CMB photons shedding light on dark matter

The annihilation or decay of Dark Matter (DM) particles could affect the thermal history of the universe and leave an observable signature in Cosmic Microwave Background (CMB) anisotropies. We update constraints on the annihilation rate of DM particles in the smooth cosmological background, using WMAP7 and recent small-scale CMB data. With a systematic analysis based on the Press-Schechter formalism, we also show that DM annihilation in halos at small redshift may explain entirely the reionization patterns observed in the CMB, under reasonable assumptions concerning the concentration and formation redshift of halos. We find that a mixed reionization model based on DM annihilation in halos as well as star formation at a redshift z similar or equal to 6.5 could simultaneously account for CMB observations and satisfy constraints inferred from the Gunn-Peterson effect. However, these models tend to reheat the inter-galactic medium (IGM) well above observational bounds: by including a realistic prior on the IGM temperature at low redshift and allowing most of the reionization to be due to star formation, we find stronger cosmological bounds on the annihilation cross-section than with the CMB alone.

Published in:
Journal Of Cosmology And Astroparticle Physics, 12
Bristol, Iop Publishing Ltd

 Record created 2013-03-28, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)