Tuning the photophysical properties of cationic iridium(III) complexes containing cyclometallated 1-(2,4-difluorophenyl)-1H-pyrazole through functionalized 2,2 '-bipyridine ligands: blue but not blue enough

Four new heteroleptic iridium(III) complexes in the family [Ir(dfppz)(2)((NN)-N-boolean AND)](+), where Hdfppz = 1-(2,4-difluorophenyl)-1H-pyrazole and (NN)-N-boolean AND = 6-phenyl-2,2'-bipyridine (1), 4,4'-(di-tert-butyl)-6-phenyl-2,2'-bipyridine (2), 4,4'-(di-tert-butyl)-6,6'-diphenyl-2,2'-bipyridine (3) and 4,4'-bis(dimethylamino)-2,2'-bipyridine (4), have been synthesized as the hexafluoridophosphate salts and fully characterized. Single crystal structures of ligand 3 and the precursor [Ir-2(dfppz)(4)(mu-Cl)(2)] have been determined, along with the structures of the complexes 4{[Ir(dfppz)(2)(1)][PF6]}center dot 3CH(2)Cl(2), [Ir(dfppz)(2)(3)][PF6]center dot CH2Cl2 and [Ir(dfppz)(2)(4)][PF6]center dot CH2Cl2. The role of inter-and intramolecular face-to-face pi-stacking in the solid state is discussed. In the [Ir(dfppz)(2)((NN)-N-boolean AND)](+) ((NN)-N-boolean AND = 1-3) cations, the phenyl substituent in ligands 1, 2 or 3 undergoes hindered rotation on the NMR timescale at 298 K in solution and the systems have been studied by variable temperature NMR spectroscopy. Acetonitrile solutions of [Ir(dfppz)(2)((NN)-N-boolean AND)][PF6] ((NN)-N-boolean AND = 1-3) exhibit similar absorption spectra arising from ligand-based transitions; absorption intensity is enhanced on going to [Ir(dfppz)(2)(4)][PF6] and the spectrum extends further into the visible region. Acetonitrile solutions of the complexes are blue emitters with lambda(em) = 517, 505, 501 and 493 nm for (NN)-N-boolean AND = 1, 2, 3 and 4, respectively (lambda(exc) = 280-310 nm). The redox behaviours of [Ir(dfppz)(2)((NN)-N-boolean AND)][PF6] ((NN)-N-boolean AND = 1-3) are similar, and the introduction of the electron-donating NMe2 substituents onto the (NN)-N-boolean AND ligand shifts the metal-centred oxidation to less positive potentials. Theoretical calculations predict a mixed metal-to-ligand/ligand-to-ligand charge transfer (MLCT/LLCT) character for the emitting triplet state in agreement with the broad and unstructured character of the emission bands. The NMe2 substituents enlarge the HOMO-LUMO gap and blue-shifts the emission of [Ir(dfppz)(2)(4)](+) that is centred on the ancillary ligand. These complexes, when processed into a thin film and sandwiched between two electrodes, lead to very low voltage operating electroluminescent devices. No additional components are needed, which demonstrates their electron and hole transport abilities in conjunction with the luminescent properties.

Published in:
Dalton Transactions, 42, 4, 1073-1087
Cambridge, Royal Society of Chemistry

 Record created 2013-03-28, last modified 2018-12-03

Rate this document:

Rate this document:
(Not yet reviewed)