
École Polytechnique Fédérale de Lausanne (EPFL)
Faculté Informatique et Communications (I&C)

Semester Project Report

Metadata Front-end
for Shore-MT Storage Manager

Student: Bao Duy TRAN (210215)

Supervisor: Prof Anastasia Ailamaki
Advisers: Pınar Tözün & Danica Porobic

September 2012 – January 2013

Abstract

Shore-MT is a scalable storage manager offering high performance on multi-core
architectures [1]. This report documents the design and implementation of Shore-
MT front-end, a dynamic relational application layer for Shore-MT with metadata
management capability. The work was conducted as an EPFL semester project.

1. Introduction

1.1. Original SHORE

Scalable Heterogeneous Object REpository (SHORE) [2] was a project initiated at the
University of Wisconsin-Madison (US) in the 1990s, aiming to combine object-oriented
database and file system technologies into a single object persistent system. The UNIX-
based system supports single-core CPUs and was built upon a layered architecture con-
sisting of a storage manager, a value-added server and a data language.

One major component of the project, SHORE storage manager, has since played a vital
role in various published database studies [3]. In particular, it has been employed in a
number of research-oriented special-purpose database management systems (DBMSs)
like TIMBER [4], Paradise [5] and λ-DB [6].

1

1.2. Shore-MT storage manager

With the advent of modern multi-core architectures and the growing need for scala-
bility, Shore-MT storage manager [1] was developed in the late 2000s by the Data-
Intensive Applications and Systems (DIAS) Laboratory at EPFL (Switzerland) [7] as a
multi-threaded port of the original SHORE storage manager. Since its release, Shore-MT
has been used in the academia as a highly scalable open-source solution for persistent
data management in multi-threaded applications.

Shore-MT storage manager is essentially a C++ system library. Just as SHORE, appli-
cation layers can be built on top of Shore-MT in the form of value-added servers. One
such example is Shore-Kits [8], an experimental framework which implements several
industry-standard Transaction Processing Performance Council (TPC) benchmarks [9].
Shore-Kits are used at DIAS for performance evaluations of Shore-MT features.

1.3. Motivations for a dynamic front-end

Shore-MT offers low-level application programming interface (API) access to a high-
performance persistent storage manager with restrictions on neither interaction pat-
terns nor data models. This implies flexibility for application developers. In other
words, the application layer might as well be a traditional DBMS based on the rela-
tional model [10] or other alternatives.

Nevertheless, there is no denying that the relational model remains the most pervasive
in practice. Despite certain drawbacks, many enterprise applications and academic re-
search activities still focus on this ubiquitous data model. Flexible as it might be in gen-
eral, Shore-MT could be cumbersome in the realm of relational data management. All
activities (e.g. creating a database, defining a schema, dropping a table, etc.) have to be
hard-coded against Shore-MT C++ API and repeated from one application to another.
E.g. Shore-Kits [8] are based on the relational model and suffer from this problem.

Thus there is a motivation for a convenient, generic and reusable front-end which en-
capsulates commonly-used relational features, especially data definitions and adminis-
trative tasks. Such a system shall act as a dynamic utility layer above Shore-MT, pro-
viding applications with facilities for relational metadata management.

Furthermore, in the context of academic research on performance-critical databases,
quick prototyping from a scripting environment (such as Python [11]) is usually con-
ducted before transaction processing code is formulated. This inevitably requires the
relational front-end to expose crucial features via a scripting interface besides tradi-
tional C++ API. In the meantime, there exists libraries to assist the interfacing process,
such as the Simplified Wrapper and Interface Generator (SWIG) [12].

All in all, there are strong motivating factors for a Shore-MT metadata front-end with
scripting support, which is the topic of this semester project.

2

1.4. Project objectives

The general objectives identified at the outset of the project were as follows:

• To familiarise with Shore-MT concepts and API using existing documentation
[13–15] and Shore-Kits implementation [8] as references.

• To investigate SWIG [12], a cross-language interfacing library, and identify the
suitability of direct interfacing of Shore-MT API to a scripting environment.

• To design and develop a relational metadata front-end for Shore-MT which sup-
ports persistent and reflective schemas, either natively in C++ then interfaced to
a scripting environment, or on top of an already-interfaced Shore-MT API.

• To implement interactive console applications which allow simple relational database
management activities, mainly to demonstrate the front-end’s functionalities.

• To ensure that all deliverables are as transferable, maintainable and reusable as
possible, and that all features and design decisions are documented.

1.5. Project scope

• Languages inherently differ in concepts, syntax and memory models. Despite
SWIG’s multi-language support, fine-tuning is inevitable for a specific target.
Hence, Python [11] shall be prioritised as the target environment of choice.

• The following relational database operations shall be supported by the front-end:

– Initialisation and shut-down of the underlying Shore-MT storage manager;

– Creation and deletion of relational databases;

– Selection of relational databases (for use in subsequent operations);

– Creation (given a schema) and deletion of relational tables;

– Insertion of tuples into relational tables;

– Retrieval and display of whole relational tables (i.e. all tuples);

• Parsers for data definition, manipulation and control languages (e.g. a Structured
Query Language (SQL) [16] parser) are not required. The front-end shall instead
present proper C++ and scripting APIs while the interactive console application
can accept user inputs in non-standard formats.

• Functionalities shall remain the sole focus of this inaugural Shore-MT front-end
project. In other words, no performance optimisations are required.

3

1.6. Project schedule

The project officially lasted 14 weeks during the autumn semester of academic year
2012/13 (18 Sept – 21 Dec 2012), with approximately 18 working hours per week.
Nonetheless, preliminary preparation had started in early Sept 2012 and wrap-up tasks
extend till Jan 2013. An actual breakdown of main tasks is reported below:

1. Familiarisation with Shore-MT through documentation, sample codes, Shore-Kits
implementation and self-written tests (early – late Sept 2012).

