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Abstract
Our research addresses the need for an efficient, effective, and interactive access to large-scale

image collections. Image retrieval needs are evolving beyond the capabilities of the traditional

indexing based on manual annotation, and the most desirable characteristic of any image

retrieval system is to be able to deal with automatically-extracted visual indexing features,

while providing an intuitive and simple interaction with users.

In this thesis, we investigate an innovative query-free retrieval approach that was proposed

by Ferecatu and Geman. Starting from an heuristic sampling of the collection, this approach

does not require any explicit query, neither keywords nor image-examples. It relies solely on

an iterative relevance feedback mechanism driven by the user’s subjective judgments of image

similarities. At each iteration, the system displays a small set of images and the user is asked

to choose the image that best matches in her opinion what she is searching for. The system

updates an internal state based on automatically-extracted indexing features, and it displays a

new set of images accordingly. The idea is that the system converges towards what the user is

searching for, and iteratively it displays more and more relevant images.

Our contributions are related to four complementary aspects of the iterative relevance feed-

back mechanism. First, we formalize a large-scale approach based on a hierarchical tree-like

organization of the images computed off-line. Second, we propose a versatile modulation of

the exploration/exploitation trade-off based on the consistency of the system internal states

between successive iterations. Third, we elaborate a long-term optimization of the similarity

metric based on the user searching session logs accumulated off-line. Forth, we propose

a dynamic short-term adaptation of the similarity metric based on the relevance feedback

events accumulated on-the-fly at each iteration. Furthermore, we round up our research by

integrating all our contributions together into one comprehensive retrieval system.

Experimental validation was carried out by implementing a web-application which includes

all our contributions. This software is distributed to the public under the AGPL Version

3 open-source license. We carried out plenty of user-based evaluation campaigns, and we

analyzed systematically all our contributions. We show empirically that each of them improves

significantly the retrieval performance of the original framework. Moreover, we show that they

are complementary to each other, and their overall integration is consistently beneficial.

We foresee that our contributions, along with our open-source web-application, will motivate

further investigations and facilitate further experiments. We hope that our research brings the

iterative relevance feedback mechanism one step closer to commercial applications.
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Résumé
Ce mémoire traite de l’accès efficace et interactif à des collections d’images de grande taille. Les

besoins en recherche d’images dépassent aujourd’hui les capacités des méthodes d’indexation

traditionnelles qui reposent sur des annotations manuelles, et la qualité la plus désirable de

tout système de recherche d’images est d’utiliser des descripteurs visuels d’indexation extraits

de manière automatique, tout en étant simple et d’utilisation intuitive.

Nous avons étudié une approche innovante de recherche sans requête, qui fut proposée

initialement par Ferecatu et Geman. Partant d’un échantillonnage heuristique de la collection,

cette approche ne requiert aucune requête explicite, aucun mot-clé et aucun exemple. Elle

repose uniquement sur l’information que fournit l’utilisateur sur la ressemblance entre les

images qui lui sont montrées aux fil des itérations. À chaque étape, le système affiche un petit

nombre d’images et demande à l’utilisteur de sélectionner celle qui selon lui, ressemble le

plus à ce qu’il recherche. Le système met à jour un état interne basé sur des descripteurs

d’indexation extraits de manière automatique, et affiche des nouvelles images en conséquence.

Le système converge vers ce que l’utilisateur recherche, et affiche des images de plus en plus

pertinentes.

Nos contributions portent sur quatre aspects complémentaires du mécanisme de retour

itératif sur la pertinence. Premièrement, nous formalisons une approche grande échelle basée

sur une arborescence pré-calculée des images. Deuxièmement, nous gérons le dilemme

exploration/exploitation en prenant en compte la cohérence des états internes du système

entre deux itérations successives. Troisièmement, nous optimisons hors ligne la mesure de

similarité à l’aide de données collectées lors des sessions de recherches antérieures. Qua-

trièmement, enfin, nous proposons une adaptation dynamique à court terme de ladite mesure

de similarité en nous basant sur le retour de pertinence acquis à chaque itération.

Les expériences de validation ont été menées grâce à une application web qui inclut l’ensemble

de nos contributions. Ce logiciel est distribué au public sous une licence open-source AGPL

Version 3. Nous avons mené de nombreuses campagnes d’évaluation avec des groupes

d’utilisateurs, et nous avons analysé systématiquement les performances de toutes nos contri-

butions. Nous avons montré que chacune d’elle améliore de manière significative la perfor-

mance de la recherche initiale. De plus, nous avons montré qu’elles sont complémentaires, et

que leur intégration conjointe est bénéfique.

Nous espérons que nos contributions ainsi que notre application web open-source amèneront

à d’autres études et d’autres expériences. Finalement, nous espérons que les résultats de

cette thèse rapprocheront le mécanisme itératif de retour sur la pertinence d’une utilisation

commerciale.
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1 Introduction

The expansion of the World Wide Web, accompanied by inexpensive recording capabilities

and mass storage and sharing tools, facilitate the public access to multimedia data of un-

precedented size. Some of the largest on-line repositories for such data that include different

modalities like images, audio, video and text, are Flickr, YouTube, FaceBook, Twitter, and of

course the World Wide Web as a whole. Such an amount of information creates enormous

possibilities and challenges at the same time. While it is easy to share and access everything

anytime, it is hard to search and find anything specific.

This thesis is related to content-based image retrieval, and investigates a novel retrieval

approach proposed initially by Ferecatu and Geman [24, 25] which has the major advantage of

being query-free. It does not require any explicit query, neither keywords nor image examples,

and relies solely on an iterative relevance feedback mechanism. At each iteration, the system

displays a small set of images, and the user chooses one image that best matches what she is

searching for. The idea is that the system converges , and iteratively displays more and more

relevant images.

In this chapter, we state the scope of the thesis, and give an overview of our contributions.

First, we motivate the scope of our thesis in the research field of content-based image retrieval.

Then, we provide an overview of our contributions, and cite our related publications.

1.1 Objective

Image retrieval, as well as multimedia retrieval in general, has changed considerably in the last

decade due to the expansion of the World Wide Web accompanied by inexpensive recording,

storage and sharing capabilities. A decade ago, the largest image collections were stock

photography collections such as Getty Images and Corbis, containing hundreds of thousands

of images carefully annotated with keywords from a well specified vocabulary by experts with

a homogeneous and professional knowledge. Nowadays, the on-line image collections such

as Flickr and FaceBook are orders of magnitude larger.
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Chapter 1. Introduction

Content-based image retrieval has been under active research for a few decades, and although

great progress has been made and many retrieval approaches have been proposed, there are

still many questions that remain open in both the perceptual cognitive and the algorithmic

technical aspects. Regarding the cognitive aspect, novel similarity measures or rankings are

needed to capture better the human perception of image similarities. Regarding the technical

aspect, novel algorithms are needed to compute or approximate efficiently such similarity

measures at large-scale.

The broad objective of this thesis is to investigate new ways for an efficient, effective and

interactive access to large-scale image collections, and thus to contribute to (the technical

aspect of) the research field of content-based image retrieval. Our aspiration was to contribute

to the retrieval paradigm based on iterative relevance feedback. First, we aimed to contribute

to the efficiency of various algorithms, by analyzing and improving their technical characteris-

tics and mathematical properties. Then, we aimed to contribute to the usability of various

interfaces, by evaluating and enhancing the user experience. In overall, we aimed to bring the

iterative relevance feedback paradigm one step closer to commercial applications.

1.2 Motivation

There is a noticeable need for retrieval systems that are able to provide efficient access to these

large-scale image collections containing billions of items. Since it is virtually impossible to

annotate manually all images, the image retrieval needs are evolving beyond the capabilities

of the straight-forward text-based retrieval systems in both public and private domains. In

this regard, the most desirable characteristic of any image retrieval system is to be able to deal

with automatically extracted visual-based features, while providing an intuitive and simple

interaction with users.

Research has begun to tackle this challenge via automatic tagging based on annotation prop-

agation [56, 39, 65]. However, formulating a query might not be the most efficient way of

searching for images since the visual content is often difficult to describe in terms of key-

words. Relevance feedback is indeed envisioned by many researchers as the only alternative

that could cope properly with the challenges in image retrieval, and multimedia retrieval in

general [51, 69, 14].

We were inspired by an innovative retrieval approach proposed initially by Ferecatu and

Geman [24, 25] which has the major advantage of being query-free. It does not require any

explicit query, neither keywords nor image examples, and relies solely on an iterative relevance

feedback mechanism. At each iteration, the system displays a small set of images, and the

user chooses one image that best matches what she is searching for. The system updates

an internal state, and displays a new set of images accordingly. In this process, the system

converges towards what the user is searching for, and after a few iterations the displayed sets

start to include more and more images that satisfy the user.
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1.3. Contribution

The motivation for a query-free retrieval approach comes from the observation that formu-

lating a query might not be the most optimal way of initializing a searching session. On the

one hand, the user retrieval needs are often difficult to describe in terms of keywords. One

may need to be more specific than what two-three keywords can capture or, even worst, one

cannot express in keywords what she is searching visually. On the other hand, relevant images

may be easily filtered out since any query is inherently incomplete and sub-optimal. The user

has to be familiar with the keyword vocabulary and to understand the underlying indexing

in order to be able to re-formulate manually a more optimal query and to steer/refine the

search. By hiding entirely the indexing features, the query-free user interface is minimalist

and self-explanatory.

1.3 Contribution

Our research in this thesis focuses on extending and reshaping various aspects of the retrieval

framework proposed initially by Ferecatu and Geman [24, 25]. We have investigated the state-

of-the-art approach in four complementary aspects, namely large-scale distributed system

architecture, exploration/exploitation trade-off, image similarity learning and multi-modal

image features. The key achievements are as follows.

Large-scale HEAT framework

The original approach requires at each iteration a computational effort that is tightly related

to the size of the image collection Ω. On the one hand, the probabilities of relevance are

computed for all the images in the collection, and this implies O (‖Ω‖) complexity. On the

other hand, the selection of the displayed images involves sorting operations of O (‖Ω‖·log‖Ω‖)

complexity over the entire collection.

We propose an approach that effectively decouples the computational effort from the size of

the collection, and yet preserves the retrieval capabilities. Using an adaptive partitioning of

the image collection, we provide the means for controlling the trade-off between the retrieval

performance and the computational effort. This retrieval approach promises an interactive

access to image collections of unprecedented size.

The evaluation was organized on a collection of 1,000,000 images from the ImageNet database

[18]. The experiments show that our system provides a sustainable performance where the

original system proposed by Ferecatu and Geman [24, 25] would cease to function within any

reasonable time-frame.

• Nicolae Suditu and François Fleuret. HEAT: Iterative relevance feedback with one

million images. In Proceedings of the IEEE International Conference on Computer Vision

(ICCV), pages 2118–2125, November 2011.
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Exploration/exploitation trade-off

Content-based image retrieval systems have to cope with two different regimes: understanding

broadly the categories of interest to the user, and refining the search in this or these categories

to converge to specific images among them. As argued by Ferecatu and Geman [24, 25], the

original approach is well suited for image category search and that is, in other words, the first

retrieval regime of exploring the image collection, but it is quite unsuitable for the second

regime.

We propose an approach that encompasses these two regimes, and infers from the user

actions a smooth transition between them. We introduce the idea of an adaptive modulation

of the exploration/exploitation trade-off that transforms the original approach into a versatile

retrieval framework with full searching capabilities.

Our approach is compared to the state-of-the-art approach it extends by conducting user

evaluations on a collection of 60,000 sampled uniformly from the ImageNet database [18].

Evaluation gives evidence that our approach brings a significant improvement to the retrieval

capabilities beyond finding an image category, and is able to support refining the user interest

in an efficient manner.

• Nicolae Suditu and François Fleuret. Iterative Relevance Feedback with Adaptive

Exploration/Exploitation Trade-Off. In Proceedings of the ACM International Conference

on Information and Knowledge Management (CIKM), pp.1323–1331, October 2012.

Log-based similarity metric

Interactive image retrieval based on user relevance feedback strongly depends on the extent

to which the “closeness” in the similarity metric (i.e. the distances between the image feature

vectors) accounts for the “closeness” in the subjective perception of the users.

We propose to improve the visual-based similarity metric on which the original framework

relies by learning from user logs to adapt the low-level image features and model explicitly the

user similarity judgments.

Our technique is evaluated on two collections from ImageNet, a small collection of 60,000

images and a large collection of 1,000,000 images, and shown to bring about 10% improvement

in the retrieval performance.

• Nicolae Suditu and François Fleuret. Interactive Image Retrieval with Log-based Simi-

larity Learning. In Proceedings of the International Conference on Computer Vision and

Pattern Recognition (CVPR), July 2013, submitted.
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Multi-modal similarity metric

The original approach uses a rigid similarity metric based on low-level indexing features

extracted from the images visual content (i.e. global descriptors of color, texture and shape).

The alignment with the user subjective perception of image similarities is done via a linear

calibration that is invariant during the searching sessions.

We propose an extension that integrates indexing features extracted from both the images

visual content and their accompanying annotation keywords. This is motivated by the intuition

that the retrieval needs are sometimes modeled better by visual features, sometimes by textual

features, and sometimes by a combination of both.

Our approach is evaluated on a collection of 35,000 images from the COREL database, and

shown to be intuitive, easy to use and efficient. The system succeeds to retrieve images that

satisfy the users in less than 5 iterations in 60% of the cases.

• Nicolae Suditu, Alessandro Vinciarelli and François Fleuret. Query-Free Interactive

Image Retrieval Based on Visual and Textual Features. Idiap Research Institute internal

report, 2010.

System software design

We invested a considerable amount of effort in developing the retrieval system as a web-

application. Besides the advantage of permanent availability for evaluations, this implementa-

tion encourages the adherence to a realistic system architecture.

The implementation has about 12,000 lines of code written in Python based on the Django

platform, and it complies with the PEP8 code style standard. The indexing information and

the user logs are stored in a relational database based on MySQL. Besides the searching

functionality, there is infra-structure for user-based evaluation purposes that handles user

accounts, stores evaluation data and computes statistics.

The application software has been published under the AGPL Version 3.0 open-source license.

We hope that our code adds transparency to our research work, facilitates the reproducibility

of our experiments, and offers a good foundation for further investigations.

• Nicolae Suditu, http://www.idiap.ch/software/imr/, software release copyrighted by

Idiap Research Institute, available under the AGPL Version 3 open-source license, 2010–

2012.

• Nicolae Suditu, http://imr.idiap.ch/, demo web-application, 2009–2012.
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Chapter 1. Introduction

System integration

We rounded up our research by investigating the integration of all contributions together into

one comprehensive retrieval system. Our contributions touch different components of the

retrieval system, and from the retrieval performance point of view their integration makes a

lot of sense.

In order to evaluate the overall retrieval performance, we organized several user-based evalua-

tion campaigns in the same manner as for each individual contribution, and we evaluated

systematically different combinations of our contributions. We got evidence that each con-

tribution complement each other, and their combination improves consistently the retrieval

performance for both small and large collections.

• Nicolae Suditu and François Fleuret. Adaptive Relevance Feedback for Large-scale

Image Retrieval. In IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2013, work in progress.

§1. Introduction

§2. Content-based

image retrieval

§3. Query-free

retrieval framework

§4. Large-scale

HEAT framework

§5. Exploration/ex-

ploitation trade-off

§6. Log-based

similarity learning

§7. Multi-modal

image similarity

§8. System

integration

§9. Conclusion

§A-C. Appendices

Web-application

Test platform

Image collections

Figure 1.1: Organization of the thesis, showing the chapter inter-relationships.
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1.4 Organization

So far in this Chapter §1 we have stated the general scope of the thesis, and we gave a brief

overview of our contributions. The structure of the rest of the thesis is straight-forward

following our contributions as sketched in Figure 1.1.

Chapter §2 defines and motivates our research topic by an overview of the relevant state-of-

the-art. First, we provide a brief overview of the research field of content-based image retrieval.

Then, we provide a closer look at the state-of-the-art in relevance feedback, and how our work

is positioned in this research landscape.

Chapter §3 describes the retrieval framework that is central to our work. First, we present

in detail the query-free retrieval approach, and provide the theoretical justifications for the

component algorithms. Then, we provide the first intuitive analyses that motivate the research

directions we have chosen to pursue further on.

The next chapters present our contributions. Chapter §4 presents the large-scale HEAT frame-

work. Chapter §5 presents the exploration/exploitation trade-off. Chapter §6 presents the

user-based similarity learning, and Chapter §7 presents the adaptive multi-modal similarity

metric. Chapter §8 presents the system integration.

Chapter §9 summarizes our work, and opens new directions for further research. First, we

conclude the thesis with a final overview of our contributions. Then, we outline and motivate

a few potential directions for future work.

In the Appendices, we present some of the secondary contributions of this thesis. Appendix §A

describes the web-application and all its components, and mentions our software devel-

opment choices. Appendix §B describes the test platform that we have used thoroughly

throughout our work. Appendix §C describes the three image collections that we have used in

our research for automatic simulations and user-based evaluations, namely Corel Stock Photo

Library, ImageNet dataset and our synthetic image collection.
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2 Content-based image retrieval

Image retrieval, as a field of multimedia information retrieval, resides at the intersection of

various disciplines such as computer vision, machine learning, information retrieval, human-

computer interaction, database systems and psychology [64]. We are approaching this field

from the engineering point of view, and we are trying to pay attention to aspects from other

disciplines as much as possible.

In this chapter, we define and motivate our research topic by an overview of the relevant

state-of-the-art. First, we provide a brief overview of the research field of content-based

image retrieval. Then, we provide a closer look at the state-of-the-art in relevance feedback

mechanisms, and position our research work.

2.1 Image collections

The scale of nowadays collections is hard to grasp even for professionals. Photo-sharing on

the Web keeps getting more and more popular. Facebook1 has over 15 billion images, and

Flickr2 over 4 billion images. Surprisingly, these well-known sharing platforms are not the

largest in terms of the number of images, and for example Image Shack3 hosts more than 20

billion images. These numbers are meant only to get the idea, as they become out-dated as

soon as they are written down. These collections are not only huge, but also continue to grow

at fast rates. For example, Facebook users are adding photos at a rate of 850 million photos a

month.4

We adhere to the assumption that large-scale collections are not only large, but also inherently

un-structured (i.e. lacking any semantic or thematic indexing as in the archived libraries) and

continuously out-dated (i.e. images are frequently being added, replaced or removed). Thus,

our affinity is towards retrieval approaches that could accommodate such assumptions.

1http://www.facebook.com/
2http://www.flickr.com/
3http://imageshack.us/
4http://techcrunch.com/
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Chapter 2. Content-based image retrieval

2.2 Indexing information

The value of a collection depends on its accessibility, which in turn depends on a correspond-

ing relevant indexing. A decade ago, the largest image collections were the stock photography

collections such as Getty Images5 and Corbis6 containing hundreds of thousand images. Im-

ages were annotated carefully with keywords from a well specified vocabulary by people with

a homogeneous and professional knowledge.

Nowadays, the on-line image collections such as Flickr7 or FaceBook8 are orders of magnitude

larger. Although many images are annotated, the keywords are less reliable due to subjective

perception and less consistent due to uncontrolled vocabulary. Moreover, it is almost impossi-

ble to annotate manually all images. In order to build satisfactory retrieval applications, the

indexing information should be acquired automatically.

Modern digital technologies creates enormous possibilities and challenges at the same time.

Nowadays, the on-line image collections such as Flickr9 or FaceBook10 report growings of

millions of images per week. Although many images are annotated, it is virtually impossible

to annotate manually all of them. Still, the value of a collection depends on its accessibility,

which in turn depends on its indexing. In order to build large-scale retrieval applications, the

indexing information should be generated automatically from the images themselves.

There are two main paradigms for using the visual-based features. The first paradigm is to

use them directly in order to define some similarity metric between images, in the same

way as textual-based features are used. The second paradigm is to use them indirectly, to

translate automatically the visual-based features into textual information as a pre-processing

operation [35] via automatic image interpretation [19] or annotation propagation [44].

Many visual-based features have been proposed to characterize globally color distributions,

textures and edge layouts [42]. Probably the most known are the visual features based on

SIFT (Scale Invariant Feature Transform) [41], which is highly distinctive and robust to affine

transformations and limited changes in illumination and 3D viewpoint.

2.2.1 Textual information

The main source of textual information that is exploited by the existing search engines (e.g. Ya-

hoo!, Google) is the image’s captions or the paragraphs found in the proximity of the images as

they are arranged in multimedia documents (e.g. web-pages with news, articles, reviews) [36].

Photo-sharing repositories and social networking web-sites support and encourage the users

5http://www.gettyimages.com
6http://www.corbisimages.com
7http://www.flickr.com
8http://www.facebook.com
9http://www.flickr.com

10http://www.facebook.com
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2.2. Indexing information

to provide annotation keywords for their own images and write feedback comments for the

images of other users [12].

Textual-based features have been extensively investigated researched for text retrieval systems

and, basically, any such features can be imported by the image retrieval systems. After the tex-

tual information is cleaned up by parsing, stemming and other techniques, the textual-based

feature vectors are constructed to reflect the presence of the indexing terms [52]. My research

work done so far is using textual features based on LSA (latent semantic analysis) [17]. LSA

takes advantage of the implicit associations between keywords, and it escapes the unreliability,

ambiguity and redundancy of individual keywords.

