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Abstract 

Parlange and Brutsaert [1987] derived a modified Boussinesq equation to account for 

the capillary effect on watertable dynamics in unconfined aquifers. Barry et al. [1996] 

solved this equation subject to a periodic boundary condition. Their solution shows sig-

nificant influence of capillarity on watertable fluctuations, which evolve to fi-

nite-amplitude standing waves at the high frequency limit. Here, we propose a new 

governing equation for the watertable, which considers both horizontal and vertical 

flows in an unsaturated zone of finite thickness. An approximate analytical solution for 

periodic watertable fluctuations based on the new equation was derived. In agreement 

with previous results, the analytical solution shows that the unsaturated zone’s storage 

capacity permits watertable fluctuations to propagate more readily than predicted by the 

Boussinesq equation. Furthermore, the new solution reveals a capping effect of the un-

saturated zone on both the amplitude and phase of the watertable fluctuations as well as 

the watertable overheight. Due to the finite thickness of the unsaturated zone, the capil-

lary effect on watertable fluctuations is modified mainly with reduced amplitude 

damping and phase shift.  

Keywords: tide; wave; coastal aquifer; Boussinesq equation; groundwater wave



 3 

1. Introduction 

Oceanic oscillations produce watertable fluctuations in coastal unconfined aquifers. As 

they propagate inland, the watertable fluctuations are attenuated with increasing time 

lags. These fluctuations, representing basic characteristics of coastal groundwater, pro-

vide important information for understanding the properties and behavior of coastal aq-

uifers, and have been subjected to numerous investigations [e.g., Parlange et al., 1984; 

Nielsen et al., 1990; Jiao and Tang, 1999; Li et al., 2000a; Li and Jiao, 2003; Jeng et al., 

2005]. Although most previous research has been focused on tide-induced 

low-frequency watertable dynamics [e.g., Nielsen, 1990; Li et al., 2000b,c; Jeng et al., 

2002], high-frequency watertable fluctuations due to waves have also been studied 

[Waddell, 1976; Li et al., 1997]. 

Traditionally, models of watertable fluctuations are based on the Boussinesq equa-

tion, which predicts increasing rates of amplitude damping with the frequency of the 

oceanic oscillations [e.g., Parlange et al., 1984; Nielsen, 1990]. According to these 

models, high frequency waves would not induce watertable fluctuations in coastal un-

confined aquifers to any considerable distance inland, a result inconsistent with field 

observations. Li et al. [1997] found that consideration of capillarity explains the trans-

mission of high frequency watertable fluctuations in coastal aquifers. 

Parlange and Brutsaert [1987] examined the capillary effect on watertable dy-

namics. As the watertable fluctuates, the pressure distribution above the watertable var-

ies, resulting in local water exchange across the watertable. Parlange and Brutsaert 

[1987] modified the Boussinesq equation with an additional term to account for this 



 4 

mass transfer process. Barry et al. [1996] combined the approaches of Parlange et al. 

[1984] and Parlange and Brutsaert [1987]. They obtained and applied a 

depth-integrated model with capillarity incorporated to study the propagation of 

small-amplitude oscillations in an unconfined aquifer and derived an approximate ana-

lytical solution. Their results showed that the damping rate of the watertable fluctua-

tions reaches an asymptotic finite value as the forcing frequency on the boundary in-

creases. In other words, damping effects on high frequency watertable fluctuations are 

bounded. Under the influence of capillarity, high-frequency waves can be transmitted 

into the aquifer over a considerable distance, as observed in the field. Moreover, the 

analytical solution of Barry et al. [1996] predicts that at the high frequency limit, wa-

tertable fluctuations become standing waves, also consistent with field observations [Li 

et al., 1997]. This solution was further extended to a higher order by Jeng et al. [2005]. 

It should be noted that the capillary effect on watertable dynamics has implications for 

a range of processes and phenomena in unconfined aquifers, for example, pumping tests 

[e.g., Moench, 2008] 

Despite the progress in the theoretical development, laboratory experiments have 

shown that the modified Boussinesq equation with the capillarity correction and other 

approximations for vertical flow effects still cannot describe fully the watertable be-

havior under the influence of boundary oscillations [e.g., Cartwright et al., 2003]. Our 

goal here is to extend the previous work to improve the watertable dynamics model. 

The modified Boussinesq equation of Parlange and Brutsaert [1987] considered local 

water exchange across the watertable assuming only vertical flow in the unsaturated 
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zone. This same assumption was used by Barry et al. [1996]. In this work, both hori-

zontal and vertical flows are incorporated. The new approach also takes into account 

the (finite) thickness of the unsaturated zone. 

