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ABSTRACT
Online transaction processing (OLTP) workload per-
formance suffers from instruction stalls; the instruction
footprint of a typical transaction exceeds by far the capacity
of an L1 cache, leading to ongoing cache thrashing. Several
proposed techniques remove some instruction stalls in
exchange for error-prone instrumentation to the code base,
or a sharp increase in the L1-I cache unit area and power.
Others reduce instruction miss latency by better utilizing
a shared L2 cache. SLICC [2], a recently proposed thread
migration technique that exploits transaction instruction
locality, is promising for high core counts but performs
sub-optimally or may hurt performance when running on
few cores.

This paper corroborates that OLTP transactions ex-
hibit significant intra- and inter-thread overlap in their
instruction footprint, and analyzes the instruction stall re-
duction benefits. This paper presents STREX, a hardware,
programmer-transparent technique that exploits typical
transaction behavior to improve instruction reuse in first
level caches. STREX time-multiplexes the execution of
similar transactions dynamically on a single core so that
instructions fetched by one transaction are reused by all
other transactions executing in the system as much as
possible. STREX dynamically slices the execution of each
transaction into cache-sized segments simply by observing
when blocks are brought in the cache and when they are
evicted. Experiments show that, when compared to baseline
execution on 2 – 16 cores, STREX consistently improves
performance while reducing the number of L1 instruction
and data misses by 37% and 14% on average, respectively.
Finally, this paper proposes a practical hybrid technique
that combines STREX and SLICC, thereby guaranteeing
performance benefits regardless of the number of available
cores and the workload’s footprint.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—cache memo-
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ries; C.1.4 [Processor Architectures]: Parallel Architec-
tures; H.2.4 [Database Management]: Systems—trans-
action processing, concurrency

General Terms
Performance, Design.
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1. INTRODUCTION
Online transaction processing (OLTP) is a 100 billion-

$/year industry, which is expected to continue growing as
online services become even more pervasive. Existing mi-
croarchitectures are not tailored well to OLTP execution
needs, with instruction stalls accounting for up to 85% of
the overall execution cycles [6, 26]. Most OLTP transac-
tions have relatively large active instruction footprints (in
excess of 128KB per transaction) that thrash existing first-
level instruction caches (L1-I). Several works propose to al-
leviate instruction stalls using hardware [2, 5, 7, 13, 20] or
software [10] techniques. Existing techniques effectively re-
duce the number of L1-I misses or the associated penalty
when running OLTP workloads, but in return either require
error-prone instrumentation to the software code base, or
employ hardware prefetching tables that more than double
the area devoted to the L1-I cache units. Others reduce in-
struction miss latency by better utilizing the aggregate L2
cache capacity.

Recent work observes that CMP integration offers an
alternate path to instruction stall reduction. Specifically,
SLICC [2] exploits the following observations: (1) beyond
a certain core count, the aggregate L1 capacity of a chip
multiprocessor becomes sufficiently large to capture not
only the footprint of each transaction individually, but the
footprints of all of the concurrently running transactions.
(2) There is significant overlap in the instruction code
segments executed within and across transactions [10].
SLICC dynamically migrates transaction execution across
cores to avoid instruction cache thrashing, allowing multiple
transactions to reuse cached instructions. Through thread
migration SLICC exploits both intra- and inter-transaction
overlap by converting it into instruction reuse in the caches.
SLICC was demonstrated on a 16-core CMP, but this
work demonstrates that it is not as effective and may hurt



performance when the footprint of all concurrently running
transactions exceeds the aggregate L1-I capacity.

While main-stream 16-core server CMPs are around the
corner and the number of cores on-chip is expected to grow
in the future, the number of cores per application may not
always be sufficient. The data center design and deployment,
and application trends influence the available per application
core count. (1) Current data center design trends are toward
consolidating more virtual machines on servers as this in-
creases utilization, improves security and energy efficiency,
and reduces costs and management overheads [4, 12, 29].
(2) A data center may run multiple OLTP workloads, each
with different transactions. (3) While L1-I capacities remain
cycle-time limited, OLTP transaction instruction footprints
are increasing. Transactions are becoming more complex
and thus larger as a result of additional functionality such
as data analytics (e.g., WebSphere [11], WebLogic [18]) or
more complex logic. Accordingly, it is desirable to avoid
SLICC’s performance cliff and to develop an instruction
stall reduction technique that is effective irrespective of the
number of available cores.

This work demonstrates that there is significant tempo-
ral code overlap among similar OLTP transactions, suggest-
ing that their execution order can be stratified to increase
instruction reuse in the caches. Motivated by this obser-
vation, this work proposes STREX, a technique that ex-
ploits inter-transaction locality by grouping and synchroniz-
ing the execution of similar transactions into time slices.
During each time slice, a lead transaction brings into the
L1-I an instruction code segment that all other transac-
tions ought to reuse. Ideally, when the transactions within
a group overlap perfectly, only the lead transaction incurs
all necessary misses; these are the misses that a transaction
would incur on a conventional system anyhow. As a result
of STREX’s time slicing, the remaining transactions find
all the instructions they need in the L1-I avoiding misses
completely. STREX uses local information at each core
observing cache block allocations and evictions to orches-
trate transaction execution. STREX substantially reduces
instruction stall time when running OLTP workloads, while
remaining effective even when the aggregate L1-I capacity
is insufficient to store the footprints of all concurrently ex-
ecuting transactions. STREX’s approach to reducing in-
struction misses is similar in spirit to STEPS [10]. STEPS
is a software technique that was demonstrated on single
cores. STEPS relies on manual code instrumentation, a
high-overhead error prone process, and produces platform
dependent code that is not portable. STREX does not suf-
fer from these limitations as it is a programmer transparent
technique.

Experiments demonstrate that while STREX performs
substantially better than SLICC when the number of cores
is limited, the opposite is true when there are enough cores
available. Accordingly, this work proposes a mechanism for
dynamically selecting between the two techniques. The se-
lection mechanism uses the available core count while peri-
odically and transparently sampling transactions to measure
their footprint needs.