2.2.2 Contextual information

Modern digital equipment associates automatically images with meta-data such as date/time,

location (i.e. Global Positioning System coordinates), and acquisition technical details (e.g.

device type and configuration, resolution, luminosity, exposure settings) [16].

Photo-sharing repositories and social networking web-sites accumulate meta-data such as the

number of accesses/viewings, number of references/links, popularity rankings or comments of

users. These kinds of contextual information could be exploited in retrieval applications [15].

Another source of information that is currently emerging, at least in the research community,

is the implicit tagging from the nonverbal behavior displayed by users while interacting with

multimedia data (e.g. facial expressions, vocal outbursts) [63].

2.2.3 Visual information

However, the textual and contextual information cannot fully characterize the visual content

of the images. Making abstraction of its feasibility, the manual annotations are subjective

and incomplete by nature. For this reason, there have been proposed the use of image

processing techniques to capture automatically the visual content of images [38]. The IBM

QBIC project [26] developed in 1995 is regarded as the pioneer of visual-based retrieval

systems.

The visual content, or appearance, of the images is described mathematically in vector spaces

based on image processing techniques (e.g. global color, texture and shape information, or

a combination of these). Contrary to textual information, the visual information is abstract

and does not allow for intuitive search. There is no unique explanation for the difficulties

encountered in content based retrieval [56].

• The concept of “semantic gap” has been extensively used in the research community

to express the discrepancy and un-correlation between the abstract vectorial represen-

tations and the actual semantic interpretation of the visual content. That is why these
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abstract representations were called low-level features in the first place.

• The “numerical gap” refers to the incapacity of the low-level features to characterize

sufficiently the visual content of the images in order to discriminate appropriately

between “relevant” and “irrelevant” images.

There are two main paradigms for using the visual-based features. The first paradigm is to use

them directly in order to define some similarity metric between images, in the same way as

textual-based features are used. The second paradigm is to use them indirectly, to translate

automatically the visual-based features into textual information (e.g. annotation keywords)

as a pre-processing operation [35]. The main idea is to achieve automatic annotation via

automatic image interpretation [19] or annotation propagation [44]. Automatic translation

is a complex task, involving computer vision problems such as object recognition, and this

research direction make slow progress.

Many visual-based features have been proposed to characterize globally the color distribution,

texture and edge layout and many are already included in the MPEG-7 standard [42]. My

research work is using visual features based on SIFT (Scale Invariant Feature Transform) [41].

SIFT feature vectors are highly distinctive and robust to affine transformations, changes in

illumination and limited changes in 3D viewpoint.

2.2.4 Multi-modal information

In the recent years, research confirmed that both visual-based and textual-based features have

inherent limitations, and the retrieval systems are better off if they exploit both feature types

in a multi-modal fashion, in order to compensate each other for their own limitations (see

Smeulders et al. [56]).

The simplest approach is to simply concatenate the visual-based and textual-based features

or to combine them in other rigid manner in order to obtain composite features. Since the

results have been encouraging [37, 23, 54], they motivated the research of more advanced

combinations such as dynamically weighted features [68].

2.3 Retrieval approaches

There are two extreme image retrieval needs: exploration and exploitation. The expectations

of the users will always be somewhere in between, and always different. Ideally, the retrieval

systems should support a seamless transition between them.

• The “exploration” need refers to the case when the user wants to browse the collection

while committing to a rather vague notion of relevancy that may vary over time.
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• The “exploitation” need refers to the case when the user wants to find all the images that

share some specific characteristics.

Most of the retrieval systems offer a standard pipe-line of retrieval approaches. A search

session is initiated by submitting a query to the retrieval system. The most common type

of query is a set of keywords, as in the case of text retrieval. After retrieving the first results,

some systems offer relevance feedback tools that support the user in refining the results

in an iterative manner. Some systems offer more complex interfaces for tuning algorithm

parameters or profile/preference parameters.

2.3.1 Query-based retrieval

The classical image retrieval approach was to annotate each image manually based on a limited

vocabulary of keywords (i.e. to create manually the textual information) and, basically, to

reduce image retrieval to text retrieval and to make use of the well-known and well-researched

query-by-keywords approach [10, 59]. As in the case of text retrieval, formulating a query is

more suited for the exploitation stage than for the exploration stage of the retrieval process.

For exploration, the user must rely on her creativity to reformulate queries and to understand

the indexing miscarriages.

The trend in the recent years shows that image retrieval systems must evolve beyond the

capabilities of the straight-forward text-based surrogates [50]. Formulating a query might

not be anymore the most efficient way of searching for images. If the annotation keywords

are not fully consistent, even the most optimal query may easily exclude relevant images and

include non-relevant images. Moreover, users not familiar with the keywords vocabulary will

likely formulate only sub-optimal queries. All these difficulties add on top of the fact that the

retrieval needs are often difficult to describe in terms of keywords.

In consequence, research proposed alternative approaches that use the visual-based features

directly in the indexing/retrieving operations. The main idea consists of specifying the query

as a set of feature vectors and, then, searching the collection for the best match. The difficulty

is now shifted into specifying such abstract queries, which can be done only indirectly. The

most generic meanings are query-by-visual-examples, in which the user must provide image

examples similar to what he is searching for [57], and query-by-sketching, in which the user

must hand-draw some simple colors, textures or shapes [26]. These unconventional types of

queries have their own limitations by assuming suitable image examples at hand or reasonable

drawing skills [3].

2.3.2 Relevance feedback

Another way of identifying what the user is searching for is by using relevance feedback

mechanisms. In general, relevance feedback is any information about the retrieved results,
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Chapter 2. Content-based image retrieval

given by users to a retrieval system. Whereas introduced in text retrieval [29], relevance

feedback has attracted more considerable attention in the content-based image retrieval.

In fact, relevance feedback is envisioned by many researchers as the only alternative that

could cope properly with the challenges in image retrieval [51, 69, 14]. Replacing the burden

of formulating explicit complex queries, or having good image examples at hand, by some

similarity judgments is very appealing in this new field.

One could think to make use of many sorts of information from subsequent retrieval ses-

sions [14]. In my research, relevance feedback refers only to the information acquired in the

current retrieval session by including the user in the retrieval loop [49]. For this, the session is

divided into several consecutive iterations; at every round the user provides feedback regard-

ing the retrieval results, labeling relevant images (i.e. positive feedback) and sometimes also

non-relevant images (i.e. negative feedback). The system use this new information in order to

refine the results.

While early works in MARS [7] and MindReader [33] developed mechanisms for rich feedback

information (e.g. ranking many images, tuning many parameters), the current consensus is

that mechanisms should deal with scarce feedback (e.g. marking a few “relevant” images and

no tuning parameters) [13]. Obviously, the minimalist relevance feedback mechanism would

require marking as “relevant” one single image at each iteration.

As reported in surveys [56, 62], there are many content-based image retrieval systems in

research form but very few have been commercially developed. Scalability is crucial for an

image retrieval system to be practical and realistic [67]. Some of the recently proposed pro-

scalable approaches are Vima’s Image Search Engine [66], Virage VIR Image Engine [2] and

Cortina [48].

2.3.3 Query-free retrieval

The innovative idea of searching images without any explicit query appeared in the work of

Cox et al. [13]. The backbone of their approach was a relevance feedback mechanism based

on a Bayesian framework. Fang and Geman [21] and Ferecatu and Geman [24, 25] extended

the Bayesian framework and provided theoretical justifications for the main algorithms.

Starting from an heuristic sampling of the collection, this approach does not require any

explicit query. It relies solely on an iterative relevance feedback mechanism. At each iteration,

it displays a small set of images and the user is asked to show the image that best matches

what he is searching for. After a few iterations, the displayed set starts to include images

that satisfy the user. By hiding entirely the indexing features, the user interface is effortless

and self-explanatory. Moreover, this approach is intuitively suitable to support a seamless

transition between the exploration stage and the exploitation stage of the retrieval process.

Sharing the same line of thinking, a perception-based image retrieval system was developed

by Chang et al. [8]. In essence, the system models the user retrieval needs as feature grouping
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of k-CNF/DNF Boolean form. Starting without any explicit query, it requires an iterative rich

relevance feedback consisting of positive and negative labeled images. The displayed sets of

images for conducting an efficient and moderately robust to noise relevance feedback process

are selected intelligently by an active learning algorithm presented in Chang and Li [9].

Query-free retrieval falls naturally under the ostensive model which was researched by Camp-

bell and Rijsbergen [6] and more recently by Urban and Jose [61] The ostensive model works

mainly with the assumption that the user information need is dynamic and developing, and

thus the recent relevance feedback is more indicative to the current information need than

the relevance feedback given previously. What they propose is an adaptive query learning

scheme based on textual and visual-based features, which is used in order to avoid the query

formulation process, and thus bridge the semantic gap more naturally.

2.4 Motivation for our work

In this chapter, we have introduced very briefly the research field of content-based image

retrieval. Then, we took a closer look at the state-of-the-art in visual-based indexing features

and the retrieval approaches able to cope with the current technological shifts in recording

capabilities and mass storage and sharing tools.

We adhere to the assumption that large-scale collections are not only large, but also inherently

un-structured (i.e. lacking any semantic or thematic indexing as in the archived libraries)

and continuously out-dated (i.e. images are frequently being added, replaced or removed).

Thus, our affinity is towards retrieval approaches that could accommodate such assumptions.

On the one hand, the retrieval solutions should be computationally scalable in both off-line

and on-the-fly operations. On the other hand, the indexing information should support

incremental updates, without requiring updates from scratch each time something changes.

We were inspired in special by query-free retrieval approaches as the one proposed by Ferecatu

and Geman [24, 25]. The user does not have to be familiar with the indexing vocabulary and

to understand the underlying indexing technique in order to be able to re-think a more

optimal query and to refine manually the search. By hiding entirely the indexing features, the

query-free user interface has the potential of being minimalist and self-explanatory.

Only a few of the existing retrieval systems are powered specifically by relevance feedback tools.

Although research agrees on their potential benefits, the public image search engines provide

very limited functionality of this kind. As reported in surveys [56, 62, 15], more research

is needed for achieving maturity in terms of efficiency, usability and scalability, which are

essential characteristics for a successful system.
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3 Query-free retrieval framework

The innovative retrieval framework that is central to our research was proposed initially by

Ferecatu and Geman [24, 25]. Starting from an heuristic sampling of the collection, this

approach does not require any explicit query, neither keywords nor image-examples. Based

on an interactive relevance feedback mechanism, the system converges iteratively towards

what the user is searching for, and in this process it displays iteratively more and more images

relevant to the user.

In this chapter, we present this interactive query-free retrieval framework, and provide the

theoretical justifications for the component algorithms as in [24, 25]. Basically, the retrieval

framework embodies an iterative relevance feedback mechanism that has two components.

First, there is a Bayesian model that estimates the probability of relevance of any image in the

collection as a conditional probability given the relevance feedback events. Second, there is

a strategy for selecting what images to show next given the estimates of the probabilities of

relevance of all the images in the collection.

Along the summary of the original approach, we motivate the research directions we have

chosen to pursue further on. We provide the first intuitive analyses of the system components,

and open the discussion about the limitations of the original approach. We also introduce the

experimental setup of our user-based evaluation campaigns.

3.1 Retrieval paradigm

Given a collection of imagesΩ= {1,2, . . . }, the objective of the retrieval process is to identify

the subset S ⊂Ω containing all the images that the user is searching for. The retrieval process

identifies the subset S in a probabilistic manner, by estimating the probability of relevance of

every image in the collection as a conditional probability given the relevance feedback events

accumulated from the user.

The retrieval process is iterative. The user starts a searching session having a target image in

mind, as for example “birds on water”. The system is simply triggered and the first iteration
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Chapter 3. Query-free retrieval framework

t = 0 starts as in Figure 3.1. The system initializes p0(k) = 0.5 for all k ∈Ω, and then selects

the first display set D0. The user must choose the closest image in her opinion to what she is

searching for, in our case “birds on water”. The choice is subjective, and the user has to choose

one and only one image as the positive image example. This is the event B0 = {D0, x∗
0 } for the

system, the first relevance feedback event. With this information, the conditional probabilities

are re-estimated for all images in the collection. Then, the system generates another display

set D1, and then it waits for the next iteration relevance feedback. The user chooses the closest

image in D1, and this new relevance feedback event is accumulated in B1. Probabilities are

re-estimated now based on B1. And this process continues on and on as in Figure 3.2. The idea

is that the system converges iteratively towards what the user is searching for, and iteratively

displays more and more images relevant to the user. The notation convention is that the

iteration t +1 starts immediately after the user feedback {D t , x∗
t }.

Internally, the retrieval framework embodies an iterative relevance feedback mechanism that

has two main components. First, there is a Bayesian model that estimates the probabilities

of relevance of the images in the collection as conditional probabilities depending on the

relevance feedback events. Second, there is a strategy to select what images to show next given

the estimates of the probabilities of relevance of all the images in the collection.

3.2 Posterior probabilities of relevance

The probabilistic process assumes that the user knows S, and thus she can decide without

doubt if an image belongs to S or not. Thus, for any image k ∈ Ω there are two distinct

possibilities, k ∈ S or k ∉ S, and this can be interpreted as a binary event. Naturally, the system

does not know S, and treats it as a random variable.

Relevance feedback events are accumulated iteratively as shown in Figure 3.2. After the system

displays a set of images D t ⊂Ω, ‖D t‖ = 8, the user chooses one single image x∗
t ∈ D t that she

considers to be the closest to S (i.e. the set of images that she is searching for), and this event

is denoted as {D t , x∗
t }. The cumulative event up to iteration t can be expressed as:

Bt =∩t
i=0{Di , x∗

i } ∀t ≥ 0. (3.1)

The conditional probabilities pt+1(k) = P (k ∈ S | Bt ) are estimated after each relevance feed-

back event. Initially, when there is no relevance feedback yet, the probabilities p0(k) are

initialized with 0.5 for all k ∈Ω. Subsequently, the conditional probabilities are estimated via

an image similarity model defined over the metric space of the indexing features. Before we

return to this issue in §3.4, we further elaborate the Bayesian modeling.

Assuming that the events {D t , x∗
t } are conditionally independent from each other given the
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start a new search

no query

display model

Select the display set
D0 ⊂ Ω,‖D0‖ = 8

update model

Initialize for all k ∈Ω
p0(k) = 0.5

Figure 3.1: Starting a new searching session. The user does not submit any query, neither
keywords nor image-examples. After a simple trigger, the first iteration t = 0 starts. The system
initializes p0(k) = 0.5 for all k ∈Ω, and then selects the first display set D0.

feedback event

Bt = ⋂t
i=0{Di , x∗

i }

display model

Select the display set
D t+1 ⊂Ω,‖D t+1‖ = 8

update model

Estimate for all k ∈Ω
pt+1(k) = P (k ∈ S | Bt )

Figure 3.2: Relevance feedback loop. At iteration t the system displays D t . The next iteration
t +1 is triggered by the relevance feedback event {D t , x∗

t }. The system will update pt+1(k) for
all k ∈Ω, and then will select the new display set D t+1.

Table 3.1: Notation

Ω image collection, where the images are
identified by their indexes {1,2, . . . k, . . . }

S ⊂Ω set of images that the user is searching for
D t ⊂Ω set of images shown to the user at iteration t
x∗

t ∈ D t image chosen by the user at iteration t
{D t , x∗

t } relevance feedback event at iteration t
pt (k) probability of relevance of image k at iteration t
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retrieval objectives, and using Bayes theorem, pt (k) can be expressed recursively:

pt+1(k) = pt (k) ·P+
t (k)

pt (k) ·P+
t (k)+ (1−pt (k)) ·P−

t (k)
, (3.2)

where

P+
t (k) = P

(
{D t , x∗

t } | k ∈ S
)

, (3.3)

P−
t (k) = P

(
{D t , x∗

t } | k ∉ S
)

. (3.4)

One may observe that the probabilities in Equations (3.3-3.4) should model as much as possi-

ble the user similarity judgments, and the better the model, the more reliable the relevance

feedback. We shall return to this issue in §3.4.

3.3 Selection of the displayed images

A sensible technique to select what images to display next in D t+1 is to use an estimate of

the marginal conditional probabilities of relevance pt+1(k) = P (k ∈ S | Bt ). Instead of simply

selecting the images with the highest probabilities of relevance, the selection technique should

sample the image collection with the purpose of maximizing the efficiency of the relevance

feedback events. The displayed images should at the same time concentrate on the relevant

images and maintain some exploratory sampling among the non relevant images.

Ideally, each next display set D t+1 should maximize the flow of information from the user

to the system, and therefore should minimize the uncertainty about S given the relevance

feedback history Bt and the new evidence x∗
t+1 that would be provided on D t+1 itself. This

optimization problem is intractable because it implies looping over all subsets of size 8 inΩ:

D t+1 = argmin
D∈Ω

H
(
S | Bt , {D, x∗}

)
. (3.5)

Using the properties of conditional entropy, the entropy in Equation (3.5) can be re-written as:

H (S | Bt , {D, x∗}) = H ({D, x∗},S | Bt )−H ({D, x∗} | Bt )

= H ({D, x∗} | S, Bt )+H (S | Bt )−H ({D, x∗} | Bt ) .
(3.6)

Now in Equation (3.6), if one considers that the user knows S and knows to answer accordingly,

there is no uncertainty in the first term. Also, one can observe that the second term does not

depend on D :

H
(
{D, x∗} | S, Bt

)= 0. (3.7)
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As a result, it follows that the optimal display set D t+1 is the one for which H ({D, x∗} | Bt ) is

maximized. Since the entropy is maximized at the uniform distribution, the optimal display

set D t+1 should include approximatively equally-likely images. This is equivalent to say that

the Voronoi partitioning based on the images in D t+1 and on the metric d should have cells of

equal mass under the appropriate distribution overΩ. This distribution is inaccessible since it

involves the posterior over all subsets ofΩ, but can be replaced by the distribution of pt :

P
(
{D, x∗} | Bt

)≈ 1

‖D‖ . (3.8)

In our retrieval system, the displayed images, namely D t with ‖D t‖ = 8, are generated via a

Voronoi tessellation algorithm proposed by Fang and Geman [21] that approximates the ideal

but intractable Voronoi partitioning. The algorithm selects the images x ∈ D t by growing sub-

sequent Voronoi cells based on the image similarity distances and their current probabilities

of relevance. The optimum probability mass of each Voronoi cell would be an exact fraction

mt of the total probability mass:

mt = 1

‖D t‖
· ∑

k∈Ω
pt (k). (3.9)

The first selected image is the image with the highest probability in the entire collectionΩ:

x(0) = argmax
k∈Ω

pt (k), (3.10)

and the Voronoi cell C (0) is grown by including images one by one, as ordered by their similarity

distances to x0 in increasing order, until its probability mass reaches the optimum. The second

image is selected among the images from outside the first Voronoi cell:

x(1) = argmax
k∈Ω\C (0)

pt (k), (3.11)

and the Voronoi cell C (1) is grown by including images in a similar manner. The algorithm

loop continues until the set of images D t is complete.

The first display set D0 is generated by running the algorithm with the initial probabilities of

relevance, p0(k) = 0.5 for all k ∈Ω. The algorithm still grows the Voronoi cells but chooses the

images randomly between the equally probable candidates.

Table 3.2 formalizes the procedures to select the set D t to be displayed next. Given a tar-

get mass m, the procedure ComputeDisplaySet picks each image successively, each time

selecting the one with the highest pt which does not belong to the neighborhoods of mass m

centered on the images already selected. In the function ComputeCells, the neighborhoods

are grown in parallel by including images one by one, as ordered by their similarity distances,

until the probability mass of each neighborhood reaches the target mass m.
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ϕ+

1

φ+(d)

δ+ d

ϕ−

1

φ−(d)

δ− d

Figure 3.3: Calibration functions. δ+, δ− are the thresholds that normalize the distances,
and ϕ+ and ϕ− are the attenuations that compensate for the partial mismatch between the
distances and the user perception of image similarities (i.e. semantic gap) as explained in [24].

3.4 Similarity metric

The probabilities P+
t (k) and P−

t (k) in Equations (3.3-3.4) are modeled based on a similarity

metric defined over the image feature space as in [25], which puts higher probability on the

images similar to the chosen ones and accounts for an effect of “saturation” that ignores the

increase in the image dissimilarities beyond a certain threshold:

P+
t (k) = φ+(d(k, x∗

t ))∑
x∈D t

φ+(d(k, x))
, (3.12)

P−
t (k) = φ−(d(k, x∗

t ))∑
x∈D t

φ−(d(k, x))
. (3.13)

Table 3.2: Procedures to compute a meaningful display set D t . Given the current estimate of
probabilities p = {pt (k) ∀k ∈Ω}, the cardinality ‖D t‖ =Q, and a target mass m, the function
ComputeDisplaySet returns a list of images x(1), . . . , x(Q) such that each of them has a high
individual pt , and they have disjoint neighborhoods C (1), . . . ,C (Q) of mass m. Given the proba-
bilities p, a list of images and a mass m, the function ComputeCells returns the corresponding
disjoint neighborhoods, all of the same mass m.