2. Investigation of SWIG capabilities and usage; Feasibility study of SWIG interfac-
ing with Shore-MT API (late Sept – late Oct 2012).

3. Design and implementation of Shore-MT front-end (late Oct – mid-Dec 2012).

4. Design and implementation of demo applications (mid – late Dec 2012).

5. SWIG interfacing with the Python scripting environment (late Dec 2012).

6. Report writing, handover of deliverables and presentation (early Jan 2013).

1.7. Organisation of the report

The rest of the report is organised as follows: Section 2 reviews Shore-MT concepts rel-
evant to the project. Section 3 presents important design decisions and an architectural
overview of Shore-MT front-end. Section 4 delves into the details of individual mod-
ules while a separate discussion is dedicated to the Python-interfacing task in Section 5.
The report concludes in Section 6 with recommendations for future work.

2. Shore-MT concepts

While Shore-MT offers a wide range of capabilities in terms of storage structures, buffer
pool management, system recovery, transaction management, etc. [17], only relevant
concepts are reviewed below. Most fundamental elements are inherited from SHORE

and the reader should refer to the original documentation [13–15] for further details.

2.1. Storage structures

In essence, Shore-MT persists data onto raw storage devices which can either be phys-
ical or logical. Hard disk drives are typical examples of physical devices whereas any
raw files in a UNIX file system can act as logical devices. Devices are identified by their
UNIX file system paths and need to be formatted by Shore-MT before use.

By design, there can be multiple volumes on a formatted device; however, there is only
a single volume in practice, according to the latest version of Shore-MT. Storage files

4

are the most basic structures found on Shore-MT volumes. Each file consists of multiple
records where user data are stored. Every record has an optional header and a body,
both of which are raw binary data. Volumes, files and records are identified by volume,
file and record IDs, respectively.

In order to locate data more efficiently, application can build indices (identified by
index IDs) which associate keys (typically a portion of the record) to values (either
the record ID or any arbitrary data). B+ tree [18] and R* tree [19] are amongst the index
types supported. Indices and files are collectively termed ‘stores’; both can be scanned
sequentially while look-ups by keys are only possible with indices. Besides application-
specific indices, every volume has a well-known root index for bootstrap purpose.

Figure 1: Logical storage structures on a Shore-MT device

A logical view of Shore-MT storage structures is depicted in Figure 1. It is noteworthy
that what data to be stored in Shore-MT files and how these data are formatted are up
to the application layer. Similarly, contents of indices, including volume root indices,
are outside the purview of Shore-MT.

2.2. Initialisation, threading and transactions

Shore-MT can be initialised by instantiating the ss m class with appropriate config-
uration options. It follows that Shore-MT can be shut down by destroying this ss m

instance. Although the library is written in C++, the main API is accessible via static
methods of the ss m class. This greatly simplifies implementations of the application
layer.

5

Shore-MT requires that all API invocations be conducted on specialised threads derived
from smthread t, which is in turn an extension of POSIX thread. Failure to comply to
this requirement results in errors being reported or drastic segmentation faults. Sub-
threads can be spawned from existing ones but all must be derived from smthread t.

Native support for transaction management is provided by Shore-MT. Certain opera-
tions must be executed in the context of a transaction, while others (mostly administra-
tive tasks) are not allowed to appear in transactions.

3. Front-end design & implementation

3.1. Preliminary design decision

According to the project objectives (Section 1.4), two approaches could initially be sug-
gested for the design and implementation of Shore-MT front-end:

1. Interface Shore-MT API to Python, then build Shore-MT front-end as a scripting
module on top of this wrapped API.

2. Build core components of Shore-MT front-end natively in C++ against Shore-MT
API, then interface the resultant module to Python.

These two approaches differ only in the level where interfacing to Python occurs. After
rigorous examination of Shore-MT, thorough investigation of SWIG and careful proto-
typing, the 2nd approach was adopted, for the following main reasons:

• Incompatibility & complexity: Shore-MT was not developed with cross-language
compatibility at its core. The API sometimes requires parameters of complex
types and employs advanced C/C++ features absent in other languages.

• Efforts not paying off : Assuming that, despite issues presented above, Shore-MT
could be available as a Python API, the application layer must still interact in the
same manner. In other words, the fact that the application can be written in a
higher-level language adds little value, as the developer still needs to be aware of
the C++ nature and the resultant codes potentially look no much simpler.

• Threading hindrance: Shore-MT has special threading requirements (Section 2.2).
Dynamic applications therefore need a threading strategy that satisfies these re-
quirements. Implementation of such a strategy is safer and more elegant with
low-level access to underlying threading libraries.

3.2. Architectural overview

Functional design of Shore-MT front-end prioritises modularisation (separation of con-
cerns with clear dependencies) and attempts to identify generic reusable components.

6

With this philosophy, an overall architecture was formulated and refined as the project
progressed. The finalised architecture is presented in Figure 2, which shows module
types (primary, supportive or executable), roles (external, peripheral or internal), natures
(native, scripting or hybrid) and inter-dependencies amongst modules.

Figure 2: Architecture of Shore-MT front-end

It is worth mentioning that not all boxes in Figure 2 represent physical modules as some
denote logical separation of responsibilities. At a glance, the following can be noted:

• Only the Executor Service module and associated task implementations are de-
pendent on Shore-MT; data structures for the Relational Data Manager are not.

• Interactions with Shore-MT API are formulated as tasks and routed to Shore-MT
via an Executor Service (see Section 4.1).

• The Relational Data Manager (persisting and managing user data) is employed
reflectively to realise a Metadata Manager (persisting and managing metadata).