2. Theory 

As shown in Fig. 1, we consider the watertable fluctuations in a rectangular unconfined 

aquifer subjected to the influence of head oscillation at a side boundary (x = 0). The co-

ordinate system and various physical quantities (parameters) are defined in the figure. 

The flow in the saturated and unsaturated zones underlying the watertable behavior is 

described by Richards’ equation [Richards, 1931],  

 
   K K

t x x z z


 

       
           

, (1) 

where   [L] is the soil water content, z   [L] is the hydraulic head,   is the 

pressure head, z [L] is the elevation and  K 
 
[LT-1] is the hydraulic conductivity. 

The model of Gardner [1958] is used to describe   and K as functions of  , i.e., 

  ( )exp   for  0s r r         , (2a) 

   for  0s    , (2b) 

and 

  ( ) exp   for  0sK K    , (3a) 

 ( )   for  0sK K   , (3b) 

Where Ks [LT-1] is the saturated hydraulic conductivity (assumed to be uniform and 

isotropic);   [L-1] is related to the capillary rise length scale inversely; s  and r  [-] 

are the saturated and residual water content, respectively; and e s rn     is the effec-
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tive porosity [-]. 

2.1 Approximation under the hydrostatic pressure assumption 

Under the assumption of hydrostatic pressure, the hydraulic head () is constant in the 

vertical direction and 

 h  , (4) 

where h  is the watertable elevation [L]. The pressure head in the unsaturated zone is 

given by 

 h z   . (5) 

Integrating equation (1) with respect to z from the impermeable base ( 0z  ) to the sur-

face ( 0z Z ) gives, 

 
 

0 0

0 0
d d

Z Z

z K z
t x x




   
     

  , (6) 

where the no (vertical) flow boundary condition has been applied at both the base and 

surface. The left hand side of equation (6) can be evaluated as follows, 

 

 
 

 

  

0 0 0

0 0
0

0

d exp exp

               1 exp .

Z

e e e

e

h Z Zh
z n h Z n n h Z

t t t t

h
n h Z

t


 



   
               


      


 (7) 

Upon evaluation, the right hand side of equation (6) becomes, 

 
   

0

0
0

1 1
d exp

Z

s

h h h
K z K h h Z

x x x x x x
 

 

        
                

 . (8) 

Substituting equations (7) and (8) into equation (6) yields a new governing equation for 

the watertable dynamics, 

 
    0 0

1 1
1 exp expe s

h h h h
n h Z K h h Z

t x x x x
 

 

     
                  

. (9) 
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Further details of the derivation can be found in the supplementary material. It can be 

shown that equation (9) reduces to the standard Boussinesq model [e.g., Bear, 1972] as 

 (the case where the unsaturated zone is neglected). 

2.2 Non-hydrostatic pressure correction 

A non-hydrostatic pressure correction can be made to equation (5), i.e., 

 h z P    , (10) 

where P is the dynamic pressure head [L] and depends on the vertical (Darcy) flow ve-

locity (w) in the unsaturated zone, i.e., 

 

P w

z K


 


. (11) 

Mass conservation requires (assuming no recharge) 

 
+ 0

u w

t x z

  
 

  
, (12) 

where u is the horizontal (Darcy) flow velocity [L/T]. 

Integrating equation (12) in the vertical direction from a location (z) within the un-

saturated zone to the surface (Z0) gives 

 

0 0 0

d + d d 0
Z Z Z

z z z

u w
z z z

t x z

  
 

     . (13) 

With no (vertical) flow at Z0, equation (13) leads to 

 

0 0

d d
Z Z

z z

u
w z z

t x

 
 

   , (14a) 

with 

 
    0

0d exp exp
Z

e
z

h
z n h z h Z

t t


 

 
            , (14b) 

     0

2 2

02

1
d exp exp

Z

s
z

u h h
z K h Z h z

x x x
 



    
                   

 . (14c) 

Thus, 
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  
2 2

0 2

1
exp 1 e

s

nP w h h h
z Z

z K K t x x




     
                 

, (15) 

where it has been assumed that  expsK K h z      since the magnitude of P is gen-

erally small compared with that of (h - z) and hence    exp + exph z P h z            

(i.e., negligible effect of P on K); and 

  
0

22

0 02

1 1 1
d exp .

Z
e

z
s

nP h h h
P z z Z Z z

z x K t x


  

       
                       
  (16) 

P also varies with x, which leads to an additional term in equation (8): 

 

    

   

  

0

02

0 0

2

0

exp d 2exp 2

                                              exp

                                              .

