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The purpose of this paper is to generalize the (Poisson) Optimal Reduction Theorem in

Ortega and Ratiu [Momentum Maps and Hamiltonian Reduction. Progress in Mathe-

matics 222. Boston, MA: Birkhäuser. xxxiv, 497pp., 2004] to general proper Lie group

actions on Dirac manifolds, formulated both in terms of point and orbit reduction.

A comparison to general standard singular Dirac reduction is given emphasizing the

desingularization role played by optimal reduction.

1 Introduction

Dirac structures, introduced in [9] and systematically investigated for the first time in

[8], have a wide range of applications in geometry and theoretical physics. They include

2-forms, Poisson structures, foliations and also provide a convenient geometric setting

for the theory of nonholonomic systems and circuit theory. The study of sub-objects and

quotient objects in the Dirac category, central in the theory of reduction, is of particular

interest.
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Recent years have seen a significant development of Dirac structures from the

geometric point of view as well as in applications. In the presence of symmetry, one can

perform reduction to eliminate variables; see [2, 4, 6, 8, 16, 19, 31, 32], for the regular

case and [3, 17, 18], for the singular situation. All these reduction procedures are in the

spirit of Poisson reduction [12, 15, 22, 25].

In symplectic reduction, a central role is played by the momentum map. While

its existence in the symplectic category is not guaranteed, in concrete applications,

it is rarely the case that a symplectic Lie group action fails to admit a momentum

map. The situation is, however, drastically different in the Poisson category, where

the existence of the momentum map imposes unreasonable constraints on the symme-

tries. Because of that, Ortega and Ratiu [23] introduced the optimal momentum map,

a conservation law of a Poisson symmetry, that is always defined and has values in

a topological space. A reduction method based on the optimal momentum map was

proved.

In this paper, we generalize the optimal momentum map and the optimal reduc-

tion procedure in [23] to closed Dirac manifolds . (Historically, “closed” and “integrable”

Dirac manifolds were synonyms. However, due to the relation of Dirac geometry to

groupoids, an “integrable” Dirac structure is one that, viewed as an algebroid, inte-

grates to a groupoid. This is the reason why, in this paper, we use exclusively the term

“closed”). As we shall see, with necessary assumptions and appropriately extended def-

initions, this important desingularization method works also for Dirac manifolds. The

power of optimal reduction can be immediately seen, already for free actions (3), by not-

ing that it has as a trivial corollary, the stratification in presymplectic leaves of a closed

Dirac manifold.

Singular optimal reduction is carried out in two steps. First, one considers

appropriately chosen distributions jointly defined by the symmetry group and the Dirac

structure. In the free case, this reduces to one distribution that is automatically inte-

grable in the sense of Stefan and Sussmann if the hypotheses for regular/standard Dirac

reduction are satisfied. In the nonfree case, this is no longer true, in general. However,

if these generalized distributions are integrable, their leaves define the level sets of cor-

responding natural optimal momentum maps.

Second, one passes to the quotient and constructs on it the reduced Dirac struc-

ture. It is not possible to extend this result in a naive manner to nonclosed Dirac struc-

tures because the first consequence of nonclosedness is the nonintegrability of the pro-

jection of the Dirac structure on its tangent part, and hence, in general, the distribution

used in the previously described reduction process is also nonintegrable.
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1.1 Outline of the paper

In Section 2.1, we briefly review the relevant definitions and properties of generalized

distributions; special attention is given to integrability conditions for tangent distribu-

tions. Section 2.2 recalls the general theory of Dirac structures and Dirac actions of Lie

groups and Lie algebras. The necessary material from the theory of proper Lie group

actions is reviewed in Section 2.3 and the concept of descending sections of the Pontrya-

gin bundle is recalled.

In Section 3, we summarize the results obtained later on in the particular case

of a free Lie group action. No proofs are provided since they will be done for the general

case in subsequent sections. Nevertheless, we believe that this section is helpful, since

it illustrates the much more complicated general theory in a simple case; the distribu-

tion appearing here is the image of an appropriately chosen Lie algebroid by its anchor

map.

Section 4 is devoted to the study of two special distributions that are cru-

cial in the reduction procedure; they are called optimal distributions and are asso-

ciated to orbit and isotropy types, respectively. Under the necessary conditions for

standard singular reduction, these two optimal distributions are algebraically invo-

lutive and a hypothesis is given so that the one associated to isotropy types is

integrable.

In Section 5, we introduce and study two optimal momentum maps, objects

always available for canonical Lie group actions on closed Dirac manifolds if the optimal

distributions are spanned by their descending sections and are integrable. If the Dirac

structure comes from a Poisson manifold, these conditions are always satisfied and the

two optimal momentum maps coincide. Optimal reduction is presented in Section 6.

Two point optimal reduction theorems associated to the two optimal momentum maps

are proved. In addition, an optimal orbit reduction theorem is presented and is shown

that the three reduction procedures, that is, the two optimal point reduction and the

optimal orbit reduction, are equivalent.

In Section 7, we show that standard and optimal Dirac reductions are equivalent

under appropriate hypotheses. Section 8 is devoted to the study of several examples

illustrating the theory.

A first appendix recalls an averaging method for vector fields, 1-forms and func-

tions on a manifold acted upon properly by a Lie group. A second appendix summarizes

the technical results used to compute the symmetry invariant generators for the set of

invariant vector fields used in the examples.
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1.2 Notation and conventions

We write C ∞(M) for the sheaf of local functions on M. That is, an element f ∈ C ∞(M) is

a smooth function f : U → R, with U an open subset of M. In the same manner, if E is a

vector bundle over M, or a generalized distribution on M, we denote by Γ (E) the set of

local sections of E . In particular, the sets of local vector fields and 1-forms on M will be

denoted by X(M) and Ω1(M), respectively. We will write Dom(σ ) for the open domain of

definition of σ ∈ Γ (E).
The Lie group G is always assumed to be connected; g denotes its Lie algebra.

All G-actions on M are smooth and are denoted by Φ : G × M → M, (g,m) �→ gm = g · m =
Φg(m), for all g ∈ G and m ∈ M. If ξ ∈ g, then ξM ∈ X(M) defined by ξM(m) := d

dt |t=0 exp(tξ) ·
m is called the infinitesimal generator or fundamental vector field defined by ξ .

A section X of T M (respectively, α of T∗M) is called G-invariant, if Φ∗
g X = X

(respectively, Φ∗
gα= α) for all g ∈ G. Here, the vector field Φ∗

g X is defined by Φ∗
g X = TΦg−1 ◦

X ◦Φg, that is, (Φ∗
g X)(m)= TgmΦg−1 X(gm), for all m ∈ M.

Recall that a subset N ⊂ M is an initial submanifold of M if N carries a mani-

fold structure such that the inclusion ι : N ↪→ M is a smooth immersion and satisfies the

following condition: for any smooth manifold P , an arbitrary map g : P → N is smooth

if and only if ι ◦ g : P → M is smooth; in this case, ι is said to be a regular immersion.

The notion of initial submanifold lies strictly between those of injectively immersed and

embedded submanifolds.

2 Generalized Distributions, Symmetries, and Standard Dirac Reduction

2.1 Generalized distributions

The Pontryagin bundle PM of a smooth manifold M is the direct sum PM = T M ⊕ T∗M.

A generalized distribution Δ on M is a subset Δ of PM such that for each m ∈ M, the

set Δ(m) :=Δ ∩ PM(m) is a vector subspace of PM(m)= TmM × T∗
mM. The rank of Δ at

m ∈ M is dimΔ(m). A point m ∈ M is a regular point of the distribution Δ if there exists

a neighborhood U of m such that the rank of Δ is constant on U . Otherwise, m is a

singular point of the distribution.

A local differentiable section of Δ is a smooth section σ ∈ Γ (PM) defined on some

open subset U ⊂ M such that σ(u) ∈Δ(u), for each u∈ U ; the open domain of definition

of σ is denoted by Dom(σ ). Let Γ (Δ) be the space of differentiable local sections of Δ. A

generalized distribution is said to be differentiable or smooth if, for every point m ∈ M

and every vector v ∈Δ(m), there is a differentiable section σ ∈ Γ (Δ) defined on an open
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neighborhood U of m such that σ(m)= v. A subset S ⊆ Γ (PM) is said to span the smooth

generalized distribution Δ if Γ (Δ)= spanC ∞(M)(S); S spans pointwise Δ if for all m ∈ M,

the values of the elements of S at m span Δ(m).

A smooth generalized distribution contained in T M is called a smooth tangent

distribution; a smooth generalized distribution contained in T∗M is called a smooth

cotangent distribution.

2.1.1 Smooth orthogonals and annihilators

The Pontryagin bundle PM = T M ⊕ T∗M of a smooth manifold M is endowed with a non-

degenerate symmetric fiberwise bilinear form of signature (dim M,dim M) given by

〈(um, αm), (vm, βm)〉 := 〈βm,um〉 + 〈αm, vm〉 (1)

for all um, vm ∈ TmM and αm, βm ∈ T∗
mM.

If Δ⊂ PM is a smooth generalized distribution, its smooth orthogonal is the

smooth generalized distribution Δ⊥ ⊆ PM defined by

Δ⊥(m) :=

⎧⎪⎪⎨
⎪⎪⎩τ(m)

∣∣∣∣∣∣∣∣
τ ∈ Γ (PM) with m ∈ Dom(τ )is such that for all

σ ∈ Γ (Δ) with m ∈ Dom(σ ),

we have 〈σ, τ 〉 = 0 on Dom(τ ) ∩ Dom(σ )

⎫⎪⎪⎬
⎪⎪⎭ .

Note that the smooth orthogonal of a smooth generalized distribution is smooth, by

construction. The inclusionΔ⊂Δ⊥⊥ is, in general, strict. If the distributionΔ is a vector

subbundle of PM, then its smooth orthogonal is also a vector subbundle of PM.

Let T ⊆ T M be a tangent distribution. The smooth annihilator of T is the smooth

codistribution T ◦ ⊆ T∗M defined by

T ◦(m) :=
{
αm

∣∣∣∣∣ α ∈Ω1(M),m ∈ Dom(α) and α(X)= 0

on Dom(α) ∩ Dom(X) for all X ∈ Γ (T )

}

for all m ∈ M. Analogously, we define the smooth annihilator C◦ ⊆ T M of a codistribution

C ⊆ T∗M.

The tangent distribution V spanned by the fundamental vector fields of the

action of a Lie group G on a manifold M is defined at every point m ∈ M by V(m) :=
{ξM(m) | ξ ∈ g}. If the action is not free, the rank of the fibers of V can vary on M. The
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smooth annihilator V◦ of V has the expression

V◦(m)= {α(m) | α ∈Ω1(M), m ∈ Dom(α), such that α(ξM)= 0 for all ξ ∈ g}.

We will also use the smooth generalized distribution K := V ⊕ {0} ⊆ PM and its smooth

orthogonal K⊥ = T M ⊕ V◦.

2.1.2 Generalized foliations and integrability of tangent distributions

To give content to the notion of integrability of a smooth tangent distribution and elab-

orate on it, we need to quickly review the concept and main properties of generalized

foliations (see [26–29] for the original articles and [21, 24, 30], or [23], for a quick review

of this theory).

A generalized foliation on M is a partition F := {Lα}α∈A of M into dis-

joint connected sets, called leaves, such that each point m ∈ M has a generalized

foliated chart (U, ϕ : U → V ⊆ Rdim M), m ∈ U . This means that there is some natu-

ral number pα ≤ dim M, called the dimension of the leaf Lα, and a subset Sα ⊂
Rdim M−pα such that ϕ(U ∩ Lα)= {(x1, . . . , xdim M) ∈ V | (xpα+1, . . . , xdim M) ∈ Sα}. Note that

each (xpα+1
◦ , . . . , xdim M

◦ ) ∈ Sα determines a connected component (U ∩ Lα)◦ of U ∩ Lα, that

is, ϕ((U ∩ Lα)◦)= {(x1, . . . , xpα , xpα+1
◦ , . . . , xdim M

◦ ) ∈ V}. The key difference with the concept

of foliation is that the number pα can change from leaf to leaf. The generalized foliated

charts induce on each leaf a smooth manifold structure that makes them into initial

submanifolds of M.

A leaf Lα is called regular if it has an open neighborhood that intersects only

leaves whose dimension equals dimLα. If such a neighborhood does not exist, then Lα
is called a singular leaf. A point is called regular (singular) if it is contained in a regular

(singular) leaf. The set of vectors tangent to the leaves of F is defined by

T(M,F) :=
⋃
α∈A

⋃
m∈Lα

TmLα ⊂ T M.

Let us turn now to the relationship between distributions and generalized foli-

ations. In all that follows, T is a smooth tangent distribution. An integral manifold of

T is an injectively immersed connected manifold ιL : L ↪→ M, where ιL is the inclusion,

satisfying the condition TmιL(TmL)⊂ T (m), for every m ∈ L. The integral manifold L is

of maximal dimension at m ∈ L if TmιL(TmL)= T (m). The distribution T is completely

integrable if for every m ∈ M there is an integral manifold L of T , m ∈ L, everywhere of
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maximal dimension. The distribution T is involutive if it is invariant under the (local)

flows associated to differentiable sections of T . The distribution T is algebraically invo-

lutive if for any two smooth vector fields defined on an open set of M which take values in

T , their bracket also takes values in T . Clearly, involutive distributions are algebraically

involutive and the converse is true if the distribution is a vector subbundle.

Recall that the Frobenius theorem states that a vector subbundle of TM is alge-

braically involutive if and only if it is the tangent bundle of a foliation on M.

The same is true for distributions under the involutivity assumption: A smooth

distribution is involutive if and only if it coincides with the set of vectors tangent to a

generalized foliation, that is, it is completely integrable. This is known as the Stefan–

Sussmann Theorem.

We will formulate the Stefan–Sussmann theorem in the setting of a smooth tan-

gent distribution spanned by a family of vector fields. Note that each smooth tangent

distribution is spanned by the family of its smooth sections.

Let F be an everywhere defined family of local vector fields on M. By every-

where defined, we mean that for every m ∈ M there exists X ∈F such that m ∈ Dom(X).

Associate to the flows of the vector fields in F the set of local diffeomorphisms AF :=
{φt | φt flow of X ∈F} of M and the pseudogroup of transformations generated by it,

AF := (I,M)
⋃

{φ1
t1 ◦ · · · ◦ φn

tn | n∈ N and φk
tk ∈AF or (φk

tk)
−1 ∈AF for k= 1, . . . ,n}.

Analogously, we also define, for any z∈ M, the following vector subspace of TzM:

DF (z) := spanR

{
d

dt

∣∣∣∣
t=t0

φt(y) |φt flow of X ∈F , φt0(y)= z

}

= spanR{X(z) ∈ TzM| X ∈F and z∈ Dom(X)}.

Note that, by construction, DF is a smooth tangent distribution; DF is said to be the

smooth tangent distribution spanned by F .

The AF -orbits, also called the accessible sets of the family F , form a generalized

foliation (see, e.g., [23]). An important question is determining when the smooth tangent

distribution DF spanned by F is integrable.
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Theorem 2.1 ([27, 29]). Let DF be a differentiable generalized distribution on the

smooth manifold M spanned pointwise by an everywhere defined family of vector fields

F . The following are equivalent:

1. The distribution DF is invariant under the pseudogroup of transformations

generated by F , that is, for each φT ∈ AF and for each z∈ M in the domain

of φT ,

TzφT (DF (z))=DF (φT (z)).

2. The distribution DF is integrable and its maximal integral manifolds are the

AF -orbits. �

As already mentioned, given an involutive (and hence a completely integrable)

distribution T , each point m ∈ M belongs to exactly one connected integral manifold Lm

that is maximal relative to inclusion. It turns out that Lm is an initial submanifold and

that it is also the accessible set of m, that is, Lm equals the subset of points in M that

can be reached by applying to m a finite number of composition of flows of elements

of Γ (T ). The collection of all maximal integral submanifolds of T forms a generalized

foliation FT such that T = T(M,FT ). Conversely, given a generalized foliation F on M,

the subset T(M,F)⊂ T M is a smooth completely integrable (and hence involutive) dis-

tribution whose collection of maximal integral submanifolds coincides with F. These

two statements expand the Stefan–Sussmann Theorem cited above.

2.2 Generalities on Dirac structures

2.2.1 Dirac structures

Recall that the Pontryagin bundle PM = T M ⊕ T∗M of a smooth manifold M is endowed

with a nondegenerate symmetric fiberwise bilinear form of signature (dim M,dim M)

given by (1). A Dirac structure [8, 9] on M is a Lagrangian subbundle D ⊂ PM. That

is, D coincides with its orthogonal relative to (1) and so its fibers are necessarily

dim M-dimensional.

The space Γ (T M ⊕ T∗M) of smooth local sections of the Pontryagin bundle is

also endowed with a R-bilinear skew-symmetric bracket (which does not satisfy the
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Jacobi identity) given by

[(X, α), (Y, β)] := ([X,Y],£Xβ − £Yα + 1
2 d(α(Y)− β(X)))

= ([X,Y],£Xβ − iY dα − 1
2 d〈(X, α), (Y, β)〉) (2)

(see [8]). The Dirac structure is closed (or integrable) if [Γ (D), Γ (D)] ⊂ Γ (D). Since

〈(X, α), (Y, β)〉 = 0 if (X, α), (Y, β) ∈ Γ (D), integrability of the Dirac structure is often

expressed in the literature relative to a nonskew-symmetric bracket that differs from

(2) by eliminating in the second line the third term of the second component. This trun-

cated expression which satisfies the Jacobi identity but is no longer skew-symmetric is

called the Courant–Dorfman bracket:

[(X, α), (Y, β)] := ([X,Y],£Xβ − iY dα). (3)

A Dirac structure D on a manifold M defines two smooth tangent distributions

G0,G1 ⊂ T M and two smooth cotangent distributions P0,P1 ⊂ T∗M; their fibers at m ∈ M

are:

G0(m) := {X(m) ∈ TmM | X ∈ X(M), (X,0) ∈ Γ (D)},

G1(m) := {X(m) ∈ TmM | X ∈ X(M), there exists α ∈Ω1(M), such that (X, α) ∈ Γ (D)},

and

P0(m) := {α(m) ∈ T∗
mM | α ∈Ω1(M), (0, α) ∈ Γ (D)},

P1(m) := {α(m) ∈ T∗
mM | α ∈Ω1(M), there exists X ∈ X(M), such that (X, α) ∈ Γ (D)}.

The smoothness of G0,G1,P0, and P1 is obvious since, by definition, they are generated

by smooth local sections. In general, these are not vector subbundles of TM and T∗M,

respectively. It is also clear that G0 ⊂ G1 and P0 ⊂ P1. In general, P0 = G◦
1, G0 = P◦

1, P1 ⊆
G◦

0, and G1 ⊆ P◦
0. If P1 (respectively, G1) has constant rank on M, the first (respectively,

second) inclusion is an equality.

A function f ∈ C ∞(M) is called D-admissible, or simply admissible if there is no

possibility of confusion, if there exists a vector field X ∈ X(M) such that (X,d f) ∈ Γ (D).
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The section (X,d f) is then called (D-) admissible or (D-)Hamiltonian and X =: X f is a

(D-)Hamiltonian vector field for f .

Note that the vector field X f is not unique, if G0 �= {0}; if X f is a Hamiltonian vec-

tor field for f , then, for any section Z of G0, the sum X f + Z is also a Hamiltonian vector

field for f . Indeed, since (X f ,d f), (Z ,0) ∈ Γ (D) , the sum (X f + Z ,d f)= (X f ,d f)+ (Z ,0)

is also a section of D. The smooth tangent distribution G0 is spanned by the Hamiltonian

vector fields of the constant functions, which are consequently all admissible.

Define a bracket {· , ·}D on the set C ∞(M)D of admissible functions by { f, g}D :=
X f (g)= −Xg( f) for all f, g ∈ C ∞(M)D. This bracket does not depend on the choices

made for Xg and X f , and if the Dirac manifold (M,D) is integrable, {· , ·}D : C ∞(M)D ×
C ∞(M)D → C ∞(M)D is a Poisson bracket on C ∞(M)D.