• Native and scripting applications are structured similarly, except that the latter
requires an intermediate SWIG layer comprising C++ and Python glue codes.

7

3.3. Object-oriented approach

Design and implementation of Shore-MT front-end follow the object-oriented paradigm
[20], in order that deliverables remain well-structured and maintainable as complexity
grows. Despite being debatable whether this is the best, it is still better than not adopt-
ing any standardised principles. In Section 4, object designs of individual modules will
be shown in Unified Modelling Language (UML) [21] class diagrams.

3.4. C++ implementation

Shore-MT front-end1 was developed as a C++ project on UNIX-like environment. Just
like Shore-MT and many open-source packages, the project employs GNU Autotools
build system [22–24] with GNU Make [25] and GNU Compiler Collection (GCC) [26].
It is revision-tracked with Mercurial (HG) distributed source control management [27].
The reader is advised to consult Appendix A.1 for set-up and build instructions.

Shore-MT front-end has been implemented and verified on server diassrv2.epfl.ch
of DIAS Laboratory, linking against HG changeset 268:729613cf211e of Shore-MT
cloned from ssh://diasgate.epfl.ch/HG/shore-storage-manager. Most importantly,
it depends solely on Shore-MT installation2 and C++ Standard Libraries [28].

The project makes use of logical file naming conventions as well as manageable group-
ing of C++ classes into source files (see Appendix B). Consistent coding style has been
adopted together with comprehensive documentation in the forms of in-line comments
and Doxygen [29] for classes, attributes and methods. This makes the project compara-
ble with Shore-MT in terms of readability, maintainability and transferability.

4. Individual front-end modules

4.1. Executor Service – A generic Shore-MT utility

Owing to Shore-MT’s threading particularities (Section 2.2) and the front-end’s dy-
namic nature (pattern of invocations determined at run-time), a unified threading scheme
is necessary to formalise Shore-MT API invocations as task executions via one or many
authorised threads. This is to avoid unmanaged spawning of threads which is cum-
bersome in development and risky in execution. The Executor Service module is the
solution to this issue, constituting a major side contribution of the project.

1All modules in Figure 2 except the scripting application and its interfacing layer (see Section 5).
2Artefacts of make install, consisting of header files and binary objects (not the source project).

8

4.1.1. Functional design

Executor Service is a generic and reusable Shore-MT utility. Bearing zero dependency
on the front-end under development (see Figure 2), the module depends on Shore-MT
and ease its use under threading restrictions. While its capabilities remain limited to
those needed by the front-end, it is extensible to a comprehensive library.

Executor Service encapsulates a private worker thread (derived from smthread t) while
exposing a control API to be invoked on the user thread. In a typical usage scenario (see
Figure 3), the user submits a task (user-defined execution content) to the Executor Ser-
vice which accepts and enqueues it to an internally-managed task queue. Processing is
conducted by the worker thread which normally waits as long as the queue is empty.
Otherwise, tasks are dequeued and executed in a first-in-first-out (FIFO) manner.

Figure 3: Usage scenario of Shore-MT Executor Service

There are two modes of executions: In synchronous mode, the user thread is blocked
from task submission till completion. In asynchronous mode, on the other hand, the
user thread proceeds and completion of task execution can be notified via a simplified
observer pattern3 [20].

Proper signalling scheme has to be put in place to unblock (1) the worker thread upon
task availability and (2) the user thread upon task completion in synchronous mode.
Synchronisations are also required to protect data structures shared amongst threads.

4.1.2. Object design

Object design of Shore-MT Executor Service is presented in Figure 4. Typically, user
interacts with a ShoreExecutorService instance and submits tasks (instances of some
concrete implementations of ShoreTask) by invoking either syncExec() or asyncExec(),
depending on the desired execution mode.

3Also called ‘publish-and-subscribe’, or colloquially ‘listener’ pattern.

9

Figure 4: UML class diagram of Shore-MT Executor Service module

4.1.3. Additional remarks

Shore-MT Executor Service is a special case of thread-pool executor4 with a single in-
ternal thread operating off an unbounded task queue. The reason calling for Shore-MT
Executor Service is that public libraries are based on standard threads while Shore-MT
authorises only smthread t-derived threads.

Also, similar scheme has been implemented in Shore-Kits [8]. Unfortunately, this legacy
resource is not generic and modular enough for reuse in Shore-MT front-end. Specif-
ically, the inheritance hierarchy appears to have been mixed with Shore-Kits’ specific
features and no generic task definitions are possible.

4.1.4. Synchronous execution example

This Section demonstrates the use of Executor Service and tasks to synchronously access
Shore-MT API, without having to explicitly deal with threads. Assume we want to
implement a hypothetically simple algorithm which consists of executing two Shore-
MT API methods sequentially and does not care about return statuses:

1 void myShoreMtOperation() {

2 ss_m::doSomething();

3 ss_m::doSomethingElse();

4 }

4For instance, the equivalent exists in standard Java [30] and Boost-based C++ libraries [31].

10

According to Shore-MT threading requirements (Section 2.2), the above is only autho-
rised to run on an smthread t-derived thread and we may want to implement our own
threading scheme to achieve that. However, if there is a running ShoreExecutorService

instance available, we can instead do the following:

1 void myShoreMtOperation(ShoreExecutorService* myExecSvc) {

2 DoTwoThingsTask myTask;

3 myExecSvc->syncExec(&myTask);

4 }

where DoTwoThingsTask is ShoreTask-derived and its run() method is defined as:

1 void DoTwoThingsTask::run() {

2 ss_m::doSomething();

3 ss_m::doSomethingElse();

4 }

Now myShoreMtOperation() can be invoked on any thread without bothering about
Shore-MT threading requirements. Furthermore, it will appear as if the execution were
on the caller’s thread, thanks to the synchronous mode.