Function ComputeDisplaySet(p,Q,m)
for q = 1, . . . ,Q do

C (1), . . . ,C (q−1) ← ComputeCells(p, x(1), . . . , x(q−1),m)
x(q) ← argmax

k∈Ω\∪q−1
i=1 C (i )

p(k)

end for
return x(1), . . . , x(Q)

Function ComputeCells(p, x(1), . . . , x(i ),m)
return C (1), . . . ,C (i )

s.t. ∀q
∑

k∈C (q) p(k) = m
and ∀q, r 6= q, ∀k ∈C (q) ‖k −x(q)‖ ≤ ‖k −x(r )‖
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The distance d between the images is the L2 norm between the image feature vectors (i.e.

indexing information):

d(k,h) =
√√√√ F∑

f =1
(k f −h f )2, (3.14)

where F is the dimensionality of the image feature space. As we explain in §3.5, our experi-

ments use bags-of-words based on SIFT, but any other indexing feature vectors will do.

φ+ and φ− are calibration functions designed to capture the user perception of image sim-

ilarities and error-prone decision-making behavior. We consider calibration functions of

parametric forms as shown in Figure 3.3 and the general idea is that δ+, δ− are thresholds be-

yond which the L2 norm fails to resemble the user perception, andϕ+ andϕ− are attenuations

that compensate for the partial mismatch between the distances and the user perception of

image similarities (i.e. the semantic gap).

In [24], the calibration functions aim to maximize the likelihood of the user answers under

the probabilistic model of the framework. In [25], the calibration problem is re-formulated

starting from the psychological interpretation of the parameters. The idea is to learn the δ

and ϕ parameters in Figure 3.3 via a statistical technique that requires an image labeling task.

During the labeling session, the user input is collected in the same manner as a searching

session, with the key difference that the target S is communicated visually. As during a

searching session, the user is supposed to choose among the displayed images the image that

is the closest to the target in her opinion. In this way, the labeling session collects data triplets

of the form (Si , Di , x∗
i ) that can be used to formulate a maximum likelihood technique:

L+(δ+, ϕ+) =∏
i

P+
i (Si , Di , x∗

i ) =∏
i

φ+(d(x∗
i , Si ))∑

x∈Di
φ+(d(x, Si ))

, (3.15)

L−(δ−, ϕ−) =∏
i

Pi (Si , Di , x∗
i ) =∏

i

φ−(d(x∗
i , Ω\Si ))∑

x∈Di
φ−(d(x, Ω\Si ))

. (3.16)

3.5 Experimental results

We developed the retrieval system as a web-application which has the advantage of permanent

availability for demos and evaluations. We distributed the application software under the

AGPL Version 3 open-source license in order to give transparency to our work, and to facilitate

the reproducibility of our experiments. The web-application is further described in §A.

In our experiments and evaluations, we set up our retrieval system for three image collections,

namely the Corel stock photo library, the ImageNet dataset and the synthetic collection

generated by ourselves. These collections and their characteristics are further described in §C.
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∗

t = 1

∗

t = 2

∗

t = 3

∗

t = 4

Figure 3.4: The posterior probabilities pt (k) for all k ∈Ω are updated iteratively. Here, the
relevance feedback events are given by a user who is searching for images with points close to
the center. One can see how the distribution of probabilities evolves towards matching the
user retrieval objective.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: The set of displayed images is generated via the Voronoi tessellation algorithm. To
illustrate its intermediate steps, the images already selected are marked in black and their
current Voronoi cells are indicated by colors. (a): The first image x(0) is selected, and the first
Voronoi cell C (0) is grown. (b): The second image x(1) is selected. (c): The Voronoi cells C (0)

and C (1) are grown in parallel. C (0) is shrunken by detaching the images closer to x(1), and
then re-grown by including other images that are still closer to x(0). (d-h): The algorithm
proceeds in the same manner until the set of displayed images is complete.
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During our research, we did various experiments, and carried out plenty of user-based evalu-

ation campaigns. Here, we introduce our experimental setups and our evaluations that we

have been conducted in order to analyze and understand the system behavior and to validate

systematically our contributions.

3.5.1 Intuitive analysis

For an intuitive illustration of the system behavior, we created a synthetic image collection

where each image has two indexing features in the [0,1] interval. These features are interpreted

as coordinates in the 2D Cartesian space, and are used in a dual manner in order to define

the image visual content and then to position the image in the abstract representation of the

entire collection. On the one hand, the features define the image visual content, which is a

single point positioned accordingly, and thus there is no gap between the indexing features

and the semantic meaning. On the one hand, they define also the position of the image itself

in the landscape of the entire collection, and thus it results a nice abstract representation. In

Appendix §C.3, we explain in detail this synthetic collection, and its abstract representation.

Figure 3.4 shows how the probabilities of relevance are gradually updated on successive

iterations. We can see how the system is calibrated in such a way that images closer to the

chosen image get higher probabilities and images closer to the other displayed images get

lower probabilities. The images far from any of the displayed images keep their probabilities

unchanged.

Figure 3.5 shows the intermediate steps of the Voronoi tessellation algorithm. One can see how

the Voronoi cells are grown, and how the images to be displayed are selected. Intuitively, the

cells including regions with higher probabilities are smaller than the cells including regions

with lower probabilities. In this way, the system concentrates on regions with high probabilities

while still insists on sampling the entire collection.

The abstract 2D representation provides important clues about the system behavior, although

it does not resemble entirely the real case of multi-dimensional image features. On the one

hand, the Voronoi clusters grow more naturally in multi-directions and they are not that

hindered by one another as in the 2D case. On the other hand, there is the “spherical” effect of

the Euclidean high-dimensional space (i.e. the image feature vectors are all apart from each

other) and the image similarity distances may not be that discriminative as in the 2D case.

3.5.2 User-based evaluation

The only realistic way to evaluate the performance of a retrieval system is to ask users who

bring in the challenge of subjective perception of image similarities. Therefore, we organized

several user-based evaluation campaigns in order to analyze our contributions. Here, we

present the details of our principal evaluation scenario that we used in all our subsequent

campaigns with very small variations.
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Each of our evaluations has been conducted with groups of 20 users or more who were not

familiar with the system and thus not tempted to favor the evaluation. The evaluations do not

rely on any a priori defined ground truth. Instead, they rely on comparing different system

configurations. Each user has to perform several searching sessions in which they are asked to

search for some given semantic categories, and they are asked to end the searching sessions

as soon as they are satisfied by one of the displayed images. The retrieval performance is the

cumulative percentage of successful sessions per number of iterations.

The evaluations rely on comparing different system configurations, and usually each evalua-

tion includes at least three configurations:

• our proposed system, or systems if we test multiple variants

• the original baseline system

• a random system that displays images randomly without replacement. The random

system discards totally the relevance feedback and the similarity metric, and thus

provides the lowest acceptable performance.

In order to ensure a sufficiently reliable diversity, there were 6 semantic categories described

only in words:

• domestic dogs in close-up portrait

• electronic devices as TV, radio, mobile

• big boats as ferryboats, cargoes

• exotic fruits in close up portrait

• furniture items as cupboards, tables, chairs

• public buildings as shops, malls

In order to ensure comparable difficulty, these categories were chosen to be relevant for about

1–2% of the image collections based on the available ground-truth information (e.g. the

cardinality and the associated keywords of the ImageNet categories). Here, we should mention

that the ground-truth information (e.g. synsets or other keywords) was considered only as

benchmark meta-data for assessing the retrieval difficulty, and our retrieval systems do not

make use of it.

The interpretation of the semantic categories in the sense of visual content was left to the user.

The users were only told to end the searching sessions when they were satisfied first by one of

the displayed images. In order to avoid any bias, the searching sessions were presented in a

random fashion. The system configurations and the semantic categories were randomized all
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together in one single user test. The users were not aware of which configuration was active

in a certain session. In fact, they were not introduced to anything beyond the evaluation

interface in Figure A.3.

In order to ensure a minimum variance in the overall scenario, all our evaluations have

been set up in such a way that each user was assigned to perform one searching session for

each combination of all the system configurations and the semantic targets included in the

evaluation. Thus, each user was searching for the same semantic category with all system

configurations, in an anonymized fashion, and we used this symmetry in our binomial tests

for statistical significance.

Having 6 semantic categories and at least 20 users, each evaluation provided us with 120

searching sessions or more for each system configuration, which we considered to be sufficient

for our preliminary research investigations and our limited resources.

6 semantic categories × 20 users = 120 searching sessions / system configuration

Again, here we presented our principal evaluation scenario. Later on in the next chapters, we

will address the scenario variations of each evaluation if there were any.

3.5.3 Automatic tests

We have developed a test platform for running the web-application programmatically, without

human interaction. This platform implements an automatic user that interacts with the

web-application in exactly the same way a human user does. This platform is invaluable

in getting confidence before organizing the time-costly user-based evaluations. In §B, we

describe further how this test platform can be used for abstract performance evaluations that

resemble the user-based evaluations at a certain extent.

Our first use of the automatic tests was to investigate how the retrieval performance depends

on the image similarity model. We observed that the retrieval performance of the automatic

user is maximized when the parameters δ+ and δ− are adjusted to saturate only after including

on average 10% of the images, which is approximatively close to 1/8 of the collection. The

parameters ϕ+ and ϕ− do not play an important role for the automatic user that gives always

ideal relevance feedback, and they are more meaningful for human users. Therefore, we were

taken over the same optimum values as derived in [24], namely 0.06 and 0.29.

3.6 Research issues

The theoretical study, the intuitive analysis and some preliminary user-based experiments, all

of these helped us to identify the limitations of the retrieval framework and to prioritize a few

promising research issues. Here, we anticipate the research issues that will be addressed in

the next chapters of this thesis.
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3.7. Summary

We observe that the retrieval framework requires a computational effort that is tightly related

to the size of the image collection Ω. On the one hand, the probabilities of relevance are

computed for all the images in the collection, and this implies O (‖Ω‖) complexity. On the

other hand, the Voronoi tessellation algorithm involves sorting operations of O (‖Ω‖ · log‖Ω‖)

complexity over the entire collection.

We can identify two different retrieval regimes: understanding broadly the categories of inter-

est to the user, and refining the search in this or these categories to converge to specific images

among them. As argued in [24, 25], the retrieval framework is well suited for understanding

broadly the image categories, but other retrieval techniques should be employed to retrieve

specific images among these identified categories.

A key factor of the retrieval framework, as in case of any other relevance feedback framework, is

the similarity measure between the images that governs the retrieval process. The calibration

technique elaborated in [25] aims to compensate for the semantic gap between the similarity

metric and the user perception of image similarity, but it requires an image labeling task

conducted separately from the searching sessions.

More and more multimedia collections tend to include inter-related modalities, as for example

photos and annotations in photo-sharing repositories, pictures and captions in news web-sites

or x-ray scans and reports in medical databases. Intuitively, these inter-relationships could be

exploited in order to compensate the weaknesses of the individual modalities and to provide

better indexing features [15]. In line with this trend, we observe that the current approach

uses a rigid similarity metric based on low-level features extracted from the visual content of

images (i.e. global descriptors of color, texture and shape).

3.7 Summary

In this chapter, we have presented the interactive query-free retrieval framework that is central

to our work. The retrieval process is based solely on iterative relevance feedback. At each

iteration, the user chooses one single image as positive relevance feedback. The system

updates the probabilities of relevance for all the images in the collection, and then selects the

images to be displayed next.

The probabilities are updated based on a Bayesian model that requires an image similarity

metric that is calibrated in order to minimize the semantic gap. The images to be displayed

next are selected via a Voronoi tessellation algorithm that aims to maximize the flow of

information from the user to the system.

Along the summary of the original approach, we motivated the research directions we have

chosen to pursue further on. Using a synthetic image collection, we provided the first intuitive

analyses of the system components, and we opened the discussion about the limitations of

the original approach.
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4 Large-scale HEAT framework

Scalability is a critical issue in designing retrieval systems, and is one of the first research

directions that we investigated. It has been shown repeatedly that iterative relevance feedback

is a very efficient solution for content-based image retrieval. However, no existing system

scales gracefully to hundreds of thousands or millions of images.

In this chapter, we formalize a new framework dubbed Hierarchical and Expandable Adaptive

Trace (HEAT) that scales up to millions of images. Our approach modulates on-the-fly the

resolution of the interactive search in different parts of the image collection, by relying on

a hierarchical organization of the images computed off-line. Internally, the strategy is to

maintain an accurate approximation of the probabilities of relevance of the individual images

while fixing an upper bound on the required computation.

Our proposed framework effectively decouples the computational effort from the size of

the collection, and still preserves the retrieval capabilities. Our system is compared on the

ImageNet dataset to the state-of-the-art approach it extends, by conducting user evaluations

on a sub-collection of 33,000 images. Its scalability is then demonstrated by conducting

equivalent evaluations on 1,000,000 images.

4.1 Introduction

Modern digital technologies produce large amounts of photos, and some of the largest collec-

tions containing billions of images are Flickr, FaceBook, and of course the World Wide Web as

a whole. Arguably, the most critical issue in designing retrieval systems is their scalability and

ability to accommodate the growing amount of data.

We started to investigate the scalability potential of the retrieval framework by looking at the

possibilities to reduce the storage capacity as well as the computational effort. The main goal

was to find a novel indexing and updating strategy that can handle collections of 1,000,000

images or more, one order of magnitude larger than the original strategy.
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Chapter 4. Large-scale HEAT framework

As we saw in Chapter §3, at the core of our retrieval framework there are two components. First,

there is the model to compute the probability for an image to be relevant to the user given

what images have been shown to her until now and what she has chosen. Second, there is the

strategy to select what images to show her given the estimates of the probabilities of relevance

of all the images in the collection. In the original approach, these two components require a

computational effort that grows quasi-linearly with the size of the collection. Since these two

components are involved in the on-line interaction with the user, the original approach can

not be practically recommended for collections much larger than about 60,000 images.

The novel approach we propose computes a hierarchical organization of the images off-line.

At each iteration of the on-line retrieval process, it selects a “trace” in this hierarchy that

corresponds to a partition with a fine resolution in the parts that are rich in relevant images

and a coarse resolution in the parts that are clearly discarded by the model. In the iterative

process, the trace is dynamically refined by expanding (i.e. some nodes are replaced by their

children) and collapsing (i.e. some nodes are replaced by their parent) operations.

Our proposed framework effectively decouples the computational effort from the size of the

collection, and still preserves the retrieval capabilities. Experiments show that the required size

of the trace for maintaining the same retrieval performance is very modest when compared to

the total number of images in the collection. Moreover, one can control explicitly the trade-off

between the computational effort and the retrieval performance by bounding the cardinality

of the trace.

4.2 State-of-the-art

Relevance feedback is indeed envisioned by many researchers as the only alternative that

could cope properly with the challenges in image retrieval, and multimedia retrieval in gen-

eral [51, 69, 14]. Whereas relevance feedback is a very efficient solution for content-based

image retrieval, no existing system scales gracefully to hundreds of thousands or millions of

images [51, 69, 14, 15]. Moreover, the relevance feedback is traditionally seen as a post-retrieval

mechanism for refining the retrieved results of an initial query formulated explicitly.

The original approach presented in Chapter §3 requires a computational effort that is tightly

related to the size of the image collectionΩ. On the one hand, the probabilities of relevance

are computed for all the images in the collection. Although the computational cost of the

probability model is very light in itself, it requires access to the similarity distances from all

the images in the collection to each of the displayed images, and this implies either storage

capacity of O (‖Ω‖2) complexity off-line or computational effort of O (‖Ω‖) on-the-fly. On the

other hand, the Voronoi tessellation algorithm involves sorting operations of O (‖Ω‖ · log‖Ω‖)

complexity over the entire collection.

Our idea is to support an approximation of the relevance feedback mechanism that uses the

Bayesian framework on top of a hierarchical tree-like organization of the image collection.
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4.3. Scalable system

Although hierarchical trees have been extensively used for zoomable user interfaces as Pho-

toMesa [4] and many other browsing solutions [30], to the best of our knowledge there is no

system that uses such a concept in order to scale up relevance feedback mechanisms.

The closest research we found related to our idea of a dynamically adaptive and traceable

cut within a hierarchical tree-like organization is in the field of information visualization and

visual data mining, where it is referred to as a tree map [55] and other equivalent terms like

fish-eye [1], or tree view [5].

Apparently, it is well accepted by the research community that the advantages of such hier-

archically structured organizations break down in the face of the high-dimensional image

feature spaces that are typically seen in content-based retrieval. However, in comparison

with other relevance feedback mechanisms, the work of Ferecatu and Geman [24, 25] has the

specificity of dealing explicitly with the miss-alignment between the image feature space and

the user subjective perception of image similarities. This fact encouraged us to look again into

this research direction.

4.3 Scalable system

While maintaining all the core operations basically the same, our approach manages to

compute the probabilities of relevance of only a small set of representative images. The

probabilities of relevance of all the other images in the collection are approximated from these

ones. This is achieved by first organizing the image collection as a pre-computed hierarchical

tree based on the image similarity distances, and then updating during the retrieval process a

partitioning of the image collection according to the estimated probabilities.

4.3.1 Tree and trace

The image collection Ω is organized in a hierarchical tree N as sketched in the left side of

Figure 4.1. Formally, each node N ∈N has a set of children denoted as C (N ) ⊂N . Further-

more, each node N is associated with a set of images denoted asΩ(N ) ⊂Ω. Each leaf node

is associated with one single image, thus if N is a leaf node, then C (N ) =; and ‖Ω(N )‖ = 1.

These sets of images are hierarchically disjunctive and they naturally respect the properties:

∀M , M ′ ∈C (N ), M 6= M ′ ⇒ Ω(M)∩Ω(M ′) =;, (4.1)

⋃
M∈C (N )

Ω(M) =Ω(N ). (4.2)

Additionally, each node N ∈N has a representative image k∗
N that is the closest image to the

center ofΩ(N ) in the image feature space.

33



Chapter 4. Large-scale HEAT framework

(a)

(b)

Figure 4.1: Relation between the hierarchical tree and the trace adaptive partitioning. The
graph depicted on the left stands for the tree N , and the square on the right stands for the full
image collectionΩ. Intuitively, each node N ∈N is associated with a subset of imagesΩ(N ).
The thick black lines running through the trees show two different traces T . The colored
rectangles show the resulting partitions of the collection, as each rectangle stands for theΩ(N )
associated to the node N of same color. The trace in (a) stays at the same depth, resulting in a
homogeneous partitioning. The trace in (b) goes shallower in one part of the collection and
deeper in the other part, resulting in a partitioning with varying resolution.

Table 4.1: Notation

N complete set of nodes of the hierarchical tree
Tt trace at iteration t
C (N ) children nodes of node N
Ω(N ) set of images associated with node N
k∗

N representative image of node N
pt (k∗

N ) probability of the representative image of node N
that approximates pt (k) for all k ∈Ω(N )

q(N ) probability mass of node N
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4.3. Scalable system

A trace T ⊂N is any set of nodes that stands for a complete and disjunctive partitioning of

the image collection that respect the properties:

∀A,B ∈T , A 6= B ⇒ Ω(A)∩Ω(B) =;, (4.3)

⋃
A∈T

Ω(A) =Ω. (4.4)

These properties guarantee that any image in the collection is associated to one and only one

node in any trace. Therefore, if N ∈T is a node included in the trace, it can be used without

ambiguity to represent all its associated imagesΩ(N ) as explained by the sketch in Figure 4.1.

4.3.2 Approximation of pt

The computational effort is controlled in our approach by estimating the probabilities of

relevance only for the representative images of the nodes that are part of the current trace.

From this bounded set of probabilities, we both infer a sound approximation of the Voronoi

tessellation algorithm described in § 3.3, and optimize the resolution of the trace as presented

next in § 4.3.3.

For any node N ∈T , the probabilities of relevance of all the individual images in Ω(N ) are

approximated by the probability of relevance of its representative image k∗
N .

At each iteration t , the conditional probabilities pt (k∗
N ) are computed from scratch based on

the full history of relevance feedback events Bt−1 as shown in § 3.2. They are not approximated

in any way, and thus they are as if the node N would have been part of the trace since the

beginning of the retrieval process.

Furthermore, the prerequisites of the Voronoi tessellation algorithm described in § 3.3 are

reconsidered as follows. The probability mass of a node N is approximated as:

q(N ) = ∑
k∈Ω(N )

pt (k) ≈ pt (k∗
N ) · ‖Ω(N )‖. (4.5)

The probability mass of the entire collection is approximated as:

q al l = ∑
k∈Ω

pt (k) ≈ ∑
N∈T

q(N ). (4.6)

The optimum probability mass of the Voronoi cells is approximated as:

qopt = 1

‖D t‖
·q al l ≈ 1

‖D t‖
· ∑

N∈T

q(N ). (4.7)
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When a node N is expanded, its probability mass q(N ) is substituted by the probability masses

of its children, and this results in a finer approximation:

q(N ) = ∑
M∈C (N )

q(M) ≈ ∑
M∈C (N )

pt (k∗
M ) · ‖Ω(M)‖. (4.8)

When the nodes in C (N ) are collapsed, the sum of their probability masses is substituted by

the probability mass of their parent, and this results in a coarser approximation:∑
M∈C (N )

q(M) = q(N ) ≈ pt (k∗
N ) · ‖Ω(N )‖. (4.9)

Based on these approximations, the Voronoi tessellation algorithm is now performed at the

granularity level of the trace instead of the individual images. Therefore, the centers of the

Voronoi tessellation are selected among the nodes in the current trace, and the displayed

images are their corresponding representative images.