The analysis of inter-transaction overlap shows that for
16 similar transactions concurrently executing on 16 cores,
more than 70% of the instruction blocks read during an in-
terval appear in the instruction caches of at least five other
cores, while the code overlap is even higher most of the time.

This work compares STREX with a baseline conventional
CMP architecture, with PIF (the state-of-the-art instruc-
tion prefetcher), and with SLICC. When compared to the
baseline, STREX exploits transaction code overlap and re-
duces L1 instruction and data misses respectively by 37%
and 13%, on average for two to 16 cores. When compared
to the best instruction prefetcher known to date, PIF [7],
STREX’s performance is within 5% for one workload and
9% better for another. If the core count is so limited that the
available aggregate on-chip capacity does not fit the trans-
actions’ instruction footprint, STREX outperforms SLICC
by an average of 49%. The experiments show that the hy-
brid mechanism closely follows the performance of the best-
performing technique (SLICC or STREX) given the number
of cores available and the workload’s footprint. Finally, the
experiments show that STREX is more effective at reduc-
ing instruction misses compared to replacement policies that
improve over LRU.

The rest of the paper is organized as follows. Section 2
motivates STREX by discussing the code structure of OLTP
transactions and by analyzing the inter-transaction tempo-
ral instruction overlap. Section 3 discusses how transaction
behavior can be potentially exploited to improve instruc-
tion reuse in caches. Section 3 describes STREX and its
implementation. Section 5 demonstrates experimentally the
performance benefits of STREX. Section 6 reviews related
work, while Section 7 concludes.

2. MOTIVATION
Conventional OLTP systems make no explicit effort to im-

prove instruction reuse in processor caches. OLTP systems
typically assign transactions to cores in an ad-hoc manner,
aiming to balance the work across nodes. A transaction
is assigned to a core where it executes to completion. As
a result, as the number and the length of transactions in
the system increases, OLTP workloads suffer from instruc-
tion stalls due to high L1-I cache miss rates. This section
demonstrates that OLTP transactions exhibit substantial
code overlap, which can create significant locality across dif-
ferent instances of transactions of the same type. Therefore,
there is opportunity to improve instruction reuse by coordi-
nating transaction execution.

Section 2.1 takes a closer look at the code structure of
transactions revealing that same-type transactions ought to
naturally exhibit significant temporal locality. Section 2.2
shows that same-type transactions do follow similar exe-
cution paths touching mostly overlapping code segments.
STREX relies on this inter-transaction locality to improve
instruction reuse by slicing and synchronizing the execution
of multiple transactions of the same type over the L1-I of a
single core.

The rest of this section focuses on the TPC-C [27] New

Order and Payment transactions, which comprise 88% of the
TPC-C workload mix, according to the benchmark’s specifi-
cation. The discussion and results for the other transactions
are similar, so they are omitted for brevity. The observations
about code structure and instruction code segment overlap
apply to all TPC-C and TPC-E [28] transactions.

2.1 OLTP Transaction Code Structure
This section discusses the code structure of some repre-

sentative OLTP transactions. The results of this section
demonstrate that at a high-level, transactions of the same



 

Figure 1: Transaction Flow Graphs tagged with instruction
footprint; R: Lookup, U: Update, I: Insert, IT: Index Scan.

type ought to follow similar instruction paths during execu-
tion touching similar code segments.

OLTP transactions are composed of actions that in turn
may execute several basic functions. Basic function exam-
ples include looking up a record through an index, scanning
and updating an index, inserting a tuple to a table, updating
a tuple, etc. No matter how different the output or high-
level function of one transaction is from another, all database
transactions are composed of a subset of the aforementioned
basic functions, repeated several times for different inputs,
and various permutations.

Figure 1 shows the action flow graphs for the New Or-

der and Payment transactions, which represent ∼88% of the
transaction mix of TPC-C. Boxes represent actions, which
are tagged with their corresponding instruction cache foot-
print; the arrows show the action execution order; and rhom-
buses represent control flow decisions. The flow diagrams
mark each action with the basic function it performs, e.g.,
R() is an index lookup. Each function manipulates input
data in a different way; further details are immaterial to
this discussion.

The diagrams suggest that there should be significant
overlap across transactions of the same type. All Payment
transactions execute the same sequence of actions, with
the exception of conditionally executing the IT(CUST)

action. The instruction stream may not be identical across
all Payment transactions, as the actual code path may
vary depending on the input data. Nevertheless, there
is overlap for data-independent code segments, and for
data-dependent code segments that follow the same path
according to similar control-flow decisions. New Order

transactions exhibit significant overlap as well, despite that
their code paths may diverge more over time due to the
inner loop conditioned on the OL_CNT value.

The diagrams also suggest that there is overlap across
transactions of different types. Initially, New Order and
Payment transactions perform index lookups on the same
tables: Warehouse, District, Customer. Therefore, their
code paths are similar at first, and then they diverge. New

Order has a loop that executes other statements, while Pay-

ment updates the previously searched tuples and inserts a
tuple to History table. Even so, there is overlap as the ac-
tions do call common basic functions, albeit with different
data.

2.2 Inter-Transaction Temporal Overlap
Figure 2 depicts the degree of instruction footprint overlap

over time for New Order and Payment transactions execut-
ing concurrently. This experiment uses 16 randomly cho-
sen same-type transactions that concurrently execute on 16
cores, each with a 32KB L1-I at a rate of one instruction per
cycle. Every 100 instructions per core, the instruction block
overlap is measured for the unique instruction blocks that
were touched per core during this interval. The instruction
overlap for a block is the number of L1-I caches that contain
this instruction block. The graphs show the range of overlap
(1, < 5, < 10, and ≥ 10). The measurements stop when at
least half of the threads complete execution.

The results show that more than 70% of the instruction
blocks touched during an interval appear in at least five
other cores. The overlap is even higher most of the time
and more than 40% of the instructions touched during an
interval appear in at least ten cores. Consequently, most of
the instructions read by a given transaction are also read by
at least five other transactions, and about 40% or more of
these instructions are also read by at least ten transactions.
In addition, all overlapping instruction fetches happen close
enough in time as the instructions survive long enough to
be detected in other caches. The measurements do show
that the transactions diverge, but very few instruction blocks
(less than 10%) appear to be read by a single transaction.