4.2. Front-end tasks & threading

In Shore-MT front-end, specific Executor Service tasks are defined by supplying imple-
mentations of ShoreTask. Unlike the dummy sample sketched in Section 4.1.4, their
run() methods access Shore-MT API to perform meaningful units of work required by
the front-end. In addition, these units of work are general enough to facilitate internal
reuse. Figure 5 describes the inheritance hierarchy of various front-end tasks.

As can be seen from Figure 5, all tasks are derived from BaseTask, which augments
error reporting capabilities to ShoreTask. They can be broadly categorised as follows:

• Administrations: Initialise/Shut down Shore-MT: CreateSmTask, DestroySmTask.

• Transaction controls: BeginTransactionTask, EndTransactionTask.

• Manipulations of a device (at a given path):

– Mount a device (and retrieve the single volume ID): MountDevTask.
– Initialise a device (i.e. format the device, create a single volume on it and

retrieve the volume ID): InitDevTask.
– Destroy a device (i.e. destroy all volumes): DestroyDevTask.

• File manipulations:

– Create a file in a volume given the volume ID: CreateFileTask.
– Destroy a file identified by an ID: DestroyFileTask.
– Append an empty-header record to a file identified by an ID, using the given

raw binary data as record body: CreateRecordTask.

11

Figure 5: UML class diagram of specific Executor Service tasks

• Root index manipulations of a volume (identified by an ID):

– Destroy all entries having a particular key: DestroyRootIndexEntriesTask.
– Append a new mapping entry key→ value: CreateRootIndexEntryTask.
– Scan and retrieve all entries: RetrieveAllRootIndexTask.

4.2.1. Threading strategy in Shore-MT front-end

In Shore-MT front-end, an Executor Service is instantiated upon top-level initialisation
and passed to subordinate modules. Whenever access to Shore-MT API is required, a
suitable task is constructed and submitted to the Executor Service for execution.

Consequently, all accesses to Shore-MT API are serialised on a single dedicated thread
– the Executor Service’s worker thread. While this facilitates all requirements of the
project, with the Executor Service’s extensibility, new threading schemes can be adapted.

Furthermore, despite Executor Service’s flexibility, only synchronous executions are
employed by the front-end. To the caller, all operations appear as if they were per-
formed directly on her own thread, simplifying internal operations and external usage.

12

4.3. Relational Data Manager

While threading modules (Sections 4.1 and 4.2) provide fundamental infrastructure,
Relational Data Manager is the most significant module in terms of functionalities.

4.3.1. Functional design

Basically, this is the application layer which adds relational concepts and operations
to Shore-MT. It encompasses all relational database operations listed in Section 1.5 and
can be regarded as a primitive database system based on the relational model [10].

• The system manages a collection of databases, each of which comprises a col-
lection of tables5. Each table is a collection of tuples (ordered sequence of field
values). All tuples in a table adhere to a pre-defined and common schema.

• A schema defines tuple fields and their order. It is a sequence of field descrip-
tions, each of which has (1) a name, (2) a data type, and configurations like (3)
size limit and (4) whether null values are permitted.

• The system allows all administrative, data-retrieval and data-manipulation oper-
ations mentioned in Section 1.5. At most one database is selected (in use) at a
time. The convention is that operations work on this selected database.

There is no persistence of relational metadata. This feature is realised by the Relational
Metadata Manager discussed in Section 4.4. With the Data Manager alone, the user
could experience a fully-featured Shore-MT front-end but no database state would ever
survive a simple application restart.

4.3.2. From relational model to storage structures

In Shore-MT front-end, relational entities are mapped to Shore-MT storage structures
(cf. Section 2.1). All these mappings are visualised in Figure 6 (cf. Figure 1):

• Database ↔ Device: Each relational database is stored in its entirety on a ded-
icated Shore-MT device, i.e. a database is self-contained on its device6. This is
potentially beneficial for independent attachments of database devices.

• Table ↔ File: Each relational table is stored in its entirety in a Shore-MT file
located on the device (volume) of the respective database.

• Tuple↔ Record: Each relational tuple is stored as a record in the Shore-MT file
of the respective table. The record header shall be empty while the record body
shall contain the tuple’s field values formatted as binary data. This disk format of
relational tuples is elaborated in Section 4.3.4.

5User indices to facilitate data look-up are outside the scope of this project.
6With only single-volume devices (see Section 2.1), a database is also self-contained on a volume.

13

Figure 6: Relational databases in Shore-MT storage structures

4.3.3. From SQL to system data types

SQL types define types of data stored in relational tuple fields. They are specified as
part of the table schema. In general, SQL data types slightly differ from one DBMS to
another. In this inaugural Shore-MT front-end, only the most fundamental types are
supported and they closely follow SQL standards [16]. Table 1 lists all supported SQL
types in Shore-MT front-end.

Table 1: SQL data types in Shore-MT front-end

SQL type C++ type Description Single unit? Fixed length?
BIT bool Boolean (bit)

√ √

SMALLINT short Short integer
√ √

INT int Integer
√ √

LONG long Long integer
√ √

FLOAT float Floating-point
√ √

DOUBLE double Double-precision floating-point
√ √

CHAR char[] Fixed-length character string
√

VARCHAR char[] Variable-length character string

It is noteworthy that CHAR and VARCHAR types only differ in terms of fixed- versus
variable-length in the disk format of a relational tuples (see Section 4.3.4). When a
schema is specified, size configuration of CHAR refers to the fixed length while that of
VARCHAR indicates the maximum possible length. Size configuration is always given as
the number of units (e.g. int and char are units of SQL types INT and VARCHAR, re-
spectively), never in bytes; it is therefore irrelevant for single-unit types. Unit size is
however given in bytes and computed as sizeof() of the corresponding unit.