4.3.3 Trace refinement

The aim of the trace refinement is to optimize the approximation of the probabilities of

relevance of the individual images under the constraint of preserving a bounded size of the

trace. Intuitively, this is achieved when the variances of the probabilities within each node in

the trace are small, or in other words when the probability of each image in the collection is

approximated as well as possible by the probability of its corresponding representative image.

The trace refinement consists of a collapsing operation followed immediately by an expansion

operation.

Starting from the current trace, the collapsing operation book-keeps the sets of children that

are completely included in the trace, and thus may be replaced by their parents. Recursively,

one at a time, the set of children that minimizes the mean-variance cost function:

argmin
∀N , C (N )⊂T

µ(N ) · (σ2(N )+ε · ‖Ω(N )‖) (4.10)

is collapsed into its corresponding parent. The probability of relevance of the representative

image pt (k∗
N ) is computed from scratch as mentioned in § 4.3.2, and then is used for comput-

ing the subsequent mean-variance values. The recursive routine for collapsing nodes exits

when the size of the trace reaches the minimum bound.

The probability mean and variance of each node are estimated based on its children:

µ(N ) =
∑

M∈C (N ) pt (k∗
M ) · ‖Ω(M)‖∑

M∈C (N ) ‖Ω(M)‖ , (4.11)
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4.4. Experimental results

σ2(N ) =
∑

M∈C (N ) p2
t (k∗

M ) · ‖Ω(M)‖∑
M∈C (N ) ‖Ω(M)‖ −µ2(N ). (4.12)

In Equation (4.10), ε introduces an infinitesimal preference toward collapsing the nodes with

smaller cardinality when nodes with different cardinality have comparable mean-variance

values. Thus, ε is not a sensitive parameter and was set to 10–6, a value related to the size of

the collection.

As soon as the collapsing operation exits, the expansion operation replaces all the nodes in the

trace with their children and computes the probabilities of relevance of their representative

images. This expansion operation could be seen as a sampling of the parent nodes that will

be used in the subsequent trace refinement, at the next iteration, in order to identify the new

nodes that should be further expanded or can be safely collapsed.

4.3.4 Algorithm integration

The skeleton of our proposed approach is as follows:

1. Update the probabilities of relevance pt+1(k∗
N ) for ∀N ∈Tt based on the previously com-

puted pt (k∗
N ) and according to the newly received relevance feedback event {D t , x∗

t }.

2. Perform the trace refinement. The trace Tt is altered via the collapsing and expanding

operations resulting in the new trace Tt+1.

3. Update the probabilities of relevance pt+1(k∗
N ) for ∀N ∈Tt+1 according to the full history

of relevance feedback events Bt =∩t
i=0{Di , x∗

i }.

4. Select the set of images D t+1 by performing the Voronoi tessellation algorithm on the

current trace Tt+1.

5. Display D t+1. Wait for the relevance feedback event {D t+1, x∗
t+1} to occur, and then proceed

with the next iteration.

For an intuitive illustration of the system behavior, we set up the HEAT system for the synthetic

collection described in §3, and we performed one session of searching for images with points

close to the center, which are images close to the center due to the duality between images and

points. Figure 4.2 shows how the trace evolves at each iteration, and how the image collection

is sampled at different resolutions in different regions.

4.4 Experimental results

The aim of the following experiments was to evaluate our HEAT system in comparison with

the original system in terms of both the retrieval performance and the computational effort.
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t = 0 (initial) t = 0 (expand)

t = 1 (collapse) t = 1 (expand)

t = 2 (collapse) t = 2 (expand)

t = 5 (collapse) t = 5 (expand)

Figure 4.2: Evolution of the trace for the synthetic collection, when searching for images with
points close to the center. At iteration 0, the trace is initialized randomly. At each iteration, the
current trace is collapsed and expanded, the probabilities of relevance are updated, and then
the new images to be shown are selected. After 5 iterations, the trace concentrates mostly on
the intended region.
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Regarding the retrieval performance, we looked for evidence that our extension is capable of

providing a retrieval performance comparable to the original one. Regarding the computa-

tional effort, we looked for evidence that our extension is capable of scaling up beyond two

orders of magnitude.

The experiments were organized with two collections obtained from the ImageNet dataset [18]

that has the convenience of being structured in 1,000 semantic categories, where each cat-

egory has 500–2500 images. Further details about ImageNet are in §C.2. Considering the

subset of 1,200,000 images provided with pre-computed SIFT features (Scale Invariant Feature

Transform) [41], we obtained a large collection including about 1,054,000 images, namely all

the images with valid url at that date. Then, we sampled a small collection of 33,000 images (i.e.

3% of the large collection) with the guarantee of being similarly and proportionally populated

as the large collection.

4.4.1 System setup

The image similarity distances are defined simply as the Euclidean distance between the

histogram-like feature vectors (i.e. the bags of visual words) of dimension 1,000, as they are

provided by the ImageNet.

The relevance feedback framework is calibrated as described in [24], and the parameters of

the probability positive and negative models are adjusted to saturate only after including on

average 10% of the images in the collection.

The hierarchical tree is generated by applying a divisive top-down k-means algorithm. The

tree is initialized with the root node as being the single node and representing all the images

in the collection. Recursively, the images of each node are split in 8 k-means clusters. These

resulting clusters are used to define the new nodes, one level deeper in the tree. Naturally, the

former node becomes a parent node with the newly defined nodes as its children.

Considering the size of the collection, we employ an approximation of k-means that is studied

in terms of clustering feasibility and computational complexity in [27]. The clustering of sets

of more than 50,000 images is done in two phases. In the first phase, k-means is initialized

randomly and then performed – until convergence – on a random sample of 50,000 images in

order to obtain an estimate of the centroids. In the second phase, k-means is initialized with

the estimated centroids and then performed – only 2 iterations – on the full set of images.

4.4.2 Evaluation scenario

The evaluation was conducted with 20 users not familiar with the system, and consisted of

running user tests with three systems:

• our proposed HEAT system
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• the original system

• a random system that displays images randomly without replacement

The evaluations follow the scenario in §3.5.2. In order to ensure a sufficiently reliable diversity

and comparable difficulty, there were 6 semantic categories described only in words:

• domestic dogs in close-up portrait

• electronic devices as TV, radio, mobile

• big boats as ferryboats, cargoes

• exotic fruits in close up portrait

• furniture items as cupboards, tables, chairs

• public buildings as shops, malls

The interpretation of the semantic categories in the sense of visual content was left to the user.

The users were only told to end the searching sessions when they were satisfied by one of the

displayed images.

4.4.3 Performance impact

The experiments with the small collection show that our system preserves with fidelity the

retrieval capabilities of the original system. Moreover, both systems outperform by far the

random display of images. In 80% of the cases, both systems succeed to display a relevant

image after 8 iterations, while the random one requires more than 16 iterations. The average

performances are shown in Figure 4.3.

The experiments with the large collection show that our system provides a sustainable perfor-

mance where the original system proposed by Ferecatu and Geman [24, 25] would cease to

function within any reasonable timeframe.

The random system shows similar performance for both collections. Since both collections

have a similar semantic diversity based on the ground truth given by the ImageNet, this is

exactly what one would expect. Considering the randomized organization of the evaluations,

the agreement of the two random baselines gives evidence that the users were consistent

among the searching sessions and the performance curves are reliable.

Our evaluation scenario was meant to compare the capability of the systems to converge to

semantic categories of a relatively small size. The users were told precisely to end the searching

sessions the first time they were satisfied by one of the displayed images. Further evaluations

should be conducted in more demanding scenarios.
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(a): 33K image collection

(b): 1M image collection

Figure 4.3: Cumulative percentage of successful sessions per number of iterations. The average
performances for the small collection are shown on the left: Our system performs as well as
the original system proposed by Ferecatu and Geman [24, 25]. Both systems outperform by far
the random display of images. In 80% of the cases, both systems succeed to display a relevant
image after 8 iterations, while the random one requires more than 16 iterations to achieve the
same performance. The average performances for the large collection are shown on the right:
Our system shows a sustainable performance against the random system.

Precision t < 5 t < 10 t < 15
(a): HEAT, 33K image collection 0.62 0.86 0.95
(b): HEAT, 1M image collection 0.65 0.78 0.86

Table 4.2: Retrieval performance. Here are a few discrete values read from Figure 4.3.
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For the experiments with the small collection, the trace was limited to collapse at minimum

500 nodes, and this means that each expansion included about 3,000–4,000 nodes. This

variation in the number of nodes comes from the fact that the hierarchical tree is unbalanced.

For the experiments with the large collection, the trace was limited to collapse at minimum

1,000 nodes, and this means that each expansion included about 6,000–8,000 nodes. We

observed that in order to maintain a similar retrieval performance the size of the trace should

be slightly increased. It may be due to the larger tree that more nodes are inefficiently used just

for maintaining the continuity of the trace. We will address again this issue in Chapter §8.2.3.

4.4.4 Computational impact

The system responses were timed during the user experiments. Although our implementation

can be further optimized, these timings give a tangible evaluation of the computational effort

of the systems as shown in Figure 4.4.

The computational effort of the original system is rather constant over the iterations. At each

iteration, it has to update the conditional probabilities and to perform the Voronoi tessellation

based on a constant number of images, namely the size of the collection. For the small

collection, the system responds in about 1.5 seconds. For the large collection, the system

would totally fail to respond in any reasonable time even without mentioning the required

storage capacity of O (‖Ω‖2) complexity.

The computational effort of our HEAT system is slightly variable over the iterations. Although it

has to update the conditional probabilities and to perform the Voronoi tessellation only based

on the representative images and the cardinality of the nodes in the current trace, the system

has to access the image feature vectors and to compute the similarity distances on-the-fly.

Moreover, the computation from scratch of the conditional probabilities is linearly increasing

with the number of iterations. While the original system updates recursively the probabilities

only based on the last relevance feedback event, our system updates most of the probabilities

from scratch based on the full history of relevance feedback events. One can observe that the

nodes in the trace are constantly replaced by the refinement operation.

For a complete view of the computational complexity, the pre-processing required for organiz-

ing and indexing the image collections should be taken into account as well. As mentioned

already in § 4.4.1, our experiments are using the image feature vectors provided by Ima-

geNet, and thus our next analysis does not take into account the computation implied by the

feature-extraction operations.

The pre-processing in the original system consists of computing the similarity distances

between every two images in the collection, and thus it has O (‖Ω‖2) complexity. For the small

collection, the required capacity for storing the similarity distances in binary files, one file

per image, is nearly 4GB. For the large collection, the required storage capacity would be

unacceptably large.

42



4.4. Experimental results

(a): 33K image collection

(b): 1M image collection

Figure 4.4: Timing of the system responses (in seconds) as the users experienced them during
the evaluations. The timings for the small collection are shown in (a): The computational
effort of the original system is constant over the iterations. The computational effort of our
system stays in the same range, although it increases slowly with the number of iterations
due to the computation from scratch of the probabilities of relevance. The timings for the
large collection are shown in (b): The timings remain comparable with the ones for the small
collection. The computational effort of our system is decoupled from the collection size, and
depends mainly on the trace size.
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The pre-processing in our system consists of building the hierarchical tree based on k-means

clustering. The computational complexity of the divisive top-down k-means clustering does

not have a closed form but it is studied in [27]. The storage of the image feature vectors has

O (‖Ω‖) complexity, and the storage of the hierarchical tree is truly negligible. The required

capacity is only 100MB for the small collection and about 3GB for the large collection.

4.5 Summary

We have presented a retrieval approach that promises an interactive access to image collec-

tions of unprecedented size. The experiments show that this iterative relevance feedback

mechanism can handle a collection of 1,000,000 images, which is already one order of magni-

tude larger than most of the state-of-the-art iterative approaches.

Using an adaptive partitioning of the image collection, our HEAT system provides the means

for controlling the trade-off between the retrieval performance and the computational effort.

This may be a crucial characteristic for real-world applications.

We foresee no barrier in scaling up the approach up to 10 million images or more. The key

observation is that the trace refinement is suitable for parallel and distributed computing ar-

chitectures. The trace could be divided into parts, and each part could be processed separately

because the update of the probabilities of relevance is in fact an atomic operation for each

individual image.
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5 Exploration/Exploitation Trade-off

Content-based image retrieval systems have to cope with two different regimes: understanding

broadly the categories of interest to the user, and refining the search in this or these categories

to converge to specific images among them. In our retrieval framework, in contrast with

other types of retrieval systems, these two regimes are of great importance since the search

initialization is hardly optimal (i.e. the page-zero problem) and the relevance feedback must

tolerate the semantic gap of the image visual features.

In this chapter, we analyze and improve the relevance feedback mechanism from the point

of view of the exploration/exploitation retrieval trade-off. We present a new approach that

encompasses these two regimes, and infers from the user actions a smooth transition between

them. Starting from the original framework meant to solve the page-zero problem, we propose

an adaptive exploration/exploitation trade-off that transforms the framework into a versatile

retrieval system with full searching capabilities.

Our proposed approach is compared to the state-of-the-art approach it extends by conducting

user evaluations on a collection of 60,000 images sampled uniformly from the ImageNet

dataset. Evaluation gives evidence that this new approach brings a significant improvement of

the retrieval capabilities beyond finding an image category, and is able to support refining the

user interest in an efficient manner.

5.1 Introduction

The interactive retrieval process involves two different regimes. The first one can be seen as

an exploration phase, during which the user communicates to the system her categories of

interest in a broad way. This first regime transitions into the second one that can be seen

as an exploitation phase, where the user specifies more detailed requirements on the visual

properties of images, making the system intelligently explore the restricted subset specified

during exploration.

Initially we started to investigate new ways for modeling the user relevance feedback being

motivated by the observation that the efficiency of the relevance feedback mechanism depends
45
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on the distribution of the probabilities of relevance. The main goal was to find a way to adapt

the model dynamically, on-the-fly at each iteration, in order to accelerate the relevance

feedback convergence.

As we observed in our previous experiments, the original approach is well suited for image

category search and that is, in other words, the first retrieval regime of exploring the image

collection. Still, finding a specific image that has already a relatively high probability of

relevance is problematic since the strategy to select the next displayed images is rigid and

insists on sampling the entire collection.

Our core contribution is an adaptive modulation of the exploration/exploitation trade-off,

which leads to a versatile retrieval system with full searching capabilities. Internally, our

approach employs an estimator of the consistency between the system internal state and

the user retrieval objective, and controls dynamically, at each iteration, the selection of the

displayed images accordingly.

We set up our web-system for a collection of 60,000 images sampled uniformly from the

ImageNet database [18], for which we took over the provided pre-computed SIFT features

(Scale Invariant Feature Transform) [41]. We set up four configurations with different similarity

metrics and we run user-based evaluations with 20 users. Evaluation gives evidence that our

approach brings a significant improvement on the retrieval capabilities of the original system

that remains sustainable when employing different similarity metrics.

5.2 State-of-the-art

Research proposed many alternative approaches to tackle the two retrieval regimes of explo-

ration and exploitation. Traditionally, they are seen as separate operations and they are treated

by separate algorithms. We share the idea that any searching session can be considered as

having a mix of exploration and exploitation, and it would be advantageous if they could be

treated in a unified way.

As argued by Ferecatu and Geman [24, 25], the original retrieval framework is well suited for

image category search and that is, in other words, the first retrieval regime of exploring the

image collection. They explicitly suggest that other retrieval techniques should be employed

to retrieve specific images among these identified categories and that is, in other words, the

second retrieval regime of exploiting the image collection.

A useful insight is given by analyzing the evolution of the retrieval system for the synthetic

collection, when searching for images with points close to the center. Figure 5.2 shows the

evolution of the displayed images, and Figure 5.1 shows the distribution of the probabilities of

relevance.

As shown in Figure 5.1, the distribution of the probabilities evolves quite rapidly in the first

iterations. These early iterations correspond to the first retrieval regime when the system is
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t = 0 (initial) t = 1

t = 2 t = 3

t = 4 t = 5

t = 6 t = 7

Figure 5.1: Evolution of the distribution of probabilities of relevance for the searching session
illustrated in Figure 5.2. The plots have the probability bins on axis X, and the percentage
of images in the collection on axis Y. Initially, all images have the same probability, p0(k) =
0.5 ∀k ∈Ω. The distribution evolves rapidly in the first iterations, and evolves slowly after the
very first iterations.
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in the process of understanding broadly the categories of interest to the user. Later, after the

system has achieved a good understanding of the user interest, the distribution of the proba-

bilities evolves quite slowly from one iteration to another. These later iterations correspond to

the second retrieval regime when the system is meant to refine the search and to converge to

specific images.

As shown in Figure 5.2, the sets of displayed images include an image that is closer and closer,

with each iteration, to the user interest. After 3 iterations, the system succeeds to display

an image that is clearly in the intended region. Still after 5 iterations, the displayed images

concentrate only slightly on the intended region.

The system succeeds efficiently to display an image in the intended region, but it has a hard

time to display more and more images in the intended region. The “sampling” algorithm

insists on covering the entire collection even after the distribution of probabilities becomes

rather stable. One can say that the original system has a big inertia to maintain an exploration

regime, and goes very slowly into an exploitation regime.

5.3 Mass-zoom system

This section presents our solution to eliminate the limitations of the retrieval framework

described in §5.2. Intuitively, the system should be aware of the degree of alignment of the

distribution of probabilities with the user intent. When the distribution of probabilities is in

line with the user intent, the system should concentrate the “sampling” on the regions with

high probability.

First, we present the idea of the adaptive strategy to handle the trade-off between exploration

and exploitation, by modulating the concentration of the display set on promising images.

Second, we present a heuristic that infers dynamically, at each iteration, from the user actions

a consistency score that achieve a smooth trade-off that suits the user intent.

5.3.1 Exploration/exploitation trade-off

Our mass-zoom algorithm handles the trade-off between exploration and exploitation by

modulating how much the display set should be concentrated on the images assessed as the

most relevant. This is achieved by estimating at every iteration the target mass mt for the

displayed image neighborhoods. While this value was a constant fraction of the total mass in

the baseline in Equation (3.9) from § 3.3, we propose to link it to an estimate of the confidence

of our current estimate of the image relevance. Making the value of this target mass smaller

makes the neighborhoods around the images of the display set smaller, which leads to a more

compact display set, concentrated on the area of high probability.

Our approach increases the concentration of the display set if the choice of the user is consis-

tent with our current estimate, and decreases it otherwise. We propose the following update
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t = 0 (initial) t = 1

t = 2 t = 3

t = 4 t = 5

t = 6 t = 7

Figure 5.2: Evolution of the display set for the original framework with the synthetic collection,
when searching for images with points close to the center. After 5 iterations, the displayed
images concentrate slightly on the intended region. Again, the selected images are marked in
black and their corresponding Voronoi cells are indicated by colors.
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t = 0 (initial) t = 1

t = 2 (exploration) t = 3

t = 4 (exploitation) t = 5 (exploitation)

t = 6 t = 7 (exploration)

Figure 5.3: Evolution of the display set for the mass-zoom system with the synthetic col-
lection, when searching for images with points close to the center. After 5 iterations, the
displayed images concentrate mostly on the intended region. The displayed images provide
the freedom to escape the exploitation if necessary. The system continuously estimates the
exploration/exploitation trade-off that suits the user.
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0.5

ct+1

2.0

pt ,mi n pt (x∗) pt ,max

Figure 5.4: Consistency scores are estimated based on the cumulative distribution function
for the Gaussian distribution. Our heuristic gives a consistency score in the [0.5, 2.0] interval.

scheme:

mzoom
t = zt ·mt , (5.1)

where zt ∈
(

1
mt

, 1
]

accounts for the consistency between our estimates of the pt and the user

choice.

5.3.2 Heuristics based on a consistency score

Immediately after the relevance feedback event {D t , x∗
t }, right at the beginning of the next

iteration t +1, the consistency score aims to estimate the alignment of the system and the

user intent, which is defined in Equation 5.2 as the probability, under our model and given the

internal state of the system, of choosing the image x∗
t ∈ D t that was actually chosen:

ct+1 ' P̂x∼U (D t )
[
pt (x∗

t ) ≥ pt (x)
]

. (5.2)

In the first iteration, the user intent is totally unknown and the consistency score c0 is initialized

to 1.0. Subsequently, the consistency score is estimated based on the probability of relevance

of the chosen image pt (x∗
t ) versus the probabilities of relevance of the other displayed images,

namely pt (xt ), for all x ∈ D t .