The findings of this section serve as motivation for STREX
as they show that there is significant temporal locality across
transactions of the same type. The next section discusses
how this locality can be potentially exploited to improve
instruction reuse in the L1-I.

3. EXPLOITING TRANSACTION IN-
STRUCTION OVERLAP

Given that OLTP transactions exhibit significant instruc-
tion footprint overlap over time, their execution order can
be stratified to increase instruction reuse in the caches. This
section presents two different ways of exploiting stratified ex-
ecution to improve instruction cache reuse. Both methods
break transaction execution into slices, where during each
slice, a transaction executes through an L1-I sized code seg-
ment. The first method that is the basis for STREX, time-
multiplexes and synchronizes the execution of slices from
multiple transactions over the same core. The second, pre-
viously proposed method, SLICC [2], does so across mul-
tiple cores using thread migration. Both methods increase
instruction reuse by having slices that touch the same code
segment execute in sequence over the same cache where that
code segment resides.

Conventional Execution: Figure 3(a) shows how three
perfectly overlapping transactions would execute under a
conventional OLTP system. The example transactions exe-
cute three code segments A, B, and C in order. Each seg-
ment fits in the L1-I, but any two segments exceed its ca-
pacity. When these transactions execute in a conventional
OLTP, they take turns thrashing the cache since each ex-
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Figure 2: Temporal Overlap Analysis for transactions of type New Order (left) and Payment (right).

 

Figure 3: Scheduling Three Identical Transactions. (a) Con-
ventional Execution. (b) STREX. (c) SLICC.

ecutes segments A through C in order before allowing the
next transaction to execute. Each segment incurs an over-
head due to instruction cache misses. Since the transaction
footprint does not fit in the cache, all segments incur an
overhead due to misses.

STREX: Figure 3(b) shows a better way of utilizing the
L1-I where the first, lead transaction executes segment A in-
curring an overhead as previously. However, instead of pro-
ceeding to execute segment B, transaction 1 context switches
allowing in turn, transactions 2 and 3 to execute instead.
Transactions 2 and 3 find segment A in the L1-I and thus
incur no overhead due to misses. Once all three transac-
tions execute the first segment, execution proceeds to seg-
ment B and so on. Overall, transaction throughput increases
because there are fewer L1-I misses. STREX attempts to
achieve the execution order depicted in Figure 3(b) auto-
matically.

SLICC: CMPs enable the migration-based approach used
by SLICC. As long as there are enough cores so that the
aggregate L1-I capacity can hold all code segments, a trans-
action can migrate to the core whose L1-I cache holds the

code segment the transaction is about to execute. For exam-
ple, as Figure 3(c) shows, the lead transaction can execute
segment A first on core 1, then migrate to core 2 where it
would execute segment B, then migrate to core 3 where it
would execute segment C. Transactions 2 and 3 can follow in
a pipelined fashion, finding segments A, B, and C, in cores
1, 2, and 3, respectively. While transaction 1 incurs an over-
head when fetching the segments for the first time, the other
transactions do not.

STREX and SLICC exploit the same inter-transaction
temporal overlap. SLICC has the additional advantage that
it can exploit intra-transaction far-flung locality. For exam-
ple, if the three transactions in Figure 3 executed A, B, and
C in a loop, SLICC would only fetch each segment once stor-
ing them over three separate L1-Is. STREX would neces-
sarily fetch each segment once per iteration as the segments
cannot fit into a single L1-I. However, Section 5.3 shows that
SLICC performs well only when there are enough cores to fit
the footprint of all concurrently running transactions. In ad-
dition, when there are fewer cores in the system, SLICC may
even cause performance degradation. The rest of this work
investigates a practical implementation for STREX, which
can be used when the number of available cores is insuffi-
cient for the thread-migration-based SLICC to work well. A
system can also decide which method to use while exploiting
the best of both worlds. Section 5.5 presents a mechanism
that dynamically selects between SLICC and STREX.

4. STREX
The key to the success of STREX is the ability to dynam-

ically detect the points at which a transaction is ought to
be context-switched in order to keep inter-transaction exe-
cution synchronized, thereby maximizing instruction cache
reuse. If a transaction executes for a long time, it will end
up evicting cache blocks that other transactions could have
reused. If a transaction executes for a short time, the over-
heads of context switching and of a potential increase in con-
tention in the data caches will overwhelm performance. For
these reasons, context switching at regular intervals would
perform sub-optimally at best. An optimal synchronization
algorithm has to rely on dynamic information: a transaction
should be allowed to execute as long as it benefits from data
and instruction locality, however, it should not be allowed
to evict any blocks that will be useful for other transactions.



Moreover, care must be taken to amortize the costs of con-
text switching over the benefits gained as a result of the
increase in instruction reuse.

Figure 2 demonstrated significant temporal overlap among
same-type transactions, but also showed divergence that re-
sults from loops and conditional statements. Thus, breaking
down the instruction footprint of several transactions into
smaller chunks will not generally result in identical code
segments. Optimally scheduling those chunks in order to
maximize instruction locality is akin to job scheduling, an
NP-complete problem [9]. However, an optimal algorithm
exists for the simpler case of a group of identical transac-
tions, i.e., transactions that follow the exact same execution
path. STREX applies this algorithm to the general case
of partially overlapping transactions resulting in a simple,
inexpensive solution that performs well.

The rest of this section is organized as follows: Section 4.1
describes and demonstrates the potential of the optimal al-
gorithm for the special case of identical transactions. Sec-
tion 4.2 presents STREX’s core synchronization algorithm
while Section 4.3 presents STREX’s implementation. Sec-
tion 4.4 discusses practical challenges and qualitatively com-
pares STREX to SLICC [2] and prefetching.