14

In the C++ implementation of Shore-MT:

• SQL types are realised as an enum called ShoreSqlType and referred to by their
enum names7. Due to C++ limitations8, associated properties and functionalities
have to be global functions with the SQL type concerned passed as parameter.

• SQL values are realised as a union called ShoreSqlVal where actual mappings to
system types take place. Value assignments and retrievals require an indication
of ShoreSqlType. Therefore, ShoreSqlVal is just a low-level, type-unsafe, and
supportive data structure for classes like ShoreField (see Section 4.3.5).

4.3.4. From relational tuples to Shore-MT records

As mentioned in Section 4.3.2, a tuple has to be serialised into binary data before being
written to a Shore-MT record. The reverse process takes place when the record is read
to reconstruct the logical tuple. This Section describes the forward serialisation process.
In fact, the record format has been inspired by Shore-Kits [8] implementation.

Tuple fields are first categorised as (1) nullable, (2) fixed-length and (3) variable-length
while keeping their relative order intact. Nullable fields of group (1) refer to those
permitting SQL NULL as value, no matter what SQL types. Groups (2) and (3) apply to
the rest of the fields according to their SQL types. The tuple can then be formatted into
four consecutive binary blocks (Figure 7):

Figure 7: Relational tuple formatted as binary data in Shore-MT record body

1. Null flags: This block reserves one bit for each nullable field of group (1) while
respecting their relative order. The bit is set if the respective field contains SQL
NULL value. If the number of nullable fields is not a multiple of 8, the block is
right-padded with dummy bits to reach the byte boundary.

7SQL type names in Table 1 prefixed with "SQL ".
8In C++, an enum is not a class with methods [32].

15

2. Fixed-length fields: Values of fixed-length fields of group (2) are appended one
after another into this block. Each field can occupy different lengths depending
on their SQL types; nevertheless, these are known via the schema.

3. Variable-length field offsets: Offsets to variable-length field values (stored in
block 4) are written in this block. Offsets are computed with respect to the very
beginning of the byte sequence (offset 0) and stored as unsigned int values.

4. Variable-length fields: Values of variable-length fields of group (3) are appended
one after another into this block. Although their lengths cannot be determined
from the schema, offsets in block 3 help locate them.

4.3.5. Relational data structures

Relational Data Manager uses several data structures to represent the relational model.
These are conceptually depicted in Figure 8. No interactions with Shore-MT API are
made from these data structures.

Figure 8: UML class diagram of relational data structures

16

First of all, a ShoreFieldDesc represents a field description and a ShoreSchema is an
ordered collection of ShoreFieldDescs. The relationship between ShoreSchema and
ShoreFieldDesc is naturally a strict containment or composition.

While ShoreFieldDesc is by and large meant for data encapsulation, ShoreTuple and
ShoreSchema include functionalities. In particular, conversions from logical tuples to bi-
nary Shore-MT record format and vice versa (Section 4.3.4) are conducted by ShoreTuple.
Certain offsets into the binary block are pre-computed by ShoreSchema.

As can be seen from Figure 8, ShoreSqlVal (introduced in Section 4.3.3) is an integral
part of a ShoreField as the former cannot be used without SQL type information.

Also, it is worth highlighting that a ShoreTuple has a very dynamic structure. It strictly
contains two alternative representations of a relational tuple: (1) disk data (formatted
for physical record – see Section 4.3.4) and (2) an ordered list of logical ShoreFields.
From an external perspective, it contains both representations at the same time and they
are in sync. In reality, only relevant ShoreFields or disk data is materialised.

Lastly, certain operations are considered type-unsafe as they employ type-erased void*

pointers to pass values of different system types. These are added for efficiency, and
some have been used for internal operations. In future, they should remain solely for
internal use unless the developer is absolutely sure.

The reader is highly recommended to refer to the comprehensive documentation in the
source codes for further technical explanations.

4.3.6. Core object design & top-level API

Core object design of the Relational Data Manager (see Figure 9) refers to higher-level
components which provide Shore-MT-related functionalities. They still represent rela-
tional concepts while using data structures introduced in Section 4.3.5 as a basis.

As depicted in Figure 9, two entities directly concern relational concepts and the func-
tional design (Section 4.3.1), namely ShoreTable and ShoreDatabase. They act as the
middlemen between the front-end and Shore-MT by abstracting away low-level storage
structure details. This abstraction realises the relational-to-storage mappings discussed
in Section 4.3.2 via Executor Service tasks described in Section 4.2.

Conceptually, every ShoreTable contains a collection of ShoreTuples; however, this is
not a physical containment as ShoreTuples are only materialised on demand. On the
other hand, ShoreSchema exhibits strict composition by ShoreTable.

An Iterator can be applied to any ShoreTable to sequentially scan its underlying
storage file and materialise ShoreTuples along the way. A convenient method is also
provided by ShoreTable to effectively retrieve all tuples in one go.

Last but not least, there is a ShoreFrontend component which is the top-level API of
Shore-MT front-end. Users only need to instantiate and interact with ShoreFrontend

17

Figure 9: Core object design of the Relational Data Manager

which encapsulates all functionalities described in Section 4.3.1. It internally owns a
ShoreExecutorService, shares it with ShoreDatabases and ShoreTables and manages
the underlying storage manager’s lifetime.

In Figure 9, methods incurring interactions with Shore-MT are marked with “Shore-MT”.
They return a RetCode which has front-end’s status code packed with the original
Shore-MT status codes, if applicable. Once again, the reader is strongly advised to
consult the comprehensive documentation in the source codes for in-depth technical
descriptions.

