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1 Introduction

In this document, more details are given to explain, to support and to extend the results presented in the main
manuscript. In particular, the details refer to the definitions, the methods and the parameters of both the
theoretical calculations. Moreover, in this document higher order differentiation is presented and the effects of
self-phase modulation (SPM) considered. A comment on the role of spontaneous Brillouin noise (SpBN)is also
provided.

2 Theoretical Model

The equations describing the slowly varying wave envelopes of the optical waves DW, RP, WP, RW (respectively
Ad(z, t), Aw(z, t), Ar(z, t), Aret(z, t)) and of the AW, Q, are given by:

∂zAd +
1

vs
∂tAd = −ηgB

2
QAw + jζK(|Ad|2)Ad, (1)

−∂zAw +
1

vs
∂tAw =

ηgB
2

Q∗Ad + jζK(|Aw|2)Aw, (2)

∂zAret +
1

vf
∂tAret = −ηgB

2
QAr + jζK(|Aret|2)Aret, (3)

−∂zAr +
1

vf
∂tAr =

ηgB
2

Q∗Aret + jζK(|Ar|2)Ar, (4)

2τB∂tQ+Q = AdA
∗
w +A∗

retAr + ξ. (5)

Besides the reference cited in the main manuscript [1] these equations can be also found in [2]. The symbols
∂z, ∂t indicate respectively space and time derivatives, vs, vf are the group velocities for the slow and fast axis
of the PMF, η = c0nϵ0/2 is a normalization factor (c0 is the light speed in vacuum, n the refractive index, gB
the SBS gain coefficient) such that wave intensities |A|2 are measured in V 2/m2. The equations also take into
consideration the SPM through the term proportional to ζK = ζγ, where γ is the Kerr coefficient, ζ = ηAeff ,
where Aeff is the fiber effective area. The AW is defined by Q = 2v2aρ/ (ıγeϵ0ΩBτB), where va is the sound
speed, γe the electrostriction coefficient, ϵ0 the vacuum permittivity, τB the phonon lifetime. The SpBN is also
taken into account through the random variable ξ, as defined in [3]. For the sake of simplicity it will be set
vs = vf = c = c0/n.
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2.1 Information storage

Neglecting the SPM and the SpBN, for the writing process (no RP and RW), in a reference frame moving with
the AW (z, i.e. practically fixed with the fiber) the equations are reduced to:

∂tAd + c∂zAd = −ηBAwq exp(−ΓBt) (6)

∂tAw − ∂zAw = ηBAdq
∗ exp(−ΓBt) (7)

∂tq = ΓBAdA
∗
w exp(ΓBt), (8)

where ηB = cηgB/2. By formally integrate Eq. (8) in time, at a fixed position z ∈ {0, L} the result is:

q(z, t) = ΓB

∫ t

0

Ad0

(z
c
− t′

)
A∗

wL

(
z − L

c
+ t′

)
exp(ΓBt

′)dt′ (9)

In the ideal case, the AW is calculated straightforwardly:

q(z, t) = ΓB

∫ t

0

Ad0

(z
c
− t′

)
εw exp(−ıθw)δ

(
z − L

c
+ t′

)
exp(ΓBt

′)dt′ (10)

= ΓBεw exp(−ıθw)Ad0

(
2
z − zc

c

)
exp

(
−ΓB

z − L

c

)
where zc is the point of the collision between the WP and the DW.