Z
e

s
h

nP
K h z z h Z

x

Z h h Z

h
Z h

x t

 


 




          

     


 

 



 (17) 

With this term added to the right hand side of equation (9), the new governing equation 

for the watertable with a non-hydrostatic pressure correction is derived, 

 

2

F M Ne s

h h h
n K h

t x x x x t

      
    

        
, (18a) 

with 

  0F 1 exp h Z      , (18b) 

   0

1
M 1 1 exp h Z

h



       , (18c) 

 
        0 0 0 02

N 2exp 2 expen
h Z Z h h Z Z h   


               . (18d) 

F is positive and smaller than unity, reflecting a reduction in the effective void space for 

local water storage and leading to enhancement of watertable fluctuations. M is larger 

than unity due to the horizontal flux in the unsaturated zone. N is the non-hydrostatic 

pressure correction term, which accounts for the effect of vertical flow in the unsatu-

rated zone. To make a non-hydrostatic pressure correction for the saturated zone, the 
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work of Parlange et al. [1984] and Liu and Wen [1997] can be adopted to include an 

additional term in N, i.e., 

 
        

2

0 0 0 02
N 2exp 2 exp

3

e en D n
h Z Z h h Z Z h   


                , (19) 

where D is the average aquifer thickness. 

3. Analytical solution 

Using perturbation, we solved equation (18) subject to a periodic boundary condi-

tion for a semi-infinite aquifer domain (details in the supplementary material). The 

first-order approximation gives the following solution for the primary frequency (), 

    US 1 US 2exp k F cos k Fh D A x t x    , (20a) 

with 

 1
US

2

R
k

2R


 , (20b) 

 2
US

3

R
N

R 
 , (20c) 

 US US
1 22

USUS

N N
F

1 N1 N
 


, (20d) 

 US US
2 22

USUS

N N
F

1 N1 N
 


, (20e) 

   1 0R 1 expen D Z      , (20f) 

   2 0

1
R 1 exps sK D K D Z


       , (20g) 

       
2 2

3 0 0 0 02
R 2exp 2 exp

3

en D
D Z Z D D Z Z D


   



 
                

 
, (20h) 

where A is the amplitude of the hydraulic head oscillations at the boundary. When   

approaches infinity, 1F 1  and 2F 0 , and watertable fluctuations become standing 
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waves. The second-order solution was also derived (supplementary material). 

To validate the approximate analytical solution, equation (18) was solved numeri-

cally. A harmonic analysis on the predicted watertable fluctuations given by the numer-

ical solution was conducted to determine the damping rate and wave number (phase 

shift) associated with the oscillations at the primary frequency (). Comparison of these 

results with the analytical predictions shows reasonably good agreement between the 

two (Fig. 2). The results also display considerable variations in the damping rate and 

wave number with the thickness of the unsaturated zone (with Z0 varying for fixed D). 

The variations are not monotonic – both parameters increase with Z0 to a maximum 

followed by a gradual decline as described by equation (20).  

Dispersion relation 

The dispersion relation given by the new analytical solution was compared with those 

of previous solutions, based on the experimental case by Cartwright et al. [2003]. This 

relation characterizes the watertable fluctuations and can be expressed by a complex 

number (k) combining the damping rate ( rk ) and wave number ( ik ), i.e., r ik k ik  . 

The solution for the watertable fluctuations based on the traditional Boussinesq 

equation gives the following dispersion relation [Parlange et al., 1984], 

 

 1
2

e

s

n
k i

K D


  , (21) 

where r ik k . Cartwright et al. [2003] found / 2.3r ik k   based on the results from 

their sand flume experiment. The condition / 1r ik k   can be explained by the capillary 

effect and/or the vertical flow effect. For the former effect, Barry et al.’s [1996] solu-
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tion gives, 

2 22 22 1 2 11 1

e CAR CAR e CAR CAR

s CAR s CARCAR CAR

n N N n N N
k i

DK N DK NN N

    
      

        

, (22a) 

with 

 

s
CAR

K
N

B
 , (22b) 

where B is an equivalent capillary fringe thickness [Parlange and Brutsaert, 1987]. For 

the latter effect, Nielsen et al. [1997] suggested the following dispersion relation for 

medium-depth aquifers, 

 tan e

s

n D
kD kD i

K


 . (23) 

A complex porosity (nc) instead of ne can be used in equation (23) to further incorporate 

the capillary effect [Cartwright et al., 2003], 

 c 2/3

1 2.5

e

e

s

n
n

n H
i

K




 
  

 

. (24)  

Cartwright et al. [2003] found that neither equation (22) nor equation (23) de-

scribed well the dispersion relation observed in data from their laboratory experiment 

(Fig. 3). Direct application of the present solution with measured parameter values also 

failed to predict the observation; however, the data fell on the dispersion relation curve. 