18

4.4. Relational Metadata Manager

Relational Metadata Manager is an extension of the Relational Data Manager (Sec-
tion 4.3). It augments the Relational Data Manager with metadata persistence. Rela-
tional metadata denotes meta-information of user’s relational data such as directory of
known databases, catalogues of tables and relational schemas.

4.4.1. Persisting relational metadata

The Relational Metadata Manager is designed as a module on top of the Relational
Data Manager, reflectively employing the latter to persist metadata. In other words,
metadata themselves are formulated as relational data and persisted onto Shore-MT
storage using the facilities already in place. Figure 10 depicts a complete view of the
storage layout with metadata persistence (cf. Figures 1 and 6).

In principle, there are two types of metadata: (1) catalogues of relational entities and (2)
relational schemas. Catalogues of relational entities help locate databases and tables
while relational schemas assist the interpretation of tuples retrieved from Shore-MT
storage (which otherwise appear as meaningless blocks of binary data).

Catalogues of relational entities are persisted as follows:

• Catalogue of databases: A device is designated as master device (not a database
as defined by the mappings of Section 4.3.2). There are no stores on this device
except the volume root index which maps database names to device paths.

• Catalogue of tables: For each database device, the volume root index stores loca-
tions of constituent tables as mappings from table names to Shore-MT file IDs.

Relational schemas are persisted as follows:

• Every user table is associated with a meta-table whose schema (‘meta-schema’) is
known a priori. Meta-tables store user schemas in the form of relational data.

• The meta-schema defines four fields for meta-table tuples: name (VARCHAR), type
(SMALLINT), sizeconfig (LONG) and nullable (BIT). Each meta-table tuple repre-
sents one field description in the corresponding user table’s schema.

• Meta-table names are corresponding user table names prefixed with "meta#" 9.

4.4.2. Object design & finalised top-level API

Only an extra sub-class ShoreMetaTable has to be defined while metadata persistence
can be added to existing components like ShoreDatabase and ShoreFrontend. Fig-
ure 11 gives the final design while not replicating details already shown in Figure 9.

9As a result, no user table names are allowed to start with "meta#".

19

Figure 10: Full view of Shore-MT front-end’s storage layout

4.5. Demo application

An executable console application is provided to demonstrate and dynamically test
functionalities of Shore-MT front-end. Instructions on how to run the application can
be found in Appendix A.1. As indicated in the project scope (Section 1.5), no formal
parsers of any standardised languages are made; instead, an ad hoc syntax is intro-
duced for user inputs at the application’s command prompt.

5. SWIG-ging into the scripting world

One project objective (Section 1.4) is to make Shore-MT front-end available in the Python
environment [11] to facilitate prototyping from a Python console or scripting module.

20

Figure 11: Core object design of the Relational Metadata Manager

5.1. Interfacing process

The process has been achieved with the SWIG interfacing library [12], version 1.3.29.
Figure 12 shows the procedure of wrapping Shore-MT for Python.

Figure 12: SWIG process to produce Shore-MT front-end Python extension

21

As presented in Figure 12, a SWIG interface file (.i) needs to be crafted for the wrap-
ping process. Although SWIG interface files resemble C++ header files, they are not.
Rather, they provide hints to SWIG for the generation of glue codes which must then
be compiled with a standard compiler. The output of the whole process is a Python
glue script (.py) and a native library called Python extension module (.so).

In this SWIG interface file, elements (classes, methods, attributes, etc.) to be exposed to
the scripting environment have to be identified. In the case of Shore-MT front-end:

• Top-level API (where all functionalities are centralised): ShoreFrontend;

• Data structures required by top-level API (as parameter or return types): RetCode,
ShoreSqlType, ShoreFieldDesc, ShoreSchema and ShoreTuple.

There have been no major hiccough in the process thanks to the fact that Shore-MT
front-end design has been contemplated with scripting interfacing in mind. Some spe-
cial SWIG directives have to be included so that C++ Standard Libraries [28] can be
wrapped properly and certain Python particularities can function.

5.2. Usage in Python

All features of Shore-MT front-end (see Sections 1.4 and 1.5) are available as a Python
module loadable via the import syntax. Furthermore, these features appear as natural
Python API and the user needs not worry about low-level C++ aspects.

5.3. Python demo application

A Python demo module has also been developed to mimic the C++ one described in
Section 4.5. As a matter of fact, the Python demo does not require command-prompt
features and input parsing. Instead, the Python console is employed and for complex
arguments, the user is supposed to construct them. Just as its C++ counterpart, the
application has been used for dynamic testing from Python. Practical instructions re-
garding the Python extension module and demo can be found in Appendix A.2.

6. Conclusions

In sum, all objectives identified at the outset of the project (Section 1.4) have been satis-
fied with quality deliverables, in terms of design, functionality and transferability.

Apart from the Shore-MT front-end, a longed-for tool by DIAS researchers, the project
provides a well-documented design, readable source codes and also a value-added
reusable utility. However, there assuredly remains room for improvement to this pre-
liminary piece of work. The following future work could be suggested:

22

• Complete separation and enhancement of the Executor Service utility module.
• Addition of index supports for user data.
• Implementation of SQL operators for prototyping of transaction processing.
• Generalisation of the SWIG interface for target languages other than Python.
• Incorporation of an SQL parser or the like.
• Facilitation of multi-threaded transactions at user level.

Acknowledgements

The student would like to thank Prof Anastasia Ailamaki for this interesting and chal-
lenging project opportunity with DIAS Laboratory at EPFL.

The student’s gratitude also goes to DIAS research staff members, especially Pınar
Tözün and Danica Porobic for the invaluable guidance and continuous support, and
Miguel Branco and Radu Ioan Stoica for the stimulating inputs.