2.2.2 Properties of integrable Dirac structures

Assume that (M,D) is an integrable Dirac manifold. Then, relative to the Courant bracket

(3) and the anchor πT M : D → T M given by the projection on the first factor, D becomes

a Lie algebroid over M. The smooth distribution G1 = πT M(D)⊂ T M is then completely

integrable in the sense of Stefan and Sussmann and each leaf N of G1 inherits a presym-

plectic form ωN given by

ωN(X̃, Ỹ)(p)= α(Y)(p)= −β(X)(p), (4)

for all p∈ N and X̃, Ỹ ∈ X(N), where X,Y ∈ Γ (G1) are arbitrary sections ιN-related to X̃

and Ỹ , respectively, and ιN : N ↪→ M is the inclusion; ιN-relatedness is denoted by X̃ ∼ιN

X, Ỹ ∼ιN Y. The 1-forms α, β ∈Ω1(M) are such that (X, α), (Y, β) ∈ Γ (D). Formula (4) is

independent of all the choices involved. Note that there is an induced Dirac structure

on N given by the graph of the bundle map � : T N → T∗N associated to ωN . The proofs

of these facts can be found in [8]. Since G1 has constant rank on N, the codistribution

P0 has also constant rank on N and D ∩ (T N ⊕ T∗M|N) is a smooth vector bundle over N.

Then the induced Dirac structure DN on N can be described in the following way:

Γ (DN) := {(X̃, α̃) | ∃(X, α) ∈ Γ (D) such that X̃ ∼ιN X and α̃= ι∗Nα} (5)

(see [8] or [16]).
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Let (M,D) be a closed Dirac manifold and f ∈ C ∞(M)D a smooth admissible func-

tion. Let φ be the flow of a corresponding Hamiltonian vector field X f . Since

(£X f X,£X fα)= [(X f ,d f), (X, α)] ∈ Γ (D)

for all (X, α) ∈ Γ (D), we also have (φ∗
t X, φ∗

t α) ∈ Γ (D), for all (X, α) ∈ Γ (D). (This implica-

tion is standard, but the proof is difficult to find in the literature. It is carried out in

[13, 14].) We get the following theorem (see also [8, Theorem 2.4.1]):

Theorem 2.2. Let (M,D) be a closed Dirac manifold, f ∈ C ∞(M) an admissible function

of (M,D), and X f a Hamiltonian vector field for f . Let φ be the flow of X f . The Dirac

structure is invariant under φt for all t for which φt is defined, that is, (φ∗
t X, φ∗

t α) ∈ Γ (D)
for all (X, α) ∈ Γ (D). �

Thus, if g ∈ C ∞(M)D is an admissible function and φ is the flow of the vector

field X f , then the function φ∗
t g is also admissible. Furthermore, if XH is a solution of the

implicit Hamiltonian system (XH ,dH) ∈ Γ (D) for a Hamiltonian H ∈ C ∞(M)D, then the

Dirac structure D is conserved along the solution curves of the system.

Note that if X is an arbitrary section of G1, it is not possible to show in the same

manner that the Dirac structure is conserved along the flow lines of X. Recall also that

the space of sections of G1 is not necessarily generated by {X f | f admissible}. Therefore,

the flows of sections of G1 do not conserve the Dirac structure of M, in general. As we

shall see later on, this is a major technical problem. Certain conditions on the admissible

functions will have to be imposed.

2.3 Proper actions and orbit-type manifolds

2.3.1 The stratification by orbit types

In this section, we consider a smooth and proper action

Φ : G × M → M,

(g,m) �→Φ(g,m)=Φg(m)= gm = g · m
(6)

of a Lie group G on a manifold M. Let π : M → M̄ := M/G be the orbit map.
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For each closed Lie subgroup H of G, we define the isotropy type set

MH = {m ∈ M | Gm = H},

where Gm = {g ∈ G | gm = m} is the isotropy subgroup of m ∈ M. Since the action is

proper, all isotropy groups are compact. The sets MH , where H ranges over the closed

Lie subgroups of G for which MH is nonempty, form a partition of M and therefore they

are the equivalence classes of an equivalence relation in M. Define the normalizer of H

in G by

N(H) := {g ∈ G | gHg−1 = H};

N(H) is a closed Lie subgroup of G. Since H is a normal subgroup of N(H) the quotient

N(H)/H is a Lie group. If m ∈ MH , we have Gm = H and Ggm = gHg−1 for all g ∈ G. Con-

sequently, gm ∈ MH if and only if g ∈ N(H). The action of G on M restricts to an action

of N(H) on MH , which induces a free and proper action of N(H)/H on MH .

Define the orbit type set

M(H) := {m ∈ M | Gm is conjugated to H}. (7)

Then,

M(H) = {gm | g ∈ G,m ∈ MH } = π−1(π(MH )).

The connected components of MH and M(H) are embedded submanifolds of M; therefore,

MH is called an isotropy-type manifold and M(H) an orbit-type manifold. Moreover,

π(M(H))= {gm | m ∈ MH }/G = MH/N(H)= MH/(N(H)/H).

Since the action of N(H)/H on MH is free and proper, it follows that MH/(N(H)/H) is a

quotient manifold of MH . Hence, the subset π(M(H))⊆ M̄ = M/G is a manifold.

The partitions of M by the connected components of the orbit-type manifolds

is a decomposition of the differential space M. The corresponding stratification of M

is called the orbit-type stratification of M [11, 24]. The orbit space M̄ = M/G with its

quotient topology has also the structure of a stratified space with strata the projections

of the connected components of the orbit-type manifolds.
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2.3.2 Descending sections of PM

Let V◦
G be the cotangent distribution on M spanned pointwise by the G-equivariant

sections of V◦, that is, V◦
G(m) := {αm | α ∈ Γ (V◦)G} = {d f(m) | f ∈ C ∞(M)G} (see [18,

Lemma 5.8]). If α ∈ Γ (V◦)G , it pushes-forward to the “1-form” ᾱ := π∗α such that, for every

Ȳ ∈ X(M̄) and every vector field Y ∈ X(M) satisfying Y ∼π Ȳ, we have

π∗(ᾱ(Ȳ))= α(Y).

Each vector field X satisfying [X, Γ (V)] ⊆ Γ (V) can be written as X = XG + XV ,

with XG ∈ X(M)G and XV ∈ Γ (V), and X pushes-forward to a “vector field” X̄ on M̄. Since

we will not need these objects in the rest of the paper, we will not give more details

about what we call the “vector fields” and “1-forms” on the stratified space M̄ = M/G

and refer to [18] for more information.

A local section (X, α) of T M ⊕ V◦ =K⊥ satisfying [X, Γ (V)] ⊆ Γ (V) and α ∈ Γ (V◦)G

is called a descending section of PM.

Let T be the tangent distribution on M spanned pointwise by the vector fields

that descend to M̄ := M/G, that is, T is the distribution spanned pointwise by

F := {X ∈ X(M) | X = XG + XV , with XG ∈ X(M)G, and XV ∈ Γ (V)}

= {X ∈ X(M) | [X, Γ (V)] ⊆ Γ (V)}.

We have shown in [18] that T is integrable and its leaves are the connected components

of the orbit-type manifolds. In the same manner, let TG be the distribution on M spanned

by the set FG of G-invariant vector fields on M:

FG = {X ∈ X(M) |Φ∗
g X = X ∀g ∈ G}.

It is shown in [23] that this smooth distribution is also completely integrable in the

sense of Stefan and Sussmann; its leaves are the connected components of the isotropy-

type manifolds. Note that the integrability of T follows from the integrability of TG and

Proposition 3.4.6 in [23]. In particular, both distributions coincide in the case of a free

action. This is why the constructions made here simplify in a significant manner in this

special case, which is reviewed in Section 3.

By the considerations above, the generalized distribution T ⊕ V◦
G is the general-

ized distribution spanned pointwise by the descending sections of PM. The descending
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sections of a G-invariant dirac structure D will be of great importance in the rest of this

paper. These sections necessarily lie in D ∩ (T ⊕ V◦
G).

2.3.3 Review of standard Dirac reduction

Symmetries of Dirac manifolds. Let (M,D) be a smooth Dirac manifold. Let G be a Lie

group and Φ : G × M → M a smooth left action. Then G is called a symmetry Lie group

of D if, for every g ∈ G, the condition (X, α) ∈ Γ (D) implies that (Φ∗
g X, Φ∗

gα) ∈ Γ (D). We

say then that the Lie group G acts canonically or by Dirac actions on M.

Let g be a Lie algebra and ξ ∈ g �→ ξM ∈ X(M) be a smooth left Lie algebra action,

that is, the map (x, ξ) ∈ M × g �→ ξM(x) ∈ T M is smooth and ξ ∈ g �→ ξM ∈ X(M) is a Lie

algebra anti-homomorphism. The Lie algebra g is said to be a symmetry Lie algebra of

D if for every ξ ∈ g the condition (X, α) ∈ Γ (D) implies that (£ξM X,£ξMα) ∈ Γ (D). Of course,

if g is the Lie algebra of the Lie group G and ξM is the infinitesimal generator for all ξ ∈ g,

then if G is a symmetry Lie group of D it follows that g is a symmetry Lie algebra of D.

Standard Dirac reduction. We present a short review of the Dirac reduction

methods. For more details, see [18, 19]. Let (M,D) be a smooth Dirac manifold acted

upon in a smooth proper and Dirac manner by a Lie group G such that the intersection

D ∩ (T ⊕ V◦
G) is spanned pointwise by its descending sections.

Consider the subset DG of Γ (D) defined by

DG := {(X, α) ∈ Γ (D) | α ∈ Γ (V◦)G and [X, Γ (V)] ⊆ Γ (V)},

that is, the set of the descending sections of D.

Each vector field X satisfying [X, Γ (V)] ⊆ Γ (V) pushes forward to a vector field X̄

on M̄. For each stratum P̄ of M̄, the restriction of X̄ to points of P̄ is a vector field XP̄ on

P̄ . On the other hand, if (X, α) ∈DG , then we have α ∈ Γ (V◦)G and it pushes forward to the

1-form ᾱ := π∗α such that, for every Ȳ ∈ X(M̄) and every vector field Y ∈ X(M) satisfying

Y ∼π Ȳ, we have

π∗(ᾱ(Ȳ))= α(Y).

Moreover, for each stratum P̄ of M̄, the restriction of ᾱ to points of P̄ defines a 1-form

α P̄ on P̄ . Let

D̄ := {(X̄, ᾱ) | (X, α) ∈DG}
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and for each stratum P̄ of M̄, set

D P̄ := {(XP̄ , α P̄ ) | (X̄, ᾱ) ∈ D̄}.

Define the smooth generalized distribution D P̄ on P̄ by

D P̄ (s) := {(XP̄ (s), α P̄ (s)) ∈ Ts P̄ × T∗
s P̄ | (XP̄ , α P̄ ) ∈D P̄ } (8)

for all s ∈ P̄ . Note that Γ (D P̄ )=D P̄ . We have the following theorem.

Theorem 2.3 ([18]). Let (M,D) be a Dirac manifold with a proper Dirac action of a con-

nected Lie group G on it. Let P̄ be a stratum of the quotient space M̄. If D ∩ (T ⊕ V◦
G) is

spanned pointwise by its descending sections, then D P̄ defined in (8) is a Dirac structure

on P̄ . If (M,D) is integrable, then ( P̄ ,D P̄ ) is integrable. �

In the regular case, this simplifies to the following statement.

Theorem 2.4 ([19]). Let G be a connected Lie group acting in a proper way on the man-

ifold M such that all isotropy subgroups are conjugated. Assume that D ∩ K⊥ has con-

stant rank on M, where K⊥ := T M ⊕ V◦. Then the Dirac structure D on M induces a Dirac

structure D̄ on the quotient M̄ = M/G given by

D̄(m̄) :=
{
(X̄(m̄), ᾱ(m̄)) ∈ Tm̄M̄ × T∗

m̄M̄

∣∣∣∣∣∃X ∈ X(M) such that X ∼π X̄

and (X, π∗ᾱ) ∈ Γ (D)

}
, (9)

for all m̄ ∈ M̄. If D is integrable, then D̄ is also integrable. �

3 The Free Case

In this section, we present, without proofs, the theory of optimal reduction for free Lie

group actions. We do this because the main ideas are easier to follow in this situa-

tion and because this case follows closely the nonfree Poisson case. The proofs will be

given later for the general case of a proper action; this is technically considerably more

involved due to the fact that the characteristic distribution P1 of an arbitrary Dirac

structure is not equal to T∗M (as was the case for a Poisson structure). In the general

case, two types of natural optimal distributions arise simultaneously as generalizations
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of the Poisson optimal distribution. This is related to the fact that one can consider orbit-

type and isotropy-type manifolds when carrying out singular reduction. In addition, as

we shall see, these two natural distributions are not integrable, in general. In the free

case, where they are both equal, one has to assume that the intersection of the Dirac

structure with the vector bundle K⊥ associated to the action has constant rank (as for

the standard reduction). In the general case, this does not make sense because K⊥ is not

necessarily smooth; we will give additional hypotheses guaranteeing the integrability

of the optimal distributions.

Let (M,D) be a closed Dirac manifold, G a symmetry Lie group of D acting freely

and properly on M. Assume in the following that D ∩ K⊥ is a vector bundle, where K =
V ⊕ {0} ⊂ T M ⊕ T∗M and K⊥ = T M ⊕ V◦. To define the optimal momentum map (as in [23,

§ 5.5.7]) we need to introduce an additional smooth distribution. Define

DG(m) := {X(m) | there is α ∈ Γ (V◦)⊆Ω1(M) such that (X, α) ∈ Γ (D)} ⊆ G1(m),

for all m ∈ M. Then DG =⋃
m∈M DG(m) is a smooth distribution on M.

If the manifold M is Poisson and the Dirac structure is the graph of the Pois-

son map � : T∗M → T M, then DG(p)= {X f (p) | there is f ∈ C ∞(M)G such that X f = �(d)} ,

which recovers the definition in [23].

Returning to the general case of Dirac manifolds, note that

DG = πT M(D ∩ (T M ⊕ V◦))= πT M(D ∩ K⊥), (10)

where πT M : T M ⊕ T∗M → T M is the projection on the first factor and that we always

have

G0 ⊆DG ⊆ G1.

We have the following lemmas.

Lemma 3.1. Let (X, α), (Y, β) ∈ Γ (D ∩ K⊥), that is, X,Y ∈ Γ (DG). Then the 1-form £Xβ −
iY dα is a local section of V◦. �

For the proof see Lemma 4.2.

Corollary 3.2. If D is integrable, the space of local sections of the intersection of vec-

tor bundles D ∩ K⊥ is closed under the Courant bracket. Hence, under the assumption
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that D ∩ K⊥ has constant dimensional fibers, this vector bundle inherits a Lie algebroid

structure relative to the Courant–Dorfman bracket on Γ (D ∩ K⊥) and the anchor map

πT M : D ∩ K⊥ → T M. Thus, the distribution DG = πT M(D ∩ K⊥) is integrable in the sense

of Stefan–Sussmann. �

This corollary is an immediate consequence of Lemma 3.1 and the closedness

of D. Note that in the general case of proper nonfree actions, we will have to assume

that the corresponding distributions are integrable, or give additional hypotheses under

which this is true.

Thus, if D ∩ K⊥ is a vector bundle, it is a Lie algebroid and M admits hence

a generalized foliation by the leaves of the generalized distribution DG (see [8]). The

optimal momentum map is now defined like in [23].

Definition 3.3. Assume that D ∩ K⊥ is a vector subbundle of T M ⊕ T∗M. The projection

J : M → M/DG (11)

on the leaf space of DG is called the (Dirac) optimal momentum map. �

In order to formulate the reduction theorem for the optimal momentum map, we

need an induced action of G on the leaf space of DG . This does not follow, as usual, from

the G-equivariance of the vector fields spanning DG because, in this case, they are not

necessarily G-equivariant.

Proposition 3.4. If m and m′ are in the same leaf of DG thenΦg(m) andΦg(m′) are in the

same leaf of DG for all g ∈ G. Hence there is a well-defined action Φ̄ : G × M/DG → M/DG

given by

Φ̄g(J (m)) :=J (Φg(m)). �

For the proof, see Propositions 5.1 and 5.3.

Denote by Gρ the isotropy subgroup of ρ ∈ M/DG for this induced action. If g ∈ Gρ

and m ∈J −1(ρ), then

J (Φg(m))= Φ̄g(J (m))= Φ̄g(ρ)= ρ =J (m)
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and we conclude, as usual, that Gρ leaves J −1(ρ) invariant. Thus, we get an induced

action of Gρ on J −1(ρ), which is free if the original G-action on M is free.

Also, J −1(ρ) is an initial submanifold of M since it is a leaf of the generalized

foliation defined by the integrable distribution DG . By Ortega and Ratiu [23, Proposi-

tion 3.4.4], there is a unique smooth structure on Gρ with respect to which this subgroup

is an initial Lie subgroup of G with Lie algebra

gρ = {ξ ∈ g | ξM(m) ∈ TmJ −1(ρ), for all m ∈J −1(ρ)}.

In general, Gρ is not closed in G.

Definition 3.5. Let (M,D) be a Dirac manifold with integrable Dirac structure D and G

a Lie group acting canonically on it. Let P be a set and J : M → P a map. We say that J has

the Noether property for the G-action on (M,D) if the flow Ft of any implicit Hamiltonian

vector field associated to any G-invariant admissible function h∈ C ∞(M) preserves the

fibers of J, that is,

J ◦ Ft = J|Dom(Ft),

where Dom(Ft) is the domain of definition of Ft. �

Like in the Poisson case (see [23, Theorem 5.5.15]), one gets the following uni-

versality property. Note that if D ∩ K⊥ is spanned by sections with exact cotangent

projections, that is, by the family {(X f ,d f) ∈ Γ (D) | d f ∈ Γ (V◦)} , then, by G-invariant

averaging, it is spanned by {(X f ,d f) ∈ Γ (D) | f ∈ C ∞(M)G}.

Theorem 3.6. Let G be a symmetry Lie group of the Dirac manifold (M,D) and

J : M → P a function with the Noether property. Assume that D ∩ K⊥ is spanned by sec-

tions with exact cotangent projections. Then there exists a unique map φ : M/DG → P

such that the following diagram commutes:

M
J

��

J ����
��

��
��

�
P

M/DG

φ

�����������
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If J is G-equivariant with respect to some G-action on P , then φG is also G-equivariant.

If J is smooth and M/DG is a smooth manifold, then φG is also smooth. �

For the proof, see Theorem 5.6.

Now we can generalize the optimal reduction procedure from Poisson mani-

folds (see [23, Theorem 9.1.1]) to closed Dirac manifolds. As we shall see, with appro-

priately extended definitions this important desingularization method works also for

Dirac manifolds.

Theorem 3.7 (Optimal point reduction by Dirac actions). Let (M,D) be an integrable

Dirac manifold and G a Lie group acting freely and properly on M and leaving the Dirac

structure invariant. Assume that D ∩ K⊥ is constant dimensional and let J : M → M/DG

be the optimal (Dirac) momentum map associated to this action. Then, for any ρ ∈ M/DG

whose isotropy subgroup Gρ acts properly on J −1(ρ), the orbit space Mρ =J −1(ρ)/Gρ is

a smooth presymplectic regular quotient manifold with presymplectic form ωρ ∈Ω2(Mρ)

defined by

(π∗
ρωρ)(m)(X(m),Y(m))= αm(Y(m))= −βm(X(m)) (12)

for any m ∈J −1(ρ) and any X,Y ∈ Γ (DG) defined on an open set containing m, where

α, β ∈ Γ (V◦) are such that (X, α), (Y, β) ∈ Γ (D ∩ K⊥), and πρ : J −1(ρ)→ Mρ is the projec-

tion. The pair (Mρ,Dρ) is called the (Dirac optimal) point reduced space of (M,D) at ρ,

where Dρ is the graph of the presymplectic form ωρ . �

Note that if D is the graph of a Poisson structure on M, the distribution G0 is

{0}, all functions in C ∞(M) are admissible, and we are in the setting of the optimal point

reduction by Poisson actions (see [23, Theorem 9.1.1]).

Recall that, since D ∩ K⊥ is assumed to have constant dimensional fibers, one

can build the reduced Dirac manifold (M̄, D̄) as in Theorem 2.4. The following theorem

gives the relation between the reduced manifold M̄ and the reduced manifolds Mρ given

by the optimal reduction theorem.

Theorem 3.8. If m ∈J −1(ρ)⊆ M, the reduced manifold Mρ is diffeomorphic to the

presymplectic leaf N̄ through π(m) of the reduced Dirac manifold (M̄,Dred) via the map

Θ : Mρ → N̄, πρ(x) �→ (π ◦ iρ)(x). Furthermore, Θ∗ωN̄ =ωρ , where ωN̄ is the presymplectic

form on N̄. �
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Example 3.9. Consider a closed Dirac manifold (M,D) and the trivial Lie group G = {e}.
Then the trivial action of G on M is Dirac and its vertical space is just the zero section in

T M. Thus, the intersection D ∩ K⊥ is equal to D ∩ (T M ⊕ T∗M)= D. The projection πT M

of D ∩ K⊥ is hence just the smooth distribution G1, which is known to be completely

integrable in the sense of Stefan and Sussmann (see [8]).