Table 5.1: Notation

mt target mass for building the display set in the
original system

mzoom
t target mass in the mass-zoom approach

ct consistency score at iteration t
zt change of the target mass at iteration t
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The consistency score is estimated based on the cumulative distribution function for the

Gaussian distribution. The proposed heuristic gives a consistency score in the [0.5, 2.0]

interval:

ct+1 = 0.5+1.5 ·
(

1

2
+erf

(
pt (x∗)−µ
σ ·p2

))
, (5.3)

where µ is the average of the probabilities in ‖D t‖:

µ= 1

‖D t‖
· ∑

x∈D t

p(x), (5.4)

and σ is the standard deviation of the probabilities in ‖D t‖:

σ2 = 1

‖D t‖
· ∑

x∈D t

(p(x)−µ)2. (5.5)

This is motivated by the intuition that if the pt (x∗
t ) is already among the highest probabilities

it means that the system has a distribution of the probabilities that is in line with the user

intent, and thus the system is consistent with the user intent. If pt (x∗
t ) is relatively low, the

system is less consistent with the user intent.

The zoom value that impacts the exploration/exploitation trade-off of the selection of the

displayed images is derived from the consistency scores as follows:

zt =
t∏

i=0

1

ci
. (5.6)

5.3.3 Capabilities of the mass-zoom system

For an intuitive illustration, we set up the mass-zoom system for the synthetic collection

described in §3, and once again take the case of searching for images with points close to the

center. In Figure 5.3, we show the evolution of the displayed images for intermediate iterations

during one such searching session.

After efficiently identifying the intended region, the mass-zoom system is able to display

more and more images in the intended region. The “sampling” algorithm concentrates on the

intended region after the distribution of probabilities becomes rather stable. Although the

“sampling” algorithm does not cover the entire collection anymore, the system continuously

estimates the exploration/exploitation trade-off that suits the user.

Note that while the synthetic collection is very handy for intuitive illustrations, it should not

be mistaken for a real image collection, which typically encompasses high-dimensional image

indexing feature spaces. Besides the miss-alignment between the image feature space and

the user subjective perception of image similarities, the distribution of the image similarity
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distances impacts the Voronoi tessellation algorithm as well as the distribution of the prob-

abilities of relevance. We argue that the exploration/exploitation trade-off has even higher

impact than in the case of the synthetic collection.

5.4 Experimental results

Evaluation was conducted with 20 users not familiar with the system, and consisted of running

user tests with three systems:

• our proposed mass-zoom system

• the original baseline system

• a random system that displays images randomly without replacement

5.4.1 System setup

The system was set up for 60,000 images sampled uniformly from the ImageNet database [18],

that has the convenience of being structured in 1000 semantic categories, each composed

of 500–2500 images. We considered the semantic information as benchmark meta-data for

setting up the evaluation scenario, and we used as indexing features the pre-computed bags of

SIFT features of dimension 1000 (Scale Invariant Feature Transform) [41], as they are provided

along with the images. For evaluation purposes, we considered four different image similarity

metrics defined over these histogram-like indexing feature vectors:

• Euclidean distance (L2)

• Isomap distance [60] derived from the 16 L2 nearest neighbors (L2-Iso16)

• Manhattan distance (L1)

• Isomap distance derived from the 16 L1 nearest neighbors (L1-Iso16)

The relevance feedback framework was calibrated as described in [24], and the parameters of

the image similarity model are adjusted to saturate only after including on average 10% of the

images in the collection. Therefore, each similarity metric would employ a different image

similarity model, adapted to its statistical properties.

5.4.2 Evaluation scenario

The aim of our experiments was to evaluate our mass-zoom system in terms of the retrieval

capabilities, and to get evidence that our system is capable of providing capabilities beyond

53



Chapter 5. Exploration/Exploitation Trade-off

Figure 5.5: The users were asked to search for semantic categories described in words and
accompanied by image examples as shown here. In order to ensure a sufficiently reliable
diversity, there were 6 semantic categories.

finding an image category, and is able to support refining the user interest in an efficient

manner.

In order to isolate our contribution as much as possible, we employed four different similarity

metrics on top of the image indexing features, as mentioned in §5.4.1. We did not aim to

evaluate which similarity metric suits better the user subjective perception of image similarity,

but rather to gather evidence that our contribution remains sustainable when employing

different similarity metrics.

The evaluations follow the scenario in §3.5.2. In order to ensure a reliable diversity and

comparable difficulty, there were 6 semantic categories described in words and accompanied

by the corresponding images in Figure 5.5:

• portraits/close-ups of dogs, wolves

• electronic devices as laptop, mobile phone

• big boats as ferryboats, cargoes

• baskets/plates with fruits, vegetables

• furniture items as tables, chairs

• entrances/windows of shops, shopping centers
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In order to avoid any bias, the searching sessions were presented in a random fashion. The

semantic categories, the systems and the similarity metrics were randomized all together in

one single user test. The users were not aware of which configuration was active in a certain

session.

The users were told to end the searching sessions when they were satisfied by four of the

displayed images, instead of just only one. We designed the evaluation scenario in this way

with the intent of pushing the evaluation beyond a simple image category search. We looked

for evidence that the system is able to properly identify the user interest and then refine it

more and more in an efficient way.

5.4.3 Results analysis

Evaluation shows that the mass-zoom approach is viable. The mass-zoom system is consis-

tently better than the baseline for all configurations. Figures 5.6-5.7 show the cumulative

percentage of successful sessions per number of iterations. For example, for L1 similarity

metric, the mass-zoom system finishes successfully in less than 10 iterations in 68% of the

cases, and the baseline in only 44% of the cases. The random system is far from achieving the

same performance even after 20 iterations. Table 5.3 contains a few discrete values read from

Figure 5.6.

Table 5.2 tells about the statistical significance of the evaluation. For each couple of configura-

tions, we counted how many times one performed better than the other for the same user and

the same semantic category.Then, we computed the binomial probabilities. In principle, a

difference is statistically significant if the corresponding probability is smaller than 0.05.

Figure 5.8 shows the evolution of the zoom values zt from one iteration to the next. By

decreasing in average, it shows that the system is consistent with the user interest. One should

be aware that the rate by which the system transitions from exploration phase into exploitation

phase in Equation (5.3) may affect the results. An optimal rate could be derived by a more

extensive user evaluation.

Metrics Mass-zoom/Baseline Mass-zoom/Random

L2 (35/60) 0.078 (53/60) 0.000

L2-Iso16 (40/60) 0.004 (50/60) 0.000

L1 (37/60) 0.026 (56/60) 0.000

L1-Iso16 (42/60) 0.001 (45/60) 0.000

Table 5.2: Binomial-test for statistical significance for all four similarity metrics, corresponding
to the experiments in Figures 5.6-5.7. For example, for L1 similarity metric, the mass-zoom
system performed better than the baseline in 37 times out of 60, and the probability of this to
occur by chance is 0.026.
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(a): L2

(b): L2-Iso16

Figure 5.6: Cumulative percentage of successful sessions per number of iterations. Our mass-
zoom system shows a sustainable performance against the baseline proposed by Ferecatu
and Geman [24, 25] for all four similarity metrics. For example, for L2 similarity metric, the
mass-zoom system finishes successfully in less than 10 iterations in 65% of the cases, and the
baseline in only 45% of the cases.

Metrics Precision
t < 5 t < 10 t < 15

(a): L2 0.40/0.30 0.65/0.45 0.75/0.60

(b): L2-Iso16 0.20/0.20 0.50/0.35 0.60/0.50

Table 5.3: Retrieval performance. Here are a few discrete values read from Figure 5.6.
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(a): L1

(b): L1-Iso16

Figure 5.7: Cumulative percentage of successful sessions per number of iterations. Our mass-
zoom system shows a sustainable performance against the baseline proposed by Ferecatu
and Geman [24, 25] for all four similarity metrics. For example, for L1 similarity metric, the
mass-zoom system finishes successfully in less than 10 iterations in 68% of the cases, and the
baseline in only 44% of the cases.

Metrics Precision
t < 5 t < 10 t < 15

(a): L1 0.30/0.25 0.70/0.45 0.80/0.65

(b): L1-Iso16 0.20/0.15 0.40/0.20 0.50/0.30

Table 5.4: Retrieval performance. Here are a few discrete values read from Figure 5.7.
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(a): L2

(b): L2-Iso16

(c): L1

(d): L1-Iso16

Figure 5.8: Zoom-factor average and standard deviation. z0 and z1 are always equal to 1 as
c0 is initialized with 1 since there is no relevance feedback history at iteration t = 0, and c1 is
always equal to 1 since the probabilities of relevance p0(k) are all equal to 0.5.
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5.5 Summary

We have presented the mass-zoom system that offers full searching capabilities. This adaptive

system encompasses both retrieval regimes of exploration and exploitation, and supports a

smooth transition between them that increases the consistency between the system and the

user.

Internally, our approach employs an estimator of the consistency between the system internal

state and the user retrieval objective, and controls dynamically, at each iteration, the selection

of the displayed images accordingly.

We demonstrated its feasibility by conducting user evaluations on a collection of 60,000 images

sampled uniformly from the ImageNet database. Evaluation shows that our proposed mass-

zoom system extends considerably the retrieval capabilities of the original algorithm. Our

results give motivation for further investigations on other heuristics or finding more principled

ways of trade-off.
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6 Log-based image similarity

Interactive image retrieval based on user relevance feedback strongly depends on the extent

to which the “closeness” in the similarity metric (i.e. the distances between the image feature

vectors) accounts for the “closeness” in the subjective perception of the users.

In this chapter, we propose to improve the similarity metric on which our framework relies

by learning from user logs to adapt the low-level image features, and model explicitly the

user similarity judgments. Internally, we define a weighted Euclidean distance over the image

feature space, and then we optimize it in order to maximize the probabilities of relevance of

the images chosen by the users under the probabilistic model of their interactions with the

system.

Our technique is evaluated by 20 users on two collections from ImageNet, a small collection

of 60,000 images and a large collection of 1,000,000 images, and shown to bring about 10%

improvement in the retrieval performance in comparison with the original system.

6.1 Introduction

The image similarity metric obviously has a direct impact on the overall efficiency of the

system. The retrieval performance strongly depends on the extent to which the “closeness”

in the similarity metric (i.e. the distances between the image feature vectors) accounts for

the “closeness” in the subjective perception of the user. Intuitively, the retrieval performance

would significantly improve if the similarity metric was better aligned to the user perception.

We started to investigate the possibilities to improve the retrieval capabilities of the original

framework by modeling the user similarity judgments beyond the relevance feedback infor-

mation given during a single searching session. We aimed to identify a solution that is able to

support personalized similarity metrics eventually.

We propose to derive a more optimal similarity measure between the images by exploiting

the user feedback histories that are acquired naturally during the searching sessions (i.e. user
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logs information). During the on-the-fly sessions, the user feedback histories are stored as

user logs in a database. Then, as the user logs are accumulated in the database, they can be

used off-line to improve the similarity metric. This approach has the major advantage that it

does not require any extra image labeling that would imply additional effort and resources. As

the retrieval system is used, the user logs will gradually cover the entire collection, and the

log-based similarity metric will systematically improve.

We observe that the user feedback can be seen as a weak partially reliable image labeling, and

we formulate a technique that tunes off-line the image similarity metric in order to model

explicitly the user similarity judgments. Internally, we define a weighted Euclidean metric

over the image feature space, and then we optimize it in order to maximize the probabilities of

relevance of the images chosen by the users. Then, we use this optimized log-based metric

instead of the original L2 norm on-the-fly to run the retrieval process.

We evaluated this technique on our image collection of 60,000 images from ImageNet, for

which we could make use of the user logs from some previous experiments. Evaluation shows

that the log-based similarity metric improves the retrieval performance, which means that the

optimization scheme succeeds to adapt the low-level indexing information in order to align it

better with the users’ similarity judgments.

6.2 State-of-the-art

A key factor of our retrieval framework, as in case of any other relevance feedback framework,

is the similarity measure between the images that governs the retrieval process. Ferecatu and

Geman in [25] elaborate a calibration technique that aims to compensate for the semantic

gap between the similarity metric and the user perception of image similarity. While their

calibration requires an image labeling task conducted separately from the searching sessions,

we propose a new technique that has the advantage of exploiting the user input acquired

naturally during the searching sessions.

The general idea is that the similarity metric must be aligned reasonably well with the users’

similarity judgments, and the better the alignment, the more reliable the relevance feedback.

Although there are plenty of sophisticated image similarity metrics [20, 15], it has been rec-

ognized that it is too ambitious to expect a single automatically-derived metric to model

reasonably well the user perception of image similarity. The similarity metrics should go

beyond the low-level automatically-derived indexing information and should model explicitly

the user perception.

Extensive research has been done in order to derive similarity metrics fully based on user

input such as for example relative similarity of pairs of images [11]. Unfortunately, collecting

such user input is as prohibitive as the traditional manual annotation of the images, and is not

suitable for large-scale collections.
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An interesting alternative is to attempt to tune an existing, automatically generated, similarity

metric by learning from the user feedback. The use of relevance feedback for learning the

correlation between low-level indexing features and high-level semantics has been attempted

by Han et al. [28] and Hoi et al. [31, 32]. Recently, a manifold learning technique to capture the

user preferences over a semantic manifold has been proposed by Lin et al. [40].

Our retrieval framework is particularly feasible for such machine-learning approaches that

require user logs information (i.e. image labeling). Since the relevance feedback is the core

mechanism of searching, the user input is acquired naturally during the searching sessions

without any extra-effort. Still, the task of learning might be challenging since there is only one

positive image example per iteration, and no explicit negative examples.

Our retrieval system stores all the searching sessions that are performed by the users during the

evaluation campaigns in so-called user logs. Each user log corresponds to a searching session,

and contains all the data necessary to recall the context of the evaluation campaign and to

reproduce that corresponding session. Besides the information about the user, the system

configuration and the target task, each user log contains the history of relevance feedback

events {D t , x∗
t }, t = 1,2, . . .T where T ≤ 20, and the user label (i.e. successfully terminated or

failed).

For our investigations, we have already a sufficient amount of user logs from our previous

evaluation campaigns. For the collection of 60,000 images, there is log information for about

50% of the collection (i.e. 30,000 images). About 50% of the images have been displayed at

least 1 time, and about 36% at least 2 times, and so on. For the collection of 1,000,000 images,

there is log information for 2% of the collection (i.e. 20,000 images).

6.3 Log-based similarity metric

The retrieval framework could employ any arbitrary similarity measure between the images,

but ofter this is just the L2 or L1 norm between some automatically-generated image fea-

ture vectors. Obviously, such a simple visual-based similarity metric is sub-optimal and the

semantic gap is quite significant.

We propose to tune such a trivial similarity metric by weighting the individual features based

on the user logs information. We share the idea that the tuning technique should exploit the

user logs in an incremental fashion, by gradually taking into account the user logs as they

Table 6.1: Notation

α weighting vector learned off-line from the user logs
dα(k,h) weighted Euclidean distance between k and h
C cost function defined on the probabilities of relevance

of the images chosen by the users
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become naturally accumulated in the database. As the retrieval system is used, the user logs

will gradually cover the entire collection, and the log-based similarity metric will systematically

improve.

6.3.1 Weighted Euclidean distance

The original framework employs a similarity metric that is the Euclidean metric over visual-

based image feature vectors based on SIFT (Scale Invariant Feature Transform) [41]. Our

approach re-defines the similarity metric as a weighted Euclidean distance over the image

feature space as in Equation (6.1). Thus, we introduce a weighting vectorα for which we will

elaborate an optimization scheme based on the user logs.

dα(k,h) =
√√√√ F∑

f =1
α f · (k f −h f )2, (6.1)

where F is the dimensionality of the image feature space.

6.3.2 Log-based weights learning

Our retrieval system stores all the data necessary to reproduce the searching sessions in so-

called user logs. These user logs contain the history of relevance feedback events {D t , x∗
t },

t = 1,2, . . .T where T ≤ 20, as well as all the system parameter settings, for each searching

session. Furthermore, each searching session is user labeled as successfully terminated or

failed.

Our challenge is that the searching session are labeled only globally as successfully terminated

or failed. This tells us if the last display set contains target images or not, but unfortunately

does not tell explicitly which images.

If we knew explicitly the image or the images that satisfied the user, we could adapt the

weighting vector in order to maximize the probabilities of relevance of those images. This way

the weighted Euclidean distance would provide distributions of probabilities that are more

consistent with the user intent.

Our alternative is to adapt the weighting vector in the sense of making the probabilistic model

able to predict better the images chosen by the user. We consider that, in the searching

sessions that were successfully terminated, all the history of relevance feedback events was for

good and helped the user to get to the final display set that satisfied her. With this assumption,

all the history of relevance feedback events are regarded as equally important, and it makes

sense to adapt the weighting vector in order to maximize the probabilities of all the images

chosen in all relevance feedback events.

With these considerations, we define the cost function as the total sum-log of the probabilities
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of relevance of the chosen images at the time of their displaying:

C =
U∑

u=1

T∑
t=0

log pt (x∗
t ), (6.2)

where U stands for all the user logs (i.e. searching session histories), and T stands for the

number of iterations of each searching session.

Next, we should choose an optimization algorithm in order to learn the optimal weighting

parameterα that maximizes the cost function in Equation (6.2):

αopti m = argmax
α

C . (6.3)

We propose to optimize the weighting vector based on the full-batch gradient descent method

combined with a simple line search. If the amount of user logs becomes large, the cost function

could be optimized using approximations, as for example the stochastic gradient descent

method.

Initially, at iteration n = 0 the weighting vectorα0 is set to 1. In the subsequent iterations, the

gradient descent algorithm is performed according to Equation (6.4), which can be expanded

for each weighting coefficient αi as in Equation (6.5):

αn+1 =αn +γn ·OC (αn), n > 0, (6.4)

αn+1
i = αn

i +γn ·OC (αn
i )

= αn
i +γn · ∂C

∂αi

∣∣∣
αi=αn

i

.
(6.5)

The partial derivatives can be elaborated starting from the top derivative:

∂C

∂αi
=

U∑
u=1

T∑
t=0

1

pt (x∗
t )

· ∂pt (x∗
t )

∂αi
. (6.6)

6.4 Experimental results

The aim of the following experiments is to evaluate if the optimization scheme we propose

succeeds to adapt the low-level indexing information in order to align it better with the users’

similarity judgments, and thus to improve the retrieval performance of the original framework.

We are using for this evaluation the same collection of 60,000 images from ImageNet dataset

as in §5.4, and with the same indexing features, namely the bags of SIFT features provided

by ImageNet. Thus, we are able to make use of the user logs from our previous evaluation
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campaign.

Our experiments are presented in two parts. First, we analyze the robustness of the optimiza-

tion scheme in §6.4.1, and we obtain the optimal weighed Euclidean distance in order to set

up the optimized system. Second, we evaluate the efficiency of the proposed technique by

conducting a user-test campaign, for which we give the set up details in §6.4.2, and interpret

the outcome in §6.4.3.

6.4.1 Log-based weights analysis

As already mentioned in §6.2, we make use of the user logs from some of our previous ex-

periments in §5.4. In our optimization scheme, we considered all successfully terminated

searching sessions that were performed for the L2 type of distances. There are in total 142

searching sessions, that results in a cumulative set of 1050 relevance feedback events. With

these data, we performed the full-batch gradient descent algorithm with a simple line search.

The algorithm converged after 8,000 iterations, but we let it run more, and stopped it after

10,000 iterations.

Figure 6.1 shows the histogram of the weights in the final optimal weighting vectorα, which

were obtained after performing the gradient descent algorithm. Here, we recall that the

original distances are equivalent to the uniform weighting vector 1. We can see that the

optimal weighting vector remains reasonably bounded although no upper constrains have

been enforced. About 15% of the image features are zeroed, and the maximum weight is no

larger than 5.

Figure 6.2 shows the cumulative distributions of the image similarity distances in the collection

for both the original and the optimized distances. We can see that the distributions remain

rather alike, which means that the weighting vector is normalized properly by the optimization

scheme. About 10% of the distances in the collection are smaller than 75, and about 10% of

them are larger than 125. The majority of 80% of the distances are in the range 75-125, and

this is the “spherical” effect of the Euclidean distance on the high-dimensional feature vectors.

Figure 6.4 shows the influence of the calibration parameters on the cost function, for both the

original and the optimized distances. Each plot corresponds to a calibration parameter and

shows how the cost function depends on that parameter while keeping the others un-changed.

We can see that cost functions corresponding to the optimized distances give very much

the same peaks as the ones corresponding to the original distances, which means that the

weighting vector is normalized properly by the optimization scheme, without imposing any

ad-hoc hard constraints. The only parameter that may differ from our initial settings is ϕ−, as

the cost function is maximized when ϕ− collapses to 0. Here, we observe that in fact ϕ− = 0

is not a critical setting in our setup since there are not many small distances in between the

images in the collection, as we explain in Figure 6.2.
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Figure 6.1: Histogram of the feature weights in the optimal weighting vectorα, which was ob-
tained after running the gradient descent algorithm. Here, we recall that the original distances
are equivalent to the uniform weighting vector 1. We can see that the optimal weighting vector
remains reasonably bounded although no upper constrains have been enforced. About 15%
of the image features are zeroed, and the maximum weight is no larger than 5.