4.1 Optimal Synchronization for Identical
Transactions

For the special case of multiple, perfectly overlapping
transactions, there is an algorithm for detecting the optimal
context switching points. Let us consider the case of two
identical transactions T1 and T2, and let us assume that
initially the L1-I is empty. T1 starts executing fetching
instruction blocks. Since the transactions are identical, all
blocks fetched by T1 will be fetched by T2 in the exact
same sequence. T1 should continue execution up to the
point where it would be forced to evict a cache block it
brought in. Evicting this block would force T2 to refetch
it. Once T1 stops, T2 starts executing touching exactly the
same blocks that T1 did. All these blocks will be in the
L1-I. Once T2 arrives at the point where it would be forced
to evict a block, it marks all blocks presently cached with a
phase number, say 0. T2 continues execution but it marks
any block it currently touches with phase(1). T2 continues
execution up to the point where it would be forced to evict
a block marked as phase(1). Evicting such a block would
force T1 to refetch it. Execution continues with T1, up to
the point where T1 would now have to evict a block tagged
as phase(1). T1 then proceeds to fetch additional blocks,
marking them with phase(2). This process continues,
incrementing the phase number every time both threads
have had a chance to execute with the same phase number.

More formally, the synchronization algorithm for N mul-
tiple, identical transactions is as follows: (1) the transac-
tions execute in phases, starting with phase(0). The first
transaction is deemed the lead. (2) At phase(i), all cache
blocks fetched by the lead thread are tagged with “i”. (3) A
transaction, including the lead, executes phase(i) as long as
it does not evict cache blocks tagged with “i”. (4) When
the last thread completes phase(i), execution proceeds to
phase(i + 1).

4.1.1 Potential for Identical Transactions:
As Figure 4 shows, the synchronization algorithm has the

potential to work well in practice. The figure shows the
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Figure 4: I-MPKI reduction with STREX and identical
transactions

reduction in I-MPKI for the L1-I for TPC-C and TPC-E
transactions. This experiment uses ten randomly chosen in-
stances for each transaction type. Each of these instances is
replicated ten times thus forming a hypothetical workload
of 100 transactions. Figure 4 depicts the instruction misses
with the optimal synchronization algorithm for each trans-
action type compared to that of the baseline. The results
demonstrate that STREX reduces I-MPKI significantly in
all cases.

However, in practice and as the results of Section 2.2
suggest, rarely different instances of same-type transactions
have completely identical instruction streams due to data de-
pendencies. Accordingly, the results of Figure 4 only serve
as an indication of what may be possible.

4.2 STREX Synchronization Algorithm
This section presents the synchronization algorithm

STREX uses to improve instruction cache reuse for the
general case of multiple, non-identical transactions. Since
transactions diverge at runtime (as Figure 2 shows), the
lead may not touch all blocks that the other, subsequent
threads need. Hence non-lead transactions should also be
allowed to fetch new cache blocks.

The generalized STREX synchronization algorithm is as
follows:

1. Given a pool of transactions, STREX groups transac-
tions of the same type into teams. STREX places each
team into a hardware thread queue in an available ex-
ecution core. Then, it flags the first transaction in the
queue as the lead.

2. STREX synchronizes transaction execution using a per
core phaseID counter. As a transaction touches in-
struction blocks it tags the block with the current
phaseID value no matter whether the access was a hit
or a miss. Whenever the lead resumes execution, it
increments the phaseID counter.

3. STREX continuously monitors victim cache blocks.
Upon encountering a victim block tagged with the cur-
rent phaseID value, STREX context switches the cur-
rent executing transaction and places it at the end of
the thread queue. The next ready transaction resumes
execution.

4. If the lead transaction terminates, the next thread in
the queue becomes the lead.



5. Threads keep running in a round robin order until they
all complete execution.

6. Once all the threads in a team complete execution, the
core becomes available for another team to execute.

4.3 Implementation
STREX’s implementation requires the following compo-

nents per core: (a) thread execution queue, (b) a phaseID
counter, (c) a phaseID tag per L1-I cache block, (d) a victim
block monitoring unit, (e) a thread context switching unit,
and (f) STREX’s control logic.

STREX tags all cache blocks with phaseID values. These
phaseIDs can be maintained separately in a table (PIDT)
to avoid impacting the L1-I design and latency. The PIDT
contains a phaseID entry per cache block and is accessed in
parallel with the L1 tag and data arrays. This work uses
8-bit phaseID tags and an 8-bit, modulo phaseID counter
per core. The area overhead of the PIDT is small as it uses
only eight additional bits per cache block. A PIDT does
not contain any address tags or any additional block related
information.

This work sizes the scheduling structures empirically in
order for STREX to find a sufficient number of similar
transactions to improve throughput. The OLTP system
can provide up to 30 transactions at any given point in
time. STREX groups similar transactions by examining the
address of the header instructions similar to SLICC-Pp [2].
STREX groups similar transactions into teams. The
maximum number of transactions that a team can have
(team size) is fixed system-wide. STREX assigns teams
in the arrival order of the oldest thread in a team. When
transactions that are not part of a team (stray transactions)
become the oldest, they are scheduled individually.

Section 5.4 shows that by controlling the maximum
allowed team size, STREX can trade-off between overall
throughput and per transaction latency. Software database
management scheduling schemes that batch transactions
exhibit a similar tradeoff [10, 23, 30].

STREX context switches threads by saving and restoring
their architectural state to/from the L2 cache slice nearest to
the core. STREX requires support for hardware scheduling
of multiple threads. Several proposals exist for implement-
ing hardware-level thread scheduling and context switch-
ing (e.g., [22]). STREX serves as additional motivation for
further investigating how hardware-level thread scheduling
ought to be supported.

4.4 Discussion
This section discusses some of the implications of STREX

for corner cases, its overheads, and contrasts it against state-
of-the-art instruction miss reduction techniques.

4.4.1 Forward Progress Guarantees
STREX’s effectiveness is limited by the amount of tempo-

ral overlap available across transactions of the same team.
More precisely, the lead transaction has the largest impact
on locality. For example, in a scenario where the lead trans-
action has minimal temporal overlap with the rest of the
team, only the lead thread will make forward progress, while
the others will have to wait until the lead finishes. There is
no possibility of deadlock or starvation as the lead is guaran-
teed to finish, and in the worst possible scenario, the rest of
the threads will become leads in order. Since the lead always

starts execution with a new phaseID, it has the highest au-
thority to evict cache blocks. If other threads do not touch
these blocks and try to evict them, they will be context
switched too early. Since STREX selects the lead randomly,
that scenario is unavoidable. Yet, with our examined work-
loads, this scenario has never happened due to the inherent
temporal overlap across transactions of the same type. An
extension to STREX might investigate placing lower limits
on the amount of forward progress a thread should make
before context switching.