In this situation, we get consequently the leaves of the presymplectic foliation

of the Dirac manifold (M,D) as reduced spaces and we recover also the statement of the

preceding theorem in the case of a trivial action. �

In the following, we will show how these results generalize to the nonfree case.

The main difficulty is the fact that the distribution K does not have constant rank in

this case, and K and K⊥ are not necessarily spanned by sections that descend to the

quotient. Also, the sets spanned by the pairs of vector fields and 1-forms that descend to

the quotient, and by the vector fields and 1-forms that descend to the quotient and are

G-invariant, are different, in general. Taking the intersection of the Dirac structures

with each one of them, yield two different singular foliations. These foliations are

related to the stratifications by orbit types and by isotropy types, respectively.

4 The Optimal Distributions

From now on, we assume that (M,D) is an integrable Dirac manifold and G a symmetry

Lie group of D acting properly on M.

Recall from Section 2.3.2, the definitions of T and V◦
G . In the free case, D ∩ (T ⊕

V◦
G)= D ∩ K⊥, which is assumed to be of constant rank. Since in the general case, T ⊕ V◦

G

does not have constant rank, it does not make much sense to assume that its intersec-

tion with D has constant rank. In the first subsection, we assume that D ∩ (T ⊕ V◦
G) is

spanned by its descending sections, as is required for the standard singular reduction

(see Theorem 2.3). We show that, under this hypothesis, the distributions are both alge-

braically involutive and the integrability of DG follows from the integrability of D. In

the second subsection, we conclude the integrability of DG from an “exactness” condi-

tion. The proof is in the same spirit as the proof of the integrability of the characteristic

distribution associated to a Poisson structure.

Definition 4.1. Assume that D ∩ (T ⊕ V◦
G) and D ∩ (TG ⊕ V◦

G) are smooth generalized dis-

tributions. The smooth tangent distributions

D := πT M(D ∩ (T ⊕ V◦
G)) and DG := πT M(D ∩ (TG ⊕ V◦

G))
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are called the orbit-type optimal distribution and the isotropy-type optimal

distribution. �

4.1 Algebraic involutivity of the optimal distributions

In this section, we assume that D ∩ (T ⊕ V◦
G) is spanned by its descending sections,

hence it is smooth. Recall the notation K := V ⊕ {0}. We want to show that, under this

assumption, D and DG are algebraically involutive. Furthermore, the integrability of DG

will be a consequence of the integrability of D.

Note that in the free case, we have D =DG = πT M(D ∩ K⊥). If D ∩ K⊥ has constant

rank on the manifold M, it has the structure of a Lie algebroid and, by a standard result

in [8], D is completely integrable. The main result in [19] implies that D ∩ K⊥ is then

spanned by its descending sections, and hence D has the same property.

Lemma 4.2. If (X, α) and (Y, β) are descending sections of D, then the Courant bracket

[(X, α), (Y, β)] is also a descending section of D. �

Proof. Since D is closed, we have automatically

[(X, α), (Y, β)] = ([X,Y],£Xβ − iYdα) ∈ Γ (D).

We have to show that £Xβ − iYdα is a section of V◦. Write X = XG + XV and Y =
YG + YV with XG , YG ∈ X(M)G and XV , YV ∈ Γ (V) (see [18]). For each ξ ∈ g, we get

(£Xβ − iYdα)(ξM)= (iXdβ)(ξM)+ d(iXβ)(ξM)− (iYdα)(ξM)

= X(β(ξM))− ξM(β(X))− β([X, ξM])+ ξM(β(X))

− Y(α(ξM))+ ξM(α(Y
G + YV))+ α([Y, ξM])

= X(0)− ξM(β(X))− 0 + ξM(β(X))− Y(0)+ ξM(α(Y
G))+ 0 = 0,

where we have used the G-invariance of the function α(YG), [X,V ], [Y,V ] ∈ V for all V ∈ V,

and β(V)= α(V)= 0 for all V ∈ Γ (V). Since the fundamental vector fields ξM, ξ ∈ g, span

Γ (V) as a C ∞(M)-module, we get £Xβ − iYdα ∈ Γ (V◦).

It remains to show that £Xβ − iYdα is G-equivariant and [[X,Y], Γ (V)] ⊆ Γ (V). To

see this, choose ξ ∈ g. Then, using the Jacobi identity for the Courant–Dorfman bracket,
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we get

£ξM [(X, α), (Y, β)] = [(ξM,0), [(X, α), (Y, β)]] = [£ξM (X, α), (Y, β)] + [(X, α),£ξM (Y, β)]

= ([[ξM, X],Y] + [X, [ξM,Y]],£[ξM,X]β − i[ξM,X]dα)

= ([[ξM, X],Y] + [X, [ξM,Y]],0) ∈ Γ (V ⊕ 0)

since [ξM, X], [ξM,Y] ∈ Γ (V) and β, α, dα are G-equivariant. Hence, since G is a connected

Lie group, the 1-form £Xβ − iYdα is G-invariant. �

The following proposition shows the algebraic involutivity of D.

Proposition 4.3. Assume that D ∩ (T ⊕ V◦
G) is spanned by its descending sections. Let

(X, α) and (Y, β) be sections of D ∩ (T ⊕ V◦
G). Then the Courant bracket

[(X, α), (Y, β)] = ([X,Y],£Xβ − iYdα)

is also an element of Γ (D ∩ (T ⊕ V◦
G)). Hence, if X,Y ∈ Γ (D) then [X,Y] ∈ Γ (D), and D is

algebraically involutive. �

Proof. Write (X, α) and (Y, β) as sums

(X, α)=
k∑

i=1

fi(Xi, αi) and (Y, β)=
l∑

j=1

gj(Yj, β j),

with f1, . . . , fk, g1, . . . , gl ∈ C ∞(M) and (X1, α1), . . . , (Xk, αk), (Y1, β1), . . . , (Yl , βl) descending

sections of D. Since

[(X1, α1), f(X2, α2)] = f [(X1, α1), (X2, α2)] + X1( f)(X2, α2)

for all (X1, α1), (X2, α2) ∈ Γ (D) and f ∈ C ∞(M), we get

[(X, α), (Y, β)] =
⎡
⎣ k∑

i=1

fi(Xi, αi),

l∑
j=1

gj(Yj, β j)

⎤
⎦

=
k,l∑

i, j=1

(gj fi[(Xi, αi), (Yj, β j)] − gjYj( fi)(Xi, αi)+ fi Xi(gj)(Yj, β j)).
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This shows that [(X, α), (Y, β)] can be written as a C ∞(M)-combination of the descending

sections [(X j, α j), (Yi, βi)], (X j, α j), and (Yi, βi) of D (i = 1, . . . ,k, j = 1, . . . , l). The bracket

[(X, α), (Y, β)] is thus a section of D ∩ (T ⊕ V◦
G). �

We study now properties of the smooth distribution DG .

Proposition 4.4. If D ∩ (T ⊕ V◦
G) is spanned pointwise by its descending sections, then

D ∩ (TG ⊕ V◦
G) is spanned pointwise by its G-invariant descending sections and it is, in

particular, smooth. �

Proof. Choose m ∈ M, and

(vm, lm) ∈ (D ∩ (TG ⊕ V◦
G))(m)⊆ (D ∩ (T ⊕ V◦

G))(m).

Since D ∩ (T ⊕ V◦
G) is spanned by its descending sections, we find a smooth section (X, α)

of D ∩ (T ⊕ V◦
G) such that the vector field X is descending, α ∈ Γ (V◦)G , X(m)= vm, and

α(m)= lm. Since the action of G on M is proper, there exists a tube U for the action

at m (see Theorem A.1). Assume that (X, α) is defined on the whole of U ; otherwise,

multiply (X, α) by a bump function that is equal to 1 on a neighborhood U1 � U of m,

and equal to 0 on the complement of a neighborhood U2 of m with U1 � U2 � U . Consider

the G-invariant averaging (XG, αG) at m of the pair (X, α). Since (X, α) is a section of

D ∩ (T ⊕ V◦
G), the pair (XG, αG) is also a section of this intersection, and we get

XG(m)= XG([e,0]H )=
∫

H
T[h,0]HΦh−1 X([h,0]H )dh,

αG(m)= αG([e,0]H )=
∫

H
α[h,0]H ◦ T[e,0]HΦh dh,

where H = Gm is the isotropy group of the point m. Note that XG(m) and αG(m) only

depend on the values of X and α at m, and thus, the multiplication with the bump func-

tion does not change the situation if the section (X, α) was not defined on the whole

of U . Since α is G-invariant and H is the isotropy group of m, we have, in particu-

lar, α(m) ◦ TmΦh = α(m), for all h∈ H (note that again, the multiplication with the bump

function does not change anything). Thus, since [h,0]H = [hh−1,h · 0]H = [e,0]H = m, for

all h∈ H , we get

XG(m)=
∫

H
TmΦh−1 X(m)dh
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and

αG(m)=
∫

H
α(m)dh= α(m)= lm.

Since X(m)= vm ∈ TG(m), it is tangent to the isotropy-type manifold through m and

hence, using [10, Lemma 2.4], we conclude that XG(m)=
∫

H TmΦh−1 X(m)dh= X(m)= vm.

The section (XG, αG) is hence a G-invariant section of D ∩ (TG ∩ V◦
G) taking the

value (vm, lm) at m. �

Theorem 4.5. Assume that D ∩ (T ⊕ V◦
G) is spanned pointwise by its descending sec-

tions. If D is an integrable distribution, then DG is also integrable. �

Proof. We have seen in the preceding proposition that D ∩ (TG ⊕ V◦
G) is spanned point-

wise by its G-invariant sections

{(X, α) ∈ Γ (D) | X ∈ X(M)G and α ∈ Γ (V◦)G}.

Let (X, α) be a descending section of D and φ the flow of the vector field X. Since D is

integrable, we know that φ∗
t Y is a section of D ∩ (T ⊕ V◦

G) provided (Y, β) is a descending

section of D for all t for which φt is defined (see Theorem 2.1 about the integrability of

smooth distributions spanned pointwise by families of vector fields).

Consider, in particular, a G-invariant pair (X, α) of D ∩ (TG ⊕ V◦
G). Then (X, α) is

a descending section of D and, denoting again by φ the flow of X, we know that φ∗
t Y

is a section of D ∩ (T ⊕ V◦
G) if (Y, β) is a G-invariant descending section of D. But since

X and Y are G-invariant vector fields, the flow φ of X is G-equivariant and the vector

field φ∗
t Y is, consequently, G-invariant. Let βt be a section of V◦

G such that (φ∗
t Y, βt) ∈

Γ (D ∩ (T ⊕ V◦
G)). Since φ∗

t Y ∈ X(M)G , we even have (φ∗
t Y, βt) ∈ Γ (D ∩ (TG ⊕ V◦

G)), and hence

φ∗
t Y ∈ Γ (DG).

By Theorem 2.1, we conclude that DG is completely integrable in the sense of

Stefan and Sussmann. �

4.2 The “exactness” condition

We make now another assumption: the intersection D ∩ (T ⊕ V◦
G) is spanned pointwise

by its set of exact descending sections

{(X f ,d f) ∈ Γ (D) | f ∈ C ∞(M)G, [X f , Γ (V)] ⊆ Γ (V)}.

We will show that the (isotropy type) optimal distribution is also integrable in this case.
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Theorem 4.6. If the generalized distribution D ∩ (T ⊕ V◦
G) is spanned pointwise by its

set of exact descending sections, then the distribution DG is smooth and integrable. �

Proof. Since D ∩ (T ⊕ V◦
G) is spanned pointwise by its exact descending sections, we

can show, as in the proof of Proposition 4.4, that D ∩ (TG ⊕ V◦
G) is spanned point-

wise by its exact G-invariant descending sections: choose m ∈ M and (vm, αm) ∈ (D ∩
(TG ⊕ V◦

G))(m). Then (vm, αm) ∈ (D ∩ (T ⊕ V◦
G))(m) and, by hypothesis, we find a smooth

exact descending section (X f ,d f) of D defined in a neighborhood of m and such that

(X f ,d f)(m)= (vm, αm) . Consider the G-invariant average (XG, αG) of (X f ,d f) in a tube

centered at m. The pair (XG, αG) is a section of D because D is G-invariant. Since

d f ∈ Γ (V◦)G , we find αG = d f and hence (XG,d f) is a G-invariant descending section

of D. Since vm ∈ TG(m), vm is tangent to the isotropy-type manifold through m and we

find

XG(m)=
∫

H
TmΦh−1 X f (m)dh=

∫
H

TmΦh−1vm dh= vm,

where H = Gm. Thus, (XG,d f) satisfies (XG,d f)(m)= (vm, αm).

Hence, the distribution DG is spanned pointwise by the family

F G := {X ∈ X(M)G | there exists f ∈ C ∞(M)G such that (X,d f) ∈ Γ (D)} ⊆ X(M).

We write X f for a G-invariant vector field corresponding to the admissible function

f ∈ C ∞(M). Let X f be an element of F G and denote by φ the flow of X f . Let Xg be an

element of F G , corresponding to the admissible function g ∈ C ∞(M)G . By Theorem 2.2,

we know that (φ∗
t Xg, φ

∗
t dg) is a section of D. Furthermore, since X f is G-invariant, its flow

φt is G-equivariant and thus, φ∗
t Xg ∈ X(M)G and φ∗

t g ∈ C ∞(M)G . This shows that φ∗
t Xg is

an element of F G and hence that DG is completely integrable in the sense of Stefan and

Sussmann. �

The following proposition is not needed in the rest of the paper; we add it here

for the sake of completeness.

Proposition 4.7. If the intersection D ∩ (TG ⊕ V◦
G) is smooth, then it is spanned point-

wise by its G-invariant descending sections. �

Proof. If m ∈ M and (vm, lm) ∈ D ∩ (TG ⊕ V◦
G)(m), then we find a smooth section (X, α) of

D ∩ (TG ⊕ V◦
G) defined on a neighborhood U ′ of m in M such that (X(m), α(m))= (vm, lm).
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Let H = Gm be the isotropy group of the point m and let U be a tube for the action of G at

m; assume that (X, α) is defined on the whole of U (otherwise, we multiply (X, α) with a

bump function as in the proof of Proposition 4.4). The average (XG, αG) is a G-invariant

section of D ∩ (TG ⊕ V◦
G), hence a G-invariant descending section of D.

As in the proof of Proposition 4.4, we deduce that XG(m)= X(m)= vm. Since α

is a section of V◦
G , it can be written as α =∑k

i=1 fiαi, where fi ∈ C ∞(M) and αi ∈ Γ (V◦)G .

Again, as in the proof of Proposition 4.4, we compute

αG(m)=
k∑

i=1

∫
H

fi(hm)αi(hm) ◦ TmΦh dh

=
k∑

i=1

∫
H

fi(m)αi(m)dh=
k∑

i=1

fi(m)αi(m)= α(m)= lm.

Hence, we have found a smooth G-invariant descending section (XG, αG) of D taking the

value (vm, lm) at the point m. �

Remark 4.8. Let (M, {· , ·}) be a smooth Poisson manifold with a canonical and proper

smooth action of a Lie group G on it. Let D be the Dirac structure associated to the

Poisson bracket on M. Since V◦
G is generated by the differentials of the G-invariant

smooth functions, the intersection D ∩ (T M ⊕ V◦
G) is spanned pointwise by the pairs

(X f ,d f), where f ∈ C ∞(M)G . The vector field X f corresponding to a G-invariant func-

tion f ∈ C ∞(M)G is G-invariant and we get

D ∩ (T M ⊕ V◦
G)= D ∩ (T ⊕ V◦

G)= D ∩ (TG ⊕ V◦
G),

which is spanned by its exact G-invariant descending sections. Hence, we are now in

the situation of the exactness condition; the distributions DG and D are equal and com-

pletely integrable in the sense of Stefan and Sussmann. �

5 The Optimal Momentum Maps

In this section, we define the two optimal momentum maps and show that there is an

action of the Lie group on the leaf spaces of the two distributions, such that the momen-

tum maps are G-equivariant. We also study the isotropy subgroups of these actions.

Assume that the distributions D and DG are spanned pointwise by their descend-

ing sections and are completely integrable in the sense of Stefan and Sussmann. Let
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J : M → M/D and JG : M → M/DG be the projections on the leaf spaces of D and DG ,

respectively. The map J (respectively, JG ) is called the (orbit type) Dirac optimal momen-

tum map (respectively, the (isotropy type) Dirac optimal momentum map). In this

section, we will study these two momentum maps separately.

5.1 The orbit-type Dirac optimal momentum map

We construct an optimal momentum map induced by the distribution D.

Proposition 5.1. If m and m′ are in the same leaf of D, then Φg(m) and Φg(m′) are in

the same leaf of D for all g ∈ G. Hence there is a well-defined action Φ̄ : G × M/D → M/D
given by

Φ̄g(J (m)) :=J (Φg(m)) (13)
�

Proof. Let m and m′ be in the same leaf of D. Without loss of generality, we can assume

that there exists a vector field X ∈ Γ (D) with flow φ such that φt(m)= m′ for some t (in

reality, m and m′ can be joined by finitely many such curves). Since (X, α) ∈ Γ (D ∩ (T ⊕
V◦

G)) for some α ∈ Γ (V◦
G) and D ∩ (T ⊕ V◦

G) is G-invariant, it follows that (Φ∗
g X, Φ∗

gα) ∈
Γ (D ∩ (T ⊕ V◦

G)) for all g ∈ G. Hence, Φ∗
g X ∈ Γ (D), for all g ∈ G. For all s ∈ [0, t], we have

d

ds
(Φg ◦ φs)(m)= Tφs(m)Φg(X(φs(m)))= (Φ∗

g−1 X)(Φg(φs(m))) ∈D((Φg ◦ φs)(m)).

Thus, the curve c : [0, t] → M, s �→ (Φg ◦ φs)(m) connecting c(0)=Φg(m) to c(t)=
Φg(φt(m))=Φg(m′) has all its tangent vectors in the distribution D and hence it lies

entirely in the leaf of D through the point Φg(m). �

Denote by G(ρ) the isotropy subgroup of ρ ∈ M/D for this induced action. If

g ∈ G(ρ) and m ∈J −1(ρ), then

J (Φg(m))= Φ̄g(J (m))= Φ̄g(ρ)= ρ =J (m)

and we conclude, as usual, that G(ρ) leaves J −1(ρ) invariant. Thus, we get an induced

action Φ(ρ) : G(ρ) × J −1(ρ)→J −1(ρ).

Since D is, by definition, a subdistribution of the integral tangent distribution

T , each leaf of D is be contained in a leaf of T . Since the leaves of T are the connected
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components of the orbit-type submanifolds of M, the induced action Φ(ρ) of G(ρ) on

J −1(ρ) has isotropy subgroups that are conjugated in G for each ρ ∈ M/DG , as is shown

in the next proposition.

Proposition 5.2. Let J −1(ρ) be a leaf of D and m ∈J −1(ρ). Then the isotropy subgroup

(G(ρ))m of m by the action of G(ρ) on J −1(ρ) is equal to the isotropy subgroup Gm. Hence

we have the inclusion ⋃
J (m)=ρ

Gm ⊆ G(ρ). �

Proof. Choose m ∈J −1(ρ) and g ∈ (
G(ρ)

)
m. Then we have g · m = m, which leads to

g ∈ Gm. Conversely, choose g ∈ Gm and compute

Φ̄g(ρ)= Φ̄g(J (m))=J (g · m)=J (m)= ρ.

Thus, we have shown that g ∈ G(ρ). But since g · m = m, we have in particular

g ∈ (G(ρ))m. �

We will see later that the isotropy subgroups of the action of G(ρ) on J −1(ρ) are

conjugated in G(ρ).

In general, the action of G(ρ) on J −1(ρ) is not proper. A sufficient condition for

this is, for example, the closedness of G(ρ) in G, which is not true, in general.

5.2 The isotropy-type Dirac optimal momentum map

The optimal distribution DG gives rise to a second Dirac optimal momentum map. The

results are analogous to those in the previous subsection.

