The IN-mode in the TCV tokamak

O. Sauter, A. N. Karpushov, S. Coda, B. P. Duval, L. Federspiel, D. Kim and the TCV team

Ecole Polytechnique Fédérale de Lausanne (EPFL) Centre de Recherches en Physiques des Plasmas (CRPP) Lausanne, Switzerland

Outline

- High L-mode confinement in ohmic TCV shots
- Proximity to L-H transition
- Role of density in early phase of the discharge
- Comparison with H-mode profiles
- Similarity of core profiles, role of edge properties
- Conclusions

Improved L-mode Thanks to H-mode phase

Improved L-mode Thanks to H-mode phase

Through H-mode phase: normal to high L-mode conf.

CRPP O. Sauter

Without H-mode phase at lower Ip

Without H-mode phase at lower Ip

Without H-mode phase at lower Ip

Without H-mode phase at lower Ip: similar H-factors: L-mode with $H_{98v2} \approx 0.9$

 $T_e, T_i \text{ in low } I_p \text{ IN-mode: } T_e \sim T_i \text{ (high } n_e)$

 $I_p = 260 \text{kA}, n_{el} = 6.3 \text{e} 19$

45870: (W_{dml}=13.5) We=7.0kJ Wi=5.5kJ

46178: (W_{dml}=10) We=4.5kJ Wi=4.0kJ

- Both Te and Ti improve
- Ti > Te in edge region

O. Sauter

CRPP

• Density profiles are similar (n_{el} control)

O. Sauter

CRPP

O. Sauter

CRPP

Back to high L-mode conf. via H-mode phase

22 W_{DML} 20 18 16 18 14 DML 12 u [kJ] DML 16 0,95 li 、 14 0.9 R 0.85 12 li XXL via H 0.8 10 **q(0)** 0.9 XL via H 8 0,8 L-mode 6 q0 0.7 5 0 0.5 1 ST disappear 4 3 time [s] 2 SXR 0 1.2 0.7 0.8 0,9 1.1 1.3 0,6 1 Further conf. improvement consistent with $l_{TTF_{2013, USA, 20}}$ O. Sauter CRPP

Back to high L-mode conf. via H-mode phase

Aiming at same final high parameters

Comparison with H-mode profiles

L. Porte et al Nucl. Fusion **47** (2007) 952 A. Pitzshke et al PPCF **54** (2012) 015007 TTF 2013, USA, 22

Comparison with H-mode profiles

- IN-L-mode in TCV close to H-mode profiles
- Fills in H-mode range of profiles 0.5-1.5MW

CRPP

IN-mode and H-mode profiles are ~self-similar

- IN-mode better conf. just inside "pedestal"? $(+n_e(\rho=1))$
- Edge L-modes are not stiff => wide variety of scenarios

On the non-stiffness of edge transport in L-modes, O. Sauter et al, TTF2013 O. Sauter TTF 2013, USA, 24

IN-mode and H-mode profiles are ~self-similar

- IN-mode better con^{*}f. just inside "pedestal"? ($+n_e(\rho=1)$)
- Edge L-modes are not stiff => wide variety of scenarios

On the non-stiffness of edge transport in L-modes, O. Sauter et al, TTF2013 O. Sauter TTF 2013, USA, 25

Conclusions

- IN-mode is "another" improved L-mode
- IN-mode reached $H_{98y} \sim 0.9$ -1 in stationary ohmic L-mode
- It has low edge Te (<100eV) and relatively high edge ne
- A) Limited H-modes was triggered when forming IN-mode
- B) High n_e request from t=0 helped creating IN-mode
- In both A and B series, li is lower with good confinement
- With both A, B series, similar paremeters were obtained
- Stationary improved confinement does not depend on initial conditions but needed to "create" good confinement
- It shows that L-modes can have a very wide range of edge and core profiles: namely "I-family" (*edge non-stiff*)