4.4.2 Context Switching Overhead
STREX incurs an overhead for context switching among

team members. The architectural state of each transaction
has to be saved and restored. In this work, thread contexts
are saved in the second level cache to avoid thrashing the
L1-D. STREX amortizes this overhead by improving instruc-
tion and data locality, which result in overall throughput
improvement (see Section 5.3). A portion of the physical
address space is reserved for storing thread contexts. For
the workloads studied, context switches were sufficiently in-
frequent enough so that the overhead of context saving and
restoring was never a significant fraction of the overall ex-
ecution time. An implementation may choose to enforce a
minimum number of instructions or cycles that a transaction
ought to execute before a context switch is allowed.

4.4.3 Interaction with Prefetching
Prefetching reduces the latency observed for instruction

cache misses by anticipating future instruction fetch re-
quests. The simplest next-line prefetcher works well for
streaming code regions. Other more sophisticated prefetch-
ers can predict complex execution paths by recording
previously seen instruction streams, and then prefetching
cache blocks when a part of a recorded stream is touched
again. Ferdman et al. propose prefetchers that record
temporal streams of accessed instruction blocks, TIFS [8],
or streams of committed instructions, PIF [7]. PIF is
the most accurate instruction prefetcher known to date
for OLTP, but it requires resources that exceed that of
a typical L1-I, e.g., ∼40KB per core. When compared
to PIF, STREX is expected to require less bandwidth,
area, and power. STREX improves locality by increasing
instruction and data reuse, rather than by redundantly
fetching cache blocks from the L2 at every transaction.
In addition, as Section 5.6 shows, STREX uses less than
2% of the storage required by PIF. Finally, STREX does
not incur the static and dynamic power for large storage
tables and extra bandwidth. STREX, however, is limited
to classes of applications that share similar behavior with
OLTP workloads, while PIF is a generic technique.

STREX and PIF are not two exclusive solutions to the
same problem. STREX can avoid many of the misses that
PIF has to incur thus possibly reducing the storage, power,
and bandwidth overheads of PIF. PIF could reduce execu-
tion time for the lead transaction, thus improving perfor-
mance when used in conjunction with STREX. An investi-
gation of a possible combination of the two techniques is left
for future work.

4.4.4 Interaction with SMT
Simultaneous Multithreading (SMT) improves trans-

action throughput by executing multiple transactions



Table 1: Workloads.

TPC-C-1 1 warehouse, 84 MB
Wholesale supplier

TPC-C-10 10 warehouses, 1 GB
Wholesale supplier

TPC-E 1000 customers, 20 GB
Brokerage house

MapReduce Hadoop 0.20.2, Mahout 0.4 library
Wikipedia page articles (12 GB)

Table 2: System Parameters.

Processing N OoO cores, 2.5GHz
Cores 6-wide Fetch/Decode/Issue

128-entry ROB, 80-entry LSQ
BTAC (4-way, 512-entry)

TAGE (5-tables, 512-entry, 2K-bimod)

Private L1 32KB, 64B blocks, 8-way
Caches 3-cycle load-to-use, 32 MSHRs

MESI-coherence for L1-D

L2 NUCA Shared, 1MB per core, 16-way
Cache 64B blocks, N slices

16-cycle hit latency, 64 MSHRs

Interconnect 2D Torus, 1-cycle hop latency

Memory DDR3 1.6GHz, 800MHz Bus, 42ns latency
2 Channels / 1 Rank / 8 Banks

8B Bus Width, Open Page Policy
tCAS-10, tRCD-10, tRP-10, tRAS-35

tRC47.5, tWR-15, tWTR-7.5
tRTRS-1, tCCD-4, tCWD-9.5

concurrently over the same core. SMT has been shown to
improve performance for OLTP workloads but the expense
of additional L1 misses; on real hardware, 2-way SMT
increases instruction (15% TPC-C/7% TPC-E) and data
(TPC-C 10%/TPC-E 16%) misses [6, 26]. Moreover, the
core remains idle 80% of the time suggesting that most stalls
remain. It may be possible to use STREX to synchronize
thread execution under SMT and thus improve locality and
performance. A detailed study of the interaction of STREX
and SMT is left for future work.

5. EVALUATION
This section demonstrates experimentally that STREX

reduces instruction stalls improving performance for OLTP
workloads. Specifically, Section 5.2 demonstrates STREX’s
impact on instruction and data misses as compared to
SLICC [2]. Section 5.3 shows the throughput improvement
with STREX in comparison with a next-line prefetcher [24],
a state-of-the-art instruction prefetcher (PIF [7]), and
SLICC. Section 5.4 highlights that STREX can be tuned to
trade-off transaction latency for higher overall throughput.
Section 5.5 presents and evaluates a solution combining
STREX and SLICC. Section 5.6 discusses the hardware
cost of STREX. Section 5.7 investigates the effectiveness
of state-of-the-art cache replacement policies, and their
interaction with STREX.

5.1 Methodology
Table 1 lists the workloads used. Both TPC-C vari-

ants [27] and TPC-E [28] run on top of the scalable
open-source storage manager Shore-MT [14], which was
shown to have similar components and micro-architectural
behavior as commercial DBMSs [1]. The client-driver
and the database are kept on the same machine and the
buffer-pool is configured to keep the whole database in
memory. The experiments use a 1.2B instruction sample
from these workloads. TPC-C-1 and TPC-C-10 use two
different scaling factors for the TPC-C database and serve
to demonstrate that STREX remains effective even when
the database size, and thus the data footprint grows larger.
TPC-C and TPC-E have larger instruction and data
footprints compared to other scale-out workloads [6]. The
MapReduce CloudSuite workload [19], which has a relatively
small instruction footprint [6] serves to demonstrate that
STREX is robust in that it does not reduce performance
for workloads that do not have similar behavior to OLTP.
The MapReduce workload divides the input dataset across
300 threads, each performing a single map/reduce task. For
clarity, the discussion focuses on TPC-C and TPC-E with
MapReduce being included only where absolutely necessary.