Proposition 5.3. If m and m′ are in the same leaf of DG , then Φg(m) and Φg(m′) are in

the same leaf of DG for all g ∈ G. Hence there is a well-defined action Φ̄ : G × M/DG →
M/DG given by

Φ̄g(JG(m)) :=JG(Φg(m)). (14)
�

Proof. The proof is almost identical to that of Proposition 5.1. The only difference is

that we have to consider the flow of X ∈ Γ (DG). Then we use G-invariance of the distri-

bution D ∩ (TG ⊕ V◦
G). �
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Let Gσ be the isotropy subgroup of σ ∈ M/DG . Then there exists a unique smooth

structure on Gσ with respect to which Gσ is an initial Lie subgroup of G; the Lie algebra

of Gσ is

gσ := {ξ ∈ g | ξM(m) ∈DG(m) for all m ∈J −1
G (σ )}

(see [23, Proposition 3.4.4]). In particular,

dim gσ = dim (V(m) ∩ DG(m))+ dim Gm for any m ∈J −1
G (σ ). (15)

Indeed, the surjective linear map ξ ∈ gσ �→ ξM(m) ∈ V(m) ∩ DG(m) has kernel {ξ ∈ g |
ξM(m)= 0}.

Since Gσ leaves J −1
G (σ ) invariant, we get an induced action Φσ of Gσ on J −1

G (σ ).

Since DG ⊆ TG , the points of J −1
G (σ ) are all in the same connected component of an

isotropy type submanifold of M and hence Gm = Hσ for all m ∈J −1
G (σ ) and some compact

subgroup Hσ ⊆ G.

Proposition 5.4. Let J −1
G (σ ) be a leaf of DG and m ∈J −1

G (σ ). The isotropy subgroup

(Gσ )m of m by the action of Gσ on J −1
G (σ ) is equal to the compact subgroup Hσ which is

automatically a subset of Gσ . �

Proof. Here also, the proof of the analog in the orbit-type case (Proposition 5.2) can be

adapted to this particular situation. �

With this last proposition, we can show the missing detail in the preceding

subsection.

Proposition 5.5. Choose ρ ∈ M/D and let G(ρ) be its isotropy subgroup by the action

of G on M/D. Then we find for all m,m′ ∈J −1(ρ) an element g ∈ G(ρ) such that Gm =
gGm′ g−1. �

Proof. We have DG ⊆D ⊆ V + DG , by definition. For m ∈ M, the leaf J −1(ρ) of D through

m is thus contained in G · J −1
G (σ ), where σ =JG(m) and ρ =J (m), and the leaf J −1

G (σ ) is

contained in J −1(ρ).

Choose m′ ∈J −1(ρ). Then m′ can be written as m′ = gm′′ with m′′ ∈J −1
G (σ )⊆

J −1(ρ) and g ∈ G . Then, we have Gm′ = gGm′′ g−1. But since m′′ is an element of
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J −1
G (JG(m))⊆ MGm , we have Gm′′ = Gm and hence Gm′ = gGmg−1. Furthermore, g · ρ =

g · J (m)= g · J (m′′)=J (g · m′′)=J (m′)= ρ, which shows that g ∈ G(ρ). �

5.3 Universality of the optimal map JG under the exactness condition (§ 4.2)

We assume here that the intersection D ∩ (T ⊕ V◦
G) is spanned pointwise by its set of

exact descending sections

{(X f ,d f) ∈ Γ (D) | f ∈ C ∞(M)G, [X f , Γ (V)] ⊆ Γ (V)}.

We have shown in Section 4.2 that the distribution DG is then completely integrable in

the sense of Stefan and Sussmann. Hence, the isotropy-type optimal momentum map is

defined.

Note that in this particular case, the smooth distribution DG is spanned point-

wise by the following family of vector fields:

F = {X f ∈ X(M)G | (X f ,d f) ∈ Γ (D), f ∈ C ∞(M)G},

and its leaves are hence the accessible sets of this family of vector fields. Using this,

we prove a universality property of the isotropy-type optimal momentum map. This

theorem suggests that the isotropy-type optimal momentum map should be the more

“natural” one, provided that the exactness condition above is satisfied. Recall that in

the Poisson case, the optimal distribution is always spanned by the family F , and the

following statement is hence true (see [23]).

Theorem 5.6. Let G be a symmetry Lie group of the Dirac manifold (M,D) and J : M → P

a function with the Noether property (see Definition 3.5). Then there exists a unique map

φG : M/DG → P such that the following diagram commutes:

M
J

��

J ����
��

��
��

�
P

M/DG

φG

�����������
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If J is G-equivariant with respect to some G-action on P , then φG is also G-equivariant.

If J is smooth and M/DG is a smooth manifold, then φG is also smooth. �

Proof. The proof is the same as for Poisson manifolds (see [23, Theorem 5.5.15]). Define

φ : M/DG → P by φ(ρ) := J(m), where ρ =J (m). The map φ is well defined since if m′ ∈
J −1(ρ), then there is a finite composition F of flows of elements of F such that m′ =
F (m). Since J is a Noether momentum map, we have

J(m′)= J(F (m))= J(m)= φ(ρ).

The definition immediately implies that the diagram commutes. Uniqueness of φ follows

from the requirement that the diagram commutes and the surjectivity of J . Equivariance

of φ is a direct consequence of the definition (14) of the G-action on M/DG . Finally, if all

objects are smooth manifolds and J , J are smooth maps, then φ is a smooth map as the

quotient of the smooth map J by the projection J (see [5]). �

6 Optimal Reduction

In this section, we generalize the optimal reduction theorem for Poisson manifolds (see

[23, Theorem 9.1.1]) to closed Dirac manifolds. As we shall see, with necessary assump-

tions and appropriately extended definitions, this important desingularization method

works also for Dirac manifolds.

We shall assume throughout this section that the distributions D (respectively,

DG ) are spanned pointwise by their descending (respectively, G-invariant) sections and

are completely integrable in the sense of Stefan and Sussmann. Recall from Section 2.1.2

that their leaves are then the accessible sets of these special families of vector fields.

As we have seen above, there are two optimal momentum maps that we can con-

sider. We have hence two optimal point reduction theorems. We will also prove an orbit

reduction theorem and shall see that the two optimal momentum maps give rise to the

same orbit reduction theorem. At the end of this section, it will be shown that the three

optimally reduced manifolds at J (m) and JG(m), for a point m ∈ M, are isomorphic

presymplectic manifolds.

6.1 The reduction theorems: Optimal point reduction by Dirac actions

In this subsection, (M,D) is again a smooth integrable Dirac manifold and G is a Lie

group acting smoothly and properly on M and leaving the Dirac structure invariant. We
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assume that D ∩ (T ⊕ V◦
G) is spanned pointwise by the descending sections of D and that

D is integrable. Let J : M → M/D be the orbit-type Dirac optimal momentum map asso-

ciated to this action. If ρ ∈ M/D, we denote by ι(ρ) : J −1(ρ) ↪→ M the regular immersion.

Recall that J −1(ρ) is an initial submanifold of M.

Theorem 6.1. For any ρ ∈ M/D with isotropy subgroup G(ρ) acting properly on J −1(ρ),

the orbit space M(ρ) :=J −1(ρ)/G(ρ) is a regular quotient manifold such that the projec-

tion π(ρ) :J −1(ρ)→ M(ρ) is a smooth submersion. Define ω(ρ) ∈Ω2(M(ρ)) by

(π∗
(ρ)ω(ρ))(m)(vm, wm) := αι(ρ)(m)(Y(ι(ρ)(m)))= −βι(ρ)(m)(X(ι(ρ)(m))), (16)

for any m ∈J −1(ρ) and any X,Y ∈ Γ (D) defined on an open set around ι(ρ)(m),

where (X, α), (Y, β) ∈ Γ (D ∩ (T ⊕ V◦
G)) are such that Tmι(ρ)vm = X(ι(ρ)(m)) and Tmι(ρ)wm =

Y(ι(ρ)(m)).

Then (M(ρ), ω(ρ)) is a presymplectic manifold. The pair (M(ρ),D(ρ)) is called the

orbit-type Dirac optimal point reduced space of (M,D) at ρ, where D(ρ) is the graph of

the presymplectic form ω(ρ). �

Since D ∩ (T ⊕ V◦
G) is spanned pointwise by its descending sections and D is

integrable, DG = πT M(D ∩ (TG ⊕ V◦
G)) is spanned pointwise by its G-invariant descending

sections and is completely integrable in the sense of Stefan and Sussmann by Proposi-

tion 4.4 and Theorem 4.5. Let JG : M → M/DG be the isotropy-type Dirac optimal momen-

tum map. For σ ∈ M/DG , denote by ισ :J −1
G (σ ) ↪→ M the regular immersion.

Theorem 6.2. For any σ ∈ M/DG with isotropy subgroup Gσ acting properly on J −1
G (σ ),

the orbit space Mσ :=J −1
G (σ )/Gσ is a regular quotient manifold such that the projection

πσ :J −1(σ )→ Mσ is a smooth submersion. Define ωσ ∈Ω2(Mσ ) by

(π∗
σωσ )(m)(vm, wm) := αισ (m)(Y(ισ (m)))= −βισ (m)(X(ισ (m))), (17)

for any m ∈J −1(σ ) and any X,Y ∈ Γ (DG) defined on an open set around ισ (m), where

(X, α), (Y, β) ∈ Γ (D ∩ (TG ⊕ V◦
G)) are such that Tmισ vm = X(ισ (m)) and Tmισwm = Y(ισ (m)).

Then (Mσ , ωσ ) is a presymplectic manifold. The pair (Mσ ,Dσ ) is called the

isotropy-type Dirac optimal point reduced space of (M,D) at σ , where Dσ is the graph

of the presymplectic form ωσ . �
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Proof of Theorem 6.1. Recall the notation Φ(ρ) : G(ρ) × J −1(ρ)→J −1(ρ) for the restric-

tion of the original G-action on M to the Lie group G(ρ) and the manifold J −1(ρ). Since

the G(ρ)-action on J −1(ρ) is, by hypothesis, proper and its isotropy subgroups are conju-

gated by Proposition 5.5, the quotient M(ρ) :=J −1(ρ)/G(ρ) is a regular quotient manifold

and the projection π(ρ) :J −1(ρ)→J −1(ρ)/G(ρ) is a smooth surjective submersion.

We show that ω(ρ) given by (16) is well defined. Let m,m′ ∈J −1(ρ) be such

that π(ρ)(m)= π(ρ)(m′) and let v,w ∈ TmJ −1(ρ), v′, w′ ∈ Tm′J −1(ρ) be such that Tmπ(ρ)(v)=
Tm′π(ρ)(v

′), Tmπ(ρ)(w)= Tm′π(ρ)(w
′). Let (X, α), (X′, α′), (Y, β), (Y′, β ′) be sections of D ∩ (T ⊕

V◦
G) such that

X(ι(ρ)m)= Tmι(ρ)v, X′(ι(ρ)(m′))= Tm′ ι(ρ)v
′,

Y(ι(ρ)(m))= Tmι(ρ)w, Y′(ι(ρ)(m′))= Tm′ ι(ρ)w
′.

The condition π(ρ)(m)= π(ρ)(m′) implies the existence of an element g ∈ G(ρ) ⊆ G such that

m′ =Φ
(ρ)
g (m). We have then π(ρ) = π(ρ) ◦Φ(ρ)

g and thus Tmπ(ρ) = Tm′π(ρ) ◦ TmΦ
(ρ)
g . Further-

more, because of the equalities Tmπ(ρ)(v)= Tm′π(ρ)(v
′), Tmπ(ρ)(w)= Tm′π(ρ)(w

′), we have

Tm′π(ρ)(TmΦ
(ρ)
g (v)− v′)= 0 and Tm′π(ρ)(TmΦ

(ρ)
g (w)− w′)= 0

and there exist elements ξ1, ξ2 ∈ g such that ξ1
M(ι(ρ)(m

′)), ξ2
M(ι(ρ)(m

′)) ∈D(ι(ρ)(m′)),

X′(ι(ρ)(m′))− Tι(ρ)(m)Φg(X(ι(ρ)(m)))= Tι(ρ)(m′)(v
′ − TmΦ

(ρ)
g (v))= Tι(ρ)(m′)ξ

1
J −1(ρ)(m

′)

= ξ1
M(ι(ρ)(m

′))

and

Y′(ι(ρ)(m′))− Tι(ρ)(m)Φg(Y(ι(ρ)(m)))= Tι(ρ)(m′)(w
′ − TmΦ

(ρ)
g (w))= Tι(ρ)(m′)ξ

2
J −1(ρ)(m

′)

= ξ2
M(ι(ρ)(m

′)),

where we have used the equality ι(ρ) ◦Φ(ρ)
g =Φg ◦ ι(ρ). This yields

X′(n′)= ((Φg−1)∗X)(n′)+ ξ1
M(n

′) and Y′(n′)= ((Φg−1)∗Y)(n′)+ ξ2
M(n

′),
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where we let n:= ι(ρ)(m) and n′ := ι(ρ)(m′). Since (X′, α′) and ((Φg−1)∗Y, (Φg−1)∗β) are sec-

tions of D in a neighborhood of the point n′, we have

((Φg−1)∗β)(X′)= −α′((Φg−1)∗Y), (18)

and thus we conclude

ω(ρ)(π(ρ)(m
′))(Tm′π(ρ)(v

′), Tm′π(ρ)(w
′))= (π∗

(ρ)ω(ρ))(m
′)(v′, w′)

= α′(n′)(Y′(n′))= α′(n′)(((Φg−1)∗Y)(n′)+ ξ2
M(n

′))

= α′(n′)(((Φg−1)∗Y)(n′))+ α′(n′)(ξ2
M(n

′))

(∗)= α′(n′)(((Φg−1)∗Y)(n′)) (18)= −((Φg−1)∗β)(n′)(X′(n′))

= −((Φg−1)∗β)(n′)(((Φg−1)∗X)(n′)+ ξ1
M(n

′))

(∗)= −((Φg−1)∗β)(n′)(((Φg−1)∗X)(n′))= −β(n)(X(n))

=ω(ρ)(π(ρ)(m))(Tmπ(ρ)(v), Tmπ(ρ)(w)).

For the equalities (∗), we use the fact that α′ and Φ∗
g−1β are sections of V◦.

Finally, we show that ω(ρ) is closed. Let m ∈J −1(ρ) and choose X̃, Ỹ, Z̃ ∈
X(J −1(ρ)), defined on a neighborhood of m in J −1(ρ). Then there exist sections (X, α),

(Y, β), (Z , γ ) ∈ Γ (D ∩ (T ⊕ V◦
G)) defined on a neighborhood of ι(ρ)(m) in M such that

X̃ ∼ι(ρ) X, Ỹ ∼ι(ρ) Y, and Z̃ ∼ι(ρ) Z .

Since [X̃, Ỹ] ∼ι(ρ) [X,Y] and

([X,Y],£Xβ − iYdα) ∈ Γ (D),

we have (by definition (16))

(π∗
(ρ)ω(ρ))([X̃, Ỹ], Z̃)= −γ ([X,Y]) ◦ ι(ρ) = (£Xβ − iYdα)(Z) ◦ ι(ρ). (19)

Thus, recalling the definition (16), we get

d(π∗
(ρ)ω(ρ))(X̃, Ỹ, Z̃)= X̃[(π∗

(ρ)ω(ρ))(Ỹ, Z̃)] − Ỹ[(π∗
(ρ)ω(ρ))(X̃, Z̃)]

+ Z̃ [(π∗
(ρ)ω(ρ))(X̃, Ỹ)] − (π∗

(ρ)ω(ρ))([X̃, Ỹ], Z̃)
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+ (π∗
(ρ)ω(ρ))([X̃, Z̃ ], Ỹ)− (π∗

(ρ)ω(ρ))([Ỹ, Z̃ ], X̃)

(19)= X̃[β(Z) ◦ ι(ρ)] + Ỹ[γ (X) ◦ ι(ρ)] + Z̃ [α(Y) ◦ ι(ρ)]

+ γ ([X,Y]) ◦ ι(ρ) + (£Xγ − iZ dα)(Y) ◦ ι(ρ) + α([Y, Z ]) ◦ ι(ρ)

= (X[β(Z)] + Y[γ (X)] + Z [α(Y)] + γ ([X,Y])− γ ([X,Y])

+ X[γ (Y)] − Z [α(Y)] + Y[α(Z)] + α([Z ,Y])+ α([Y, Z ])) ◦ ι(ρ)

= (X[β(Z)+ γ (Y)] + Y[γ (X)+ α(Z)]) ◦ ι(ρ) = 0,

where we used the fact that γ (X)+ α(Z)= 0 and γ (Y)+ β(Z)= 0 (this follows directly

from (X, α), (Y, β), (Z , γ ) ∈ Γ (D)). Thus, π∗
(ρ)dω(ρ) = d(π∗

(ρ)ω(ρ))= 0 and, because π(ρ) is a

surjective submersion, this yields dω(ρ) = 0. Therefore, ω(ρ) is a well-defined presymplec-

tic form on M(ρ). �

Theorem 6.2 has a similar proof.

6.2 Optimal orbit reduction

Let (M,D) be a smooth integrable Dirac manifold with a smooth and proper canonical

action of a Lie group G on it. Assume that the same conditions on D ∩ (T ⊕ V◦
G) as in

the preceding subsection are satisfied, that is, D ∩ (T ⊕ V◦
G) is spanned pointwise by the

descending sections of D and D is integrable.

Let J : M → M/D, JG : M → M/DG be the optimal momentum maps. Consider

the distribution DG + V ⊆ T M. By Ortega and Ratiu [23, Proposition 3.4.6], its inte-

grability follows from the integrability of D and Theorem 4.5. Since G is connected,

the leaves of DG + V are the sets G · J −1
G (σ )= G · J −1(J (m)) for any m ∈J −1

G (σ ) (recall

that J −1(J (m))⊆ G · J −1
G (σ ) for any m ∈J −1

G (σ )). The leaves of DG + V are initial sub-

manifolds of M; that is, the maps ισ,G : G · J −1
G (σ ) ↪→ M are regular immersions for all

σ ∈ M/DG .

Lemma 6.3. Choose σ ∈ M/DG such that the action of Gσ on J −1
G (σ ) is proper. The inte-

gral leaf G · J −1
G (σ ) of DG + V is diffeomorphic to the regular quotient manifold

G ×Gσ
J −1

G (σ ) := (G × J −1
G (σ ))/Gσ ,
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where the action Aσ of Gσ on G × J −1
G (σ ) is the twisted action

Aσ : Gσ × (G × J −1
G (σ ))→ G × J −1

G (σ )

(h, (g,m)) �→ (gh−1,h · m). �

Remark 6.4. The properness of the action of Gσ on G × J −1
G (σ ) follows from the proper-

ness of the action of Gσ on J −1
G (σ ). �

Proof. Define F : G ×Gσ
J −1

G (σ )→ G · J −1
G (σ ) by F ([g, x]Gσ

)= gx ∈ G · J −1
G (σ ). The map F

is well defined. To see this, note that if [g, x]Gσ
= [g′, x′]Gσ

, then there exists h∈ Gσ such

that g′ = gh−1 and x′ = hx. But then we have F ([g′, x′]Gσ
)= g′x′ = gh−1hx = gx = F ([g, x]Gσ

).

The inverse of the function F is given by F −1 : G · J −1
G (σ )→ G ×Gσ

J −1
G (σ ), F −1(g ·

x)= [g, x]Gσ
, for any g · x ∈ G · J −1

G (σ ). Indeed, F −1 is well defined since gx = g′x′ for

x, x′ ∈J −1
G (σ ) and g, g′ ∈ G implies g−1g′ ∈ Gσ by definition of Gσ and hence [g′, x′]Gσ

=
[g′(g−1g′)−1, (g−1g′)x′]Gσ

= [g, x]Gσ
. We have obviously F ◦ F −1 = IdG·J −1

G (σ ) and F −1 ◦ F =
IdG×Gσ J −1

G (σ ).

It remains hence to show that F and F −1 are smooth functions. We use the com-

mutative diagram

G × J −1
G (σ )

πGσ

��

Φ|
G×J−1

G (σ )

�����������������������������������

Φ̃ �������������

G ×Gσ
J −1

G (σ )
F

�� G · J −1
G (σ )

ιG,σ

�� M

for the smoothness of F . Recall that G · J −1
G (σ ) is an initial submanifold of M because

it is a leaf of the integrable tangent distribution DG + V, that is, the inclusion ιG,σ is

regular. The map Φ|G×J −1
G (σ ) =Φ ◦ (IdG × ισ ) : G × J −1

G (σ )→ M is smooth. Since its image

is G · J −1
G (σ ), the map Φ̃ : G × J −1

G (σ )→ G · J −1
G (σ ) defined by Φ̃(g,m) :=Φ(g,m) for all

g ∈ G, m ∈J −1
G (σ ), is well defined and it is smooth because ιG,σ is regular. Therefore, F

is smooth by the properties of the quotient map πGσ
.