Figure 6.2: Cumulative distribution of the similarity distances in the collection, for both the
original distances and the optimized distances. We can see that the distributions remain
rather alike, which means that the weighting vector is normalized properly by the optimization
scheme. About 10% of the distances in the collection are smaller than 75, and about 10% of
them are larger than 125. The majority of 80% of the distances are in the range 75-125, and
this is the “spherical” effect of the Euclidean distance on the high-dimensional SIFT-based
feature vectors.
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ϕ+

1

φ+(d)

δ+ d

ϕ−

1

φ−(d)

δ− d

Figure 6.3: Here we recall the calibration functions in Figure 3.3, for identifying the calibration
parameters that we are referring in the next Figure 6.4. δ+, δ− are the thresholds that normalize
the distances, and ϕ+ and ϕ− are the attenuations that compensate for the partial mismatch
between the distances and the user perception of image similarities.

ϕ+ ϕ−

δ+ δ−

Figure 6.4: Influence of the calibration parameters on the cost function, for both the original
and the optimized distances. To identify the parameters, one should recall the calibration
functions in Figure 6.3. Here, each plot corresponds to a parameter and shows how the cost
function depends on that parameter while keeping the others un-changed. We can see that
the cost functions corresponding to the optimized distances give similar peaks as the ones
corresponding to the original distances, which means that the weighting vector is normalized
properly by the optimization scheme.
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6.4.2 Evaluation scenario

Evaluation was conducted with 20 users not familiar with the system, and consisted of running

user tests with:

• our proposed system with user-logs optimized distances

• the baseline system with original distances

• a random system that displays images randomly without replacement

The systems were set up for the same collection of 60,000 images from ImageNet dataset as

in §5.4, and with the same indexing features, namely the bags of SIFT features provided by

ImageNet. Thus, the original system is un-changed from the previous experiments.

The parameters of the calibration functions in Figure 3.3 were also set in the same fashion,

namely to saturate only after including on average 10% of the images in the collection. As we

saw above in §6.4.1, the original and the optimized distances have very much alike statistical

properties. Thus, the parameters of the calibration functions were set to the same values for

both the original system and our proposed optimized system.

The evaluation scenario is preserved as well as much as possible. The users were asked to

search for the same semantic targets as:

• portraits/close-ups of dogs, wolves

• electronic devices as laptop, mobile phone

• big boats as ferryboats, cargoes

• baskets/plates with fruits, vegetables

• furniture items as tables, chairs

• entrances/windows of shops, shopping centers

The only difference is that the users were told to end the searching sessions when they were

satisfied by one single displayed image, instead of four images. We considered that this choice

is more suitable for the generic evaluation of the adapted similarity metric.

Each user performed searching sessions corresponding to all combinations of systems and

semantic targets, and thus our evaluation resulted in 120 sessions per system.
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(a): Average performance of all the users

(b): Average performance of the demanding half of the users

Figure 6.5: Retrieval performance of the original framework in combination with the log-based
similarity metric. Plot (a) shows the average performance of all the users for each of the
assigned configurations. The optimized system performs consistently better than the original
one, and saturates about 7% higher after 20 iterations. Plot (b) shows the average performance
of the demanding half of the users. The relative improvement is even more accentuated.

Precision (t < 20)
random original user logs

(a): all the users 0.61 0.90 0.97
(b): the demanding half of the users 0.50 0.79 0.87

Table 6.2: Retrieval performance. Here are a few discrete values read from Figures 6.5.
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6.4.3 Results analysis

The user-based evaluation shows that the log-based similarity metric improves the retrieval

performance. Next, we discuss the performance as the cumulative percentage of successful

sessions per number of iterations.

Figure 6.5 shows that the optimized system performs consistently better than the original one.

The optimized system saturates at 97% after 20 iterations, while the original one only reaches

about 90%. This means that the log-based similarity metric is better aligned with the users’

similarity judgments.

The average performance flattens out the differences between the users. As much as we tried

to “calibrate” the users while instructing them, we observed a large variation in their tests. In

order to get a better insight, we had the idea to divide the users in two equal sub-groups based

on their level of demand: un-demanding and demanding users.

What we did is we considered the average number of iterations of each user test as an indication

of the level of demand of the user. We computed the average number of iterations of each user

test by averaging all the searching sessions done by that user, for all the configurations and for

all the semantic targets. Then, we ordered the users accordingly to their average number of

iterations, and we split them in two groups of equal sizes: un-demanding half and demanding

half.

Figure 6.5.(b) shows the retrieval performance for the demanding half of the users. The random

system has a much lower performance than in the case of all the users, and all three systems

have a much lower success rate for the first display set at iteration 0. This quantify somehow

the higher level of demand of the demanding users. The demanding users benefit even more

from the optimized metric, and this is line with the intuitive reasoning.

6.5 Summary

This chapter focused on improving the retrieval capabilities of the original framework by

modeling the user similarity judgments in long-term beyond the relevance feedback informa-

tion given during a single searching session. We re-defined the image similarity metric as a

weighted Euclidean distance over the image feature space, and we elaborated a technique to

optimize it off-line based on the user logs.

Our approach has two major advantages. On the one hand, it exploits the user feedback that

is acquired naturally during the searching sessions, and does not require any log acquisition

campaigns. Even if the similarity models would be changed, the user logs can still be used in

the same manner. On the other hand, it is generic and can leverage very large amounts of user

logs. As the retrieval system is used, the user logs will gradually cover the entire collection, and

the log-based similarity metric will systematically improve.
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Our experiments give evidence that the optimization scheme we propose is beneficial for the

retrieval performance of the original framework. On the one hand, it normalizes properly the

weighted Euclidean distance to the calibration parameters. On the other hand, it succeeds to

adapt the low-level indexing information in order to align it better with the users’ similarity

judgments.

The evaluation results give motivation for further investigations when a larger amount of user

logs would become available. Eventually, this technique could be able to support personalized

similarity metrics for each user separately.
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Multimedia collections often tend to include inter-related modalities, as for example photos

and annotations in photo-sharing repositories, pictures and captions in news web-sites or

x-ray scans and reports in medical databases. Intuitively, these inter-relationships could

be exploited in order to provide a better indexing by compensating the weaknesses of the

individual modalities.

In this chapter, we present a multi-modal extension of our retrieval framework for exploiting

indexing features extracted from different modalities, as for example features extracted from

both images visual content and their associated annotation keywords. We propose an adaptive

similarity metric that weights dynamically, on-the-fly at each iteration, between the features

of different modalities, depending on what the user is searching for.

The effectiveness of our multi-modal extension was assessed by 2 independent user-based

evaluations with 30 users each on a subset of 35,000 images from the Corel stock photo library,

for which we extracted SIFT-based visual features and LSA-based textual features. The system

succeeds to retrieve images that satisfy the users in less than 5 iterations in 60% of the cases.

7.1 Introduction

A key characteristic of many multimedia collections is that data of different modalities are

interrelated, as for example images and annotations in photo collections, songs and lyrics in

music collections, or movies and moviescripts in video collections. The particular aim of the

multi-modal research is to exploit the complementarity of the multi-modal information in

order to minimize the semantic gap.

Our primary focus was to integrate visual-based and textual-based features. In the recent

years, research confirmed that both visual-based and textual-based features have inherent

limitations, and the retrieval systems are better off if they exploit both feature types in a

multimodal fashion, in order to compensate each other for their own limitations [56].
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The original approach uses a similarity metric based on visual features. The simplest approach

towards multi-modality would be to simply concatenate the visual-based and textual-based

features in order to obtain some composite features. A more desirable approach would be to

extend the retrieval framework for more advanced approaches such as dynamically weighted

features [68].

Our multi-modal extension relies on an adaptive similarity metric that weights dynamically,

at each iteration, the individual metrics of different modalities. In the iterative process,

the weighting is estimated depending on what the user is searching for via a Maximum

Likelihood approach. This weighting motivated by the intuition that the retrieval needs are

sometimes modeled better by visual features, sometimes by textual features, and sometimes

by a combination of both.

The effectiveness of our multi-modal extension was assessed by 2 independent user-based

evaluations with 30 users each on a subset of 35,000 images from the Corel stock photo library,

for which we extracted SIFT-based visual content features and LSA-based textual features.

We primarily investigate the integration of indexing features extracted from both the image’s

visual content and their accompanying annotation keywords. However, our approach can be

applied straight-forward for any other types of features and for any larger number of features.

7.2 State-of-the-art

The recent evolution of multimedia collections towards including inter-related modalities

motivates the research of retrieval systems that are able to exploit multiple types of information

into a unified framework (i.e. multimodal retrieval) [15]. In line with this trend, we started to

investigate how to extend the retrieval framework in order to integrate multi-modal indexing

features.

The original approach uses a rigid similarity metric based on low-level features extracted

from the visual content of images (i.e. global descriptors of color, texture and shape). As

already stated in the previous chapter §6.2, there is no such thing as an omnipotent similarity

metric, and research proposes various adaptations and compensations in order to minimize

the semantic gap. Learning from the user is good, but it still needs to have good features

to start with. In this regard, the adaptive multi-modal metrics are an alternative that show

promising potential [56].

In our system, the visual features are based on SIFT (Scale Invariant Feature Transform) [41].

SIFT feature vectors are highly distinctive and robust to affine transformations, changes in

illumination and limited changes in 3D viewpoint. The textual features are based on LSA

(latent semantic analysis) [17]. LSA takes advantage of the implicit associations between

keywords, and it escapes the unreliability, ambiguity and redundancy of individual keywords.
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7.3 Joint visual and textual-based metric

We propose an extension that exploits indexing features extracted from both the visual content

and the annotation keywords of images. Moreover, we propose an adaptive similarity metric

that weights dynamically, on-the-fly at each iteration, between the visual-based and textual-

based features.

Our approach uses features extracted from both visual content and annotation keywords of

images. The visual-based features are derived using SIFT [41] and the textual-based features

are derived through LSA [17]. Our particular choices are specified in §7.4.1. Then, for every two

images k, l ∈Ω, the visual-based distances dV(k, l ), and the textual-based distances dT(k, l )

are obtained as Euclidean distances between the corresponding feature vectors.

7.3.1 Bi-modal adaptive metric

For each modality separately, the corresponding distances are calibrated with monotonous

functions, one for φ+ and one for φ− as shown in Figure 7.1. They are meant to normalize the

corresponding distances, and also to compensate for the partial match between the distances

and the user subjective perception of image similarities, in a similar manner as in the original

framework and under the same justifications as in [24].

φ+ and φ− in Equations (3.12-3.13) are defined as a weighted sum of both visual-based and

textual-based distances:

φ+(k, x) = w ·φ+
V

(dV(k, x))+ (1−w) ·φ+
T

(dT(k, x)), (7.1)

φ−(k, x) = w ·φ−
V

(dV(k, x))+ (1−w) ·φ−
T

(dT(k, x)). (7.2)

This is motivated by the intuition that the retrieval objectives as well as the subjective per-

ception of image similarities are sometimes modeled better by visual features, sometimes by

textual features, and sometimes by a combination of both.

Table 7.1: Notation

wt weighting parameter learned on-the-fly at each iteration t
dV/T similarity metrics for each modality separately
φ+/−
V/T calibration functions for each modality separately
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Figure 7.1: Calibration functions. For each modality separately, the corresponding calibration
functions normalize the corresponding distances, and also aim to compensate for the partial
match between the distances and the user subjective perception of image similarities, under
the same justifications as in [24].

7.3.2 Weight estimation

In the first iteration t = 0, both distance types are equally weighted by setting w0 in Equa-

tions (7.1-7.2) to 0.5. In the subsequent iterations, the weighting parameter wt is estimated

based on a Maximum Likelihood approach:

w∗
t+1 = arg max

w∈[0,1]

pt (x∗
t )∑

x∈D t
pt (x)

. (7.3)

Immediately after the relevance feedback event {D t , x∗
t }, before updating the probabilities

pt+1(k) for all k ∈Ω, the probabilities pt (x) for the displayed images x ∈ D t are re-estimated

for a few discrete weight values. The optimal value w∗
t+1 is the weight that distinguishes the

most x∗
t from all x ∈ D t , and in consequence will make the most out of the relevance feedback

event {D t , x∗
t }. In our experiments, we considered 11 discrete values of w ∈ {0,0.1, . . . ,1}.

7.4 Experimental results

Our evaluation has been conducted with 2 groups of 30 users not familiar with the system. The

evaluation does not rely on any apriori defined ground truth. Instead, it relies on comparing

four configurations:

• bimodal-adaptive is weighting dynamically, at each iteration, between the visual-based
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and textual-based features as described in §3.4.

• unimodal-visual is a particular case obtained by setting w to 1.

• unimodal-textual is a particular case obtained by setting w to 0.

• pure-sampling is a special configuration in which w is set to 0.5 and the probabilities

pt (k) are fixed to 0.5 and never updated. Basically, pure-sampling uses the similarity

metric in order to run the Voronoi tessellation algorithm, but discards the relevance

feedback. Thus, it provides a fair base-line for showing the real contribution of the

relevance feedback itself.

7.4.1 System setup

The system was set up for a subset of 35,000 photos from the Corel stock photo library. Each

image is associated with 5-7 keywords from a vocabulary of about 5,000 keywords [45, 53]. For

further insight, one can consult §C.1.

For the visual-based metric, SIFT features [41] were extracted for each image by detecting

points of interest at 4 scales (i.e. this resulted in 50-300 features per image). A subset of 300,000

features was chosen randomly and clustered in 500 classes with the K-means algorithm. A

reference SIFT vocabulary was formed by the resulted centroids. Then, a histogram-like

feature vector was derived for each image by computing the membership of its own SIFT

features to the centroids in the SIFT vocabulary.

For the textual-based metric, the Boolean image–keyword matrix was created by considering

a vocabulary of about 5,000 keywords, all the keywords that were used to annotate at least

3 images. Then, LSA was applied as explained in [17] to obtain vector representations of

dimension 500.

7.4.2 Evaluation scenario

Each user group was assigned with three configurations: the first group with bimodal-adaptive,

unimodal-visual and pure-sampling; the second group with bimodal-adaptive, unimodal-

Table 7.2: The 12 semantic categories described only in words.

bird/birds on water airplane in the sky
sailing boat/boats forest landscape
people doing sport waterfall

city panorama garden with flowers
animals in the wild historical site

people on the streets sandy beach
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visual and unimodal-textual.

The evaluations follow the scenario in §3.5.2. In order to ensure sufficient diversity and

comparable difficulty, there were 12 semantic categories described only in words, as they are

mentioned in Table 7.2.

Each user was asked to perform one searching session for each semantic category, thus 12

sessions in total. The interpretation of the semantic category in the sense of visual content

was left to the user. The users were only told to end the session when they were satisfied by

at least one image. The evaluation interface is shown in Figure A.3. One third of the users

was available to perform 36 searching sessions in total, one for each configuration and each

semantic category.

7.4.3 Results analysis

Our evaluation shows that the approach is viable. We can see in Figure 7.2.(a) that all configu-

rations using relevance feedback perform consistently better than pure-sampling. This means

that the system is intuitive and able to deal with the user subjectivity in making similarity

judgments.

Tables 7.5-7.6 tell about the statistical significance of the evaluation. For each couple of con-

figurations, we counted how many times one configuration performed better than the other

for the same user and the same semantic category, whenever there was available data. Then,

we computed the binomial probabilities. In principle, a difference is statistical significant if

the corresponding probability is smaller than 0.05.

By adding textual features, bimodal-adaptive and unimodal-textual perform significantly

better than unimodal-visual in Figure 7.3.(a). Bimodal-adaptive and unimodal-textual are not

significantly different as we can see in Table 7.6. Since the semantic categories were specified

textually, it is likely that the textual features were favored. In other contexts, visual features

may become prevalent. Further evaluations should definitely address this issue.

These total averages flatten out the differences between users. Following the same reasoning as

in the previous chapter §6.4.3, one can divide the users in two equal sub-groups based on their

performance over all configurations: un-demanding and demanding users. Figures 7.3.(a-b)

show how the demanding users benefit from bimodal-adaptive.

About 60% of the sessions are successfully terminated in less than 5 iterations, and 80% in less

than 10 iterations. The retrieval performance remains very reasonable when thinking of the

two most extreme cases. If the collection would be arranged as a tree with 8 branches at each

node, the perfectly-structured search will need about 3 iterations in average and log8 ‖Ω‖ ≈ 5

iterations at maximum.1 If the collection would be totally unstructured, the uniformly-random

search will need ‖Ω‖/(‖D‖ · (L+1)) ≈ 12 iterations in average and a lot more at maximum.

1‖Ω‖ ≈ 35,000, ‖D‖ = 8, L ≈ 350 are the sizes of the image collection, the display set, and the semantic category.
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(a): Average performance of the first group

(b): Average performance of the demanding half of the first group

Figure 7.2: Retrieval performance as the cumulative percentage of successful sessions per
number of iterations. Plot (a) shows the average performance of the first group for each of the
assigned configurations. Plot (b) shows the average performance of the demanding half of the
group.

Precision Precision Precision
(t < 5) (t < 10) (t < 15)

(a): all the users of the first group 0.54/0.58/0.60 0.73/0.75/0.77 0.80/0.82/0.88
(b): the demanding users of the first group 0.40/0.48/0.53 0.63/0.69/0.70 0.75/0.79/0.82

Table 7.3: Retrieval performance. Here are a few discrete values read from Figure 7.2.
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(a): Average performance of the second group

(b): Average performance of the demanding half of the second group

Figure 7.3: Retrieval performance as the cumulative percentage of successful sessions per
number of iterations. Plot (a) shows the average performance of the second group for each of
the assigned configurations. Plot (b) shows the average performance of the demanding half of
the group.

Precision Precision Precision
(t < 5) (t < 10) (t < 15)

(a): all the users of the second group 0.55/0.58/0.60 0.72/0.74/0.76 0.80/0.82/0.88
(b): the demanding users of the second group 0.40/0.48/0.54 0.63/0.69/0.70 0.75/0.79/0.82

Table 7.4: Retrieval performance. Here are a few discrete values read from Figure 7.3.
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adaptive/visual
(117/207) 0.025

adaptive/pure-sampling
(130/217) 0.002

visual/pure-sampling
(127/210) 0.001

adaptive/visual
(61/99) 0.007

adaptive/pure-sampling
(66/108) 0.008

visual/pure-sampling
(62/101) 0.007

(a): all the users of (b): the demanding users
the first group of the first group

Table 7.5: Binomial-test for statistical significance corresponding to the experiments in Fig-
ure 7.2. For example, for all the users the first group, bimodal-adaptive performed better than
unimodal-visual in 117 times out of 207, and the probability of this to occur by chance is 0.025.

adaptive/visual
(75/132) 0.048

adaptive/textual
(72/133) 0.149
textual/visual
(76/133) 0.041

adaptive/visual
(52/84) 0.010

adaptive/textual
(43/77) 0.128

textual/visual
(43/73) 0.050

(a): all the users of (b): the demanding users
the second group of the second group

Table 7.6: Binomial-test for statistical significance corresponding to the experiments in Fig-
ure 7.3. For example, for all the users in the second group, bimodal-adaptive performed better
than unimodal-visual in 75 times out of 132, and the probability of this to occur by chance is
0.048.

7.5 Summary

We have presented a multi-modal extension of the retrieval framework for exploiting indexing

features extracted from different modalities. This extension relies on an adaptive similarity

metric that weights dynamically, at each iteration, the individual metrics of different modali-

ties, depending on what the user is searching for.

We have primarily exploited indexing features extracted from both images visual content and

their associated annotation keywords. This bi-modality choice was motivated by the intuition

that the visual-based and textual-based features are complementary to each other, and the

retrieval needs are sometimes modeled better by visual features, sometimes by textual features,

and sometimes by a combination of both.

The evaluation results give motivation for further investigations on how the system could

benefit from other indexing features and similarity metrics. Although evaluated for the bi-

modal case with one visual-based and one textual-based feature types, our extension is ready

to be applied for the multi-modal case with only minor changes.
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8 System integration

We have presented so far, in the previous Chapters §4-7, four contributions that are comple-

mentary to each other, and touch different components of the retrieval system, namely the

large-scale HEAT framework, the exploration/exploitation trade-off, the log-based similarity

learning, and the multi-modal similarity metric.

In this chapter, we investigate the integration of all contributions together into one compre-

hensive retrieval system. From the retrieval performance point of view their integration makes

a lot of sense, and it is fair to expect their integration to be beneficial.

We organized user-based evaluation campaigns in the same manner as for each individual

contribution, and we evaluated systematically different combinations of our contributions.

We got evidence that each contribution complements each other consistently for both small

and large collections. Then, we got evidence that the overall retrieval performance of the

comprehensive retrieval system is also consistently beneficial.

8.1 Integration overview

We rounded up our research by investigating the integration of all our contributions together

into one comprehensive retrieval system. They are complementary to each other, and touch

different components of the retrieval system. Thus, from the retrieval performance point of

view their integration makes a lot of sense.

Still, we have to support our intuition with some evidence that each contribution complements

each other, and that their combination is consistently beneficial. Therefore, we identified a

few intermediate milestones towards the integration of all contributions together into one

comprehensive retrieval system.
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Mass-zoom system with log-based similarity metric

The integration of the log-based similarity metric in the mass-zoom system is straight-forward.

Intuitively, it is fair to expect that the two contributions complements each other. On the one

hand, the log-based similarity metric models better the human perception of image similarity,

and thus it can only make the relevance feedback more reliable. On the other hand, the

mass-zoom system takes advantage of the consistency in the relevance feedback.

