On the non-stiffness of edge transport in L-modes

O. Sauter, D. Kim, R. Behn, S. Coda, B. P. Duval, T. P. Goodman and the TCV team

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Centre de Recherches en Physiques des Plasmas (CRPP)
Lausanne, Switzerland
Outline

• Motivation
 – Carbon profile shown independent of Ip on TCV
 – Core scalelengths seem independent of Ip, despite $\tau_E \propto I_p$
• Determine R/L$_{Te}$ vs I$_p$, P$_{EC}$, δ in core AND edge regions
• Core region is stiff, edge is not
• 1-D transport simulation with new model
• Conclusions
Impurity transport independent of Ip

O. Sauter et al, IAEA 2010 EXPC/P8-13 and EXS/P2-1
Same for T_i, ν_Ψ independent of I_p

O. Sauter et al, IAEA 2010 EXPC/P8-13 and EXS/P2-1
electron transport independent of \(I_p \) as well

\[\text{Profiles self-similar outside mixing radius} \]

\[\text{We} \propto I_p \]

\[\text{Ip scan: } q_{95} \text{ from 2.5 to 10} \]
What is R/L_{Te} global profile for gyrokinetic?

- **A**: $R/L_{Te} \rightarrow 0$ at $\rho=1$: Used in most simulations
- **B**: $R/L_{Te} \rightarrow 3-10*(\text{core})$ at $\rho=1$: seems proposed by expt
n_e, T_e versus I_p in TCV, with z-axis sweep

Thomson data, with slow z-axis sweep
n_e, T_e versus I_p in TCV, with z-axis sweep

Clear increase of total energy with I_p
Change of scalelengths only for $\rho_V > 0.85$

- Normalization vs value at $\rho=0.8$ is not a good idea
- Normalizing at $\rho=0.98$ depends on the quality of fit
Change of scalelengths only for $\rho_V > 0.85$

- Normalization vs value at $\rho = 0.8$ is not a good idea.
- Normalizing at $\rho = 0.98$ depends on the quality of fit.

Note: ρ_ψ too narrow edge region.

R/Lpe identical in core.

R/Lpe $\propto I_p$ for $\rho_V > 0.8$ (x2.6>core at $I_p = 285kA$)

Note: ρ_ψ too narrow edge region.
PEC scan at constant Ip
PEC scan at constant Ip

- Normalization on $p_e(0.8)$ shows self-similar profiles
PEC scan at constant Ip

![Graph showing PEC scan at constant Ip](image)

- Stiff in core
- Non-stiff in edge
P_{EC} scan at constant Ip

- Stiff in "core" region $R/L_{Te} \approx 15$
- $R/L_{Te} > 30-40$ in edge region
Strong effect of δ on global profiles

- $\delta < 0$: same prof with $\frac{1}{2} P_{EC}$

Strong effect of δ on global profiles

- $\delta < 0$: same profile with $\frac{1}{2} P_{EC}$
- $\delta < 0$: higher p_e with same P_{EC}
"Local" transport characteristics in stationary state:

\[V' Q_e = \int_0^\rho S_e dV = -n_e \chi_e V' \langle |\nabla \rho|^2 \rangle \frac{\partial T_e}{\partial \rho} \]

\[V' = \frac{\partial V}{\partial \rho} \quad \frac{R_0}{L_{Te}} = - \frac{R_0}{T_e} \frac{\partial T_e}{\partial \rho} \langle |\nabla \rho| \rangle \]

\[\frac{\langle |\nabla \rho| \rangle}{\langle |\nabla \rho|^2 \rangle} \frac{V' Q_e}{T_e} = n_e \chi_e V' \frac{R_0}{L_{Te}} \]

Stiff: \(\chi_e \) increases when \(Q_e \) increases \(\Rightarrow R/L_{Te} \approx \text{cst} \)
Qe/Te versus R/LTe from TCV data

\[\frac{\langle | \nabla \rho | \rangle}{\langle | \nabla \rho |^2 \rangle} \frac{V' Q_e}{T_e} = n_e \chi_e V' \frac{R_0}{L_{Te}} \]

\[\chi_e \rho = \nabla \nabla \]

\(X_e(\text{edge}) \) is large but it is relation between \(Q_{e_norm} \) and \(R/L_{Te} \) which matters
Qe/Te versus R/LTe from TCV data

\[
\frac{\langle | \nabla \rho | \rangle}{\langle | \nabla \rho |^2 \rangle} \frac{V'Q_e}{T_e} = n_e x_e V' \frac{R_0}{L_{Te}}
\]

X_e (edge) is large but it is relation between Q_e_norm and R/LTe which matters
$$\frac{\langle |\nabla \rho| \rangle}{\langle |\nabla \rho|^2 \rangle} \frac{V'Q_e}{T_e} = n_e \chi_e V' \frac{R}{L_{Te}}$$

$X_e(\text{edge})$ is large but it is relation between Q_{e_norm} and R/L_{Te} which matters.
A combined core-stiff / edge-non-stiff model

Assuming edge non-stiff:

(3) $\chi \propto \frac{a^2}{\tau_E} \propto P^{0-0.2}$

Three main regions w.r.t transport:
1) center: ST/current hole effects: large χ
2) Core: stiff, $R/L_{Te}\sim$ cst
3) Edge: non-stiff

Stiffness: $\tau_E \propto P^{-0.7}$

(2) $\chi \propto \frac{a^2}{\tau_E} \propto P^{0.7}$

test on P scan

(1) $\sim P^{0.1}$
A combined core-stiff / edge-non-stiff model

Stiffness: \(\tau_E \propto P^{-0.7} \)

Assuming edge non-stiff:

\(\chi \propto \frac{a^2}{\tau_E} \propto P^{0.7} \)

(3) \(\chi \propto \frac{a^2}{\tau_E} \propto P^{0.7} \)

Leads to strong diff. with P↑

\(\chi_e/\chi_e(400\text{Kw}) \)

\(P \)
Results using 1-D ASTRA model

• We start from this χ_e profile and other plasma parameters
• Scale core $\chi_e \sim P^{0.7}$ and edge with $P^{0.1}$
Results using 1-D ASTRA model
Same technique for $\delta=+0.4$, $\delta=-0.4$ cases

Recover profiles with:
1. Same transport in core: $P^{-0.7}$
2. Reduced transport near edge with $\delta<0$

Stiff edge not sufficient
Reconciles with gyrokinetic simulations

- Difference in linear and nonlinear simulations found only for $\rho > 0.7$
- Present model resolves this issue

\[\gamma k_\bot^2 |v_{\text{th}}|^2/\alpha \]

A. Marinoni et al, PPCF Plasma 51 (2009) 055016

GAMs, see TCV comprehensive analysis S. Coda TTF2013
Conclusions

- Core transport limits R/L_{Te} (and R/L_{Ne} to some extent)
- Even with favourable I_p scaling profiles remain self-similar
- Therefore values at $\rho=0.8$ are changing with I_p
- This is possible with non-stiff transport in $[0.8,1]$
 - χ hardly increase with increased power
- Simple model recovers I_p, P scaling and δ effects with:
 - $\chi \sim P^{0.7-0.8}$ in core
 - $\chi \sim P^{0-0.2}$ in edge
- Explains effects of negative δ (which does not penetrate)
- Explains good P scaling of edge I-mode
- Explains profile consistency
- Explains "I-family", + can have wide variety of parameters
- Shows how L-mode builds up $R/L_{Te} \rightarrow 100$ with increasing power towards H-mode transition