To show that F −1 is smooth, we shall prove that dim(G ×Gσ
J −1

G (σ ))= dim(G ·
J −1

G (σ )) and that

TπGσ (g,m)(ιG,σ ◦ F ) : TπGσ (g,m)(G ×Gσ
J −1

G (σ ))→ TιG,σ (F (g,m))M (20)
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is injective. Indeed, if this is known, then F is a bijective smooth map which is a local

diffeomorphism, hence a diffeomorphism.

Since J −1
G (σ ) is a leaf of DG , we have dimJ −1

G (σ )= dimDG(m), for any m ∈
J −1

G (σ ). Therefore, since the Gσ -action on G × J −1
G (σ ) is free and proper, using (15), we

have

dim(G ×Gσ
J −1

G (σ ))= dimDG(m)+ dim G − dim Gσ

(15)= dimDG(m)+ dim G − dim(V(m) ∩ DG(m))− dim Gm

= dim(DG(m)+ V(m))− dimV(m)+ dim G − dim Gm

= dim(DG(m)+ V(m))= dim(G · J −1
G (σ )).

Next we show the injectivity of (20). Let T(g,n)πGσ
(vg, wn) ∈ TπGσ (g,n)(G ×Gσ

J −1
G (σ )) be such

that TπGσ (g,n)F (T(g,n)πGσ
(vg, wn))= 0. From the diagram it follows that 0 = T(g,n)Φ(vg, wn)=

TgΦ
n(vg)+ TnΦg(wn), where Φn(h) := h · n, for all h∈ G. Therefore, choosing ξ ∈ g such that

vg = TeLgξ , where Lg(h) := gh, for all h∈ G, we have

wn = −Tg·nΦg−1(TgΦ
n(TeLgξ))= −Te(Φ

n ◦ Lg−1 ◦ Lg)(ξ)= −ξM(n).

Hence wn = −ξM(n) ∈ V(n) ∩ DG(n) which implies that ξ ∈ gσ by (15). Thus, exp(tξ) ∈ Gσ for

small |t| and we get

T(g,n)πGσ
(vg, wn)= d

dt

∣∣∣∣
t=0

πGσ
(g exp(tξ), exp(−tξ) · n)= 0

which proves the injectivity of (20). �

A leaf G · J −1
G (σ ) of DG + V is contained in M(H), where H ⊆ G is the compact

subgroup such that J −1
G (σ )⊆ MH . The induced action of G on G · J −1

G (σ ) has hence con-

jugated isotropy subgroups. Using the fact that the topology on G · J −1
G (σ ) is stronger

that the topology induced on it by the topology of M, it is easy to show that the action

of G on G · J −1
G (σ ) is proper.

We have the following Dirac Optimal Orbit Reduction Theorem, which is proved

in the same manner as Theorems 6.1 and 6.2.
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Theorem 6.5. Let σ ∈ M/DG . The orbit space MG
σ := (G · J −1

G (σ ))/G is a regular quotient

manifold such that the projection π : G · J −1(σ )→ MG
σ is a smooth submersion. Define

ωG
σ ∈Ω2(MG

σ ) by

(π∗ωG
σ )(m)(vm, wm)= α(Y)(ισ,G(m))= −β(X)(ισ,G(m)), (21)

for any m ∈J −1(σ ) and any X,Y ∈ Γ (DG) defined on an open set around ισ,G(m), where

(X, α), (Y, β) ∈ Γ (D ∩ (TG ⊕ V◦
G)) are such that Tmισ,Gvm = (X + V1)(ισ,G(m)) and Tmισ,Gwm =

(Y + V2)(ισ,G(m)) for some smooth sections V1,V2 ∈ Γ (V).
Then (MG

σ , ω
G
σ ) is a presymplectic manifold. The pair (MG

σ ,D
G
σ ) is called the Dirac

optimal orbit reduced space of (M,D) at σ , where DG
σ is the graph of the presymplectic

form ωG
σ . �

6.3 Comparison of the three methods

Next, we show that if the hypotheses of Theorems 6.1, 6.2, 6.5 hold, then the three meth-

ods yield the same reduced objects.

Theorem 6.6. Choose m ∈ M and set σ :=JG(m), ρ :=J (m). Assume that the three opti-

mal reduced Dirac manifolds (Mσ ,Dσ ), (M(ρ),D(ρ)), and (MG
σ ,D

G
σ ) are defined. The reduced

presymplectic spaces (Mσ , ωσ ), (M(ρ), ω(ρ)), and (MG
σ , ω

G
σ ) are presymplectomorphic. �

Remark 6.7. We will show in Theorem 7.1 that the reduced presymplectic spaces cor-

respond also to the presymplectic leaves of the reduced spaces obtained by perform-

ing standard Dirac reduction as in [18]. In this paper, it is shown that a Dirac man-

ifold (M,D) that is invariant under a proper G-action induces a subspace of the set

X(M/G)×Ω1(M/G) consisting of “vector fields” and “1-forms”on the stratified space

M/G, whose values define Dirac structures on the strata. To get them, the restrictions

of the Dirac structure to the orbit-type manifolds are considered and a regularity condi-

tion on D ∩ (T ⊕ V◦
G) is postulated. This extends to Dirac manifolds the method used in

[25] for Poisson manifolds: if a Poisson manifold is invariant under a proper Lie group

action, then there is an induced Poisson bracket on the set of differentiable functions on

M/G, that restrict to usual Poisson brackets on the strata.

In the case of Poisson manifolds, there is an alternative singular reduction

method presented in [12] (see also [15]). If (M, {· , ·}) is a Poisson manifold with a Lie group

G acting in a proper canonical way on it, then there is an induced Poisson structure on

each isotropy type manifold MH , that is invariant under the induced action of N(H)/H ;

here, H is an isotropy subgroup of the action and N(H) is the normalizer of H in G.
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Therefore, these Poisson structures descend to the quotient MH/(N(H)/H) whose con-

nected components are strata in M/G.

In the paper [17], we show that one can also do singular Dirac reduction in this

spirit. We prove that there are induced Dirac structures on the isotropy-type manifolds,

invariant under the induced actions of the Lie groups N(H)/H , that project (under a

regularity condition as in [18]) hence to reduced Dirac structures on the strata of M/G.

The resulting reduced Dirac structures are identical to the Dirac structures obtained as

in [18].

This result is not surprising since each orbit-type manifold is just the G-orbit

of the corresponding isotropy-type manifold; thus, one should not expect additional

information about a G-invariant Dirac structures by working on the orbit type rather

than on the isotropy type manifolds. Note that in the Poisson case, one can show by

using the diffeomorphisms on the strata of M/G that there are also induced Poisson

structures on the orbit-type manifolds in M, but it seems that this cannot be shown in

a direct manner.

The result in the previous theorem just shows that the same kind of phenomenon

exists in the Dirac optimal reduction process. By Theorem 3.8, all the reduced presym-

plectic spaces obtained here and the ones obtained as the presymplectic leaves in [17, 18]

coincide. �

Proof of Theorem 6.6. Define the maps

Ψ : MG
σ −→ Mσ

(π ◦ πGσ
)(g,m) �−→ πσ (m)

and
Θ : Mσ −→ MG

σ

πσ (m) �−→ (π ◦ ιGσ )(m)

by the following commutative diagrams.

G × J −1
G (σ )

πGσ

������������ p2

		����������

G · J −1
G (σ )

π

��

J −1
G (σ )

πσ

��

MG
σ

Ψ

�� Mσ

J −1
G (σ )

ιGσ

��

πσ

��

G · J −1
G (σ )

π

��

Mσ

Θ

�� MG
σ
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We use the diagrams to check that the maps Ψ and Θ are inverses of each other and

hence both bijective. Indeed, for all (g,m) ∈ G × J −1
G (σ ), we have

(Θ ◦ Ψ )((π ◦ πGσ
)(g,m))=Θ(πσ (m))= (π ◦ ιGσ )(m)= π(g · m)= (π ◦ πGσ

)(g,m),

and, for all m ∈J −1
G (σ ),

(Ψ ◦Θ)(πσ (m))=Ψ (π ◦ ιGσ (m))=Ψ ((π ◦ πGσ
)(g,m))= πσ (m).

The diagrams are also used to show that both maps are smooth. The equality

Ψ ◦ π ◦ πGσ
= πσ ◦ p2

shows that Ψ is smooth, since πσ ◦ p2 is smooth and π ◦ πGσ
is a smooth open map. The

equality

Θ ◦ πσ = π ◦ ιGσ

shows that Θ is smooth since πσ is a smooth open map and π ◦ ιGσ is smooth.

We define in the same manner the maps

Λ : M(ρ) −→ MG
σ

π(ρ)(m) �−→ (π ◦ ι)(m) and
Φ : Mσ −→ M(ρ)

πσ (m) �−→ (π(ρ) ◦ ισ,ρ)(m)

by the following commutative diagrams:

M

J −1(ρ)

π(ρ)

��

ι(ρ)
�����������

ι

�� G · J −1
G (σ )

ισ,G


									

π

��

M(ρ)

Λ

�� MG
σ

M

J −1
G (σ )

πσ

��

ισ
����������
ισ,ρ

�� J −1(ρ)

ι(ρ)
�����������

π(ρ)

��

Mσ

Φ

�� M(ρ)
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We have then the commutative diagram:

M(ρ)

Λ ��













Mσ

Φ





Θ����
��

��
��

MG
σ

Ψ
����������

which shows that Φ and Λ are bijective. We have Λ−1 =Φ ◦ Ψ and Φ−1 =Ψ ◦Λ. Thus, we

have only to show that Λ and Φ are smooth. But using the commutative diagrams, we

get Λ ◦ π(ρ) = π ◦ ι. In addition, using ισ,G ◦ ι= ι(ρ) and smoothness of ι(ρ), we conclude the

smoothness of ι since ισ,G is a regular immersion. The map π ◦ ι is consequently smooth

and Λ is thus smooth because π(ρ) is a smooth open map.

Analogously, we have Φ ◦ πσ = π(ρ) ◦ ισ,ρ . An argument similar to the one above

shows that the inclusion ισ,ρ is smooth. Thus, Φ is smooth, using the fact that πσ is a

smooth open map.

Finally, we prove the equalities

Φ∗ω(ρ) =ωσ and Λ∗ωG
σ =ω(ρ)

which immediately imply that Θ preserves the presymplectic forms:

Θ∗ωG
σ = (Ψ −1)∗ωG

σ = (Λ ◦Φ)∗ωG
σ =Φ∗Λ∗ωG

σ =Φ∗ω(ρ) =ωσ .

Choose m ∈J −1
G (σ ) and vectors v,w ∈ TmJ −1

G (σ ). Then there exist G-invariant descending

sections (X, α) and (Y, β) of D such that Tmισ v = X(ισ (m)) and Tmισw= Y(ισ (m)). We have

(π∗
σΦ

∗ω(ρ))(m)(v,w)= (ι∗σ,ρπ
∗
(ρ)ω(ρ))(m)(v,w)= (π∗

(ρ)ω(ρ))(ισ,ρ(m))(Tmισ,ρv, Tmισ,ρw).

Since

Tισ,ρ (m)ι(ρ)Tmισ,ρv= Tmισ v = X(ισ (m))= X((ι(ρ) ◦ ισ,ρ)(m))

and

Tισ,ρ (m)ι(ρ)Tmισ,ρw= Tmισ v = Y(ισ (m))= Y((ι(ρ) ◦ ισ,ρ)(m)),
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formula (16) and the fact that (X, α) and (Y, β) are descending sections of D imply

(π∗
σΦ

∗ω(ρ))(m)(v,w)= (α(Y) ◦ ι(ρ))(ισ,ρ(m))= (α(Y) ◦ ισ )(m) (17)= (π∗
σωσ )(m)(v,w),

that is, π∗
σΦ

∗ω(ρ) = π∗
σωσ . Since πσ is a smooth surjective submersion, the equality

Φ∗ω(ρ) =ωσ is proved.

Next, we prove the equality Λ∗ωG
σ =ω(ρ). Choose m ∈J −1(ρ) and v,w ∈ TmJ −1(ρ).

Then there exist descending sections (X, α) and (Y, β) of D defined on a neighborhood

of ι(ρ)(m) in M such that Tmι(ρ)v= X(ι(ρ)(m)) and Tmι(ρ)w= Y(ι(ρ)(m)). Since X and Y are

descending vector fields, they can be written X = XG + V and Y = YG + W with XG,YG ∈
X(M)G and V,W ∈ Γ (V). Assume that (X, α) and (Y, β) are defined on a whole tube U for

the action of G at ι(ρ)(m); otherwise, we multiply (X, α) and (Y, β) with a bump function

that is equal to 1 on a neighborhood U1 � U of ι(ρ)(m), and equal to 0 outside from a

neighborhood U2 of ι(ρ)(m) such that U1 � U2 � U .

Consider the G-invariant averages (XG, αG), (YG, βG) ∈ Γ (D) of (X, α) and (Y, β) at

ι(ρ)(m)=: n. We have, with H = Gn,

XG(n)=
∫

H
(TnΦh−1 XG(n)+ TnΦh−1 V(n))dh= XG(n)+ VG(n)= X(n)+ (VG − V)(n)

and

αG(n)=
∫

H
α(h · n) ◦ TnΦh dh= α(n).

Hence, the sections (XG, αG) and (YG, βG) are G-invariant descending sections of D such

that

Tι(m)ισ,G(Tmι v)= Tmι(ρ)v = X(ι(ρ)(m))

= X(n)= XG(n)+ (V − VG)(n)= (XG + (V − VG))(ισ,G(ι(m)))

and analogously

Tι(m)ισ,G(Tmι w)= (YG + (W − WG))(ισ,G(ι(m))).
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We get, using this and definitions (21) and (16),

(π∗
(ρ)Λ

∗ωG
σ )(m)(v,w)= (ι∗π∗ωG

σ )(m)(v,w)= (π∗ωG
σ )(ι(m))(Tmι v, Tmι w)

(21)= −βG(XG)(ισ,G(ι(m)))= −βG(XG + (V − VG))(ι(ρ)(m))

= −βG(n)(XG(n)+ (V − VG)(n))= −β(n)(X(n))

= −β(X)(ι(ρ)(m)) (16)= (π∗
(ρ)ω(ρ))(m)(v,w),

that is, π∗
(ρ)Λ

∗ωG
σ = π∗

(ρ)ω(ρ). Since π(ρ) is a smooth surjective submersion, we conclude

Λ∗ωG
σ =ω(ρ). �

6.4 Reduction of dynamics

In this subsection, we write {· , ·} for the Poisson bracket {· , ·}D on the admissible func-

tions of (M,D). We assume that the hypotheses of the preceding subsections are satisfied

and study the reduction of dynamics.

Theorem 6.8. Let (M,D) be a smooth Dirac manifold with a proper Lie group action,

such that the orbit optimal momentum map J is defined. Choose m ∈ M such that G(ρ)

acts properly on J −1(ρ), where ρ =J (m). Let h∈ C ∞(M)G be a G-invariant admissible

smooth function on M defined on a neighborhood U of m in M. Then:

1. There exists a G-invariant vector field Xh defined on U such that (Xh,dh) is a

(G-invariant descending) section of D.

2. The flow φ of Xh commutes with the G-action and leaves J −1(ρ) invariant.

Thus, it restricts to a flow φ̃ on J −1(ρ), that is, with φt ◦ ι(ρ) = ι(ρ) ◦ φ̃t for all

t ∈ R where the left-hand side is defined. The flow φ̃ commutes then with the

G(ρ)-action and induces therefore a flow φ(ρ) on M(ρ) uniquely determined by

the relation π(ρ) ◦ φ̃t = φ
(ρ)
t ◦ π(ρ) for all t ∈ R where the left-hand side is defined.

3. The vector field X(ρ)

h defined by the flow φ(ρ) on M(ρ) is a section of G(ρ)
1 ; more

precisely, we have

(X(ρ)

h ,dh(ρ)) ∈ Γ (D(ρ)),

where h(ρ) is the smooth function on M(ρ) defined by h(ρ) ◦ π(ρ) = h ◦ ι(ρ).
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4. Let k∈ C ∞(M)G be another admissible function, and {·, ·}(ρ) the bracket on

admissible functions on M(ρ) defined by D(ρ). Then we have

({h,k})(ρ) = {h(ρ),k(ρ)}(ρ),

where the function ({h,k})(ρ) is defined by

({h,k})(ρ) ◦ π(ρ) = {h,k} ◦ ι(ρ).

This makes sense because {h,k} = −Xh(k) is G-invariant. �

Proof. Since h is admissible, there exists a vector field X such that (X,dh) is a section

of D. The 1-form dh is a G-invariant section of V◦. Consider the G-invariant average

(XG, (dh)G) of (X,dh) in a tube for the action of G centered at the point m. Since dh is

G-invariant, we have dh= (dh)G . Set Xh := XG ; then (Xh,dh) is a G-invariant descending

section of D.

Hence, we have Xh ∈ Γ (DG)⊂ Γ (D) and, consequently, the leaves J −1(ρ) and

J −1
G (JG(m)) of D and DG are left invariant by the flow φ of Xh; thus, we can define the

restriction φ̃t of φt to J −1(ρ) by ι(ρ) ◦ φ̃t = φt ◦ ι(ρ). Since Xh is G-invariant, φt commutes

with the G-action and, consequently, φ̃t commutes with the Gρ-action. Define φ(ρ)t on M(ρ)

by π(ρ) ◦ φ̃t = φ
(ρ)
t ◦ π(ρ) for all t where the left-hand side is defined.

Let X(ρ)

h be the vector field defined by the flow φ(ρ). Then we have

Tπ(ρ) X̃h = X(ρ)

h ◦ π(ρ),

where X̃h is the vector field on J −1(ρ), that is, ι(ρ)-related to Xh (i.e., X̃h is the vector field

defined by the flow φ̃ on J −1(ρ)). For any n∈J −1(ρ), where h ◦ ι(ρ) is defined, and for any

X̃ ∈ X(J −1(ρ)) with flow φ X̃ defined on a neighborhood of n, there exists X ∈ Γ (D) with

flow φX such that T ι(ρ) ◦ X̃ = X ◦ ι(ρ). We compute

(iX(ρ)

h
ω(ρ))(π(ρ)(n))(Tnπ(ρ) X̃(n))=ω(ρ)(π(ρ)(n))(X

(ρ)

h (π(ρ)(n)), Tnπ(ρ) X̃(n))

=ω(ρ)(π(ρ)(n))(Tnπ(ρ) X̃h(n), Tnπ(ρ) X̃(n))

= (π∗
(ρ)ω(ρ))(n)(X̃h(n), X̃(n))

(16)= dh(ι(ρ)(n))(X(ι(ρ)(n)))= dh(ι(ρ)(n))(Tnι(ρ) X̃(n))
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= d(ι∗(ρ)h)(n)(X̃(n))= d(π∗
(ρ)h(ρ))(n)(X̃(n))

= dh(ρ)(π(ρ)(n))(Tnπ(ρ) X̃(n)).

Hence, we have shown the equality iX(ρ)

h
ω(ρ) = dh(ρ) and, by the definition of D(ρ), we get

(X(ρ)

h ,dh(ρ)) ∈ Γ (D(ρ)),

which yields also the fact that h(ρ) ∈ C ∞(M(ρ)) is admissible.

We show the last statement of the theorem in the same manner. Let Xk be the

G-invariant vector field such that (Xk,dk) is a G-invariant descending section of D. Then

we have

{h(ρ),k(ρ)}(ρ) ◦ π(ρ) = −(dh(ρ)(X
(ρ)

k )) ◦ π(ρ) = −(ω(ρ) ◦ π(ρ))(X(ρ)

h ◦ π(ρ), X(ρ)

k ◦ π(ρ))

= −(π∗
(ρ)ω(ρ))(X̃h, X̃k)= −(dh)(Xk) ◦ ι(ρ) = {h,k} ◦ ι(ρ)

=: ({h,k})(ρ) ◦ π(ρ). �

Remark 6.9. As can be easily seen from this proof, an analogous theorem is true for

the optimal reduced Dirac spaces (Mσ ,Dσ ) and (MG
σ ,D

G
σ ), if they are defined. �

7 Comparison of Optimal and Standard Dirac Reduction

In this section, we compare the reduced Dirac manifolds obtained by the standard reduc-

tion method in [18] with those obtained by optimal reduction, under the assumption that

all necessary conditions on the smooth generalized distribution D ∩ (T ⊕ V◦
G) are satis-

fied. Since we know that the three optimal reduction methods are equivalent if they are

all possible, we only consider the optimal (orbit type) point reduction method in this

section.