HEAT framework with mass-zoom extension

The integration of the mass-zoom extension in the HEAT framework is also straight-forward

from the technical point of view. We integrated them as such, but we are aware that the

heuristics employed by the algorithmic components should be re-investigated in the new

context of integration. The criteria of trace refinement may be impeded by a very small

mass-zoom factor, but this remains an open-question for future work.

HEAT framework with log-based similarity metric

The integration of the log-based similarity metric and the HEAT system impacts not only the

on-the-fly models but also the quality of the pre-computed hierarchical organization of the

collection. Since the log-based similarity metric models better the human perception of image

similarity, the hierarchical organization will be also reflecting better the human perception.

Intuitively, it is fair to expect that the HEAT system benefits from log-based similarity metric

even more than the original system.

HEAT framework with multi-modal similarity metric

The integration of our adaptive multi-modal contribution and the HEAT framework remains

an open-question for future work, as there is still one issue to tackle from the technical point

of view. Currently, the large-scale HEAT framework is based on a pre-computed hierarchical

organization of the collection that assumes an invariant similarity metric. The HEAT system

works with a fixed pre-computed organization that is suitable for any fixed weighting of the

multi-modal indexing features. Unfortunately, the HEAT system cannot integrate simply the

dynamical weighting that adapts at each relevance feedback iteration.

8.2 Experimental results

We aim to evaluate the overall performance of the comprehensive system that integrates all

our contributions. For this, we will first evaluate systematically different combinations of our

contributions, in order to get evidence that each contribution complements each other, and

that their combination performs consistently for both small and large collections. Then, we
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will do the experiments and the analysis for the final evaluation.

8.2.1 System setup

We set up the experiments for the two collections from ImageNet dataset that we used to

evaluate each individual contribution, namely the small collection of 60,000 images and the

large collection of 1,000,000 images. We also take over all the calibration settings and the log-

based similarity metric as they were derived for each individual contribution in the previous

chapters.

Following the remark in §8.1, we set up multiple instances of the HEAT system with the

corresponding hierarchical organizations for the different similarity metrics, one for the

original Euclidean metric and one for the log-based similarity metric.

Thus we ended up with:

• the baseline system with original distances

• the baseline system with user-logs optimized distances

• the mass-zoom system with user-logs optimized distances

and also with the large-scale variants:

• the HEAT system with original distances

• the HEAT system with user-logs optimized distances

• the HEAT system with mass-zoom and user-logs optimized distances

8.2.2 Evaluation scenario

We organized several user-based evaluation campaigns based on the same evaluation scenario

as in our previous campaigns. The scenario details are in §3.5.2. The evaluations were

conducted with 20 users, and each user performed searching sessions corresponding to all

combinations of systems and semantic targets, Thus, our evaluation resulted in 120 sessions

per system.

8.2.3 Results analysis

Next we discuss the outcome of our evaluation campaigns. We first organized two evaluation

campaigns to evaluate two partial combinations of our contributions, and then we organized

one final evaluation campaign to evaluate the total integration of our contributions.
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60K image collection

Figure 8.1: Retrieval performance of the integration of mass-zoom system and the log-based
similarity metric with the 60K image collection. Each of our contributions taken individually,
namely the mass-zoom system and the log-based similarity metric, improves the retrieval
performance of the original system. Furthermore, the integration of the mass-zoom system
and the log-based similarity metric is beneficial. The two contributions complement each
other, and their combination significantly improves the overall performance.

Mass-zoom system with log-based similarity metric

Figure 8.1 shows the retrieval performance of the mass-zoom system in combination with

the log-based similarity metric. Experiments were conducted only with the small collection

of 60,000 images, since it cannot cope with the large-scale collection. The integration of the

two contributions is compared with each contribution taken individually, and then all are

compared with the original system.

The evaluation shows that each contribution taken individually improves the retrieval perfor-

mance of the original system, and this is re-enforce the results of our previous evaluations.

Furthermore, the integration of the mass-zoom system and the log-based similarity metric is

beneficial. The two contributions complement each other, and their combination significantly

improves the overall performance. The optimized system provides 80% rate of success in

less than 8 iterations, while the original system reaches the same rate only after 13 iterations,

which is 5 iterations more.

HEAT framework with log-based similarity metric

Figures 8.2.(a-b) show the retrieval performance of the HEAT systems in combination with

the log-based similarity metric. For both small and large collections, we can see that the

integration of the HEAT system with the optimized metric is beneficial. In fact, the HEAT
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(a): 60K image collection

(b): 1M image collection

Figure 8.2: Retrieval performance of the HEAT framework in combination with the log-based
similarity metric. Plot (a) shows the performance of HEAT for the small collection of 60,000
images and plot (b) for the large collection of 1,000,000 images. The integration of the HEAT
system with the log-based similarity metric is beneficial. The HEAT system benefits even more
than the original system since the log-based similarity metric improves not only the on-the-fly
models, but also the quality of the pre-computed hierarchical organization of the collection.

Precision (t < 20)
HEAT HEAT, user-logs

(a): 60K image collection 0.78 0.88
(b): 1M image collection 0.68 0.77

Table 8.1: Retrieval performance. Here are a few discrete values read from Figure 8.2.
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t = 0 (initial) t = 0 (expand)

t = 1 (collapse) t = 1 (expand)

t = 2 (expand) t = 3 (expand)

t = 4 (expand) t = 5 (expand)

Figure 8.3: Evolution of the comprehensive system for the synthetic collection, when searching
for images with points close to the center. At iteration 0, the trace is initialized randomly.
At each iteration, the zoom factor is estimated, the trace is collapsed and expanded, the
probabilities of relevance are updated, and then the new images to be shown are selected.
After 5 iterations, the trace concentrates mostly on the intended region.
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system benefits even more than the original system since the log-based similarity metric

improves not only the on-the-fly models, but also the quality of the pre-computed hierarchical

organization of the collection as pointed out in §8.1.

Table 8.1 has a few discrete values read from Figures 8.2.(a-b) that characterize the retrieval pre-

cision after 20 iterations of the HEAT vs. optimized systems. The optimized system performs

consistently better, and saturates about 10% higher.

HEAT framework with mass-zoom extension

The retrieval performance of the HEAT system in combination with the mass-zoom extension

is shown in Figure 8.4 among other system combinations. We can see that their integration

improves their individual performances for both small and large collections, which means

that they complement each other as well.

Total integration

For an intuitive illustration of the system behavior, we set up the comprehensive system for

the synthetic collection, and we take again the case of searching for images with points close to

the center. Figure 8.3 shows how the comprehensive system evolves at each iteration, and how

the image collection is sampled at different resolutions in different regions in combination

with the mass-zoom extension.

The retrieval performance of the comprehensive system that integrates all our contributions

is shown in Figure 8.4. Both individual integrations of the mass-zoom extension and the log-

based similarity metric improve the retrieval performance of the HEAT system. Furthermore,

they complement each other, and their combination significantly improves the overall retrieval

performance.

The retrieval performance of the overall system is further analyzed in Figure 8.5. Here the

retrieval performance of the overall system is evaluated for three different trace sizes. We can

see how the retrieval performance depends on the trace size. The bigger the trace, the better

the performance, but the difference between 1,000 vs. 1,500 is smaller than the difference

between 500 vs. 1,000. Regarding the scalability properties, we can see that the retrieval

performances for the large collection remain intuitively consistent.

Overall, about 50% of the sessions are successfully terminated in less than 5 iterations, and 80%

in less than 15 iterations. The system performance remains very reasonable when thinking

of the two most extreme cases. In the ideal case, if the collection would be arranged as a tree

with 8 branches at each node, the perfectly-structured search will need about 3 iterations in

average and log8 ‖Ω‖ ≈ 5 iterations at maximum.1 In the worst case, if the collection would be

totally unstructured, the uniformly-random search will need ‖Ω‖/(‖D‖· (L+1)) ≈ 12 iterations

1‖Ω‖ ≈ 60,000, ‖D‖ = 8, L ≈ 600 are the sizes of the image collection, the display set, and the semantic category.
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in average and ‖Ω‖/‖D‖−dL/‖D‖eÀ 100 iterations at maximum.

The computational effort of the overall retrieval system is shown in Figures 8.6(a-b). Here, we

have the computational cost of three HEAT systems with different trace sizes, for which we

show the system response timing in seconds as the users experienced it during the evaluations.

We can see how the computational effort of the HEAT system depends on the trace size, and

has roughly O (‖T ‖ · log‖T ‖) complexity.

As visible in the plots, the computation is higher in the first iterations and this is due to the

intensive operations of refining the trace, namely the collapse/expansion operations. In the

later iterations, the trace becomes relatively stable, and there are fewer collapse/expansion

operations. Still, the computation increases slowly because the computation from scratch of

the probabilities of relevance increases with the number of iterations.

Regarding the scalability properties, we can see that the timings for the large collection shown

in Figure 8.6.(b) remain comparable with the ones for the small collection. The computational

effort of our system is decoupled from the collection size, and depends mainly on the trace

size.

8.2.4 Informal discussions

Although we did not organize an appraisal questionnaire, we received favorable informal

feedback regarding the user experience. The system is unconventional but intuitive, and

becomes understood in very short time, even in the first searching session. All users confirmed

that the kind of similarity judgments required by the system seems natural. Of course beyond

this friendly feedback, we are aware that there is still plenty of room for improvement in coping

with the semantic gap of the state-of-the-art similarity metrics.

Suggestions have been made to improve the user experience. In the first couple of iterations,

it may happen that none of the displayed images is even vaguely related to what the user

is searching for. When the users cannot make reliable similarity judgments, they would

rather give negative feedback (i.e. none of the images resembles what they are searching for)

or, at least, give no feedback and just ask for new images. Also, the users would appreciate

the possibility to undo the last relevance feedback iteration. Such functionalities may be

easily integrated in our approach, but they were intentionally not supported in the evaluation

scenario.

Although this approach is viable on its own, many users suggested to integrate it in a retrieval

pipeline as one of the steps to narrow down the retrieval scope. This can be very well an

alternative option. Instead of starting from a heuristic sampling of the collection, the iterative

relevance feedback could be offered after an initialization stage via query-by-keywords, query-

by-visual-examples, or any other type of query. Again, such functionality may be easily

integrated in our approach, and it makes a lot of sense to further evaluate these mixed retrieval

scenarios.
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(a): 60K image collection

(b): 1M image collection

Figure 8.4: Retrieval performance of the comprehensive system that integrates all our con-
tributions. Each of our contributions taken individually, namely the mass-zoom extension
and the log-based similarity metric, improves the retrieval performance of the HEAT system.
The contributions complement each other, and their combination significantly improves the
overall retrieval performance. Furthermore, the behavior of the system is stable and consistent
for both small and large collections.

Precision Precision Precision
(t < 5) (t < 10) (t < 15)

(a): 60K image collection 0.42/0.50 0.58/0.61 0.75/0.82
(b): 1M image collection 0.32/0.46 0.51/0.68 0.70/0.75

Table 8.2: Retrieval performance. Here are a few discrete values read from Figure 8.4.
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(a): 60K image collection

(b): 1M image collection

Figure 8.5: Retrieval performance of the comprehensive system for three different trace
sizes. The average performances for the small collection are shown in (a): We can see how
the retrieval performance depends on the trace size. The bigger the trace, the better the
performance, but the difference between 1,000 vs. 1,500 is smaller than the difference between
500 vs. 1,000. The average performances for the large collection are shown in (b): The
performances remain intuitively consistent.

Precision t < 5 t < 10 t < 15
(a): 60K image collection 0.37/0.48/0.59 0.60/0.70/0.77 0.72/0.82/0.83
(b): 1M image collection 0.38/0.44/0.45 0.60/0.68/0.70 0.64/0.76/0.84

Table 8.3: Retrieval performance. Here are a few discrete values read from Figure 8.5.
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(a): 60K image collection

(b): 1M image collection

Figure 8.6: Timing of the HEAT system responses (in seconds) as the users experienced them
during the evaluations. Here, we compare the computational cost of three HEAT systems with
different trace sizes. The timings for the small collection are shown in (a): The computational
effort of the HEAT system depends on the trace size, and has roughly O (‖T ‖ · log‖T ‖) com-
plexity. As visible in the plot, the computation is higher in the first iterations, and this is due
to the intensive collapse/expansion operations. In the later iterations, the trace is relatively
more stable, but the computation increases slowly with the number of iterations due to the
computation from scratch of the probabilities of relevance. The timings for the large collection
are shown in (b): The timings remain comparable with the ones for the small collection. The
computational effort of our system is decoupled from the collection size, and depends mainly
on the trace size.
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8.3 Summary

In this chapter, we rounded up our research by integrating three of our contributions together

into one comprehensive retrieval system, namely the large-scale HEAT framework, the mass-

zoom extension and the log-based image similarity metric. The integration of our adaptive

multi-modal contribution remains an open-question for future work.

We evaluated systematically different combinations of these three contributions in the same

manner as for each individual contribution, and we got evidence that each contribution com-

plements each other. Finally, we evaluated the retrieval performance of the comprehensive

retrieval system, and we shown empirically that the overall integration of our contributions is

consistently beneficial.
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We have started the work presented in this thesis with the overall purpose of exploring novel

ways for an efficient, effective and interactive access to large-scale image collections. We

have investigated a query-free retrieval approach that promises an interactive access to image

collections of unprecedented size.

In this chapter, we summarize our work, and open new directions for further research. First,

we conclude the thesis with a final overview of our contributions, and give along our final

remarks. Then, we outline and motivate a few potential directions for future work.

9.1 General summary

The overall goal of our work was to achieve a better understanding of the research field of

content-based image retrieval. Furthermore, making use of this understanding, we wanted to

identify potential ways for an efficient, effective and interactive access to large-scale image

collections.

We advocate the assumption that large-scale collections are not only large, but also inherently

un-structured (i.e. lacking any semantic or thematic indexing as in the archived libraries) and

continuously out-dated (i.e. images are frequently being added, replaced or removed). Thus,

our research affinity was towards retrieval solutions that would potentially accommodate such

realistic assumptions. On the one hand, the retrieval solutions should be computationally

scalable in both off-line and on-the-fly operations. On the other hand, the indexing informa-

tion should support incremental updates, without requiring updates from scratch each time

something changes.

Our literature analysis guided us towards the iterative relevance feedback mechanisms, and

in this thesis we have been investigating a query-free retrieval approach, which relies solely

on an iterative relevance feedback mechanism driven by user subjective perception of image

similarities. Most of the image retrieval approaches require an initial query before offering

relevance feedback tools. The motivation for a query-free retrieval approach comes from
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the observation that formulating a query might not be the most optimal way of initializing

a searching session. User retrieval needs are often difficult to describe in terms of keywords,

and relevant images may be easily filtered out.

Our research focused on extending and reshaping various aspects of the relevance feedback

mechanism. We have extended the state-of-the-art approach in four complementary aspects:

large-scale distributed system architecture, exploration/exploitation trade-off, log-based

similarity learning and adaptive multi-modal similarity metric. The user-based evaluations

and the informal discussions show that our query-free retrieval system is viable, and has the

potential of becoming a commercial application.

9.2 Further research

While a number of novel contributions are made, they are in no way complete solutions.

The problems we deal with are relatively open-ended, with a lot of scope for incremental

improvement, or even for adopting radically new approaches. Here, we point out a few

alternative research directions that we have considered for exploring further, and we wished

to work on if time would have allowed us.

Large-scale HEAT framework

The retrieval performance depends greatly on the quality of the hierarchical partitioning.

Further research should address the means and criteria for controlling the trade-off between

the retrieval performance and the computational effort. Currently, the criterion of collapsing/-

expanding operations is based on the children nodes of the next inferior level.

There could be envisioned more sound statistical approaches based on other parameters of

the nodes as for example the maximum similarity distance between the images in the node or

the concentration of the images. Also, the implementation of efficient updating schemes on

parallel and distributed computing architectures would be interesting as well.

Exploration/exploitation trade-off

The heuristics that we used for evaluating the exploration/exploitation trade-off could be

questioned, and seen from different perspectives. For example, one could solve the same

problem by re-thinking the original algorithm to somehow construct a finer grained Voronoi

tessellation, with the granularity determined by the exploration/exploitation trade-off.

One could also investigate the idea of never displaying the image with the highest probability

and none of the images in its Voronoi cell. In this way, the system will be pushed a bit more

towards exploration, and will never enter a dead-end state where it just displays very close

images one after the other. Of course, the size of the display set could also be played with,
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even in a dynamic way, on-the-fly at each iteration, during the retrieval process.

Log-based similarity metric

The evaluation results give motivation for further investigations when a larger amount of user

logs would become available. On the one hand, one could investigate the effect of adapting

the metric in the case of leveraging large amounts of user logs, where the efficiency of the

optimized metric may fade due to the huge variation among the users. On the other hand,

one could investigate the alternative of having personalized similarity metrics for each user

separately.

Of course other optimization schemes and other types of adaptive metrics are always worth of

investigating. One can think of metrics that are created not via feature weights optimization,

but via deriving directly new better image features. As the retrieval system is used, the user

logs will gradually cover the entire collection, and the user log-derived image features would

gradually get control over the automatically-generated image features.

Multi-modal similarity metric

The system could benefit from other indexing features and similarity metrics. Although

evaluated for the bi-modal case with only one type of visual-based and textual-based features,

our extension is ready to be applied for the multi-modal case with only minor changes.

For the visual features, one should consider the generic MPEG-7 descriptors [42], as the MPEG-

7 standards are largely accepted and used in the research community. For the textual features,

one should consider at least some weighting methods such as tf-idf (i.e. term frequency -

inverse document frequency), and even better some more advanced methods based on the

WordNet semantic hierarchy.

System integration

The integration of our adaptive multi-modal contribution and the large-scale HEAT framework

is still an open-question. The HEAT system cannot simply integrate the dynamical weighting

since it is based on a pre-computed hierarchical organization of the collection that assumes

an invariant similarity metric.

One possible solution is to consider several discrete weightings that covers fairly the weighting

dynamic range, and then to have several pre-computed hierarchical organizations correspond-

ing to these pre-defined weights. Then, these pre-computed hierarchical organizations will be

inter-changed optimally, on-the-fly at each iteration, during the retrieval process.
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9.3 Suitable applications

Although our research was focused on a particular type of data, namely images indexed by

visual features, and on a particular type of application, namely a retrieval web-service, our

retrieval approach is in principle suitable for any type of multimedia retrieval with minor

changes.

Adaptation to other user interfaces

The minimalist user interface assumed by our retrieval system seems appropriate for un-

conventional human-computer interactions [34], as for example voice recognition, eye-gaze

tracking or real-time EEG (i.e. electroencephalography) neurofeedback. We thought about

two possible applications, but there are certainly more. One application could help disabled

people to communicate simple needs. Another application could let doctors to search in

medical databases during surgeries, hands-free.

Adaptation to other image collections

Although the retrieval system is generic for any kind of image collection, we believe that

it may have a particular applicability in the professional domains, as for example medical,

architecture, design or forensic. The system still lacks the retrieval performance necessary for

generic commercial applications, but it could work sufficiently well for dedicated collections,

where the indexing features could be better tuned than in the generic universal case of non-

thematic photos.

Adaptation to other multimedia collections

All types of multimedia data could benefit greatly from our retrieval approach, and there are

several cases in which they could benefit in special from our multi-modal approach. Movie

retrieval could be an interesting application, as raw textual information can be derived from

the speech transcript [58] and this textual information could complement greatly the visual

content. Songs with lyrics in music databases constitute a similar case [47]. Another useful

application could be for the medical databases that associate x-ray images and reports. As

clinical diagnoses benefit from comparing similar (but not identical) cases [46], such a retrieval

system as ours could be highly appreciated.

9.4 Closing note

In this thesis, we have investigated a query-free retrieval approach with full searching capa-

bilities that promises an interactive access to image collections of unprecedented size. The

iterative relevance feedback mechanism scales up one order of magnitude above most of
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the state-of-the-art iterative mechanisms. The adaptive mass-zoom system encompasses

both regimes of exploration and exploitation, and the adaptive similarity metric increases the

alignment between the system and the user.

User-based evaluations show that our approach extends the retrieval capabilities of the orig-

inal framework, and give evidence that the approach is intuitive and able to deal with the

user subjectivity in making similarity judgments. Moreover, the minimalist user interface is

effortless and self-explanatory.

While a number of novel contributions are made, they are in no way complete solutions.

The problems we deal with are relatively open-ended, with a lot of scope for incremental

improvement, or even for adopting radically new approaches. We hope that our experimental

findings give motivation for continuing this research direction.
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A Web-application

The retrieval system1 has been implemented as a web-application2, which is distributed to the

public under the AGPL3 Version 3 open-source license. Besides the advantage of permanent

availability for demos and evaluations, this implementation encourages the adherence to a

realistic system architecture.

In this appendix, we describe briefly the web-application. First, we give an overview at the

functional level. Second, we point out our high-level implementation choices. Further details

are available in the software documentation included in the open-source release itself.

A.1 Functionality

The web-application implements the retrieval framework and all our contributions, and

provides a versatile infrastructure for conducting user-based evaluations. Figures A.2-A.4

show a few screenshots of the web-interface. Figure A.2 shows the web-interface for searching.

There is support for inter-changing the image collections and the system configurations.