References

[1] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi, “Shore-MT: a scalable
storage manager for the multicore era,” in Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, ser. EDBT ’09. New York,
NY, USA: ACM, 2009, pp. 24–35. [Online]. Available:
http://doi.acm.org/10.1145/1516360.1516365

[2] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F. Naughton, D. T.
Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling, “Shoring
up persistent applications,” in Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’94. New York, NY, USA: ACM, 1994, pp.
383–394. [Online]. Available: http://doi.acm.org/10.1145/191839.191915

[3] “SHORE project.” [Online]. Available: http://research.cs.wisc.edu/shore/

[4] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,
S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu, “TIMBER: A
native XML database,” The VLDB Journal, vol. 11, no. 4, pp. 274–291, Dec. 2002. [Online].
Available: http://dx.doi.org/10.1007/s00778-002-0081-x

[5] C. The Paradise Team, “Paradise: a database system for GIS applications,” in Proceedings
of the 1995 ACM SIGMOD international conference on Management of data, ser. SIGMOD ’95.
New York, NY, USA: ACM, 1995, pp. 485–. [Online]. Available:
http://doi.acm.org/10.1145/223784.223898

[6] L. Fegaras, C. Srinivasan, A. Rajendran, and D. Maier, “λ-DB: an ODMG-based
object-oriented DBMS,” in Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’00. New York, NY, USA: ACM, 2000, pp. 583–.
[Online]. Available: http://doi.acm.org/10.1145/342009.335494

23

[7] “Data-Intensive Applications and Systems (DIAS) Laboratory, EPFL.” [Online].
Available: http://dias.epfl.ch

[8] “Shore-Kits.” [Online]. Available:
https://sites.google.com/site/shoremt/source-code/experimental

[9] “Transaction Processing Performance Council (TPC).” [Online]. Available:
http://www.tpc.org

[10] R. Ramakrishnan and J. Gehrke, “The relational model,” in Database Management Systems,
ser. McGraw-Hill international editions: Computer science series. McGraw-Hill
Companies, Inc., 2002, ch. 3. [Online]. Available:
http://books.google.ch/books?id=JSVhe-WLGZ0C

[11] “Python programming language.” [Online]. Available: http://www.python.org

[12] “Simplified Wrapper and Interface Generator (SWIG).” [Online]. Available:
http://www.swig.org

[13] C. The Shore Project Group, “Storage manager architecture,” University of
Wisconsin-Madison, Tech. Rep., Jun. 1999.

[14] ——, “The SHORE storage manager programming interface,” University of
Wisconsin-Madison, Tech. Rep., Aug. 1999.

[15] “SHORE storage manager: The multi-threaded version.” [Online]. Available:
http://research.cs.wisc.edu/shore-mt/onlinedoc/html/main.html

[16] “Structured Query Language (SQL).” [Online]. Available:
http://www.iso.org/iso/catalogue detail.htm?csnumber=45498

[17] “Shore-MT project.” [Online]. Available: https://sites.google.com/site/shoremt/home

[18] R. Ramakrishnan and J. Gehrke, “Tree-structured indexing,” in Database Management
Systems, ser. McGraw-Hill international editions: Computer science series. McGraw-Hill
Companies, Inc., 2002, ch. 10. [Online]. Available:
http://books.google.ch/books?id=JSVhe-WLGZ0C

[19] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an efficient and
robust access method for points and rectangles,” in Proceedings of the 1990 ACM SIGMOD
international conference on Management of data, ser. SIGMOD ’90. New York, NY, USA:
ACM, 1990, pp. 322–331. [Online]. Available: http://doi.acm.org/10.1145/93597.98741

[20] B. Bruegge and A. Dutoit, Object-oriented software engineering: using UML, patterns and Java.
Prentice Hall, 2003. [Online]. Available:
http://books.google.ch/books?id=26ZQAAAAMAAJ

[21] “Unified Modelling Language (UML) 2.0.” [Online]. Available:
http://www.omg.org/spec/UML/2.0

[22] “GNU Autoconf.” [Online]. Available: http://www.gnu.org/software/autoconf

[23] “GNU Automake.” [Online]. Available: http://www.gnu.org/software/automake

[24] “GNU Libtool.” [Online]. Available: http://www.gnu.org/software/libtool

[25] “GNU Make.” [Online]. Available: http://www.gnu.org/software/make

[26] “GNU Compiler Collection (GCC).” [Online]. Available: http://gcc.gnu.org

24

[27] “Mercurial source control management system.” [Online]. Available:
http://mercurial.selenic.com

[28] B. Stroustrup, “Part III: The Standard Library,” in The C++ programming language.
Boston: Addison-Wesley, 2000, ch. 16–22.

[29] “Doxygen.” [Online]. Available: http://doxygen.org

[30] “Java SE 6 – ExecutorService.” [Online]. Available:
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html

[31] “Boost C++ libraries.” [Online]. Available: http://www.boost.org

[32] B. Stroustrup, “Types and declarations,” in The C++ programming language. Boston:
Addison-Wesley, 2000, ch. 4.

A. Appendix: Set-up & build

A.1. Main C++ front-end

As an HG-tracked project, Shore-MT front-end can be checked out to any directory from its
repository URL by executing HG clone command, which by default updates the project to its
latest revision. More help on HG commands can be found at [27]:

$ hg clone <repository-URL>

It should be noted that all C++ source files (header .h and implementation .cpp files) are located
in a sub-directory called src. The autogen.sh shell script found in the project can then be run
to generate configuration and build scripts, according to GNU Autotools build system [22–24]:

$./autogen.sh

Next, the project can be configured with current Shore-MT installation directory10 and desired
installation directory for Shore-MT front-end, by running the generated configure shell script:

$./configure SHORE_HOME=/path/to/shore-mt/installation

--prefix=/path/to/front-end/installation

Now standard GNU Make [25] commands can be used to invoke GCC [26]. The following clean,
build and install Shore-MT front-end, respectively:

$ make clean

$ make

$ make install

The installation of Shore-MT front-end should be similar to the following. The executable demo
application mentioned in Section 4.5 is bin/shore-frontend:

10This refers to the location of make install artefacts when building Shore-MT.