We assume again that D ∩ (T ⊕ V◦
G) is spanned pointwise by its descending sec-

tions and that D is integrable, and we let J : M → M/D be the corresponding orbit

optimal momentum map. Since D ∩ (T ⊕ V◦
G) is spanned pointwise by the descending

sections of D, the Dirac structure D induces a Dirac structure on each stratum of the

quotient space M/G (Theorem 2.3). The following theorem gives the relation between

the strata of M/G endowed with these reduced structures and the reduced manifolds
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(M(ρ),D(ρ)) given by the (orbit type) Dirac optimal reduction theorem (under the assump-

tion that G(ρ) acts properly on J −1(ρ)).

Theorem 7.1. Let (M,D) be a smooth Dirac manifold that is symmetric under the

proper action of a Lie group G on M. Assume that D ∩ (T ⊕ V◦
G) is spanned pointwise by

its descending sections and that D is integrable. Let m ∈J −1(ρ), for some ρ ∈ M/D such

that G(ρ) acts properly on J −1(ρ). Then, if P is the connected component through m of

the orbit-type manifold M(Gm), we have J −1(ρ)⊆ P . The reduced manifold M(ρ) is diffeo-

morphic to the presymplectic leaf N̄ through π(m) of the reduced Dirac manifold ( P̄ ,D P̄ ),

where P̄ = π(P ) is the stratum of M/G through π(m), via the map Π : M(ρ) → N̄, π(ρ)(x) �→
(π ◦ ι(ρ))(x). Furthermore, Π∗ωN̄ =ω(ρ), where ωN̄ is the presymplectic form on N̄. �

Note that, as already stated in Remark 6.7, the reduced presymplectic manifolds

obtained by optimal reduction correspond then also to the presymplectic leaves of the

reduced Dirac manifolds as in [17].

Proof of Theorem 7.1. We begin by showing that the map Π is well defined. Let x, y∈
J −1(ρ) be such that π(ρ)(x)= π(ρ)(y). Then there exists g ∈ G(ρ) ⊆ G such that Φ(ρ)

g (x)= y

which implies that Φg(ι(ρ)(x))= ι(ρ)(y) and π(ι(ρ)(x))= π(ι(ρ)(y)). Thus, it remains to show

that π(ι(ρ)(x)) ∈ N̄. Since x ∈J −1(ρ), and by definition of the integral leaves of D, the

points ι(ρ)(m) and ι(ρ)(x) can be joined by a broken path consisting of finitely many pieces

of integral curves of descending sections of D belonging to descending pairs of D. To

simplify the notation, we shall write in what follows simply x′ for ι(ρ)(x) and m′ for

ι(ρ)(m). Assume, without loss of generality, that one such curve suffices, that is, that

x′ = φt(m′), where φ is the flow of a vector field X ∈ Γ (D) for which there exists α ∈Ω1(M)

such that (X, α) is a descending section of D. Since X is a descending vector field, it can

be written as a sum X = V + XG with X ∈ X(M)G and V ∈ Γ (V). Then [XG,V ] = 0 and we

have φt = φG
t ◦ φV

t = φV
t ◦ φG

t , where φG
t and φV

t are the flows of XG and V , respectively. Let

φ̄ be the flow on M̄ induced by φ, that is, π ◦ φs = π ◦ φV
s ◦ φG

s = π ◦ φG
s = φ̄s ◦ π, for all s.

This flow φ̄ generates a vector field X̄ on M̄ such that X ∼π X̄. Since (X, α) is a descending

section of D ∩ (T ⊕ V◦
G), we know by the definition of the reduced Dirac structure on P̄

that

(XP̄ , α P̄ ) ∈ Γ (D P̄ ), (22)

where XP̄ is the restriction to P̄ of X̄ and α P̄ is the restriction of ᾱ to P̄ , the “1-form”

ᾱ ∈Ω1(M̄) being such that π∗ᾱ= α. Here, we know that XP̄ ∈ X( P̄ ) because the flow of X̄
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through points in P̄ remains in P̄ . We have

(φ̄t ◦ π)(m′)= (π ◦ φt)(m
′)= π(x′),

which yields, using (22) and the fact that φ̄t| P̄ is the flow of XP̄ , that π(ι(ρ)(x)) and

π(ι(ρ)(m)) lie in the same presymplectic leaf N̄ of ( P̄ ,D P̄ ). This concludes the proof that

Π : Mρ → N̄ is well defined.

To prove that Π is injective, choose x, y∈J −1(ρ) such that π(ι(ρ)(x))= π(ι(ρ)(y)).

Then there exists g ∈ G satisfying

Φg(ι(ρ)(x))= ι(ρ)(y).

This shows that g ∈ Gρ and Φ(ρ)
g (x)= y, so we get π(ρ)(x)= π(ρ)(y).

For the surjectivity of Π choose π(x) ∈ N̄ and assume, again without loss of gen-

erality, that

π(x)= φ P̄
t (π(ι(ρ)(m))),

where φ P̄ is the flow of some XP̄ ∈ X( P̄ ), such that there exists α P̄ ∈Ω1( P̄ ) with (XP̄ , α P̄ ) ∈
Γ (D P̄ ). Choose a descending section (X, α) ∈ Γ (D) and (X̄, ᾱ) ∈ D̄ such that X ∼π X̄, α=
π∗ᾱ, and (X̄, ᾱ)| P̄ = (XP̄ , α P̄ ). The pairs (X, α) and (X̄, ᾱ) exist by the proof of the reduc-

tion Theorem 2.3. Then the flows φ of X and φ̄ of X̄ satisfy π ◦ φs = φ̄s ◦ π for all s and

φs restricts to J −1(ρ) since X is a descending section of D. If we define x′ ∈J −1(ρ) by

ι(ρ)(x′)= φt(ι(ρ)(m)), we get, using the fact that φ̄t| P̄ = φ P̄
t ,

π(ι(ρ)(x
′))= (π ◦ φt)(ι(ρ)(m))= (φ̄t ◦ π)(ι(ρ)(m))= π(x)

and hence Π(π(ρ)(x′))= π(x).

Note that we have simultaneously shown that π(J −1(ρ))⊆ P̄ is equal, as a set, to

N̄. Moreover, we claim that the topology of N̄ (which is in general not the relative topol-

ogy induced from the topology on P̄ ) is the quotient topology defined by the topology

of J −1(ρ), that is, a set is open in N̄ if and only if its preimage under π ◦ ι(ρ) is open in

J −1(ρ). This is proved in the following way.

Denote by Ḡ1 ⊆ X(M̄) the set of vector fields X̄ on M̄ such that there exists

ᾱ ∈Ω1(M̄) with (X̄, ᾱ) ∈ D̄. The presymplectic leaf N̄ containing m̄ can be seen as the

accessible set of Ḡ1 through m̄, since P̄ is the accessible set through m̄ of the family

of all vector fields on M̄. The topology on N̄ is the relative topology induced on N̄ by a
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topology we call the Ḡ1-topology on M̄: this is the strongest topology on M̄ such that all

the maps

U −→ M̄,

(t1, . . . , tk) �−→ (φ̄ X̄1
t1 ◦ · · · ◦ φ̄ X̄k

tk )(m̄)

are continuous, where m̄ ∈ M̄, φ̄ X̄i
ti is the flow of a vector field X̄i ∈ Ḡ1 for i = 1, . . . ,k,

and U ⊆ Rk is an appropriate open set in Rk. In the same manner, because J −1(ρ) is an

accessible set of the family

F := {X ∈ X(M) | ∃α ∈Ω1(M) such that (X, α) is a descending section of D},

the topology on J −1(ρ) is the relative topology induced on J −1(ρ) by the topology we

call the D-topology on M: this is the strongest topology on M such that all the maps

U −→ M,

(t1, . . . , tk) �−→ (φX1
t1 ◦ · · · ◦ φXk

tk )(m)

are continuous, where m ∈ M, φXi
ti is the flow of a vector field Xi ∈ F, for i = 1, . . . ,k, and

U ⊆ Rk is an appropriate open set in Rk.

Now our claim is easy to show, using the fact that, for each section XP̄ in Ḡ1,

there exists a descending section (X, α) of D such that X ∼π X̄ and hence φ̄ X̄
t ◦ π = π ◦ φX

t .

Conversely, for each descending section (X, α) of D, the vector field X̄ satisfying X ∼π X̄ is

an element of Ḡ1 and we have φ̄ X̄
t ◦ π = π ◦ φX

t . Hence, a map f : N̄ → Q is smooth if and

only if f ◦ (π ◦ ι(ρ)) :J −1(ρ)→ Q is smooth, where Q is an arbitrary smooth manifold.

Thus, we have shown that N̄ = π(J −1(ρ))⊆ P̄ as topological spaces.

Finally, the smoothness of Π and of its inverse Π−1 : N̄ → Mρ , π(ι(ρ)(x)) �→ πρ(x)

follow from the following commutative diagrams:

J −1(ρ)

ι(ρ)

��

π(ρ)

��

M

π

��

M(ρ)

ιN̄◦Π
�� M̄

J −1(ρ)

π(ρ)

����������
π◦ι(ρ)

��

N̄
Π−1

�� M(ρ)
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Consider the first diagram. Let ι P̄ ,M̄ : P̄ ↪→ M̄ and ιN̄, P̄ : N̄ ↪→ P̄ be the inclusions. Since

π ◦ ι(ρ) is smooth, we have automatically (by the quotient manifold structure on M(ρ))

that ιN̄ ◦Π = ι P̄ ,M̄ ◦ ιN̄, P̄ ◦Π is smooth. Since N̄ is an initial submanifold of P̄ and P̄ is a

stratum of M̄, the smoothness of Π follows. With the considerations above and, because

π(ρ) is smooth, we get the smoothness of Π−1 with the second diagram.

Now we show that Π is a presymplectomorphism, that is, Π∗ωN̄ =ωρ . Let

πρ(x) ∈ Mρ , x ∈J −1(ρ), and v,w ∈ TxJ −1(ρ), that is, we have Txι(ρ)v, Txι(ρ)w ∈D(ι(ρ)(x)).
Then find XP̄ ,YP̄ ∈ X( P̄ ) and α P̄ , β P̄ ∈Ω1( P̄ ) such that (XP̄ , α P̄ ), (YP̄ , β P̄ ) ∈ Γ (D P̄ ), Tx(Π ◦
π(ρ))v = Tx(π ◦ ι(ρ))v = XP̄ (π(ι(ρ)(x))), and Tx(Π ◦ π(ρ))w= Tx(π ◦ ι(ρ))w= YP̄ (π(ι(ρ)(x))).

Choose (X̄, ᾱ), (Ȳ, β̄) ∈ D̄ and X,Y ∈ X(M) such that (X, π∗ᾱ), (Y, π∗β̄) are descending

sections of D, X ∼π X̄, Y ∼π Ȳ, and (XP̄ , α P̄ ) and (YP̄ , β P̄ ) are the restrictions to P̄ of (X̄, ᾱ)

and (Ȳ, β̄). Then we get

(Π∗ωN̄)(π(ρ)(x))(Txπ(ρ)v, Txπ(ρ)w)=ωN̄((Π ◦ π(ρ))(x))(Tx(Π ◦ π(ρ))v, Tx(Π ◦ π(ρ))w)

=ωN̄((π ◦ ι(ρ))(x))(Tx(π ◦ ι(ρ))v, Tx(π ◦ ι(ρ))w)

=ωN̄((π ◦ ι(ρ))(x))(XP̄ (π(ι(ρ)(x))),YP̄ (π(ι(ρ)(x))))

= α P̄ ((π ◦ ι(ρ))(x))(YP̄ (π(ι(ρ)(x)))= α(ι(ρ)(x))(Y(ι(ρ)(x)))

=ω(ρ)(π(ρ)(x))(Txπ(ρ)v, Txπ(ρ)w),

where the last equality is the definition of ω(ρ). �

8 Examples

Example 8.1. We consider the example of the proper action Φ of G := S1 � R/(2πZ) on

M := R3 given by

Φα(x, y, z)= α · (x, y, z)= (x cosα − ysinα, x sinα + ycosα, z).

The orbit and isotropy types of this action coincide since the Lie group is Abelian. They

are P1 = {0} × {0} × R, P1 = MH1 with H1 = S1, and P2 = R3 \ P1, so P2 = MH2 with H2 = {e}.
The orbit of a point (x, y, z) ∈ R3 is {(x′, y′, z′) ∈ R3 | x′2 + y′2 = x2 + y2 and z′ = z}. Thus, the

reduced space M̄ can be identified with [0,+∞)× R with the projection π given by

[0,∞)× R � (x̄, z̄) := π(x, y, z)= (x2 + y2, z).
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It is easy to compute, for each α ∈ S1,

Φ∗
α(∂x)= cosα∂x − sinα∂y, Φ∗

α(∂y)= sinα∂x + cosα∂y, Φ∗
α(∂z)= ∂z

and

Φ∗
α(dx)= cosαdx − sinαdy, Φ∗

α(dy)= sinαdx + cosαdy, Φ∗
α(dz)= dz.

Hence, the Dirac structure D given as the span of the sections

(∂x,dy), (∂y,−dx), (∂z,0)

is S1-invariant, that is, the Lie group S1 acts on (M,D) in a Dirac manner.

In Example A.3, we carried out the explicit computation showing that

T (m)= TG(m)= spanR{∂z, x∂x + y∂y, x∂y − y∂x}

for all m = (x, y) ∈ R2. The set D ∩ (T ⊕ V◦
G) is equal to the set D ∩ (TG ⊕ V◦

G), since the

orbit type manifolds coincide with the isotropy type manifolds, and is spanned by the

sections

(y∂x − x∂y, xdx + ydy) and (∂z,0) of D.

These sections are exact G-invariant descending sections of D and hence DG =D is

completely integrable. Indeed, it is easy to see that since D is spanned pointwise

by the vector fields ∂z and y∂x − x∂y, it is integrable and its leaves are the cylinders

Mr := {(x, y, z) ∈ R3 | x2 + y2 = r}, for all r > 0, and the line {(0,0, z) | z∈ R} =: M0.

We identify the leaf space of D with the closed set [0,∞); J (x, y, z)= x2 + y2, for

all (x, y, z) ∈ R3. It is easy to see that Gr = S1, for all r ∈ [0,∞). The Lie group S1 acts on

Mr by rotations for r > 0 and trivially for r = 0. The reduced spaces are then all lines

with trivial presymplectic form.

It has been shown in [18] that the Dirac structures on M̄1 = P1/S
1 � R and M̄2 =

P2/S
1 � R2 are given by DM̄1

(z̄)= span{(∂z̄,0)} and DM̄2
(x̄, z̄)= span{(∂z̄,0), (0, x̄dx̄)}. Thus,

the symplectic leaves are all lines with trivial Dirac structures and we recover the result

of the correspondence theorem. �
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Example 8.2. We consider here another example from [18]. Let M = R3 × R3 with the

(automatically proper) diagonal action of G = S1 � R/(2πZ) on it, that is,

Φ : S1 × (R3 × R3)−→ R3 × R3

⎛
⎜⎜⎝α,

⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ �−→

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1 cosα − y1 sinα

x1 sinα + y1 cosα

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2 cosα − y2 sinα

x2 sinα + y2 cosα

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

The functions

r1(v,w)= x2
1 + y2

1 =
∥∥∥∥∥
(

x1

y1

)∥∥∥∥∥
2

, r2(v,w)= x2
2 + y2

2 =
∥∥∥∥∥
(

x2

y2

)∥∥∥∥∥
2

,

d(v,w)= x1y2 − y1x2 = det

(
x1 x2

y1 y2

)
, s(v,w)= x1x2 + y1y2 =

〈(
x1

y1

)
,

(
x2

y2

)〉
,

z1(v,w)= z1, z2(v,w)= z2,

are S1-invariant. They also characterize the S1-orbits of the action since d and s deter-

mine in a unique way the angle between the vectors (x1, y1) and (x2, y2). Hence, the

reduced manifold is the stratified space M̄ = π(R3 × R3)⊆ R6, where π : R3 × R3 → R6 is

given by π(v,w)= (r1, r2,d, s, z1, z2)(v,w). We conclude that M̄ is the semi-algebraic set

M̄ = {(r1, r2,d, s, z1, z2) ∈ R6 | r1, r2 ≥ 0 and s2 + d2 = r1r2}.
The two strata of M̄ are M̄0 = {(0,0,0,0, z1, z2) ∈ R6}, corresponding to the

orbit- (isotropy-)type manifold MS1 = M(S1) = {(0,0, z1,0,0, z2) ∈ R6} with trivial S1-action

on it, and M̄1 = {(r1, r2,d, s, z1, z2) ∈ R6 | (r1, r2) �= (0,0) and d2 + s2 = r1r2}, corresponding

to the orbit- (isotropy-)type manifold M{0} = M({0}) = {(x1, y1, z1, x2, y2, z2) ∈ R6 | (x1, y1) �=
(0,0) or (x2, y2) �= (0,0)}.

Define U := R>0 × R4 ⊂ R5. Since the points (r1, r2,d, s, z1, z2) in M̄1 satisfy r1 > 0

or r2 > 0, we have two charts for M̄1, namely (ψ1(U ), ψ
−1
1 ) and (ψ2(U ), ψ

−1
2 ), where

ψ1 : R>0 × R4 → M̄1

(r1,d, s, z1, z2, ) �→
(

r1,
d2 + s2

r1
,d, s, z1, z2

) ,
ψ−1

1 : ψ1(U )⊆ M̄1 → R>0 × R4

(r1, r2,d, s, z1, z2) �→ (r1,d, s, z1, z2)
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and

ψ2 : R>0 × R4 → M̄1

(r2,d, s, z1, z2) �→
(

d2 + s2

r2
, r2,d, s, z1, z2

) ,
ψ−1

2 : ψ2(U )⊆ M̄1 → R>0 × R4

(r1, r2,d, s, z1, z2) �→ (r2,d, s, z1, z2).

Since V◦
G(m)= {d f(m) | f ∈ C ∞(M)G} [18, Lemma 5.8], we have, for all m =

(x1, y1, z1, x2, y2, z2) ∈ R6,

V◦
G(m)= spanR

{
dz1, dz2, x1dx1 + y1dy1, x2dx2 + y2dy2,

x1dy2 + y2dx1 − x2dy1 − y1dx2, x1dx2 + x2dx1 + y1dy2 + y2dy1

}
,

and, as shown in Example A.4,

T (m)= TG(m)= spanR

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X1 := ∂z1 , X2 := ∂z2 ,

X3 := x1∂x1 + y1∂y1 , X4 := x2∂x2 + y2∂y2 ,

X5 := y1∂x2 − x1∂y2 , X6 := y2∂x1 − x2∂y1 ,

X7 := x1∂x2 + y1∂y2 , X8 := x2∂x1 + y2∂y1 ,

X9 := x1∂y1 − y1∂x1 , X10 := x2∂y2 − y2∂x2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
.

Note that V is spanned on M by X9 + X10 = x1∂y1 − y1∂x1 + x2∂y2 − y2∂x2 .

Consider the Dirac structure D ⊆ T M ⊕ T∗M spanned by the pairs

(∂x1 ,dy1), (∂y1 ,−dx1), (∂z1 ,0), (∂x2 ,−dy2), (∂y2 ,dx2), (0,dz2).

Comparing this with the sections of T = TG and V◦
G given above, we find a set DS

1
of

exact G-invariant descending sections spanning pointwise the intersection D ∩ (T ⊕
V◦

G)= D ∩ (TG ⊕ V◦
G):

DS
1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∂z1 ,0), (0,dz2),

(−x1∂y1 + y1∂x1 , x1dx1 + y1dy1), (x2∂y2 − y2∂x2 , x2dx2 + y2dy2),

(−x1∂x2 − y2∂y1 − x2∂x1 − y1∂y2 , x1dy2 + y2dx1 − x2dy1 − y1dx2),

(x1∂y2 − x2∂y1 − y1∂x2 + y2∂x1 , x1dx2 + x2dx1 + y1dy2 + y2dy1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
{

(∂z1 ,0), (0,dz2), (−X9,
1
2 dr1),

(X10,
1
2 dr2), (−X7 − X8,dd), (X6 − X5,ds)

}
.
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Thus, we get, for all m ∈ R6,

D(m)=DG(m)= span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂z1 , X9 = x1∂y1 − y1∂x1 ,

X10 = x2∂y2 − y2∂x2 ,

X7 + X8 = x1∂x2 + y2∂y1 + x2∂x1 + y1∂y2 ,

X6 − X5 = x1∂y2 − x2∂y1 − y1∂x2 + y2∂x1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(m)

= (span{dz2, x1dx1 + y1dy1 − x2dx2 − y2dy2})◦ = (span{dz2,d(r1 − r2)})◦.