2.2 Information retrieval

The stored AW moves at the sound speed va and decays with the acoustic lifetime τB (see Table 1 for practical
values). If the reading process is carried out within a few ns from the storage time, the AW motion can be
completely neglected and the decay is expected to cause a decrease of the wave amplitude but no distortion.
When the interaction between the DW and the WP is over, equations (3)-(4)-(5) govern the reading process
on the PMF fast axis. Through a formal change of variables z′ = z − ct (reference frame moving with the RW
Aret(z

′, t)) the governing equations are:

∂tAr − 2c∂z′Ar = ηBAretq
∗ exp(−ΓBt), (11)

∂tAret = −ηBArq exp(−ΓBt), (12)

∂tq − vfa∂z′q = ΓBAretA
∗
r exp(ΓBt), (13)

Let us consider an ideal Dirac function RP, injected from the same fiber side from which the WP was previously
injected (z = L) with a delay t0; the RP propagates without distortion till it interacts with the stored AW:

Ar(z
′, t) = ArL

(
z′ − L

c
+ 2t

)
= εr exp(ıθr) δ

(
z′ − L

c
+ 2t− t0

)
, (14)

while in the new reference frame the stored AW (Eq. (10)) reads:

q(z′, t) = ΓBεw exp(−ıθw)Ad0

(
2
z′ − zc

c
+ 2t

)
exp

[
−ΓB

(
z′ − L

c
+ t

)]
. (15)

While the RP walks off the AW, a part of it is backscattered into the RW that, similarly to what was done for
the writing process, can be calculated by integrating Eq. (12) also substituting Eqs. (14),(15):

Aret(z
′, t) = −ηBΓBεwεr exp[ı(θr − θw)]× (16)

×
∫ t

0

δ

(
z′ − L

c
+ 2t′ − t0

)
Ad0

(
2
z′ − zl

c
+ 2t′

)
exp

[
−ΓB

(
z′ − L

c
+ 2t′

)]
dt′

= AoutAd0

(
z′

c
+ t0

)
,

where Aout = −ηBΓBεwεr exp[−ΓBt0 + ı(θr − θw)] is a constant.
Therefore, in the reference frame fixed with the fiber the RW is:

Aret(z, t) = AoutAd0

(z
c
− t+ t0

)
. (17)
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2.3 Arbitrary waveform time differentiation

The time differentiation of the DW can be achieved when the RP, injected from z = L and propagating without
distortion till it interacts with the stored AW, is the time derivative an ideal Dirac distribution:

Ar(z
′, t) = ArL

(
z′ − L

c
+ 2t

)
= ε(1)r exp(ıθ(1)r ) δ(1)

(
z′ − L

c
+ 2t− t0

)
. (18)

The stored AW is still given by Eq. (15). Substituting Eqs. (15) and (18) into Eq. (12) and integrating one
gets:

Aret(z
′, t) = ηBΓBεwε

(1)
r exp[ı(θ(1)r − θw)]× (19)

×
∫ t

0

δ(1)
(
z′ − L

c
+ 2t′ − t0

)
Ad0

(
2
z′ − zc

c
+ 2t′

)
exp

[
−ΓB

(
z′ − L

c
+ 2t′

)]
dt′ =

= A
(1)
out

[
dAd0

dt

(
z′

c
+ t1

)
− ΓBAd0

(
z′

c
+ t0

)]
,

where A
(1)
out = −ηBΓBεwε

(1)
r exp[−ΓBt0 + ı(θ

(1)
r − θw)]/2. In the reference frame fixed with the fiber:

Aret(z, t) = A
(1)
out

[
dAd0

dt

(z
c
+ t0 − t

)
− ΓBAd0

(z
c
+ t0 − t

)]
. (20)

2.4 True time reversal

In order to obtain the DW time reversal, it is necessary to exchange the roles of the waves Ar, Aret in Eqs.
3-4-5. Therefore, a forward-propagating RP is injected from z = 0 and its interaction with the stored AW
generates a backward propagating RW at a frequency ωret = ωr − ΩB . The phase matching condition between
slow and fast axis becomes ωr = ωd(1 + ∆n/n). Through a change of variables z′′ = z + ct (reference frame is
moving with Aret) the governing equations become:

∂tAr + 2c∂z′′Ar = −ηBAretq exp(−ΓBt), (21)

∂tAret = ηBArq
∗ exp(−ΓBt), (22)

∂tq + c∂z′′q = ΓBA
∗
retAr exp(ΓBt). (23)

Let the RP at the input side (z = 0) be a Dirac function, propagating without distortion till it interacts with
the stored AW:

Ar(z
′′, t) = Ar0

(
z′′ − L

c
− 2t

)
= εr exp(ıθr) δ

(
z′′ − L

c
− 2t− t0

)
. (24)

The stored AW (Eq. (10)) in the new reference frame reads:

q(z′′, t) = ΓBεw exp(−ıθw)Ad0

(
2
z′′ − zc

c
− 2t

)
exp

[
−ΓB

(
z′′ − L

c
− t

)]
. (25)

By formally integrating Eq. (22) and substituting Eqs. (24) and (25):

Aret(z
′′, t) = ηBΓBεwεr exp[ı(θr + θw)]× (26)

×
∫ t

0

δ

(
z′′ − L

c
− 2t′ − t0

)
A∗

d0

(
2
z′′ − zc

c
− 2t′

)
exp

[
−ΓB

(
z′′ − L

c

)]
dt′

= AttrA
∗
d0

(
z′′

c
+ t0

)
exp

[
−ΓB

(
z′′ − L

c

)]
,

where Attr = ηBΓBεwεr exp[ı(θr + θw)].
Finally, in the reference frame fixed with the fiber, one gets:

Aret(z, t) = AttrA
∗
d0

(z
c
+ t+ t0

)
exp

[
−ΓB

(
z − L

c
+ t

)]
. (27)
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3 The effect of the Self Phase Modulation

The WP and RP powers in experiments are usually large (about 100W peak power) so one might ask what
the effects of the SPM could be. In fact, though the fiber used is short (of the order of a few meters), the
accumulated nonlinear phase shift can be large at the position where the pulses collide. As for the cross-phase
modulation (XPM) its effects are certainly negligible, because the overlap time between the WP and the DW
is very small due to the counter-propagation of the waves.

Here we show that the SPM contribution can be analytically predicted, with a very good degree of approx-
imation, and its effects are not detrimental for the signal processing functions that have been demonstrated.
The theory is corroborated by a numerical analysis. In fact, it is legitimate to assume that the SPM affects the
propagation only till the point of collision in Eqs. (1)-(5) and therefore to assume that each pulse is affected
by a predictable, constant, phase shift θ = γP0d, where d is the distance between the input (or output) and
the collision point (d = zc or d = L − zc). The model is tested in the particular case of a second order time
differentiation.

3.1 Second order time differentiation

In the simulation, we consider a PMF of length L = 5 m. The other fiber parameters are defined in Table 1. The
DW is a superposition of two real Gaussian pulses, each of them with a FWHM of 2 ns (see Fig. 1a). The WP is
the first derivative of a 500 ps Gaussian pulse (see Fig. 1a). The stored AW profile actually reproduces the first
derivative of the DW, spatially compressed by a factor of 2, as it has been explained in the main manuscript.
In Fig. 1b the modulus of the ideal first order derivative of the DW (dashed blue curve) is compared to the
numerical (red curve) and the theoretical (with approximated SPM phase shift - dark green curve) store wave
modulus. Similarly, in Fig. 1c, the ideal first derivative of the DW (dashed blue line) is compared with the
numerical (red curves) and the theoretical (with approximated SPM phase shift - dark green curves) stored
acoustic wave. The continuous curves refer to the real part, while the dashed curves to the imaginary part.
This figure shows that the SPM effect is well described by the theory proposed in this section.

In order to obtain the second order derivative of the DW, let us consider a RP which is also the first order
derivative of a Gaussian pulse (i.e. the same as WP in the simulations), as shown in Fig. 2a. The RW reproduces
the second order time differentiation of the input data pulse, with a very good agreement. In fact, in Fig. 2b the
modulus of the ideal second order derivative of the DW (dashed blue curve) is compared to the numerical (black
curve) and the theoretical (approximated SPM phase shift - dark red curve) RW modulus. Similarly, in Fig. 2c,
the ideal second order derivative of the DW (dashed blue curve) is compared with the numerical (black curves)
and the theoretical (approximated SPM phase shift - dark red curves) RW. The continuous curves represent the
real part and the dashed curves the imaginary part.