25

|-- bin

| |-- shore-frontend

|-- include

| |-- <header .h files>

|-- lib

|-- libshore-frontend.a

|-- libshore-frontend.la

|-- libshore-frontend.so -> libshore-frontend.so.0.0.0

|-- libshore-frontend.so.0 -> libshore-frontend.so.0.0.0

|-- libshore-frontend.so.0.0.0

Once the demo application is started, the user is greeted with a command prompt. Listing of
commands and their usage can be shown by running help:

$ cd /path/to/front-end/installation/bin

$./shore-frontend

cpu_info sees 4 sockets and 16 cores

*** Welcome to Shore-MT frontend console! ***

(Type ’help’ to list available commands)

$ help

Shore-MT frontend command list:

init <bufPoolSize> <logDir> <masterDevPath> <formatMasterDev?>

- Initialise Shore-MT frontend

init? - Check if Shore-MT frontend has been initialised

show-dbs - Show all available databases

create-db <dbName> <devPath> <quotaInKb> - Create a new database

select-db <dbName> - Select an existing database for use

db-in-use? - Show info of selected database

drop-db <dbName> - Drop an existing database

create-table <tableName> <numFields>

[<fieldName> <type> <nullable?> <sizeConfig>...] - Create a new table

drop-table <tableName> - Drop an existing table

show-tables - Show all tables in selected database

show-schema <tableName> - Show schema of table

insert-tuple <tableName> <numFields>

[<fieldVal_1> <fieldVal_2>...] - Insert a tuple

retrieve-tuples <tableName> - Retrieve all tuples

help - Show this list of commands

quit|exit - Quit Shore-MT frontend console

26

A.2. Python interfacing module

The Python interfacing project of Shore-MT front-end can be checked out from its HG repository
URL in a similar manner. In this project, the SWIG interface file (as described in Section 5.1) is
shore frontend swig.i located at the root directory. Five convenient shell scripts are provided
to build the interfacing module (cf. Figure 12):

• clean.sh: Clean all build artefacts.

• swig.sh: Generate SWIG C++ and Python glue codes from the SWIG interface file.

• compile.sh: Compile the C++ glue code. Required environment variables:

– SHORE FRONTEND HOME: Path to Shore-MT front-end installation11.
– SHORE HOME: Path to Shore-MT installation12.
– PYTHON INCLUDE: Path to Python header files.

• link.sh: Link the resultant binary object with Shore-MT front-end libraries to produce
the final Python extension module. Required environment variable:

– SHORE FRONTEND HOME: Path to Shore-MT front-end installation13.

• all.sh: Sequentially execute clean.sh, swig.sh, compile.sh and link.sh.

The final run-time artefacts are Python glue script shore frontend.py and Python extension
module shore frontend.so. Provided that all necessary libraries are available on the system
library path, one way to load Shore-MT front-end in Python is as follows:

from shore_frontend import *

Similarly, the demo (provided as shore frontend prog.py) can be loaded with the following
statement in Python:

from shore_frontend_prog import *

B. Appendix: File and class listings

B.1. Top-level components

C++ class/executable Header file Implementation file
Demo application shore-frontend-prog.cpp

ShoreFrontend shore-frontend.h shore-frontend.cpp

RetCode shore-frontend-rc.h shore-frontend-rc.cpp

11Directory of make install artefacts, having header files in a sub-directory called include.
12Directory of make install artefacts, having header files in a sub-directory called include.
13Directory of make install artefacts, having library binaries in a sub-directory called lib.

27

B.2. Executor Service module

C++ class Header file Implementation file
ShoreExecutorService shore-executor-service.h shore-executor-service.cpp

ShoreWorkerThread shore-worker-thread.h shore-worker-thread.cpp

ShoreTask shore-task.h shore-task.cpp

ShoreTaskCompletionListener shore-task-completion-listener.h

B.3. Front-end specific tasks

C++ class Header file Implementation file
BaseTask shore-frontend-base-task.h shore-frontend-base-task.cpp

SmTask shore-sm-tasks.h shore-sm-tasks.cpp

CreateSmTask

DestroySmTask

BeginTransactionTask shore-transaction-tasks.h shore-transaction-tasks.cpp

EndTransactionTask

DevTask shore-dev-tasks.h shore-dev-tasks.cpp

MountDevTask

InitDevTask

DestroyDevTask

FileTask shore-file-tasks.h shore-file-tasks.cpp

CreateFileTask

DestroyFileTask

CreateRecordTask

RootIndexTask shore-root-index-tasks.h shore-root-index-tasks.cpp

DestroyRootIndexEntriesTask

CreateRootIndexEntryTask

RetrieveAllRootIndexTask

B.4. Data Manager modules

C++ class/type Header file Implementation file
ShoreDatabase shore-database.h shore-database.cpp

ShoreTable shore-table.h shore-table.cpp

ShoreMetaTable shore-metatable.h shore-metatable.cpp

ShoreSchema shore-schema.h shore-schema.cpp

ShoreFieldDesc shore-field-desc.h shore-field-desc.cpp

ShoreTuple shore-tuple.h shore-tuple.cpp

ShoreField shore-field.h shore-field.cpp

ShoreSqlVal shore-sql-val.h shore-sql-val.cpp

ShoreSqlType shore-sql-type.h shore-sql-type.cpp

28