The distribution D =DG is hence integrable and its leaf through a point p=
(x1, y1, z1, x2, y2, z2) ∈ M is

1. {(0,0, t,0,0, z2) | t ∈ R} if r1(p)= r2(p)= 0,

and otherwise the level set of the functions z2 and r1 − r2 through the point p=
(x1, y1, z1, x2, y2, z2) ∈ M, that is,

2. {(r cosα, r sinα, t, r cosβ, r sinβ, z2) | r > 0, α, β, t ∈ R}, if r1(p)= r2(p) > 0,

3. {(
√

x2 + y2 + kcosα,
√

x2 + y2 + ksinα, t, x, y, z2) | x, y, α, t ∈ R}, if k := (r1 − r2)

(p) > 0 and

4. {(x, y, t,
√

x2 + y2 − kcosα,
√

x2 + y2 − ksinα, z2) | x, y, α, t ∈ R}, if k := (r1 − r2)

(p) < 0.

The singularity at points where r1 and r2 both vanish can also be seen considering the

flows φ1, φ9, φ10, φ7+8, φ6−5 of the vector fields ∂z1 , X9, X10, X7 + X8, X6 − X5:

φ1

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠=

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1

y1

z1 + t

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,

φ9

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠=

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1 cos t − y1 sin t

x1 sin t + y1 cos t

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,

φ10

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠=

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2 cos t − y2 sin t

x2 sin t + y2 cos t

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,
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φ7+8

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠=

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1 cosh t + x2 sinh t

y1 cosh t + y2 sinh t

z2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2 cosh t + x1 sinh t

y2 cosh t + y1 sinh t

z1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,

φ6−5

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠=

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1 cosh t + y2 sinh t

y1 cosh t − x2 sinh t

z2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2 cosh t − y1 sinh t

y2 cosh t + x1 sinh t

z1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

Hence we can identify the leaf space M/DG with the set

{(r1, r2, r1 − r2, z2)(p) | p∈ M}/∼,

where ∼ is the equivalence relation given on {(r1, r2, r1 − r2, z2)(p) | p∈ M} ⊆ R>0 × R>0 ×
R × R by (r1, r2,k, t)∼ (r′

1, r
′
2,k

′, t′) if and only if t = t′ and

k= k′ �= 0

or

(k= k′ = 0) and (r1 > 0 or r2 > 0) and (r′
1 > 0 or r′

2 > 0)

or

k= k′ = 0 and r1 = r2 = r′
1 = r′

2 = 0.

Since V ⊆DG , we find Gσ = G = S1 for all σ ∈ M/DG . The action of S1 on each of

the leaves is the restriction to the leaf of the action of S1on M.

We consider the four different cases:

1. If σ = [0,0,0,a] ∈ M/DG , we have J −1
G (σ )= {(0,0, t,0,0,a) | t ∈ R} � R and the

induced action of S1 on J −1
G (σ ) is trivial. Thus, the reduced space Mσ =

J −1
G (σ )/S1 =J −1

G (σ )= R is a line and the presymplectic form is necessarily

trivial.

2. If σ = [R, R,0,a] ∈ M/DG with R> 0, we have

J −1
G (σ )= {(r cosα, r sinα, t, r cosβ, r sinβ,a) | r > 0, α, β, t ∈ R}.
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Hence, if we consider it as a subspace of M/S1, the reduced space is equal to

Mσ =J −1
G (σ )/S1 = {(r2, r2, r2 sin(α − β), r2 cos(α − β), t,a) | r > 0, α, β, t ∈ R}

� R>0 × S1 × R

via the diffeomorphism

ψσ : Mσ −→ R>0 × S1 × R,

(r2, r2, r2 sin(α − β), r2 cos(α − β), t,a) �−→ (r2, α − β, t),

ψ−1
σ : R>0 × S1 × R −→ Mσ ,

(r, θ, t) �−→ (r, r, r sin(θ), r cos(θ), t,a).

Let π : M → M/S1 and πσ :J −1
G (σ )→ Mσ be the canonical projections.

We use the coordinates (r, θ, t) on R>0 × S1 × R and compute the

presymplectic form ωσ . We have

∂r ∼ψ−1
σ
∂r1 + ∂r2 + sin θ∂s + cos θ∂d = 2r1∂r1 + 2r2∂r2 + 2s∂s + 2d∂d

2r1
and

∂θ ∼ψ−1
σ

s∂d − d∂s

since r1 = r2 on Mσ . Since

x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2 ∼π 2r1∂r1 + 2r2∂r2 + 2s∂s + 2d∂d and

X9 ∼π −s∂d + d∂s,

this leads to

ωσ (∂r, ∂θ )= − 1

2r1
(π∗
σωσ )(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2 , X9)

= − 1

2r1
(x1dx1 + y1dy1)(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2)= − 1

2r1
(x2

1 + y2
1)

= −1

2
,
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ωσ (∂r, ∂t)= 1

2r1
(π∗
σωσ )(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2 , ∂z1)= 0, and

ωσ (∂θ , ∂t)= (π∗
σωσ )(−X9, ∂z1)= 0.

Thus, we find ωσ (r, θ, t)= 1
2 dθ ∧ dr.

Note that easy linear algebra arguments show that x1∂x1 + y1∂y1 +
x2∂x2 + y2∂y2 is an element of DG(x1, y1, z1, x2, y2, z2) if and only if x2

1 + y2
1 =

x2
2 + y2

2 , that is, if and only if (x1, y1, z1, x2, y2, z2) ∈J −1
G (σ ) for σ = [R, R,0,a].

3. If σ = [R1, R2,k,a] ∈ M/DG with k> 0, we have

J −1
G (σ )= {(

√
x2 + y2 + kcosα,

√
x2 + y2 + ksinα, t, x, y,a) | x, y, α, t ∈ R}.

The reduced space Mσ is now

Mσ =J −1
G (σ )/S1

=
{
(x2 + y2 + k, x2 + y2,d, s, t,a)

∣∣∣∣∣ x, y, t,d, s ∈ R

d2 + s2 = (x2 + y2 + k)(x2 + y2)

}
� R3

via the diffeomorphism

ψσ : Mσ −→ R3,

(x2 + y2 + k, x2 + y2,d, s, t,a) �−→ (d, s, t),

ψ−1
σ : R3 −→ Mσ ,

(d, s, t) �−→
(√

k2 + 4(d2 + s2)+ k

2
,

√
k2 + 4(d2 + s2)− k

2
,d, s, t,a

)
.



140 M. M. Jotz and T. S. Ratiu

We use the coordinates (d, s, t) on R3 and compute the presymplectic form

ωσ . We have

∂d ∼ψ−1
σ

2d√
k2 + 4(s2 + d2)

∂r1 + 2d√
k2 + 4(s2 + d2)

∂r2 + ∂d and

∂s ∼ψ−1
σ

2s√
k2 + 4(s2 + d2)

∂r1 + 2s√
k2 + 4(s2 + d2)

∂r2 + ∂s.

A computation (see [18]) yields

X6 − X5 ∼π2d∂r1 + 2d∂r2 + (r1 + r2)∂d and X7 + X8 ∼π 2s∂r1 + 2s∂r2 + (r1 + r2)∂s.

With r1 + r2 =
√

k2 + 4(s2 + d2), this leads to

ωσ (∂d, ∂s)= 1

k2 + 4(s2 + d2)
(π∗
σωσ )(X6 − X5, X7 + X8)

= 1

k2 + 4(s2 + d2)
(x1dx2 + x2dx1 + y1dy2 + y2dy1)

× (x1∂x2 + y2∂y1 + x2∂x1 + y1∂y2)

= 1

k2 + 4(s2 + d2)
(x2

1 + x2
2 + y2

1 + y2
2)=

1√
k2 + 4(s2 + d2)

,

ωσ (∂d, ∂t)= 1√
k2 + 4(s2 + d2)

(π∗
σωσ )(X6 − X5, ∂z1)= 0,

and ωσ (∂s, ∂t)= 1√
k2 + 4(s2 + d2)

(π∗
σωσ )(X7 + X8, ∂z1)= 0,

which leads to ωσ (d, s, t)= 1√
k2+4(s2+d2)

dd∧ ds.

4. If σ = [R1, R2,k,a] ∈ M/DG with k< 0, we have

J −1
G (σ )= {(x, y, t,

√
x2 + y2 − kcosα,

√
x2 + y2 − ksinα,a) | x, y, α, t ∈ R}.
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The reduced space Mσ is then equal to

Mσ =J −1
G (σ )/S1

=
{
(x2 + y2, x2 + y2 − k,d, s, t,a)

∣∣∣∣∣ x, y, t,d, s ∈ R

d2 + s2 = (x2 + y2 − k)(x2 + y2)

}
� R3

via the diffeomorphism

ψσ : Mσ −→ R3,

(x2 + y2, x2 + y2 − k,d, s, t,a) �−→ (d, s, t),

ψ−1
σ : R3 −→ Mσ ,

(d, s, t) �−→
(√

k2 + 4(d2 + s2)+ k

2
,

√
k2 + 4(d2 + s2)− k

2
,d, s, t,a

)
.

We use the coordinates (d, s, t) on R3 and get, in the same manner as above,

ωσ (d, s, t)= 1√
k2 + 4(s2 + d2)

dd∧ ds.

We want to compare these reduced spaces with the presymplectic leaves of the

Dirac structures induced on the two strata M̄0 and M̄1 of M̄ by standard singular reduc-

tion. These are given by DM̄0
(m̄)= spanR{(∂z1 |m̄,0), (0,dz2(m̄))}, for all m̄ ∈ M̄0, and by

DM̄1
(r1,d, s, z1, z2)= spanR

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(∂z1 ,0), (0,dz2), (2s∂d − 2d∂s,dr1),(
−2s∂r1 −

(
r1 + s2 + d2

r1

)
∂s,dd

)
,(

2d∂r1 +
(

r1 + s2 + d2

r1

)
∂d,ds

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(r1, s,d, z1, z2)
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in the chart (U, ψ1) and

DM̄1
(r2, s,d, z1, z2)= spanR

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂z1 ,0), (0,dz2), (2s∂d − 2d∂s,dr2),(
−2s∂r2 −

(
r2 + s2 + d2

r2

)
∂s,dd

)
,(

2d∂r2 +
(

r2 + s2 + d2

r2

)
∂d,ds

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(r2, s,d, z1, z2)

in the chart (U, ψ2) (see [18]).

Take p∈ M. If p∈ MS1 , that is, π(p) ∈ M̄0, we have p= (0,0, z1,0,0, z2) and the

reduced space (Mσ , ωσ ) for σ =JG(p) is of the first type: (Mσ , ωσ )� (R,0). The presym-

plectic leaf of (M̄0,DM̄0
) through π(p) ∈ M̄0 is obviously N̄p = {(0,0,0,0, t, z2) | t ∈ R} � R

with the trivial presymplectic structure. It is easy to see that (Mσ , ωσ )� (N̄p,0) via the

diffeomorphism constructed in the proof of Theorem 7.1.

For p∈ M{e}, we have π(p) ∈ M̄1. We study the presymplectic leaves of (M̄1,DM̄1
).

The corresponding distribution G1 is given by

G1(π(p))= spanR

{
∂z1 , s∂d − d∂s, 2s∂r1 +

(
r1 + s2 + d2

r1

)
∂s, 2d∂r1 +

(
r1 + s2 + d2

r1

)
∂d

}

= spanR

{
∂z1 ,2s∂r1 +

(
r1 + s2 + d2

r1

)
∂s, 2d∂r1 +

(
r1 + s2 + d2

r1

)
∂d

}

in the chart ψ1. We find that G1 is the smooth annihilator of the codistribution that

is spanned pointwise by {dz2,d(r1 − s2+d2

r1
)} and that has constant rank on ψ1(U )⊆ M̄1.

With the same argument we find that G1 has constant rank on ψ2(U )⊆ M̄1 and since

ψ1(U ) ∩ ψ2(U ) is open and dense in M̄1, the distribution G1 is a vector bundle over M̄1.

We have shown in [18] that it is involutive and so it is completely integrable in the sense

of Frobenius. We have again three cases:

1. Suppose that r1 > 0, (r1 − s2+d2

r1
)(p)= 0 = k, z2 = a∈ R. Then the leaf N0,a of G1

through π(p) is the subset

M̄1 ⊇ψ1(U )⊇ N0,a = {(r1, s,d, z1,a) | r1 > 0, r2
1 = s2 + d2, z1 ∈ R}

= {(z, zcosα, zsinα, t,a) | z> 0, α ∈ S1, t ∈ R} � R>0 × S1 × R
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via the diffeomorphism

ψ0,a : N0,a −→ R>0 × S1×R,

(z, zcosα, zsinα, t,a) �−→ (z, α, t),

ψ−1
0,a : R>0 × S1 × R −→ N0,a,

(z, α, t) �−→ (z, zcosα, zsinα, t,a).

Note that this leaf of G1 is included in the intersection ψ1(U ) ∩ ψ2(U ); the

values of r1 and r2 are equal on the leaf. Thus, for instance, if r1 vanishes,

then r2 has to be zero too, which is not possible on M̄1. We compute the

presymplectic structure on N0,a. Since

∂z ∼ψ−1
0,a
∂r1 + cosα∂s + sinα∂d = 1

r1
(r1∂r1 + s∂s + d∂d),

∂α ∼ψ−1
0,a

s∂d − d∂s and ∂t ∼ψ−1
0,a
∂z1 ,

we have

ωN0,a(∂t, ∂z)= 0, ωN0,a(∂t, ∂α)= 0,

and ωN0,a(∂z, ∂α)= −1

2
dr1

(
1

r1
(r1∂r1 + s∂s + d∂d)

)
= −1

2
.

Therefore, ωN0,a = 1
2 dα ∧ dz . This shows that (N0,a, ωN0,a) is presymplectomor-

phic to (Mσ , ωσ ), where σ =JG(p)= [r1, r1,0,a].

2. Suppose that r1 > 0, (r1 − s2+d2

r1
)(p)= k> 0, z2 = a∈ R. Then the leaf Nk,a of G1

through π(p) is the subset

M̄1 ⊇ψ1(U )⊇ Nk,a =
{
(r1, s,d, z1,a)

∣∣∣∣r1 > 0, r1 − s2 + d2

r1
= k, z1 ∈ R

}

=
{(√

4(s2 + d2)+ k2 + k

2
, s,d, z1,a

)∣∣∣∣∣ z1, s,d∈ R

}
.

Note that since r1 − r2 is equal to k> 0 on Nk,a, we have r1 > 0 on Nk,a and

hence, Nk,a ⊆ψ1(U ). To compute the presymplectic structure on Nk,a, we study
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its graph, which is the induced Dirac structure on the leaf (see (5)). We have

Γ (DNk,a)= spanC ∞(Nk,a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂z1 ,0),

(
s∂d − d∂s,

s√
4(s2 + d2)+ k2

ds

+ d√
4(s2 + d2)+ k2

dd

)
,

(−
√

4(s2 + d2)+ k2∂s,dd),

(
√

4(s2 + d2)+ k2∂d,ds).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We have used the fact that since r1 − k= s2+d2

r1
, we have r1 + s2+d2

r1
= 2r1 − k=√

4(s2 + d2)+ k2, and the equality

dr1 = 8s · 1

2 · 2 ·
√

4(s2 + d2)+ k2
ds + 8d · 1

2 · 2 ·
√

4(s2 + d2)+ k2
dd

= 2s√
4(s2 + d2)+ k2

ds + 2d√
4(s2 + d2)+ k2

dd.

This yields

Γ (DNk,a)= spanC ∞(Nk,a)

{
(∂z1 ,0), (−

√
4(s2 + d2)+ k2∂s,dd),

(
√

4(s2 + d2)+ k2∂d,ds),

}

and thus ωNk,a = 1√
4(s2+d2)+k2

dd∧ ds.

3. Suppose that r2 > 0, ( s2+d2

r2
− r2)(p)= k< 0, z2 = a∈ R. Then the leaf Nk,a of G1

through p is the subset

M̄1 ⊇ψ2(U )⊇ Nk,a =
{
(r2, s,d, z1,a)

∣∣∣∣r2 > 0,
s2 + d2

r2
− r2 = k, z1 ∈ R

}

=
{(√

4(s2 + d2)+ k2 + k

2
, s,d, z1,a

)∣∣∣∣∣ z1, s,d∈ R

}
.

Note that since r1 − r2 is equal to k< 0 on Nk,a, we have r2 > 0 on Nk,a and

hence, Nk,a ⊆ψ2(U ). To compute the presymplectic structure on Nk,a, we study
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its graph, which is the induced Dirac structure on the leaf (see (5)). We have

Γ (DNk,a)

= spanC ∞(Nk,a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂z1 ,0),

(
s∂d − d∂s,

s√
4(s2 + d2)+ k2

ds

+ d√
4(s2 + d2)+ k2

dd

)
,

(−
√

4(s2 + d2)+ k2∂s,dd),

(
√

4(s2 + d2)+ k2∂d,ds)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

as in the preceding case. This yields

Γ (DNk,a)= spanC ∞(Nk,a)

{
(∂z1 ,0), (−

√
4(s2 + d2)+ k2∂s,dd),

(
√

4(s2 + d2)+ k2∂d,ds),

}

and thus ωNk,a = 1√
4(s2+d2)+k2

dd∧ ds. �

Acknowledgements

The authors thank the referees for comments and suggestions that have improved the exposition.

Funding

This research was partially supported by the Swiss National Science Foundation grant 200021-
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Appendix 1. Tube Theorem and G-invariant Average for Proper Lie Group Actions

We recall here a construction from [18] which is used in some proofs of this paper.

If the action of a Lie group G on a smooth manifold M is proper, we can find for

each point m ∈ M a G-invariant neighborhood of m such that the action can be described

easily on this neighborhood. The proof of the following theorem can be found, for exam-

ple, in [23].
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Theorem A.1 (Tube Theorem). Let M be a manifold and G a Lie group acting prop-

erly on M. For a given point m ∈ M denote H := Gm. Then there exists a G-invariant

open neighborhood U of the orbit G · m, called tube at m, and a G-equivariant dif-

feomorphism G ×H B
∼−→ U . The set B is an open H-invariant neighborhood of 0

in an H-representation space H-equivariantly isomorphic to TmM/Tm(G · m). The H-

representation on TmM/Tm(G · m) is given by h · (v + Tm(G · m)) := TmΦh(v)+ Tm(G · m),

h∈ H , v ∈ TmM. The smooth manifold G ×H B is the quotient of the smooth free and

proper (twisted) action Ψ of H on G × B given by Ψ (h, (g,b)) := (gh−1,h · b), g ∈ G, h∈ H ,

b ∈ B. The G-action on G ×H B is given by k · [g,b] := [kg,b]H , where k, g ∈ G, b ∈ B, and

[g,b]H ∈ G ×H B is the equivalence class (i.e., H-orbit) of (g,b). �

Let m ∈ M and H := Gm. If the action of G on M is proper, the isotropy subgroup

H of m is a compact Lie subgroup of G. Hence, there exists a Haar measure dh on H , that

is, a G-invariant measure on H satisfying
∫

H dh= 1 (see, e.g., [11]). Left G-invariance of

dh is equivalent to right G-invariance of dh, that is, R∗
g dh= dh= L∗

g dh for all g ∈ H ,

where Lg : H → H (respectively, Rg : H → H ) denotes left (respectively, right) translation

by g on H .

Let X ∈ X(M) be defined on the tube U at m ∈ M of the proper action of the Lie

group G on M. Using the Tube Theorem, we write the points of U as equivalence classes

[g,b]H with g ∈ G and b ∈ B. The vector field XG is defined by

XG([g,b]H ) :=
(
Φ∗

g−1

(∫
H
Φ∗

h X dh
))

([g,b]H ).

That is, for each point m′ = [g,b]H ∈ U , we have

XG([g,b]H )= T[e,b]HΦg

(∫
H
(T[h,b]HΦh−1 X([h,b]H ))dh

)
.

This defines a smooth G-invariant vector field XG called the G-invariant average of the

vector field X (see [18]). Note that XG is, in general, not equal to X (at any point); it can

even vanish. Indeed, G-invariant vector fields are tangent to the isotropy-type manifolds

(see [23]). Hence, if we choose a G-invariant Riemannian metric on M and a section X

of the (G-invariant) orthogonal T P ⊥ ⊆ T M|P of T P relative to this metric, where P is a

stratum of M, its G-invariant average is both a section of T P ⊥ and tangent to P , so it is

the zero section (see also [10, Lemma 2.4]).
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Similarly, the G-invariant average αG ∈Ω1(M)G of α ∈Ω1(M) is defined by

αG([g,b]H ) :=
(
Φ∗

g−1

(∫
H
Φ∗

hα dh
))

([g,b]H ),

that is, for each point m′ = [g,b]H ∈ U, we have

αG([g,b]H )=
(∫

H
Φ∗

hα dh
)

[e,b]H

◦ T[g,b]HΦg−1 =
(∫

H
(α([h,b]H ) ◦ T[e,b]HΦh)dh

)
◦ T[g,b]HΦg−1 .