4 Experimental sources of distortion

In the experiments, due to the lack of a suitable modulator, the write and read pulsewidth were 400 ps FWHM
pulses, so their duration is comparable to the single pulse of the sequence. Therefore, they are not close to the
ideal delta Dirac functions. This introduces some distortion in the output pulse, as shown in Fig. 3, where a
numerical simulation using the experimental input sequence but with shorter (50ps, FWHM) write and read
pulses is presented. Note in particular that both the extinction ratio and the rise and decay times are affected by
the finite pulsewidth. Additional source of distortion (like that appearing in the pulse leading edge) arises from
temperature and birefringence gradients, which causes a shift of the Brilluoin gain and of the peak reflectivity
wavelength with substantial reflected amplitude change.

5 The effects of the spontaneous Brillouin noise

The contribution of SpBN is shown by ξ term in eq. 5, which actually represents a Langevin noise source
describing the thermal excitation of AW. The statistical properties of ξ, described by a white Gaussian random
variable, are investigated in [3], in which the AW is expressed in terms of density ρ in the dynamical equations,
so the noise variance is calculated obtaining eq. 16 in [3]. Let us remark that here we defined the AW in terms
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Figure 1: (a): Spatial profile of the DW (blue) and the WP (magenta). (b): Spatial profile of stored AW
modulus; comparison between the ideal first order derivative of the DW (dashed blue), the numerical obtained
(red) and the theoretical (approximated SPM phase shift - dark green) stored wave. (c): Same as (b); the
continuous curves refer to the real part, the dashed curves to the imaginary part.

of Q rather than ρ (Q = 2v2aρ/ (ıγeϵ0ΩBτB)) so the noise variance can be straightforwardly recalculated in terms
of Q.

5



−4 −2 0 2 4
−1

−0.5

0

0.5

1

z [m]

N
or

m
al

iz
ed

 A
m

pl
itu

de

(a)

−7.5 −5 −2.5 0
0

0.2

0.4

0.6

0.8

1

t [ns]

N
or

m
al

iz
ed

 A
m

pl
itu

de

(b)

−7.5 −5 −2.5 0
−1

−0.5

0

0.5

1

t [ns]

N
or

m
al

iz
ed

 A
m

pl
itu

de

(c)

Figure 2: (a): Spatial profile of the DW (blue) and the WP (magenta). (b): the comparison between the ideal
second order derivative of the DW (dashed blue), the numerical (black) and the theoretical (approximated SPM
phase shift - dark red) RW. (c): Same as in (b); the continuous curves represent the real part, the dashed curves
the imaginary part.

We considered the SpBN in the numerical simulations for completeness. However, it has been verified that
the SpBN induced fluctuations do not affect the SBS signals: noise contribution is few orders of magnitude
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Figure 3: True time reversal: the experimental input data waveform (blue curve), the experimental retrieved
waveform (black curve), the numerically obtained retrieved waveform (green curve) when the data waveform is
the experimental but using shorter (50ps, FWHM) write and read pulses.

lower than SBS waveforms. This fact has been also corroborated by experiments, which results are not affected
by SpBN.

6 PM fiber parameters definition

In Tab. 1, we give the parameters used in the main manuscript and also in this document.

PMF birefringence ∆n = 5 · 10−4

Acoustic wave velocity va = 5970.7 m/s
Electrostriction coefficient γe = 1.8
Refractive index n = 1.5
Light group velocity c = 2 · 108 m/s
Permittivity ϵ0 = 1/36π · 10−9 A2sW−1m−1

Brillouin frequency shift ΩB = 2π(10.93 GHz) rad/s
Phonon lifetime τB = 5 ns
SBS gain coefficient gB = 5 · 10−11 m/W
Effective area Aeff = 40 µm2

Kerr’s coefficient γ = 0.0032 W−1m−1

Table 1: PM fiber parameters.
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