With the saturated hydraulic conductivity adjusted from the measured value (0.00047 

m/s) to 0.0008 m/s, the present solution predicted the experimental results. Considering 

the possible uncertainty associated with the Ks measurement, this adjustment by a factor 

less than two was relatively small, indicating the applicability of the dispersion relation 

given by the present solution. 
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Mean watertable elevation (overheight) 

Oceanic oscillations induce not only watertable fluctuations but also an overheight – 

i.e., the mean watertable elevation far inland is higher than the mean water (head) level 

at the boundary [Knight, 1981]. The overheight increment (Δ), due to non-linearity, is 

given by [e.g., Parlange et al., 1984], 

 

2 2
1 1

1 1
2 4

A A
D D

D D

      
         
       

. (25) 

Barry et al. [1996] found that the capillarity affects the time-averaged mean-square 

height of the watertable. However, as the landward distance approaches infinity, their 

result reduces to equation (25). The present solution to 2nd order as shown in the sup-

plementary material also predicts the mean watertable with an overheight, 

 

2

OVER OVER

1
1 N

4

A
H D

D

  
   

   
, (26a) 

with 

 4 1 5 2
OVER

2 1

R F R F
N

R F


 , (26b) 

   4 0R 1 exp ,sK D D Z     
 

(26c) 

       2

5 0 0 02
R exp exp ,en

D Z D D Z D D Z D    


              (26d) 

where the dimensionless number OVERN  is positive and mostly less than unity for the 

physical conditions considered, indicating the existence of a watertable overheight but 

less than that predicted by equation (25). As   increases, 2F  decreases and ap-

proaches zero and the overheight approaches  
2

4 2

1
1 R R

4
D A D
 
 

 
 which is still 

lower than the traditional overheight value for 4 20 R R 1  . As shown in Fig. 4, 
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OVERN  is affected by and increases with Z0 until an asymptotic value is reached. This 

effect of finite unsaturated zone thickness is particularly strong for small  (strong cap-

illarity). 

4. Concluding remarks 

Parlange and Brutsaert’s [1987] work enabled investigation into the capillary effect on 

watertable fluctuations in coastal unconfined aquifers induced by oceanic oscillations 

and has stimulated further studies in the area. In particular, their work provided an ex-

planation for high-frequency watertable fluctuations caused by waves. 

Here, we have extended their approach to derive a new governing equation and an-

alytical solution that incorporate both horizontal and vertical flows in governing the 

watertable dynamics as well as the effect of the finite size of the unsaturated zone. 

These effects are shown to influence the dispersion relation of the watertable fluctua-

tions and the mean watertable height. While the comparison with experimental data in-

dicates improved predictions by the present solution compared with those given previ-

ously, further validation is required, particularly in relation to the effect of the finite 

unsaturated zone thickness. New experiments must be carried out under controlled con-

ditions to provide comprehensive datasets for the validation. These experiments should 

include measurements of hydraulic heads (capillary pressure) in the unsaturated zone 

and tracer tests to track the watertable dynamics and unsaturated flow near the waterta-

ble. 
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Figure 1. Schematic diagram of watertable fluctuations in a rectangular unconfined aq-

uifer under the influence of a periodic boundary condition.
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Figure 2. Comparison between the damping rate and wave number of the primary () 

watertable fluctuations given by the analytical and numerical solutions. Stars and cir-

cles are the numerical results of the damping rate and wave number, respectively. 

Dashed and dash-dotted lines are the analytical predictions of the damping rate and 

wave number (equation (20a)), respectively. Parameters values used were A  = 1 m, 

D  = 5 m,   = 1 m-1, sK  = 0.00047 m/s and en  = 0.3.
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Figure 3. Comparison of amplitude damping rates rk D  (real part of KD) and wave 

numbers ik D  (for the primary frequency  ) given by different dispersion relation 

equations. The triangle denotes the measured value based on the experimental result. 

The circle on each curve indicates the calculated values based on measured parameter 

values and using the corresponding dispersion relation equation. The parameter values 

used were T  = 772 s, D  = 1.094 m, en  = 0.32, sK  = 0.00047 m/s, H  = 0.55 m 

and   = 1 m-1.
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Figure 4. Variation of overheight index ( OVERN ) with Z0 for different  values ( SK  = 

0.0005 m/s, D  = 5 m, en  = 0.3 and T  = 12 h). 