Figure A.3 shows the interface for testing. The active test configuration is hidden to the user

for anonymity reasons. The target task is shown in words at the top of the page, and an image

example is shown on the right side panel. Figure A.4 shows the interface for plotting the usual

statistics.

The computational effort depends of course on the configuration. For a collection of 33,000

images with the original approach, where the computation depends linearly on the size

of the collection, it takes 1 second per iteration and uses 300KB cache memory per user

between iterations. For a collection of 1,000,000 images with the HEAT approach, where the

computation depends linearly on the size of the trace, it takes 2-5 seconds per iteration and

uses 20-50MB cache memory per user between iterations. These figures corresponds to our

demo web-server running as a virtual server on a PC hardware machine with a dual-core CPU

model Intel Core™-Duo E6700, 2.66GHz, 4MB cache, and 4GB of RAM.

1http://imr.idiap.ch/
2http://www.idiap.ch/software/imr/
3http://www.gnu.org/
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Appendix A. Web-application

Test management

There is infrastructure for managing the user tests and recording the searching sessions. A test

consists of a set of searching sessions. Each session is performed on one image collection, and

is configured with one system configuration and one target task. Therefore, a test is configured

as a set of triplets of (image collection, system configuration, target task) data. The system

configuration data define all the algorithmic settings as in Table A.1. The target task data

provides the user with what she has to search for as in Table A.2.

During the testing, the test manager assigns the triplets randomly in an anonymized fashion.

The test keeps track of its progress, and continues until the user performs all the triplets

included in the test. The searching session data is accumulated iteration by iteration, and is

stored in the database as in Table A.3.

name the label and the display properties
TRACE the trace size and the refinement type
SYS_THARGS the calibration threshold parameters
SYS_WEIGHTS the image feature default weights and the adaptation type
SYS_CONSISTENCY the consistency estimation type
SYS_VERSION the algorithm version – original, HEAT, random
datetime the time of the saving in the database

Table A.1: System configuration data.

query the text query
target the target image set

Table A.2: Target task data.

user the user that performed the session
config the system configuration
task the target task given to the user
iterations the number of iterations (redundant)
evaluation the evaluation given by the user
actionH the actions performed on the input data
thargsH the history of the image similarity thresholds
weightsH the history of the image feature weights
consistencyH the history of the consistency scores
dispfdbkH the displayed image sets and the corresponding

relevance feedback given by the user
traceH the evolution of the size of the trace
timingH the timing of system response and user feedback
datetime the time of the saving in the database

Table A.3: Searching session data.
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User registration

The user registration provides functionality to differentiate between anonymous, regular and

staff users:

• The anonymous users can access only the minimal functionality to perform searching

sessions.

• The regular users can access additional functionality to see the training examples, and

perform evaluation tests.

• The staff users can access extra functionality to manage (create/delete/modify) the users,

system configurations and target tasks, view the statistics of the system performance,

and watch the user searching session logs saved in the database.

A.2 Implementation

Our web-application relies on a client-server architecture as shown in Figure A.1, and uses

open standards and software. The implementation decouples the user interface from the core

indexing and retrieval algorithms, and consists of four modules:

• the Django-based client with the graphical user interface

• the Django backend for client-server communication

• the database that stores the raw image data and the indexing information

• the server that performs the retrieval algorithms

The web-application is developed in Python, and is based on the Django4 platform. The

implementation has approximatively 12,000 lines of code, and complies with the PEP85 style

standard. The software documentation is generated by using Sphinx6. The modular design

allows easily new algorithm extensions and user interface enhancements.

Web-server deployment

The web-application is powered by the Apache7 web-server. The current implementation

supports multiple users logged in from different machines, but it does not support yet multiple

searching sessions in parallel in the same browser. The application makes use of the cache-

per-session backend mechanism, and requires that cookies are enabled in the browser.

4http://www.djangoproject.com
5http://http://www.python.org/dev/peps/pep-0008/
6http://sphinx.pocoo.org/
7http://www.apache.com
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Appendix A. Web-application

Apache-powered
heavyweight server

user
registration

retrieval
engine

database
(images,
indexing,
settings,

user-logs)

network

user 1

user 2

user 3

SERVER SIDE CLIENT SIDE

Figure A.1: Client-server architecture of the retrieval system. The retrieval system is powered
by the Apache server, and this server supports multiple searching sessions via user cookies.
The users interact with the retrieval system via web-interfaces like in Figures A.2-A.4.

Figure A.2: Screenshot of the web-interface for the searching application. Here, the interface
is activated for the synthetic collection. Besides the searching functionality, there is a panel
that provides additional information, and allows to switch between different collections.
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Figure A.3: Screenshot of the web-interface for the testing application. During the testing,
the active collections and configurations are hidden to the users for anonymity reasons. The
active target task is shown in words at the top of the page, and an image example is shown on
the panel on the right side. The panel also provides guidance as well as progress information.

Figure A.4: Screenshot of the web-interface for the statistics application. This interface allows
easy access to the usual statistical plots. One can select the plots of interest, and also can filter
the data of certain users, system configurations or target tasks to be included in the plots.
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Relational database

At the heart of the system, there is a relational database based on MySQL8. For each image

collection, there are several dedicated tables:

• the table with the image data (e.g. the local directory path or the remote web-address

of the raw image data), the indexing features and other meta-data (e.g. annotation

keywords)

• the table with the hierarchical tree-like organization of the images

• the system configurations table

• the target tasks table

• the table with the user searching session logs

The user accounts are also handled in one table in the relational database. The table with

the user searching session logs has cross-references (i.e. foreign keys) to the tables of users,

system configurations and target tasks in order to enforce the data consistency.

Core-algorithm library

The core-functionality was implemented in modules aiming towards flexibility to try-out

alternative retrieval algorithms. The retrieval algorithms are isolated from the logic of the

relational database and the user interface via interface classes. For computational efficiency,

the low-level routines are optimized by using Cython9 and C++.

Pre-processing operations

The operations for extracting the image features and creating the indexing information (e.g.

the pre-computed similarity distances for the original framework and the hierarchical organi-

zation for the HEAT framework) are implemented to run efficiently in parallel processes on a

distributed architecture managed by a Sun’s Grid Engine (SGE10).

The gradient descent algorithm for computing the optimized weighting vector for the log-

based similarity metric is implemented as a simple routine, although it could be implemented

to take advantage of the parallel processing as well.

8http://www.mysql.com
9http://www.cython.org/

10http://gridengine.sunsource.net
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A.3 Remarks

We believe that we succeeded to adhere to a realistic system architecture. The object-oriented

implementation design reflects all our knowledge and anticipation of the possible alternative

development and research requirements. We hope that our application prototype adds trans-

parency to our research work, facilitates the reproducibility of our experiments, and offers a

good development platform for pursuing the forthcoming research.

Although it is not just a one-press of a button, it is quite straight-forward to set up the ap-

plication for new collections and new evaluation scenarios. We provide the routines to set

up the application for the image collections that we have used in our evaluations, namely

ImageNet, Corel stock photo library and our synthetic collection, and these routines can be

easily adapted for other image collections.

As we said already, we distributed our code to the public under the AGPL Version 3 open-source

license. In particular, this license requires any further contributions and deployments to be

distributed under the same terms as the original source-code, i.e. the AGPL terms, which is

not the case for the standard GPL license. Choosing the AGPL license, we aimed to encourage

the sharing of future extensions made by others.
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B Test platform

We have developed a test platform for running the web-application programmatically, without

human interaction. This platform implements an automatic user that interacts with the

web-application in exactly the same way a human user does. This platform is useful for code

verification and optimization, and thus is convenient in getting confidence before organizing

the time-costly user-based evaluations.

In this appendix, we describe briefly this test platform. First, we give an overview at the

functional level. Second, we explain how this platform can be used to provide abstract perfor-

mance evaluations that resemble the user-based evaluations to a certain extent. For further

reference, the test platform is part of our software package1 distributed under the AGPL2

Version 3 open-source license.

B.1 Functionality

The test platform is implemented on top of the web-application, and interacts with it in the

same way a human user does. Besides being helpful for code testing and debugging purposes,

the test platform can be used to perform automatic tests that resemble the real evaluations to

a certain extent.

The main challenge of this test platform is to implement an automatic user that models the

relevance feedback actions given normally by a human. In the current implementation, the

automatic user embodies simply the ideal behavior of an oracle:

• knows precisely the target set S to search for, although in reality it exists only as a vaguely

defined image category in the mind of the user

• always chooses the image x∗
t ∈ D t that is the closest to the target set S in the similarity

metric used by the system, although in reality there is a semantic gap

1http://www.idiap.ch/software/imr/
2http://www.gnu.org/
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Appendix B. Test platform

Django-powered
lightweight server

user
registration

retrieval
engine

database
(images,
indexing,
settings,

user-logs)

dummy
web-browser

auto-user

Figure B.1: Architecture of the test platform. The retrieval system is powered by the Django
server, and this lightweight server running on the local machine is accessible via a dummy web-
browser. The automatic user interacts with the retrieval system via the dummy web-browser
in the same manner as a real user does.

B.2 Implementation

Our test platform emulates a client-server architecture as shown in Figure B.1 by using the test

client class provided by the Django framework, which acts as a dummy Web browser. The test

client class allows to test the web-interface (i.e. the Django-views), and therefore to interact

with the Django-powered web-application programmatically. The implementation consists of

three modules:

• a class that coordinates the workflow of the automatic user actions and the system

responses. This class corresponds to the real context of accessing the web, logging in

and proceeding with the tests.

• a class that encapsulates the interactions with the Django-view and the Html-page. This

class corresponds to the user intelligence to use the application: what is the action

required at a certain moment, and how to trigger this action.

• a class that encapsulates the similarity judgments on the displayed images given the

target set. This class corresponds to the user intelligence to choose the closest image to

what she is searching for.
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B.2. Implementation

60K image collection (ImageNet)

Figure B.2: Retrieval performance of the automatic tests in comparison with the user evalua-
tions for the original system and the mass-zoom extension. The automatic user was assigned
with target sets of size of about 1% of the 60K image collection, aiming to match the retrieval
difficulty faced by the real users. The automatic tests out-perform the user evaluations as
expected. One can see that the mass-zoom extension is helping very little the automatic user.

1M image collection (ImageNet)

Figure B.3: Retrieval performance of the automatic tests in comparison with the user evalua-
tions for the HEAT system and the mass-zoom extension. The automatic user was assigned
with target sets of size of about 1% of the 1M image collection, aiming to match the retrieval
difficulty faced by the real users. The automatic tests out-perform the user evaluations as
expected. One can see that the mass-zoom extension is a little bit counteracting for the
automatic user.
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We implemented the test platform in such a way that one can run efficiently multiple test

instances in parallel processes on a distributed architecture managed by a Sun’s Grid Engine

(SGE3). Thus, the MySQL database is accessed in parallel by multiple instances of the retrieval

application, as in the real web-server architecture.

B.3 Automatic tests

The automatic tests are organized in the same manner as the real tests, and they follow the

same evaluation scenario. The only difference from the real tests is that the target tasks have

to define the target explicitly as a set of images instead of just a semantic description in words.

First, the automatic tests are set up to include certain combinations of image collections,

target tasks and system configurations. Then, the automatic users are launched to perform

the test. During the automatic testing, the test manager serves the searching sessions as

during the real tests. The automatic users are only given the target tasks, but not the system

configurations, and they are not biased in any way by the internal state of the retrieval system.

The automatic tests are useful in getting confidence before organizing the time-costly user-

based evaluations. As we explain next, the automatic tests help in assessing the retrieval

performance of the web-application. Still, the interpretations should be done with caution.

The automatic tests help in assessing the retrieval performance of the web-application. As

the automatic user embodies the ideal user behavior, the automatic tests give a hint on the

potential theoretical performance of the retrieval system. Still, the automatic tests should not

be mistaken with the real tests who bring in the big challenge of user subjective perception in

judging the image similarities.

Figures B.2-B.3 show the retrieval performance of the automatic tests in comparison with

the user evaluations for several system combinations. Figure B.2 corresponds to the 60K

image collection, and Figure B.3 corresponds to the 1M image collection. The automatic

user was assigned with target sets of size of about 1% of the image collections, aiming to

match the retrieval difficulty faced by the real users. The automatic tests out-perform the user

evaluations in all cases as expected.

One can see that the mass-zoom extension is helping very little the automatic user, and is

even a little bit counteracting for the 1M image collection. Maybe the mass-zoom heuristic is

too aggressive for the ideal user who never does relevance feedback mis-judgments. This is

one example when the interpretation of the abstract retrieval performance of the automatic

user should be done with caution.

3http://gridengine.sunsource.net
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B.4 Remarks

We made extensive use of test platform in order to evaluate our alternative ideas in their

early incipient stages. The test platform is useful in getting confidence before organizing the

time-costly user-based evaluations, since it provides important clues almost for free (i.e. by

simply running automatic tests for a few hours).

The interpretation of the abstract retrieval performance of the automatic user should be done

with caution. Currently, the automatic user implements simply the ideal abstract behavior.

One could implement more realistic behaviors by introducing for example some controlled

randomness that would eventually model better the human behavior.
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C Image collections

There are many public shared photography collections, some older as Getty Images or Corbis,

and some recent as Flickr or Facebook, and there are even more specialized professional

photography collections, as for example medical archives or designer portfolios.

Still, ever since the birth of the digital era, there has been a growing need for standardized

data in the image and vision research communities. The motivation for standardized data is

clear. Good research needs good resources, and it would be tremendously helpful if there were

image databases accepted by the research community for reference and collaboration.

In our research experiments and evaluations, we have set up our retrieval system for three

collections, namely the Corel stock photo library [45, 53], the ImageNet dataset [18] and a

synthetic collection generated by ourselves. Here, we present briefly these collections and

their characteristics.

C.1 Corel stock photo library

Corel Stock Photo Library has been used in many publications to demonstrate the performance

of content-based image retrieval systems and it was the defacto standard in the field for quite

some time [45, 53]. Corel Stock Photo Library offers a collection of more than 800 Photo CDs,

each of them containing about 100 images. The images are grouped into semantic themes,

and each image is associated with a few keywords from a controlled vocabulary. In Figure C.1,

we show a few examples of images and their associated keywords in order to provide a general

impression of the collection.

Recently, the interest for this collection has decreased drastically due to some obvious weak-

nesses. First, the collection is divided in over 800 small subsets, and there is no one single

compact repository that group all of them and that can be referred to. Even people of the

same research lab often use different subsets. Second, the collection is somehow out-dated by

the evolution of multimedia technologies in storage capacity, processing power and on-line

accessibility. A collection of less than 100,000 images is not large-scale in the present terms.
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Geese And Chicks bird
geese chicks water

single Thunderbird
Flying Upside Down

plane jet f-16 sky

The sun sets behind the
anchored schooner sunset

boat water horizon

snowy Foothills mountain
trees snow sky

one hand pole flip
Lake Tahoe Usa

people ski snow sport

Niagara Falls American Side
waterfall rocks mist cascade

Rooftops of Prague
rooftops buildings trees

chimneys

Marketplace Oaxaca
Mexico market place
people flowers plants

African Elephants
trunks ground trees

Entranceway To The
Olympic Stadion Olympia
stone wall arch entrance

children on the beach
people clothing

children hat

small bay between Sao
Paolo and Rio de Janeiro

bay beach water trees

Figure C.1: Examples of images and their associated keywords from the Corel stock photo
library. They are related to the 12 semantic categories that we used in our multi-modal
experiments in Table 7.2. Here, one can observe how the textual information match the visual
content of the images, and still is incomplete in various ways.

116



C.2. ImageNet dataset

We have used a subset of 35,000 images of the Corel stock photo library for our evaluations of

the multi-modal extension in §7. As elaborated in §7, our multi-modal system employs visual

features based on SIFT (Scale Invariant Feature Transform) [41], and textual features based on

LSA (latent semantic analysis) [17].

C.2 ImageNet dataset

ImageNet1 is an image dataset organized according to the WordNet hierarchy of synsets [18].

WordNet2 is a large lexical database of English [43, 22] that is considered to be the most

important resource available to researchers in computational linguistics and text analysis,

and is also freely available. It superficially resembles a thesaurus, in that it groups words

together based on their meanings. Each meaningful concept in WordNet, possibly described

by multiple words or phrases, is called a synonym set or synset. There are more than 100,000

synsets in WordNet, and they are interlinked by means of conceptual-semantic and lexical

relations.

ImageNet aims to provide on average 1,000 images to illustrate each synset. Images of each

concept are quality-controlled and human-annotated via the Amazon Mechanical Turk. In its

completion, ImageNet will offer tens of millions of cleanly sorted images for all the concepts

in the WordNet hierarchy. At the time of the 2010 release, ImageNet was covering 1,000 synsets,

each synset having 500–2,500 images. ImageNet is continuously updated, and one can inspect

its progress via the on-line navigation interface based on the WordNet hierarchy of synsets as

shown in Figure C.2.

ImageNet provides densely sampled SIFT features that are also quantized in bags-of-words of

dimension 1,000. The feature extraction is fully explained in [18]. The images are resized to

have a maximum side length of no more than 300 pixel. SIFT descriptors are computed on

20×20 overlapping patches with a spacing of 10 pixels. The images are also further downsized

(to 1/2 the side length and then 1/4 of the side length) and more descriptors are computed.

Next, k-means clustering is performed with a random subset of 10 million SIFT descriptors in

order to derive a vocabulary of 1,000 visual words. Each SIFT descriptor is quantized into a

visual word using the nearest cluster center.

We have used the ImageNet dataset as it was released in 2010 for most of our evaluations

in §4-6. Considering all the images provided with pre-computed SIFT features (Scale Invariant

Feature Transform) [41] and with valid url at that date, we obtained a large collection including

about 1,054,000 images. Then, we sampled uniformly a small collection of 33,000 images (i.e.

3% of the large collection), and another one of 60,000 images (i.e. 6% of the large collection).

1http://www.image-net.org
2http://wordnet.princeton.edu
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Appendix C. Image collections

Figure C.2: Screenshot of the ImageNet exploration tool web-interface. This interface allows
to navigate through the ImageNet based on the WordNet hierarchy of synsets. ImageNet aims
to provide on average 1,000 images to illustrate each synset from WordNet hierarchy. Images
of each concept are quality-controlled and human-annotated via the Amazon Mechanical
Turk. In its completion, ImageNet will offer tens of millions of cleanly sorted images for all the
concepts in the WordNet hierarchy.

Figure C.3: Visual features provided by ImageNet are SIFT-based bags-of-words of dimension
1,000 derived from densely sampled SIFT descriptors. ImageNet provides all the details of
their feature extraction pre-processing in [18]. Besides the quantized bags-of-words, they
provide the raw SIFT descriptors as well as the spatial coordinates of each descriptor.
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C.3. Synthetic collection

Ω

(a) (b)

Figure C.4: Abstract representation with a synthetic collection. (a): Each image has as visual
content one single point in the 2D Cartesian space, and the indexing features are the corre-
sponding coordinates of that point. The similarity distances between images are the Euclidean
distances between their corresponding points. (b): The duality between points and images is
used to represent the entire collection. Each point in this abstract representation corresponds
to an image in the collection. Additionally, the grey-levels of the points tell the probabilities of
relevance of their corresponding images.

C.3 Synthetic collection

We have created a synthetic image collection in order to accompany the rigorous mathematical

formulations, and to offer an intuitive illustration of the system behavior. The collection has

22,000 images made up of points at different locations. In Figure C.5, there are a few examples

of actual images from the synthetic collection.

One key characteristic of this synthetic collection is that there is no semantic gap between the

low-level abstract similarity metric and the high-level visual meaning. The indexing image

features are the corresponding coordinates of that point inside the image, and the similarity

distances between images are the Euclidean distances between their corresponding points.

Thus, the user similarity judgments cannot be more straight-forward than this: the closer the

points, the more similar the images.

Another key characteristic of this synthetic collection is the duality between points and images.

The point locations have been chosen in such a way that it allows a nice smooth symmetric

abstract representation. As explained in Figure C.4, each point in this abstract representation

corresponds to an image in the collection. Additionally, the grey-levels of the points tell the

probabilities of relevance of their corresponding images.

This synthetic collection proved to be truly helpful for intuitive analysis of the system behavior.

We explain in Figures C.6-C.7 the different representations that allow to visualize the internal

state of the retrieval system at different stages. In Figure C.6, one can see how the displayed im-

ages are selected, and how the Voronoi tessellation algorithm grows the clusters. In Figure C.7,

one can see the relevance feedback given by the user, and the probabilities of relevance.
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Appendix C. Image collections

Figure C.5: Examples of images in the synthetic collection. Actually, these 8 images are the
images in the display set D0 that is used consistently as the first display set in all the illustrated
searching sessions.

(a) (b)

Figure C.6: Abstract representations of D0 shown above in Figure C.5. (a): The displayed
images D0 are shown, and the order in which they where selected by the sampling algorithm
is indicated. (b): The clusters grown by the Voronoi tessellation algorithm are shown in colors.

∗

(a) (b)

Figure C.7: Abstract representations of D0 shown above in Figure C.5. (a): The displayed
images D0 are shown, and the relevance feedback given by the user x∗

0 is indicated. (b): The
probabilities of relevance are encoded by the grey-levels of the corresponding points.
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