(A.1)

The 1-form αG is well-defined, smooth, and G-invariant (see [18]).

If (X, α) is a section of a G-invariant generalized distribution Δ, then (XG, αG) is

a G-invariant section of Δ.

Note that, in the same manner, we can define the G-invariant average fG of a

smooth function f defined on the tube U for the action of G at m. The function fG is

defined by

fG([g,b]H ) :=
∫

h∈H
f([h,b]H )dh.

Appendix 2. The Module of Equivariant Vector Fields on a Representation Space

Let Φ : G × V → V be a finite-dimensional representation of a compact Lie group G. We

review a method presented in [7] to find C ∞(V)G-generators for the set X(V)G := {X ∈
X(V) |Φ∗

g X = X ∀g ∈ G} of G-equivariant vector fields on V .

Since G is compact, averaging an arbitrary inner product on V yields a G-

invariant inner product 〈〈 , 〉〉 on V . Thus, we can assume, without loss of generality,

that the representation Φ is orthogonal. Denote by 〈 , 〉 : V∗ × V → R the nondegenerate

duality pairing.

The computation of the set of generators for X(V)G is facilitated by the following

two observations:

(1) There is a bijective correspondence between G-equivariant vector fields on

V and G-equivariant maps V → V.

Indeed, since TV � V × V and the tangent lift of the representation Φ to

TV is given by g · (v,w) := TvΦgw= (Φgv,Φgw), for all g ∈ G, v,w ∈ V , we

can associate to each X ∈ X(V)G the smooth G-equivariant map fX : V → V ,
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fX(v) := pr2(X(v)), and vice versa; pr2 : V × V → V is the projection on the

second factor.

(2) There is a surjective map from the set of G-invariant real-valued functions

C ∞(V × V)G on V × V to the set X(V)G of G-equivariant vector fields on V .

Indeed, if ϕ : TV = V × V → R is a smooth G-invariant function, define fϕ(v) :=
d2ϕ(v,0) ∈ V∗ for all v ∈ V , where d2ϕ denotes the derivative relative to the second vari-

able. Then fϕ : V → V∗ is a G-equivariant function, where the G-representation on V∗ is

defined by g · l := l ◦Φg−1 , for all l ∈ V∗ and g ∈ G. The G-invariant inner product 〈〈 , 〉〉 on V

induces the isomorphism v ∈ V �→ 〈〈v, ·〉〉 ∈ V∗ of G-representations and hence fϕ induces

a G-equivariant map f̃ϕ : V → V defined by 〈〈 f̃ϕ(v), w〉〉 := 〈 fϕ(v), w〉 = 〈d2ϕ(v,0), w〉 for all

v,w ∈ V . Therefore, we get Xϕ ∈ X(V)G defined by Xϕ(v) := (v, f̃ϕ(v)) for all v ∈ V .

Conversely, each X ∈ X(V)G , uniquely defines the smooth G-equivariant map

fX : V → V given by X(v)= (v, fX(v)) for all v ∈ V and hence the smooth G-invariant func-

tion ϕX : V × V → R defined by ϕX(v,w)= 〈〈 fX(v), w〉〉 which is linear in the second compo-

nent, that is, ϕX ∈ S(V × V)G := {ϕ ∈ C ∞(V × V)G | ϕ(v, ·) ∈ V∗, for all v ∈ V}. Note that if

ψ ∈ S(V × V)G , then ψ(v,w)= 〈d2ψ(v,0), w〉. Using this identity, it is easily seen that the

correspondences ϕ ∈ S(V × V)G �→ Xϕ ∈ X(V)G , X ∈ X(V)G �→ ϕX ∈ S(V × V)G are inverses

to each other.

So we have a bijective map X(V)G ↔ S(V × V)G . In particular, the map ϕ ∈
C ∞(V × V)G �→ Xϕ ∈ X(V)G is surjective.

Let {p1, . . . , pn} be a Hilbert basis for the ring and finitely generated R-algebra

of G-invariant polynomials on V × V . The Hilbert map H : V × V → Rn, H(v,w) :=
(p1(v,w), . . . , pn(v,w)) is proper (inverse images of compact sets are compact), it sep-

arates orbits (if (v′, w′) �= g · (v,w) for all g ∈ G, then H(v′, w′) �=H(v,w)), and there

is a homeomorphism H̄ : (V × V)/G
∼−→H(V × V)⊆ Rn such that H̄ ◦ π =H, where π :

V × V → (V × V)/G is the projection on the orbit space (see [7, Theorem 5.2.9]). The

theorem of Schwarz–Mather (see, for instance, [23, Theorem 2.5.3]) states that for

each G-invariant function ϕ ∈ C ∞(V × V)G , there exists Fϕ ∈ C ∞(Rn) such that ϕ = Fϕ ◦
(p1, . . . , pn). Since

fϕ(v) := d2ϕ(v,0)=
n∑

i=1

∂Fϕ
∂xi

(p1(v,0), . . . , pn(v,0))d2 pi(v,0) ∈ V∗,

the G-equivariant vector fields X1, . . . , Xn, Xi(v) := (v, p̃i(v)), 〈〈 p̃i(v), w〉〉 = 〈d2 pi(v,0), w〉,
for all w ∈ V , i = 1, . . . ,n, associated to the Hilbert basis p1, . . . , pn are spanning vector

fields for the C ∞(V)G-module X(V)G .
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In the examples below, we need to know the Hilbert basis for the diagonal

actions of S1 and SO(3) on n copies of R2, respectively R3. These bases are given in

the following proposition, which is proved in [20, Theorem 10.2].

Proposition A.2.

1. Consider the diagonal action φ of S1 = SO(2) on n copies of R2, that is,

φ : S1 × (R2)n �→ (R2)n, φ(α, (v1, . . . , vn))= (α · v1, . . . , α · vn). Write P((R2)n) as

R[X1,Y1, . . . , Xn,Yn] and define Pij, Qij ∈P((R2)n)S
1

by Pij = Xi X j + YiYj and

Qij = XiYj − X jYi for all i, j = 1, . . . ,n. Then Bn := {Pij, Qkl | 1 ≤ i ≤ j ≤ n,1 ≤
k< l ≤ n} is a Hilbert basis for P((R2)n)S

1
.

2. Consider the diagonal action ψ of SO(3) on n copies of R3, that is,

ψ : SO(3)× (R3)n �→ (R3)n, ψ(A, (v1, . . . , vn))= (A · v1, . . . , A · vn). Write P((R3)n)

as R[X1,Y1, Z1, . . . , Xn,Yn, Zn] and define Pij, Qijk ∈P((R3)n)SO(3) by Pij =
Xi X j + YiYj + Zi Z j and Qijk = XiYj Zk + Yi Z j Xk + Zi X jYk − XiYkZ j − Yi X j Zk −
ZiYj Xk for all i, j,k= 1, . . . ,n. Then Cn := {Pij, Qklm | 1 ≤ i ≤ j ≤ n,1 ≤ k< l <

m ≤ n} is a Hilbert basis for P((R3)n)SO(3). �

Example A.3. We consider Example 8.1: the (automatically proper) action Φ of G :=
S1 � R/(2πZ) on M := R3 given by

Φα(x, y, z)= α · (x, y, z)= (x cosα − ysinα, x sinα + ycosα, z).

We want to find C ∞(M)G-generators for the G-invariant vector fields on M =
R3, G = S1. Hence, we have to find the invariant functions for the diagonal action

of S1 on M × M, that is, the action Ψ : S1 × (R3 × R3)→ (R3 × R3) given by Ψα(v,w)=
(Φα(v),Φα(w)) for all v,w ∈ R3. Write (v,w)= (xv, yv, zv, xw, yw, zw) ∈ R6. Then, by Propo-

sition A.2, the Hilbert basis for PS
1
((R3)2) is given by {p1, p2, p3, p4, p5, p6}, where

p1(v,w)= x2
v + y2

v p2(v,w)= x2
w + y2

w p3(v,w)= zv

p4(v,w)= zw p5(v,w)= xvxw + yvyw p6(v,w)= xvyw − yvxw.

Since dw p1(v,0)= 0, dw p2(v,0)= 0, dw p3(v,0)= 0, dw p4(v,0)= dzw, dw p5(v,0)=
xvdxw + yvdyw, dw p6(v,0)= xvdyw − yvdxw, the method in [7] reviewed above yields the

generators X1 = X2 = X3 = 0, X4(v)= ∂zv , X5(v)= xv∂xv + yv∂yv , X6(v)= xv∂yv − yv∂xv of the
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C ∞(R6)S
1
-module of equivariant vector fields X(R6)S

1
on R6. Note that X6 is the fun-

damental vector field of the action of S1 on R3 defined by the Lie algebra element

1 ∈ T1S1 � R.

Thus, we get Γ (T )= Γ (TG)= spanC ∞(M){∂z, x∂x + y∂y, x∂y − y∂x} as was used in

Example 8.1. �

Example A.4. We consider here the action of Example 8.2. The vector space M = R3 ×
R3 is endowed with the (automatically proper) diagonal action of G = S1 � R/(2πZ) on it,

that is,

Φ : S1 × (R3 × R3)−→ R3 × R3,⎛
⎜⎜⎝α,

⎛
⎜⎜⎝

x1

y1

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2

y2

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ �−→

⎛
⎜⎜⎝
⎛
⎜⎜⎝

x1 cosα − y1 sinα

x1 sinα + y1 cosα

z1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x2 cosα − y2 sinα

x2 sinα + y2 cosα

z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

We have to consider the action Ψ of S1 on R12 � (R3 × R3)× (R3 × R3) defined by

Ψ : S1 × (
(R3 × R3)× (R3 × R3)

)−→ ((R3 × R3)× (R3 × R3)),

(v,w,u, t) �−→ (Φα(v),Φα(w),Φα(u),Φα(t)).

We write v= (xv, yv, zv), w= (xw, yw, zw), etc. By Proposition A.2, we have H= {pi : R12 →
R | i = 1, . . . ,20}, where

p1(v,w,u, t)= zv, p2(v,w,u, t)= zw, p3(v,w,u, t)= zu, p4(v,w,u, t)= zt,

p5(v,w,u, t)= x2
v + y2

v , p6(v,w,u, t)= x2
w + y2

w, p7(v,w,u, t)= x2
u + y2

u,

p8(v,w,u, t)= x2
t + y2

t , p9(v,w,u, t)= xvxw + yvyw, p10(v,w,u, t)= xvxu + yvyu,

p11(v,w,u, t)= xvxt + yvyt, p12(v,w,u, t)= xwxu + ywyu, p13(v,w,u, t)= xwxt + ywyt,

p14(v,w,u, t)= xuxt + yuyt, p15(v,w,u, t)= xvyw − yvxw, p16(v,w,u, t)= xvyu − yvxu,

p17(v,w,u, t)= xvyt − yvxt, p18(v,w,u, t)= xwyu − ywxu, p19(v,w,u, t)= xwyt − ywxt,

p20(v,w,u, t)= xuyt − yuxt.
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Since these functions determine the lengths of the four vectors and the angles between

them, we have, as predicted, (p1, . . . , p20)(R
12)� R12/S1. We compute the vector fields

X1, . . . , X20 associated to these polynomial functions in H. Since

p̃1(v,w)= 0, p̃2(v,w)= 0, p̃3(v,w)= dzu, p̃4(v,w)= dzt,

p̃5(v,w)= 0, p̃6(v,w)= 0, p̃7(v,w)= (2xu dxu + 2yu dyu)|(v,w,0,0) = 0,

p̃8(v,w)= (2xtdxt + 2ytdyt)|(v,w,0,0) = 0, p̃9(v,w)= 0, p̃10(v,w)= xv dxu + yv dyu,

p̃11(v,w)= xv dxt + yv dyt, p̃12(v,w)= xw dxu + yw dyu, p̃13(v,w)= xw dxt + yw dyt,

p̃14(v,w)= (xu dxt + xtdxu + yu dyt + ytdxu)|(v,w,0,0) = 0, p̃15(v,w)= 0,

p̃16(v,w)= xv dyu − yv dxu, p̃17(v,w)= xv dyt − yv dxt,

p̃18(v,w)= xw dyu − yw dxu, p̃19(v,w)= xw dyt − yw dxt,

p̃20(v,w)= (xu dyt + ytdxu − yu dxt − xtdyu)|(v,w,0,0) = 0,

we get

X1 = X2 = X5 = X6 = X7 = X8 = X9 = X14 = X15 = X20 = 0,

X3(v,w)= ∂zv , X4(v,w)= ∂zw , X10(v,w)= xv∂xv + yv∂yv ,

X11(v,w)= xv∂xw + yv∂yw , X12(v,w)= xw∂xv + yw∂yv , X13(v,w)= xw∂xw + yw∂yw ,

X16(v,w)= xv∂yv − yv∂xv , X17(v,w)= xv∂yw − yv∂xw ,

X18(v,w)= xw∂yv − yw∂xv , and X19(v,w)= xw∂yw − yw∂xw .

Thus, TG = T is spanned by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X3(v,w)= ∂zv , X4(v,w)= ∂zw , X10(v,w)= xv∂xv + yv∂yv ,

X11(v,w)= xv∂xw + yv∂yw , X12(v,w)= xw∂xv + yw∂yv , X13(v,w)= xw∂xw + yw∂yw ,

X16(v,w)= xv∂yv − yv∂xv , X17(v,w)= xv∂yw − yv∂xw ,

X18(v,w)= xw∂yv − yw∂xv , X19(v,w)= xw∂yw − yw∂xw .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Note that the vertical space of the action is spanned by V = X16 + X19. �
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Example A.5. Our last example is an example in [18], inspired by Bierstone [1]. We

consider the diagonal action Φ of G := SO(3) on M := R3 × R3, that is, Φ : SO(3)× (R3 ×
R3)→ R3 × R3, Φ(A, v, w) := A · (v,w) := (Av, Aw).

Here, we thus have to consider the action Ψ of SO(3) on R12 given by

Ψ (A, (v,w,u, t))= (Av, Aw, Au, At). We write again v= (xv, yv, zv), w= (xw, yw, zw), etc. By

Proposition A.2, the Hilbert basis is H= {p1, . . . , p14}, where the polynomial functions

pi : R12 → R, i = 1, . . . ,14 are defined by

p1(v,w,u, t)= ‖v‖2 = x2
v + y2

v + z2
v , p2(v,w,u, t)= x2

w + y2
w + z2

w, p3(v,w,u, t)= x2
u + y2

u + z2
u,

p4(v,w,u, t)= x2
t + y2

t + z2
t , p5(v,w,u, t)= 〈v,w〉 = xvxw + yvyw + zvzw,

p6(v,w,u, t)= xvxu + yvyu + zvzu, p7(v,w,u, t)= xvxt + yvyt + zvzt,

p8(v,w,u, t)= xwxu + ywyu + zwzu, p9(v,w,u, t)= xwxt + ywyt + zwzt,

p10(v,w,u, t)= xuxt + yuyt + zuzt,

p11(v,w,u, t)= det(v,w,u)= xvywzu + xwyuzv + xuyvzw − zvywxu − yvxwzu − xvzwyu,

p12(v,w,u, t)= det(v,w, t)= xvywzt + xwytzv + xtyvzw − zvywxt − yvxwzt − xvzwyt,

p13(v,w,u, t)= det(v,u, t)= xvyuzt + xuytzv + xtyvzu − zvyuxt − yvxuzt − xvzuyt,

p14(v,w,u, t)= det(w,u, t)= xwyuzt + xuytzw + xtywzu − zwyuxt − ywxuzt − xwzuyt.

Since the lengths of the four vectors and their relative positions in space are completely

determined by these 14 polynomials, we find, as expected, (p1, . . . , p14)(R
12)� R12/SO(3).

We compute the vector fields X1, . . . , X14 associated to these polynomials. Since

p̃1(v,w)= 0, p̃2(v,w)= 0, p̃3(v,w)= 0, p̃4(v,w)= 0,

p̃5(v,w)= 0, p̃6(v,w)= xv dxu + yv dyu + zv dzu, p̃7(v,w)= xv dxt + yv dyt + zv dzt,

p̃8(v,w)= xw dxu + yw dyu + zw dzu, p̃9(v,w)= xw dxt + yw dyt + zw dzt, p̃10(v,w)= 0,

p̃11(v,w)= (xvyw − yvxw)dzu + (xwzv − xvzw)dyu + (yvzw − zvyw)dxu,

v12(v,w)= (xvyw − yvxw)dzt + (xwzv − xvzw)dyt + (yvzw − zvyw)dxt,

p̃13(v,w)= 0, p̃14(v,w)= 0,
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we find

X1 = X2 = X3 = X4 = X5 = X10 = X13 = X14 = 0,

X6(v,w)= xv∂xv + yv∂yv + zv∂zv , X7(v,w)= xv∂xw + yv∂yw + zv∂zw ,

X8(v,w)= xw∂xv + yw∂yv + zw∂zv , X9(v,w)= xw∂xw + yw∂yw + zw∂zw ,

X11(v,w)= (xvyw − yvxw)∂zv + (xwzv − xvzw)∂yv + (yvzw − zvyw)∂xv ,

X12(v,w)= (xvyw − yvxw)∂zw + (xwzv − xvzw)∂yw + (yvzw − zvyw)∂xw .

Thus, TG is spanned by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X6(v,w)= xv∂xv + yv∂yv + zv∂zv , X7(v,w)= xv∂xw + yv∂yw + zv∂zw ,

X8(v,w)= xw∂xv + yw∂yv + zw∂zv , X9(v,w)= xw∂xw + yw∂yw + zw∂zw ,

X11(v,w)= (xvyw − yvxw)∂zv + (xwzv − xvzw)∂yv + (yvzw − zvyw)∂xv ,

X12(v,w)= (xvyw − yvxw)∂zw + (xwzv − xvzw)∂yw + (yvzw − zvyw)∂xw

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

The vector field Y defined by

Y(v,w)= ((v × w)× v)x∂x1 + ((v × w)× v)y∂y1 + ((v × w)× v)z∂z1

+ ((v × w)× w)x∂x2 + ((v × w)× w)y∂y2 + ((v × w)× w)z∂z2

= 〈v, v〉(x2∂x1 + y2∂y1 + z2∂z1)− 〈v,w〉(x1∂x1 + y1∂y1 + z1∂z1)

+ 〈v,w〉(x2∂x2 + y2∂y2 + z2∂z2)− 〈w,w〉(x1∂x2 + y1∂y2 + z1∂z2)

= 〈v, v〉X8(v,w)− 〈v,w〉X6(v,w)+ 〈v,w〉X9(v,w)− 〈w,w〉X7(v,w)

for all (v,w) ∈ R3 × R3 is then also an element of TG , where ((v × w)× v)x, ((v × w)× v)y

and ((v × w)× v)z are the x-, y- and z-components of the vector product (v × w)× v. �
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Basel: Birkhäuser, 1994.

[31] Yoshimura, H. and J. E. Marsden. “Reduction of Dirac structures and the Hamilton–

Pontryagin principle.” Reports on Mathematical Physics 60, no. 3 (2007): 381–426.

[32] Yoshimura, H. and J. E. Marsden. “Dirac cotangent bundle reduction.” Journal of Geometric

Mechanics 1, no. 1 (2009): 87–158.


	Introduction
	Outline of the paper
	Notation and conventions

	Generalized Distributions, Symmetries, and Standard Dirac Reduction
	Generalized distributions
	Smooth orthogonals and annihilators
	Generalized foliations and integrability of tangent distributions

	Generalities on Dirac structures
	Dirac structures
	Properties of integrable Dirac structures

	Proper actions and orbit-type manifolds
	The stratification by orbit types
	Descending sections of PM
	Review of standard Dirac reduction


	The Free Case
	The Optimal Distributions
	Algebraic involutivity of the optimal distributions
	The ``exactness'' condition

	The Optimal Momentum Maps
	The orbit-type Dirac optimal momentum map
	The isotropy-type Dirac optimal momentum map
	Universality of the optimal map JG under the exactness condition (§ 4.2)

	Optimal Reduction
	The reduction theorems: Optimal point reduction by Dirac actions
	Optimal orbit reduction
	Comparison of the three methods
	Reduction of dynamics

	Comparison of Optimal and Standard Dirac Reduction
	Examples
	References