Conventional operating systems lack support for thread
context switching or migration at the hardware level. To
work around this limitation, the experiments replay x86 ex-
ecution traces, modeling the timing of all events, and main-
taining the original thread sequence. The traces for TPC-C
and TPC-E include both user and kernel activity, and were
collected using QTrace [25], an instrumentation extension
to the QEMU full-system emulator [3]. For MapReduce,
PIN [17] was used to extract execution traces. All simu-
lations use a modified version of the Zesto x86 multi-core
architecture simulator [16].

Table 2 details the baseline architecture. With N cores,
the baseline architecture has N hardware contexts with the
OS making thread scheduling decisions. STREX or SLICC
form teams over a pool of up to 30 virtual contexts. Unless
otherwise noted, each core maintains a thread queue of up
to ten threads. STREX forms teams of up to ten threads
whereas SLICC forms teams of up to 2N threads. Through-
put is measured as the inverse of the number of cycles re-
quired to execute all transactions. The experiments report
the misses per kilo instructions for instruction (I-MPKI) and
data (D-MPKI).

5.2 L1 Miss Rate
This section shows that STREX improves instruction and

data locality consistently for OLTP workloads irrespective
of the number of cores. Figure 5 reports the L1 I-MPKI
and D-MPKI incurred by the baseline system, SLICC, and
STREX for two to 16 cores. For MapReduce, the I- and D-
MPKI with STREX is within 1% of the baseline as context
switches rarely occur for this workload. The next section
shows that performance is virtually identical as well.

The I-MPKI of the baseline is practically independent of
the number of cores. This is expected as the baseline makes
no explicit effort to increase instruction reuse across threads;
adding more cores improves throughput through increased
concurrency. STREX consistently reduces I-MPKI over the
baseline with the I-MPKI remaining practically constant
(the variation is less than 2%) no matter how many cores are
available. STREX reduces I-MPKI compared to the baseline
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Figure 5: Effect of STREX on L1 instruction and data misses.
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Figure 6: Relative throughput of STREX compared to state-of-the-art instruction miss reduction techniques.

by an average of 30%, 29%, and 44% for TPC-C-1, TPC-C-
10, and TPC-E, respectively, and mostly independently of
the number of cores.

Figure 5 shows that for the baseline, data misses increase
with the number of cores; more concurrency increases co-
herence misses, since transactions share data. Much of the
sharing is due to same type transactions. They tend to ac-
cess the same metadata and locks of the same tables, as well
as the same index roots during index probes, and they tend
to do so in the same sequence. STREX improves data local-
ity by synchronizing their execution. The higher the data
miss rate of the baseline, the greater the D-MPKI improve-
ments with STREX. For 16 cores, STREX reduces D-MPKI
by 20%, 37%, and 11%, for TPC-C-1, TPC-C-10, and TPC-
E, respectively.

SLICC behaves differently than STREX improving
instructions misses more, as more cores become available.
When there are at most eight or four cores for TPC-C and
TPC-E, respectively, SLICC does not reduce instruction
misses more than STREX. Moreover, data misses always
increase with SLICC. Accordingly, even when SLICC
matches or improves upon instruction misses compared
to STREX, performance may suffer due to increased data
misses. As the next section shows, SLICC does not improve
and even hurts performance unless there is a sufficient
number of cores available.

5.3 Throughput
This section compares the overall throughput of

STREX relative to the baseline, a next-line instruction

prefetcher [24], a state-of-the-art instruction prefetcher
(PIF [7]), and SLICC. Figure 6 reports overall throughput
normalized over the 2-core baseline. STREX consistently
improves throughput over the baseline by an average of
35–55%, and by 20–32% over the next-line prefetcher, for
2–16 cores. Contrary to SLICC, STREX is insensitive to
the number of cores and always improves performance.

SLICC either degrades or barely improves performance
over the baseline for the TPC-C workloads with up to eight
cores and for the TPC-E workloads with up to four cores.
For the same configurations the next-line prefetcher consis-
tently outperforms SLICC. SLICC outperforms STREX and
does so considerably only when there are at least eight and
16 cores respectively for TPC-E and for the TPC-C work-
loads. With 16 cores, SLICC outperforms STREX by 8%,
11% and 21% for TPC-C-1, TPC-C-10 and TPC-E. This
result serves as motivation for Section 5.5 which presents
and evaluates a hybrid system that combines STREX and
SLICC. The system selects dynamically which method to use
depending on the number of available cores and the cache
demands of the target OLTP workload.

PIF [7] is a state-of-the-art instruction prefetcher that has
nearly perfect instruction coverage. The results of Figure 6
are an upper bound for PIF’s performance as the exper-
iment models PIF with a 100% hit rate L1-I cache. De-
mand traffic is generated for cache blocks that would have
otherwise missed on a real cache, thus partially modeling
the contention that PIF would incur. This is an optimistic
100% accurate prefetcher that issues perfectly timely re-
quests. The actual PIF prefetcher may fail to prefetch in
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Figure 7: TPC-C transaction latency distribution as a func-
tion of team size for STREX, and of core count for SLICC.

some cases, over-prefetech in others, and not always man-
age to completely hide the miss latency. For 2–16 cores,
STREX achieves on average 95% of PIF’s performance for
TPC-C, and outperforms PIF by 9% for TPC-E, with less
than 2% of the overhead storage.

MapReduce, which has an instruction footprint that fits
in the L1-I cache, remains unaffected with all techniques.

