees. The value of ϕ32 is divided by 2dpos , and the least significant

byte of the result is stored in an 8 bit register ϕ8. In our robots, we have dpos = 7 for the body

joints and dpos = 8 for the legs.

The conversion factors for the motor rotation ϕm are given in the following table:

ϕm [deg] ϕm [rad]

1 ϕ8 unit (body) 360·27

512 = 90.0 1.57

1 ϕ8 unit (leg) 360·28

512 = 180.0 3.14

For the joint rotation, one has to incorporate the reduction factor R of the gearbox. The

following table gives the conversion factors from ϕ8 to the joint rotation ϕjoint = ϕm

R . Empirical

values are given in the last two columns.
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ϕjoint calculated ϕjoint measured

Joint type R ϕ8 [deg] [rad] [deg] [rad]

Axis 135 1 0.667 0.0116 0.680 0.0119

Leg 90 1 2 0.0349

B.2 Torque Units

The motor torque τm is calculated from a measure of the motor current I , using the motor

constant k:

I = τm

k

The current is measured from the voltage drop VI through a resistor RI :

VI = RI I

It is the input voltage of an amplifier (AD628) which leads to the following output voltage

Vampl:

Vampl =VI

(
1+ R1

R2

)
·0.1

The resistors are selected such that Vampl ∈ [−2.5,2.5]V. The voltage is then shifted by 2.5V to

match the PIC A/D converter input range of [0,5]V:

VPIC =Vampl +2.5V

The voltage VPIC is digitalized into an integer such that [0,5]V maps to {0,1, . . . ,1024}. Subtract-

ing the torque bias 512 from this value to undo the shift of 2.5V gives the 16 bits signed torque

measurement 1:

τ16 = VPIC

5V
·1024−512

or when putting it all together:

τ16 =
RI

τm
k

(
1+ R1

R2

)
·0.1+2.5V

5V
·1024−512

1. In practice the shift is not exactly 2.5V and the torque bias can be adjusted accordingly.
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which reduces to

τ16 =
RI

τm
k

(
1+ R1

R2

)
·0.1

5V
·1024

The 8 bits register τ8 is obtained by dividing τ16 by 2dtorque . In our case dtorque = 2, so we have

τ16 = τ8 ·4.

Using our values k = 3.46mNm/A, R1 = 50kΩ and R2 = 1kΩ, we find the following conversion

factors for the motor torque:

RI [Ω] τm [mNm]

1 τ16 unit 0.05 0.0663

1 τ8 unit 0.05 0.265

And with the gearbox reduction, we have the following conversions for the joint torque τjoint:

Joint type R τ8 τjoint [mNm]

Axis 135 1 35.8

Leg 90 1 23.9
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B.3 Speed Units

The speed measurement is updated every h seconds, where h is the sampling time. It is

determined by the value of the 16 bits sampling time register h16:

h = h16 ·1.6µs

In our case h16 = 16 ·28 +124 = 4220 (hMSB
16 = 16, hLSB

16 = 124) and we have h = 6.75ms.

For the speed, the measure is simply the number of encoder pulses received during this

sampling time. It is kept in a 16 bits register ω16, and in an 8 bits register ω8 after division

by 2dspeed . In our case, dspeed = 3 for the body and dspeed = 1 for the legs. Since a complete

revolution corresponds to 512 pulses, the motor speed is ωm = ω16
h · 2π

512 rad/s, and we have the

following conversion factors:

ωm [deg/s] ωm [rad/s]

1 ω8 unit (body) 833 14.5

1 ω8 unit (leg) 208 3.64

Applying the gearbox reduction, we have the following joint speeds:

ωjoint

Joint type R ω8 [deg/s] [rad/s]

Axis 135 1 6.17 0.108

leg 90 1 2.31 0.0404
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