5.4 Transaction Throughput vs. Latency
Similar to software transaction batching schemes [10, 23,

30], STREX improves the overall throughput but may in-
crease transaction latency. By adjusting the maximum num-
ber of transactions per team (team size), it is possible to
control this trade-off as Figure 7 suggests. Figure 7 shows
the distribution of transaction latencies for TPC-C-10 for
the baseline, STREX, and SLICC. For STREX the figure re-
ports latency distributions as a function of team size, noted
as STREX-xT, where x is a team size in the range of two
to 20. In all preceding experiments teams had up to ten
threads. With STREX, the transaction latency is indepen-
dent of the core count, hence the latencies are almost identi-
cal and Figure 7 shows latencies for 16 core only. For SLICC
the figure reports latency distributions as a function of core
count, noted as SLICC-x where x is a core count in the range
of two to 16. The trends are similar for TPC-E and TPC-C-
1 and the figure omits these measurements for clarity. The
legend reports in parentheses the average per distribution
latencies.

A transaction’s latency is the number of cycles elapsed
from the moment it enters the transaction queue until it
completes execution. For STREX, as team size increases,
the distribution tends to move toward longer transaction
latencies. Figure 8 shows the corresponding relative
throughput for TPC-C-10 and TPC-E demonstrating that
throughput also increases with the team size. With up to
20 threads per team, throughput improvements are the
highest at 59% and 80% over the baseline, for TPC-C-10
and TPC-E, respectively. It would be straightforward to
make the team size configurable by the system, which can
then set team size according to its specific needs. This is
similar to the request batch size parameter in VoltDB, a
commercial DBMS whose throughput and latency balance
can be tuned [30]. Figure 7 shows that with SLICC,
transaction latencies become shorter as the number of cores
increases.
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Table 3: FPTable: Instruction Footprint size per Transac-
tion in L1-I size units.

TPC-C Delivery = 12, New Order = 14

Order = 11, Payment = 14, Stock = 11

TPC-E Broker = 7, Customer = 9,

Market = 9, Security = 5,

Tr_Stat = 9, Tr_Upd = 8, Tr_Look = 8

5.5 Combining STREX and SLICC
Data centers often vary their configuration at runtime to

maximize the utilization of their resources, and to maintain
QoS levels for different users. One such configuration option
is changing the number of cores assigned to a particular ap-
plication. Section 5.3 demonstrated that STREX performs
much better than SLICC when the number of cores is not
sufficient to hold the footprint of all transactions, whereas
the opposite is true otherwise. Thus combining STREX and
SLICC is a desirable option to enjoy the best of both worlds.
A hybrid mechanism could make scheduling and migration
decisions at the granularity of a code segment thus switch-
ing between SLICC and STREX depending not only on the
specific number of available cores but also on the specific
mix of transactions running at any moment. Such a mech-
anism could also take advantage of both inter- and intra-
transaction overlap by using SLICC only for a portion of the
transaction (e.g., the inner-loop in transactions of type New

Order as shown in Figure 1). This work considers a sim-
pler alternative that instead dynamically chooses between
STREX and SLICC for all transactions based on the aggre-
gate L1-I capacity available at runtime. If there is enough
aggregate L1-I capacity to fit the workload’s footprint, the
system will decide to schedule all transactions using SLICC,
otherwise, it will use STREX.

The mechanism operates as follows: (1) The system pro-
files the workload measuring the instruction footprint of each
transaction type. The system records the measurements in
a transaction footprint size table (FPTable). The goal is to
measure the average footprint size, in L1-I size units, for all
transaction types. (2) When a transaction group is ready
for scheduling, the system decides, based on knowledge of
the available number of cores and the contents of FPTable,
whether to use STREX or SLICC. (3) FPTable updates are
triggered at: system startup, workload change, new transac-
tions types, and system reconfiguration (e.g., increasing or
decreasing the available cores); all rare events.



The aforementioned system requires a mechanism to
measure the instruction footprint of each transaction
type. This work implements this mechanism re-using
STREX’s phaseID table while executing using SLICC.
The system periodically switches to SLICC and executes
a short profiling phase. In the profiling phase, a group of
similar transactions is scheduled using SLICC. A random
transaction is selected as a sample for this transaction type.
The profiling phase counts the number of cache blocks
touched by this thread on all cores. The profiling process
works as follows. (1) All phaseID tables are reset to zero on
all cores. (2) The sample thread is assigned with a non-zero
phaseID value. (3) Any cache block touched by the sample
thread is tagged with the pre-assigned phaseID. (4) A
cache block counter is incremented whenever the sample
thread touches a block, and had to change its phaseID
value. (5) This process repeats for different transaction
types. The resulting cache block counts are rounded off
to L1-I cache size units and are recorded in the FPTable.
Once the profiling phase completes, FPTable holds the
number of cores required by each transaction when running
under SLICC. Section 5.5.1 evaluates the proposed hybrid
solution.

5.5.1 Evaluation of the Hybrid Solution
Table 3 reports the footprint values recorded in FPTable,

per transaction type during a profiling phase. For these ex-
periments, the hybrid system updates the FPTable at sys-
tem startup and on system reconfiguration. Thus, generat-
ing the FPTable once is sufficient. The profiling period is
0.2% of the overall execution time. When TPC-C and TPC-
E run on more than 12 and eight cores, respectively, the
hybrid solution selects SLICC, otherwise it selects STREX.
Figure 6 reports the hybrid system’s throughput. The hy-
brid system selects STREX on 2–8 cores for TPC-C, and
2–4 cores for TPC-E, and SLICC when there are more cores.
Accordingly, the hybrid solution matches the best perform-
ing scheduler per core count. For TPC-E on eight cores,
three transactions require nine cores. With SLICC, these
transactions incur a few extra misses, however, the resulting
throughput is still slightly higher than STREX.

5.6 Hardware Cost
Table 4 shows a cost breakdown of STREX’s hardware

components, and of the hybrid mechanism. STREX utilizes
two main units: a team formation unit and a thread sched-
uler unit. The team formation unit is used to group simi-
lar transactions into teams. In this work STREX searches
through a window of 30 threads. The team management ta-
ble maintains information about threads until they are dis-
patched to a core. Each entry consists of: a unique numerical
ID, a type ID, a team ID, an index within a team, and a
timestamp.

The thread scheduler unit is responsible for incrementing
the phaseID counter, tagging cache blocks with the current
phaseID value, keeping track of the lead thread, monitor-
ing instruction cache block victims, and context switching
threads. The thread queue is a circular FIFO buffer. Each
entry consists of a unique ID, a pointer to the thread’s con-
text in the L2 cache, and a lead flag bit. The size of the
thread queue should be the maximum value allowed for the
team size configuration parameter. Most experiments set
team size to 10 with 20 being the maximum considered. As-

Table 4: Hardware Component Storage Costs.

Thread Scheduler

Thread Queue 20-entries (12-bit ID,
48-bits pointer to thread context,

1-bit lead flag)

phaseID Counter 8-bit

Auxiliary phaseID 8-bit per cache block
Table (512 cache blocks)

Total 5324 bits (665.5 Bytes)

Team Formation

Team Management 30-entries (12-bit ID,
Table 32-bit timestamp, 4-bit type ID,

4-bits team ID, 8-bit team index)

Total 1800 bits (225 Bytes)

Hybrid System: SLICC’s Cache Monitor Unit

Missed-Tag Queue 60-bits

Miss Shift-Vector 100-bits

Cache Signature 2K-bits

Total 2208 bits (276 Bytes)

suming one team management table per core, the total stor-
age required per core by STREX is 665.5 bytes, in addition
to the logic.

For the hybrid system (described in Section 5.5), SLICC
requires extra components that are modeled after the orig-
inal article [2]. The total storage for the hybrid system is
1166.5 bytes, per core.

5.7 Replacement Policies
This section studies the interaction of STREX with several

state-of-the-art replacement policies. A good replacement
policy, maximizes the reuse of cache blocks. LRU performs
well with applications when blocks have short re-reference
periods. Applications with streaming accesses exhibit the
exact opposite pattern that LRU tries to exploit and as a
result tend to thrash an LRU-managed cache. OLTP work-
loads behave similarly to streaming applications and thus
foil LRU replacement. Recent work propose replacement
policies that aim at keeping part of a streaming footprint
cache resident [13, 20]. Figure 9 reports the I-MPKI for eight
cores, with the following replacement policies: (1) LRU,
(2) LIP, and BIP [20], (3) SRRIP and BRRIP [13], and
(4) STREX coupled with LRU, BIP, and BRRIP.

Figure 9 shows that for the baseline, BBRIP performs
the best as it is specifically designed for streaming applica-
tions. However, STREX with LRU reduces I-MPKI more
than 35% over the best replacement policy for TPC-C-10
and more than 45% for TPC-E. When STREX is combined
with the alternate replacement policies little improvement
results if any. The alternate replacement policies try to
keep the first segment in the cache and thus quickly force
evictions when execution proceeds to the second segment
with STREX. This results in much more frequent context
switching and thus degrades performance. Future work may
further consider the interaction of replacement policies and
STREX.
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6. RELATED WORK
There have been several hardware and software proposals

for reducing instruction stalls that are applicable to OLTP
workloads such as instruction prefetching [7, 8, 15, 21], com-
putation spreading [5], and transaction batching [10].

Instruction prefetching is a well-studied research area.
Stream buffers [15, 21] are simple to implement in hard-
ware, but they provide relatively low instruction coverage.
More sophisticated prefetchers [7, 8] utilize book-keeping
structures to record encountered instruction streams, and
to replay them when part of the stream is touched again.
Their structures increase area and energy. Moreover,
prefetching, unless 100% accurate, increases miss traffic
for fetching blocks that are never touched prior to being
evicted. PIF [7] was reported to achieve near-optimal
instruction coverage. Section 5.3 measured the performance
of PIF. As Section 4.4 discussed, there is potential for
further improving performance by combining a prefetcher
with STREX.

Computational spreading demonstrated that executing
the OS portion of OLTP workloads on separate cores
improves instruction reuse and overall throughput [5].

STEPS [10] is a software solution whose approach is iden-
tical in spirit to STREX. STEPS relies on manual code in-
strumentation, which is a cumbersome task that requires
high level of expertise, prone to many errors as it is manual,
and results in code that is not portable since it is platform
dependent. A slightly improved version, autoSTEPS, au-
tomates several components of the instrumentation process.
However, the user must excite the DBMS through a client to
determine where to place CTX calls manually. In addition,
autoSTEPS may introduce races. STREX is a programmer-
transparent technique that behaves similar to STEPS, in
terms of benefits.

7. CONCLUSIONS
OLTP workloads suffer from high instruction miss stalls

since their transaction instruction footprints are by far larger
than current L1-I caches, on high-end server processors, thus
leading to ongoing cache thrashing. This work analyzed and
quantified the instruction overlap among multiple OLTP
transactions of the same type. The analysis observed sig-
nificant temporal instruction overlap among similar trans-
actions, showing that their execution order can be stratified
to increase instruction reuse in the caches.

This work presented STREX, a programmer-transparent,

single-core technique that exploits this available temporal
overlap among similar transactions. STREX groups similar
transactions into teams, and time-multiplexes their execu-
tion on a single core, thus improving instruction and data
locality. Ideally, a lead transaction encounters cache misses
required to fetch a code segment, and its associated data,
and the rest of the team hit on that code segment, and the
shared data. As opposed to SLICC, which is a previously
proposed technique that exploits inter- and intra-transaction
locality, STREX was demonstrated to be insensitive to the
available number of cores, thus outperforming SLICC when
the available aggregate cache capacity is not sufficient.

Experimental evaluation demonstrated the following.
When compared to a conventional CMP, STREX consis-
tently reduces L1 instruction and data misses respectively
by 37% and 13%, on average for 2 to 16 cores. When
compared to an upper bound of the best instruction
prefetcher known to date, PIF [6], STREX’s performance
is within 5% or up to 9% better, with STREX having less
than 2% of PIF’s storage requirements. When the core
count is less than SLICC’s needs, STREX outperforms
SLICC by an average of 49%. This work also presented
a hybrid mechanism that incorporates both STREX and
SLICC, and dynamically switches to the better alternative
based on the footprint size and available core count. The
hybrid solution closely followed the performance of the
best-performing technique.
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